From efb07c1e238e54b31812274dee375b714ef5d495 Mon Sep 17 00:00:00 2001 From: "Documenter.jl" Date: Fri, 5 Jul 2024 22:53:15 +0000 Subject: [PATCH] build based on a3888b3 --- dev/.documenter-siteinfo.json | 2 +- dev/index.html | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/dev/.documenter-siteinfo.json b/dev/.documenter-siteinfo.json index 5b34bdf..6beb6a3 100644 --- a/dev/.documenter-siteinfo.json +++ b/dev/.documenter-siteinfo.json @@ -1 +1 @@ -{"documenter":{"julia_version":"1.10.4","generation_timestamp":"2024-07-05T14:28:22","documenter_version":"1.5.0"}} \ No newline at end of file +{"documenter":{"julia_version":"1.10.4","generation_timestamp":"2024-07-05T22:53:12","documenter_version":"1.5.0"}} \ No newline at end of file diff --git a/dev/index.html b/dev/index.html index 25e3187..e30de14 100644 --- a/dev/index.html +++ b/dev/index.html @@ -14,4 +14,4 @@ polynomials::Vector{P} end

Orthogonal polynomial with respect to the univariate weight function $w(x) = \exp(-x^2/2)$ over the interval $[-\infty, \infty]$.

source
MultivariateBases.PhysicistsHermiteType
struct PhysicistsHermite{P} <: AbstractHermite{P}
     polynomials::Vector{P}
-end

Orthogonal polynomial with respect to the univariate weight function $w(x) = \exp(-x^2)$ over the interval $[-\infty, \infty]$.

source
MultivariateBases.LaguerreType
struct LaguerreBasis <: AbstractMultipleOrthogonal end

Orthogonal polynomial with respect to the univariate weight function $w(x) = \exp(-x)$ over the interval $[0, \infty]$.

source
MultivariateBases.AbstractGegenbauerType
struct AbstractGegenbauer <: AbstractMultipleOrthogonal end

Orthogonal polynomial with respect to the univariate weight function $w(x) = (1 - x^2)^{\alpha - 1/2}$ over the interval $[-1, 1]$.

source
MultivariateBases.LegendreType
struct Legendre <: AbstractGegenbauer end

Orthogonal polynomial with respect to the univariate weight function $w(x) = 1$ over the interval $[-1, 1]$.

source
MultivariateBases.ChebyshevFirstKindType
struct ChebyshevFirstKind <: AbstractChebyshev end

Orthogonal polynomial with respect to the univariate weight function $w(x) = \frac{1}{\sqrt{1 - x^2}}$ over the interval $[-1, 1]$.

source
MultivariateBases.ChebyshevSecondKindType
struct ChebyshevSecondKind <: AbstractChebyshevBasis end

Orthogonal polynomial with respect to the univariate weight function $w(x) = \sqrt{1 - x^2}$ over the interval $[-1, 1]$.

source
+end

Orthogonal polynomial with respect to the univariate weight function $w(x) = \exp(-x^2)$ over the interval $[-\infty, \infty]$.

source
MultivariateBases.LaguerreType
struct LaguerreBasis <: AbstractMultipleOrthogonal end

Orthogonal polynomial with respect to the univariate weight function $w(x) = \exp(-x)$ over the interval $[0, \infty]$.

source
MultivariateBases.AbstractGegenbauerType
struct AbstractGegenbauer <: AbstractMultipleOrthogonal end

Orthogonal polynomial with respect to the univariate weight function $w(x) = (1 - x^2)^{\alpha - 1/2}$ over the interval $[-1, 1]$.

source
MultivariateBases.LegendreType
struct Legendre <: AbstractGegenbauer end

Orthogonal polynomial with respect to the univariate weight function $w(x) = 1$ over the interval $[-1, 1]$.

source
MultivariateBases.ChebyshevFirstKindType
struct ChebyshevFirstKind <: AbstractChebyshev end

Orthogonal polynomial with respect to the univariate weight function $w(x) = \frac{1}{\sqrt{1 - x^2}}$ over the interval $[-1, 1]$.

source
MultivariateBases.ChebyshevSecondKindType
struct ChebyshevSecondKind <: AbstractChebyshevBasis end

Orthogonal polynomial with respect to the univariate weight function $w(x) = \sqrt{1 - x^2}$ over the interval $[-1, 1]$.

source