Releases: JuliaAI/MLJTuning.jl
Releases · JuliaAI/MLJTuning.jl
v0.7.3
v0.7.2
MLJTuning v0.7.2
Closed issues:
- Checklist for 0.7.0 release (#152)
Merged pull requests:
- Add link to usage examples (#177) (@rikhuijzer)
- Clarify error for uninstantiated model further (#178) (@rikhuijzer)
- Update README.md (#179) (@pitmonticone)
- For a 0.7.2 release (#180) (@ablaom)
v0.7.1
MLJTuning v0.7.1
- (enhancement) Allow user to specify class weights when constructing
TunedModel
, for passing to measures (#172) - (convenience) Allow user to specify models as an argument instead of keyword, as in
TunedModel(model, tuning=...)
(#175) - Suppress some unecessary "outer layer" caching of training data (#173)
Closed issues:
- Tuned Model interface doesnt have class_weights (#134)
- Allow
TunedModel(mymodel; kwargs....)
in addition toTunedModel(model=mymodel; kwargs...)
(#154) - Machines wrapping
TunedModel
instances should never cache data (#171)
Merged pull requests:
v0.7.0
MLJTuning v0.7.0
- (breaking) Change default tuning strategy from
Grid
toRandomSearch()
(#147) - (breaking) Remove deprecated
learning_curve!
method (#151) - (breaking) Adapt to serialization changes in MLJBase 0.20. In particular, this allows serialization of
TunedModel(model=...)
whenmodel
is not pure Julia (#165) @olivierlabayle
Closed issues:
- Make
RandomSearch
the default, instead ofGrid
(#147) - Remove
learning_curve!
which has been deprecated (#151)
Merged pull requests:
- add serialization (#165) (@olivierlabayle)
- Fix a learning curve bug for case JULIA_NUM_THREADS = 1 (#166) (@ablaom)
- Remove deprecated
learning_curve!(...)
(#167) (@ablaom) - Change tuning default to
Random()
instead ofGrid()
(#168) (@ablaom) - Bump julia version to 1.6 in [deps] and ci (#169) (@ablaom)
- For a 0.7.0 release (#170) (@ablaom)
v0.6.16
v0.6.15
MLJTuning v0.6.15
Closed issues:
- Add warning in documentation about unpredictability of history order when using parallelization (#140)
Merged pull requests:
v0.6.14
MLJTuning v0.6.14
Merged pull requests:
v0.6.13
v0.6.12
v0.6.11
MLJTuning v0.6.11
- Fix problem with reproducibility when
acceleration isa CPUThreads
(#126, #145) @lhnguyen-vn
Closed issues:
- Non-thread safe use of resampling machines (#126)
Merged pull requests: