-
Notifications
You must be signed in to change notification settings - Fork 5
/
run.py
119 lines (93 loc) · 3.01 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import random
import math
import numpy as np
from scipy.linalg import orth
def _make_lr_matrix(m, n, k):
L = np.random.randn(m, k)
R = np.random.randn(k, n)
return np.dot(L, R)
def _get_masked_matrix(M, omega):
M_max, M_min = np.max(M), np.min(M)
M_ = M.copy()
M_[(1 - omega).astype(np.int16)] = M_max * M_max
return M_
def _get_V_from_U(M, U, omega):
column = M.shape[1]
rank = U.shape[1]
V = np.empty((rank, column), dtype=M.dtype)
for j in range(0, column):
U_ = U.copy()
U_[(1 - omega[:, j]).astype(np.int16), :] = 0
V[:, j] = np.linalg.lstsq(U_, M[:, j], rcond=None)[0]
return V
def _get_err(M, U, V, omega):
error_matrix = M - np.dot(U, V)
error_matrix[(1 - omega).astype(np.int16)] = 0
return np.linalg.norm(error_matrix, 'fro') / np.count_nonzero(omega)
def _split_omega(omega, T):
omegas = [np.zeros(omega.shape) for t in range(2 * T + 1)]
row, col = omega.shape
for i in range(row):
for j in range(col):
idx = random.randint(0, 2 * T)
omegas[idx][i, j] = omega[i, j]
return omegas
def _init_U(M, omega, p, k, mu):
M[(1 - omega).astype(np.int16)] = 0
M = M / p
U, S, V = np.linalg.svd(M, full_matrices=False)
U_hat = U.copy()
clip_threshold = 2 * mu * math.sqrt(k / max(M.shape))
U_hat[U_hat > clip_threshold] = 0
U_hat = orth(U_hat)
print("|U_hat-U|_F/|U|_F:",
np.linalg.norm(np.subtract(U_hat, U), ord='fro') / np.linalg.norm(
U, ord='fro'))
return U_hat
def _solve(M, omega, p, k, T, mu):
omegas = _split_omega(omega, T)
U = _init_U(M[:, :], omegas[0], p, k, mu)
print('')
V = None
for t in range(T):
V = _get_V_from_U(M, U, omegas[t + 1])
U = _get_V_from_U(M.T, V.T, omegas[T + t + 1].T).T
err = _get_err(M, U, V, omega)
print('>> t(%3d):' % t, err)
print('')
assert V is not None
return np.dot(U, V)
def main(m, n, k, p, T, mu):
M = _make_lr_matrix(m, n, k)
omega = np.zeros((m, n))
omega[np.random.rand(m, n) <= p] = 1
cardinality_of_omega = np.count_nonzero(omega)
omega = omega.astype(np.int16)
M_rank = np.linalg.matrix_rank(M)
print("RANK of M :", M_rank)
M_ = _get_masked_matrix(M, omega)
X = _solve(M, omega, p, k, T, mu)
X_rank = np.linalg.matrix_rank(X)
print("RANK of X :", X_rank)
E = np.subtract(M, X)
E_train = E.copy()
np.place(E_train, 1 - omega, 0)
print('TRAIN RMSE :',
np.linalg.norm(E_train, "fro") / cardinality_of_omega)
E_test = E.copy()
np.place(E_test, omega, 0)
print('TEST RMSE :',
np.linalg.norm(E_test, "fro") / (m * n - cardinality_of_omega))
print("|X-M|_F/|M|_F :",
np.linalg.norm(np.subtract(M, X), ord='fro') / np.linalg.norm(
M, ord='fro'))
if __name__ == '__main__':
# Given
m = 100
n = 100
p = 0.1
# Hyper Parameters
k = 2
T = 5
mu = 0.1
main(m, n, k, p, T, mu)