-
Notifications
You must be signed in to change notification settings - Fork 36
/
jJayaAlgorithm.m
98 lines (90 loc) · 1.98 KB
/
jJayaAlgorithm.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
%[2016]-"Jaya: A simple and new optimization algorithm for solving
%constrained and unconstrained optimization problems"
% (9/12/2020)
function JA = jJayaAlgorithm(feat,label,opts)
% Parameters
lb = 0;
ub = 1;
thres = 0.5;
if isfield(opts,'N'), N = opts.N; end
if isfield(opts,'T'), max_Iter = opts.T; end
if isfield(opts,'thres'), thres = opts.thres; end
% Objective function
fun = @jFitnessFunction;
% Number of dimensions
dim = size(feat,2);
% Initial (26)
X = zeros(N,dim);
for i = 1:N
for d = 1:dim
X(i,d) = lb + (ub - lb) * rand();
end
end
% Fitness
fit = zeros(1,N);
fitG = inf;
for i = 1:N
fit(i) = fun(feat,label,(X(i,:) > thres),opts);
% Best
if fit(i) < fitG
fitG = fit(i);
Xgb = X(i,:);
end
end
% Pre
Xnew = zeros(N,dim);
curve = zeros(1,max_Iter);
curve(1) = fitG;
t = 2;
% Iteration
while t <= max_Iter
% Identify best & worst in population
[~, idxB] = min(fit);
Xbest = X(idxB,:);
[~, idxW] = max(fit);
Xworst = X(idxW,:);
% Start
for i = 1:N
for d = 1:dim
% Random numbers
r1 = rand();
r2 = rand();
% Update (1)
Xnew(i,d) = X(i,d) + r1 * (Xbest(d) - abs(X(i,d))) - ...
r2 * (Xworst(d) - abs(X(i,d)));
end
% Boundary
XB = Xnew(i,:); XB(XB > ub) = ub; XB(XB < lb) = lb;
Xnew(i,:) = XB;
end
% Fitness
for i = 1:N
Fnew = fun(feat,label,(Xnew(i,:) > thres),opts);
% Greedy selection
if Fnew < fit(i)
fit(i) = Fnew;
X(i,:) = Xnew(i,:);
end
% Best
if fit(i) < fitG
fitG = fit(i);
Xgb = X(i,:);
end
end
% Save
curve(t) = fitG;
fprintf('\nIteration %d Best (JA)= %f',t,curve(t))
t = t + 1;
end
% Select features based on selected index
Pos = 1:dim;
Sf = Pos((Xgb > thres) == 1);
sFeat = feat(:,Sf);
% Store results
JA.sf = Sf;
JA.ff = sFeat;
JA.nf = length(Sf);
JA.c = curve;
JA.f = feat;
JA.l = label;
end