-
Notifications
You must be signed in to change notification settings - Fork 36
/
jGeneticAlgorithm.m
135 lines (126 loc) · 2.85 KB
/
jGeneticAlgorithm.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
%[2006]-"A GA-based feature selection and parameters optimization for
%support vector machines"
% (9/12/2020)
function GA = jGeneticAlgorithm(feat,label,opts)
% Parameters
CR = 0.8; % crossover rate
MR = 0.01; % mutation rate
if isfield(opts,'N'), N = opts.N; end
if isfield(opts,'T'), max_Iter = opts.T; end
if isfield(opts,'CR'), CR = opts.CR; end
if isfield(opts,'MR'), MR = opts.MR; end
% Objective function
fun = @jFitnessFunction;
% Number of dimensions
dim = size(feat,2);
% Initial
X = jInitialization(N,dim);
% Fitness
fit = zeros(1,N);
fitG = inf;
for i = 1:N
fit(i) = fun(feat,label,X(i,:),opts);
% Best update
if fit(i) < fitG
fitG = fit(i);
Xgb = X(i,:);
end
end
% Pre
curve = zeros(1,max_Iter);
curve(1) = fitG;
t = 2;
% Generations
while t <= max_Iter
% Get probability
Ifit = 1 ./ (1 + fit);
prob = Ifit / sum(Ifit);
% Preparation
Xc1 = zeros(1,dim);
Xc2 = zeros(1,dim);
fitC1 = ones(1,1);
fitC2 = ones(1,1);
z = 1;
for i = 1:N
if rand() < CR
% Select two parents
k1 = jRouletteWheelSelection(prob);
k2 = jRouletteWheelSelection(prob);
% Store parents
P1 = X(k1,:);
P2 = X(k2,:);
% Single point crossover
ind = randi([1, dim - 1]);
% Crossover between two parents
Xc1(z,:) = [P1(1:ind), P2(ind + 1:dim)];
Xc2(z,:) = [P2(1:ind), P1(ind + 1:dim)];
% Mutation
for d = 1:dim
% First child
if rand() < MR
Xc1(z,d) = 1 - Xc1(z,d);
end
% Second child
if rand() < MR
Xc2(z,d) = 1 - Xc2(z,d);
end
end
% Fitness
fitC1(1,z) = fun(feat,label,Xc1(z,:),opts);
fitC2(1,z) = fun(feat,label,Xc2(z,:),opts);
z = z + 1;
end
end
% Merge population
XX = [X; Xc1; Xc2];
FF = [fit, fitC1, fitC2];
% Select N best solution
[FF, idx] = sort(FF,'ascend');
X = XX(idx(1:N),:);
fit = FF(1:N);
% Best agent
if fit(1) < fitG
fitG = fit(1);
Xgb = X(1,:);
end
% Save
curve(t) = fitG;
fprintf('\nGeneration %d Best (GA)= %f',t,curve(t))
t = t + 1;
end
% Select features based on selected index
Pos = 1:dim;
Sf = Pos(Xgb == 1);
sFeat = feat(:,Sf);
% Store results
GA.sf = Sf;
GA.ff = sFeat;
GA.nf = length(Sf);
GA.c = curve;
GA.f = feat;
GA.l = label;
end
function Index = jRouletteWheelSelection(prob)
% Cummulative summation
C = cumsum(prob);
% Random one value, most probability value [0~1]
P = rand();
% Route wheel
for i = 1:length(C)
if C(i) > P
Index = i;
break;
end
end
end
function X = jInitialization(N,dim)
% Initialize X vectors
X = zeros(N,dim);
for i = 1:N
for d = 1:dim
if rand() > 0.5
X(i,d) = 1;
end
end
end
end