forked from AnomalyLLM/AnomalyLLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pre_training.py
65 lines (49 loc) · 2.12 KB
/
pre_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
from codes.AnomalyDatasetLoader import AnomalyDatasetLoader
from codes.Component import MyConfig
from codes.AnomalyLLM import AnomalyLLM
from codes.Settings import Settings
import numpy as np
import torch
import argparse
import warnings
warnings.filterwarnings("ignore")
import os
# from pycm import *
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, choices=['uci', 'digg', 'btc_alpha', 'btc_otc', 'BlogCatalog'], default='uci')
parser.add_argument('--anomaly_per', choices=[0.01, 0.05, 0.1, 0.5], type=float, default=0.01)
parser.add_argument('--train_per', type=float, default=0.5)
parser.add_argument('--neighbor_num', type=int, default=18)
parser.add_argument('--window_size', type=int, default=2)
parser.add_argument('--embedding_dim', type=int, default=512)
parser.add_argument('--num_hidden_layers', type=int, default=3)
parser.add_argument('--num_attention_heads', type=int, default=4)
parser.add_argument('--max_epoch', type=int, default=100)
parser.add_argument('--lr', type=float, default=0.0001)
parser.add_argument('--weight_decay', type=float, default=5e-4)
parser.add_argument('--seed', type=int, default=1)
parser.add_argument('--print_feq', type=int, default=10)
args = parser.parse_args()
np.random.seed(args.seed)
torch.manual_seed(args.seed)
print('$$$$ Start $$$$')
data_obj = AnomalyDatasetLoader()
data_obj.dataset_name = args.dataset
data_obj.k = args.neighbor_num
data_obj.window_size = args.window_size
data_obj.anomaly_per = args.anomaly_per
data_obj.train_per = args.train_per
data_obj.load_all_tag = False
data_obj.compute_s = True
my_config = MyConfig(k=args.neighbor_num, window_size=args.window_size, hidden_size=args.embedding_dim,
intermediate_size=args.embedding_dim, num_attention_heads=args.num_attention_heads,
num_hidden_layers=args.num_hidden_layers, weight_decay=args.weight_decay)
method_obj = AnomalyLLM(my_config, args)
method_obj.spy_tag = True
method_obj.max_epoch = args.max_epoch
method_obj.lr = args.lr
setting_obj = Settings()
setting_obj.prepare(data_obj, method_obj)
step = "pretraining"
setting_obj.run(step)
print('$$$$ Finish $$$$')