forked from open-mmlab/mmdetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
rtmdet_l_swin_b_p6_4xb16-100e_coco.py
114 lines (106 loc) · 3.67 KB
/
rtmdet_l_swin_b_p6_4xb16-100e_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
_base_ = './rtmdet_l_swin_b_4xb32-100e_coco.py'
model = dict(
backbone=dict(
depths=[2, 2, 18, 2, 1],
num_heads=[4, 8, 16, 32, 64],
strides=(4, 2, 2, 2, 2),
out_indices=(1, 2, 3, 4)),
neck=dict(in_channels=[256, 512, 1024, 2048]),
bbox_head=dict(
anchor_generator=dict(
type='MlvlPointGenerator', offset=0, strides=[8, 16, 32, 64])))
train_pipeline = [
dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='CachedMosaic', img_scale=(1280, 1280), pad_val=114.0),
dict(
type='RandomResize',
scale=(2560, 2560),
ratio_range=(0.1, 2.0),
keep_ratio=True),
dict(type='RandomCrop', crop_size=(1280, 1280)),
dict(type='YOLOXHSVRandomAug'),
dict(type='RandomFlip', prob=0.5),
dict(type='Pad', size=(1280, 1280), pad_val=dict(img=(114, 114, 114))),
dict(
type='CachedMixUp',
img_scale=(1280, 1280),
ratio_range=(1.0, 1.0),
max_cached_images=20,
pad_val=(114, 114, 114)),
dict(type='PackDetInputs')
]
train_pipeline_stage2 = [
dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='RandomResize',
scale=(1280, 1280),
ratio_range=(0.1, 2.0),
keep_ratio=True),
dict(type='RandomCrop', crop_size=(1280, 1280)),
dict(type='YOLOXHSVRandomAug'),
dict(type='RandomFlip', prob=0.5),
dict(type='Pad', size=(1280, 1280), pad_val=dict(img=(114, 114, 114))),
dict(type='PackDetInputs')
]
test_pipeline = [
dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}),
dict(type='Resize', scale=(1280, 1280), keep_ratio=True),
dict(type='Pad', size=(1280, 1280), pad_val=dict(img=(114, 114, 114))),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
'scale_factor'))
]
train_dataloader = dict(
batch_size=16, num_workers=20, dataset=dict(pipeline=train_pipeline))
val_dataloader = dict(num_workers=20, dataset=dict(pipeline=test_pipeline))
test_dataloader = val_dataloader
max_epochs = 100
stage2_num_epochs = 10
custom_hooks = [
dict(
type='EMAHook',
ema_type='ExpMomentumEMA',
momentum=0.0002,
update_buffers=True,
priority=49),
dict(
type='PipelineSwitchHook',
switch_epoch=max_epochs - stage2_num_epochs,
switch_pipeline=train_pipeline_stage2)
]
img_scales = [(1280, 1280), (640, 640), (1920, 1920)]
tta_pipeline = [
dict(type='LoadImageFromFile', backend_args=None),
dict(
type='TestTimeAug',
transforms=[
[
dict(type='Resize', scale=s, keep_ratio=True)
for s in img_scales
],
[
# ``RandomFlip`` must be placed before ``Pad``, otherwise
# bounding box coordinates after flipping cannot be
# recovered correctly.
dict(type='RandomFlip', prob=1.),
dict(type='RandomFlip', prob=0.)
],
[
dict(
type='Pad',
size=(1920, 1920),
pad_val=dict(img=(114, 114, 114))),
],
[dict(type='LoadAnnotations', with_bbox=True)],
[
dict(
type='PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
'scale_factor', 'flip', 'flip_direction'))
]
])
]