This repository has been archived by the owner on Nov 15, 2024. It is now read-only.
forked from JazzEd-EdTech/pumpkin-py
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_save_load.cpp
276 lines (245 loc) · 8.62 KB
/
test_save_load.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
#include <gtest/gtest.h>
#include <test/cpp/jit/test_utils.h>
#include <sstream>
#include <torch/csrc/jit/mobile/module.h>
#include <torch/csrc/jit/runtime/calculate_necessary_args.h>
#include <torch/csrc/jit/serialization/export.h>
#include <torch/csrc/jit/serialization/export_bytecode.h>
#include <torch/csrc/jit/serialization/import.h>
#include <torch/csrc/jit/serialization/import_source.h>
#include <torch/torch.h>
#include "caffe2/serialize/istream_adapter.h"
namespace torch {
namespace jit {
namespace {
Module roundtripThroughMobile(const Module& m) {
ExtraFilesMap files;
std::vector<IValue> constants;
jitModuleToPythonCodeAndConstants(m, &files, &constants);
CompilationOptions options;
mobile::Module mobilem = jitModuleToMobile(m, options);
return jitModuleFromSourceAndConstants(
mobilem._ivalue(), files, constants, 8);
}
template <class Functor>
inline void expectThrowsEq(Functor&& functor, const char* expectedMessage) {
try {
std::forward<Functor>(functor)();
} catch (const Error& e) {
EXPECT_STREQ(e.what_without_backtrace(), expectedMessage);
return;
}
ADD_FAILURE() << "Expected to throw exception with message \""
<< expectedMessage << "\" but didn't throw";
}
} // namespace
TEST(SerializationTest, ExtraFilesHookPreference) {
// Tests that an extra file written explicitly has precedence over
// extra files written by a hook
// TODO: test for the warning, too
const auto script = R"JIT(
def forward(self):
x = torch.rand(5, 5)
x = x.mm(x)
return x
)JIT";
auto module =
std::make_shared<Module>("Module", std::make_shared<CompilationUnit>());
module->define(script);
std::ostringstream oss;
std::unordered_map<std::string, std::string> extra_files;
extra_files["metadata.json"] = "abc";
SetExportModuleExtraFilesHook([](const Module&) -> ExtraFilesMap {
return {{"metadata.json", "def"}};
});
module->save(oss, extra_files);
SetExportModuleExtraFilesHook(nullptr);
std::istringstream iss(oss.str());
caffe2::serialize::IStreamAdapter adapter{&iss};
std::unordered_map<std::string, std::string> loaded_extra_files;
loaded_extra_files["metadata.json"] = "";
auto loaded_module = torch::jit::load(iss, torch::kCPU, loaded_extra_files);
ASSERT_EQ(loaded_extra_files["metadata.json"], "abc");
}
TEST(SerializationTest, ExtraFileHooksNoSecret) {
// no secrets
std::stringstream ss;
{
Module m("__torch__.m");
ExtraFilesMap extra;
extra["metadata.json"] = "abc";
m.save(ss, extra);
}
ss.seekg(0);
{
ExtraFilesMap extra;
extra["metadata.json"] = "";
extra["secret.json"] = "";
jit::load(ss, c10::nullopt, extra);
ASSERT_EQ(extra["metadata.json"], "abc");
ASSERT_EQ(extra["secret.json"], "");
}
}
TEST(SerializationTest, ExtraFileHooksWithSecret) {
std::stringstream ss;
{
SetExportModuleExtraFilesHook([](const Module&) -> ExtraFilesMap {
return {{"secret.json", "topsecret"}};
});
Module m("__torch__.m");
ExtraFilesMap extra;
extra["metadata.json"] = "abc";
m.save(ss, extra);
SetExportModuleExtraFilesHook(nullptr);
}
ss.seekg(0);
{
ExtraFilesMap extra;
extra["metadata.json"] = "";
extra["secret.json"] = "";
jit::load(ss, c10::nullopt, extra);
ASSERT_EQ(extra["metadata.json"], "abc");
ASSERT_EQ(extra["secret.json"], "topsecret");
}
}
TEST(SerializationTest, TypeTags) {
auto list = c10::List<c10::List<int64_t>>();
list.push_back(c10::List<int64_t>({1, 2, 3}));
list.push_back(c10::List<int64_t>({4, 5, 6}));
auto dict = c10::Dict<std::string, at::Tensor>();
dict.insert("Hello", torch::ones({2, 2}));
auto dict_list = c10::List<c10::Dict<std::string, at::Tensor>>();
for (size_t i = 0; i < 5; i++) {
auto another_dict = c10::Dict<std::string, at::Tensor>();
another_dict.insert("Hello" + std::to_string(i), torch::ones({2, 2}));
dict_list.push_back(another_dict);
}
auto tuple = std::tuple<int, std::string>(2, "hi");
struct TestItem {
IValue value;
TypePtr expected_type;
};
std::vector<TestItem> items = {
{list, ListType::create(ListType::create(IntType::get()))},
{2, IntType::get()},
{dict, DictType::create(StringType::get(), TensorType::get())},
{dict_list,
ListType::create(
DictType::create(StringType::get(), TensorType::get()))},
{tuple, TupleType::create({IntType::get(), StringType::get()})}};
// NOLINTNEXTLINE(performance-for-range-copy)
for (auto item : items) {
auto bytes = torch::pickle_save(item.value);
auto loaded = torch::pickle_load(bytes);
ASSERT_TRUE(loaded.type()->isSubtypeOf(*item.expected_type));
ASSERT_TRUE(item.expected_type->isSubtypeOf(*loaded.type()));
}
}
TEST(SerializationTest, TestJitStream_CUDA) {
torch::jit::Module model;
std::vector<torch::jit::IValue> inputs;
// Deserialize the ScriptModule from a file using torch::jit::load().
// Load the scripted model. This should have been generated by tests_setup.py
// Refer: TorchSaveJitStream_CUDA in test/cpp/jit/tests_setup.py
model = torch::jit::load("saved_stream_model.pt");
auto output = model.forward(inputs);
const auto& list_of_elements = output.toTupleRef().elements();
auto is_stream_s = list_of_elements[0].toBool();
// a,b: These are the two input tensors
// c: This is output tensor generated by the operation torch.cat(a,b)
auto a = list_of_elements[1].toTensor();
auto b = list_of_elements[2].toTensor();
auto c = list_of_elements[3].toTensor();
// op: this is used to verify if the cat operation produced the same results
// as that on the GPU with torch.cat
auto op = at::cat({a, b}, 0);
// Check if the stream is set
ASSERT_TRUE(is_stream_s);
// Check if the sizes of the outputs (op and c) is same on the GPU and CPU
ASSERT_EQ(op.sizes(), c.sizes());
// Check if both the output tensors are equal
ASSERT_TRUE(op.equal(c));
}
TEST(TestSourceRoundTrip, UpsampleNearest2d) {
Module m("m");
m.define(R"(
def forward(self, input: Tensor, scale:float):
return torch.upsample_nearest2d(input, [1, 1], float(scale), float(scale))
)");
std::vector<IValue> inputs;
inputs.emplace_back(torch::rand({1, 3, 128, 128}));
inputs.emplace_back(at::Scalar(2.0));
auto ref = m.forward(inputs);
Module m2 = roundtripThroughMobile(m);
auto res = m2.forward(inputs);
auto resd = res.toTensor();
auto refd = ref.toTensor();
ASSERT_TRUE(resd.equal(refd));
}
TEST(TestSourceRoundTrip, CheckAttrAccess) {
Module m("m");
m.register_attribute("mobile_optimized", BoolType::get(), true);
Module m2 = roundtripThroughMobile(m);
bool mobile_optimized = m2.attr("mobile_optimized", false).toBool();
AT_ASSERT(mobile_optimized);
}
TEST(TestSourceRoundTrip,
MethodInvocation) { // NOLINT (use =delete in gtest)
const std::vector<std::string> test_programs{
// test invoking a method with default parameter
R"(
def test_func(self, x, b : int = 4):
return self.foo + x + b
)",
// inner method call with default parameter (gets inlined)
R"(
def add_with_default_arg(self, x, b : int = 4):
return self.foo + x + b
def test_func(self, x):
return self.add_with_default_arg(x) # invoke method w/ default arg
)",
// simple method call
R"(
def test_func(self, x):
b = 4
return self.foo + x + b
)",
};
for (const auto& test_program : test_programs) {
Module m("m");
m.register_parameter("foo", torch::ones({}), false);
m.define(test_program);
const int fortyTwo = 42; // (keep linter happy)
auto minput = fortyTwo * torch::ones({});
auto ref = m.run_method("test_func", minput);
Module m2 = roundtripThroughMobile(m);
const auto& test_func = m2.get_method("test_func");
IValue res;
for (int i = 0; i < 3; ++i) {
res = test_func({minput});
}
auto resd = res.toTensor().item<float>();
auto refd = ref.toTensor().item<float>();
AT_ASSERT(resd == refd);
}
}
TEST(SerializationTest, ParentDirNotExist) {
expectThrowsEq(
[]() {
auto t = torch::nn::Linear(5, 5);
torch::save(t, "./doesnotexist/file.pt");
},
"Parent directory ./doesnotexist does not exist.");
}
TEST(SerializationTest, CalculateNecessaryArgsTest) {
auto schema = torch::schema(
"sync_stream(int stream_id = -1) -> ()",
c10::AliasAnalysisKind::CONSERVATIVE);
auto graph = std::make_shared<Graph>();
auto one_val = graph->insertConstant(-1);
auto necessary = CalculateNecessaryArgs(schema.arguments(), {one_val}, true);
EXPECT_EQ(0, necessary.first);
EXPECT_EQ(0, necessary.second);
}
} // namespace jit
} // namespace torch