-
Notifications
You must be signed in to change notification settings - Fork 1
/
main.py
316 lines (287 loc) · 15.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
# Copyright 2020 - 2022 MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import time
from functools import partial
import numpy as np
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn.parallel
import torch.utils.data.distributed
from optimizers.lr_scheduler import LinearWarmupCosineAnnealingLR
from trainer import run_training
from utils.data_utils import get_loader
from monai.inferers import sliding_window_inference
from monai.losses import DiceCELoss, FocalLoss, DiceFocalLoss
from monai.metrics import DiceMetric, MeanIoU
from monai.transforms import Activations, AsDiscrete, Compose
from monai.utils.enums import MetricReduction
from monai.visualize import matshow3d
from utils.my_acc import FBetaScore
from utils.myModel import MyModel, MyModel2d, MyModel3dunet, MyFlexibleUNet2d, MyFlexibleUNet2dLSTM, MyBasicUNetPlusPlus, MyFlexibleUNet2dMultiScaleLSTM, MyFlexibleUNet3dMultiScaleLSTM, Net, MyBasicUNetPlusPlus2d
from utils.my_loss import CustomWeightedDiceCELoss, CustomWeightedFocalLoss
parser = argparse.ArgumentParser(description="Swin UNETR segmentation pipeline")
parser.add_argument("--checkpoint", default=None, help="start training from saved checkpoint")
parser.add_argument("--logdir", default="test", type=str, help="directory to save the tensorboard logs")
parser.add_argument(
"--pretrained_dir", default="./pretrained_models/", type=str, help="pretrained checkpoint directory"
)
parser.add_argument("--data_dir", default="/root/autodl-tmp/data_split", type=str, help="dataset directory")
parser.add_argument("--json_list", default="/root/autodl-tmp/data_split/data_split.json", type=str, help="dataset json file")
parser.add_argument(
"--pretrained_model_name",
default=None,
type=str,
help="pretrained model name",
)
parser.add_argument("--save_checkpoint", action="store_true", help="save checkpoint during training")
parser.add_argument("--max_epochs", default=1000, type=int, help="max number of training epochs")
parser.add_argument("--batch_size", default=1, type=int, help="number of batch size")
parser.add_argument("--sw_batch_size", default=4, type=int, help="number of sliding window batch size")
parser.add_argument("--optim_lr", default=1e-4, type=float, help="optimization learning rate")
parser.add_argument("--optim_name", default="adamw", type=str, help="optimization algorithm")
parser.add_argument("--reg_weight", default=1e-5, type=float, help="regularization weight")
parser.add_argument("--momentum", default=0.99, type=float, help="momentum")
parser.add_argument("--noamp", action="store_true", help="do NOT use amp for training")
parser.add_argument("--val_every", default=100, type=int, help="validation frequency")
parser.add_argument("--distributed", action="store_true", help="start distributed training")
parser.add_argument("--world_size", default=1, type=int, help="number of nodes for distributed training")
parser.add_argument("--rank", default=0, type=int, help="node rank for distributed training")
parser.add_argument("--dist-url", default="tcp://127.0.0.1:23456", type=str, help="distributed url")
parser.add_argument("--dist-backend", default="nccl", type=str, help="distributed backend")
parser.add_argument("--norm_name", default="instance", type=str, help="normalization name")
parser.add_argument("--workers", default=0, type=int, help="number of workers")
parser.add_argument("--feature_size", default=48, type=int, help="feature size")
parser.add_argument("--in_channels", default=65, type=int, help="number of input channels")
parser.add_argument("--out_channels", default=1, type=int, help="number of output channels")
parser.add_argument("--use_normal_dataset", action="store_true", help="use monai Dataset class")
parser.add_argument("--a_min", default=0.0, type=float, help="a_min in ScaleIntensityRanged")
parser.add_argument("--a_max", default=65535.0, type=float, help="a_max in ScaleIntensityRanged")
parser.add_argument("--b_min", default=0.0, type=float, help="b_min in ScaleIntensityRanged")
parser.add_argument("--b_max", default=255.0, type=float, help="b_max in ScaleIntensityRanged")
parser.add_argument("--space_x", default=1.5, type=float, help="spacing in x direction")
parser.add_argument("--space_y", default=1.5, type=float, help="spacing in y direction")
parser.add_argument("--space_z", default=1.0, type=float, help="spacing in z direction")
parser.add_argument("--roi_x", default=512, type=int, help="roi size in x direction")
parser.add_argument("--roi_y", default=512, type=int, help="roi size in y direction")
parser.add_argument("--roi_z", default=65, type=int, help="roi size in z direction")
parser.add_argument("--dropout_rate", default=0.0, type=float, help="dropout rate")
parser.add_argument("--dropout_path_rate", default=0.0, type=float, help="drop path rate")
parser.add_argument("--RandFlipd_prob", default=0.2, type=float, help="RandFlipd aug probability")
parser.add_argument("--RandRotate90d_prob", default=0.2, type=float, help="RandRotate90d aug probability")
parser.add_argument("--RandScaleIntensityd_prob", default=0.1, type=float, help="RandScaleIntensityd aug probability")
parser.add_argument("--RandShiftIntensityd_prob", default=0.1, type=float, help="RandShiftIntensityd aug probability")
parser.add_argument("--infer_overlap", default=0.5, type=float, help="sliding window inference overlap")
parser.add_argument("--lrschedule", default="warmup_cosine", type=str, help="type of learning rate scheduler")
parser.add_argument("--warmup_epochs", default=50, type=int, help="number of warmup epochs")
parser.add_argument("--resume_ckpt", action="store_true", help="resume training from pretrained checkpoint")
parser.add_argument("--smooth_dr", default=1e-6, type=float, help="constant added to dice denominator to avoid nan")
parser.add_argument("--smooth_nr", default=0.0, type=float, help="constant added to dice numerator to avoid zero")
parser.add_argument("--use_checkpoint", action="store_true", help="use gradient checkpointing to save memory")
parser.add_argument("--use_ssl_pretrained", action="store_true", help="use self-supervised pretrained weights")
parser.add_argument("--spatial_dims", default=3, type=int, help="spatial dimension of input data")
# parser.add_argument("--squared_dice", action="store_true", help="use squared Dice")
# parser.add_argument("--focalLoss", action="store_true", help="use FocalLoss")
parser.add_argument("--num_channel", default=65, type=int, help="num of copy channels")
parser.add_argument("--num_samples", default=16, type=int, help="num of samples of transform")
parser.add_argument("--cache_rate", default=0.4, type=float, help="cache_rate")
parser.add_argument("--loss_weight", default=(2.0, 1.0), type=tuple, help="cache_rate")
parser.add_argument("--model_mode", default="3dswin", help="model_mode ['3dswin', '2dswin', '3dunet', '2dunet', '2dfunet', '2dfunetlstm', '3dunet++', 'kaggle]")
parser.add_argument("--loss_mode", default="custom", help="loss_mode ['custom', 'focalLoss', 'squared_dice', 'DiceCELoss']")
parser.add_argument("--eff", default="b5", help="efficientnet-['b0', 'b1', 'b2', 'b3', 'b4', 'b5']")
parser.add_argument("--debug", action="store_true", help="debug mode")
parser.add_argument("--test", action="store_true", help="test mode")
parser.add_argument("--normal", action="store_true", help="use monai Dataset class")
parser.add_argument("--mid", default=None, type=int, help="num of samples of transform")
parser.add_argument("--threshold", default=0.4, type=int, help="num of samples of transform")
parser.add_argument("--z_range_0", default=None, type=int, help="num of samples of transform")
parser.add_argument("--z_range_1", default=None, type=int, help="num of samples of transform")
parser.add_argument("--add_shuffled", default=0, type=int, help="num of add_shuffled")
def main():
args = parser.parse_args()
args.amp = not args.noamp
args.use_normal_dataset = args.normal if args.normal else args.use_normal_dataset
if args.z_range_0 is not None and args.z_range_1 is not None:
args.roi_z = args.z_range_1 - args.z_range_0
args.z_range = [args.z_range_0, args.z_range_1]
else:
args.z_range = [args.mid - args.roi_z // 2, args.mid + args.roi_z // 2]
args.logdir = f"{args.roi_x}_{args.model_mode}_{args.eff}_{args.roi_z}_mid{args.mid}_{args.optim_name}_{time.strftime('%b-%dd_%Hh-%Mm', time.localtime(time.time()))}"
args.logdir = "./runs/" + args.logdir if not args.debug else './debug'
args.num_channel = args.roi_z
if args.debug:
args.val_every = 1
args.use_normal_dataset = False
args.cache_rate = 0.1
main_worker(gpu=0, args=args)
def main_worker(gpu, args):
np.set_printoptions(formatter={"float": "{: 0.3f}".format}, suppress=True)
args.gpu = gpu
torch.cuda.set_device(args.gpu)
torch.backends.cudnn.benchmark = True
args.test_mode = False
loader = get_loader(args)
print(args.rank, " gpu", args.gpu)
if args.rank == 0:
print("Batch size is:", args.batch_size, "epochs", args.max_epochs)
inf_size = [args.roi_x, args.roi_y, args.roi_z]
pretrained_dir = args.pretrained_dir
# 定义模型
if args.model_mode == "3dswin":
model = MyModel(img_size=(args.roi_x,args.roi_y,args.roi_y))
elif args.model_mode == "2dswin":
model = MyModel2d(img_size=(args.roi_x,args.roi_y))
elif args.model_mode == "3dunet":
model = MyModel3dunet()
elif args.model_mode == "2dfunet":
model = MyFlexibleUNet2d(args)
elif args.model_mode == "2dfunetlstm":
model = MyFlexibleUNet2dMultiScaleLSTM(args)
elif args.model_mode == "3dfunetlstm":
model = MyFlexibleUNet3dMultiScaleLSTM(args)
elif args.model_mode == "3dunet++":
model = MyBasicUNetPlusPlus(args)
elif args.model_mode == "2dunet++":
model = MyBasicUNetPlusPlus2d(args)
elif args.model_mode == "kaggle":
model = Net(args)
else:
raise ValueError("model mode error")
# 如果要接着训练的话,添加模型的名字。然后模型放到pretrained文件夹
if args.pretrained_model_name is not None:
# raise ValueError("2d model can not resume from ckpt")
model_dict = torch.load(os.path.join(pretrained_dir, args.pretrained_model_name))["state_dict"]
if args.model_mode in ["2dswin", "3dunet", "2dfunet", "2dfunetlstm", "3dunet++", "3dfunetlstm", "kaggle", "2dunet++"]:
model.load_state_dict(model_dict)
elif args.model_mode == "3dswin":
model.load_swin_ckpt(model_dict)
else:
raise ValueError("model mode error")
print("Use pretrained weights")
# 选择loss函数
if args.loss_mode == 'focalLoss':
loss = CustomWeightedFocalLoss(ink_weight=3.0, weight=args.loss_weight)
# loss = FocalLoss(weight=[10.0])
elif args.loss_mode == 'squared_dice':
loss = DiceCELoss(squared_pred=True, smooth_nr=args.smooth_nr, smooth_dr=args.smooth_dr)
elif args.loss_mode == 'DiceCELoss':
loss = DiceCELoss(include_background=True, sigmoid=True, ce_weight=torch.Tensor([ 10])).cuda(0) # Normally
elif args.loss_mode == 'custom':
loss = CustomWeightedDiceCELoss(ink_weight=1.5, weight=args.loss_weight)
elif args.loss_mode == 'DiceFocalLoss':
loss = DiceFocalLoss(weight=args.loss_weight)
elif args.loss_mode == 'bce':
loss = torch.nn.BCEWithLogitsLoss()
# acc函数
post_label = AsDiscrete(to_onehot=args.out_channels)
post_pred = AsDiscrete(argmax=True, to_onehot=args.out_channels)
dice_acc = DiceMetric(include_background=False, reduction=MetricReduction.MEAN, get_not_nans=True)
miou_acc = MeanIoU(include_background=False, reduction=MetricReduction.MEAN, get_not_nans=True)
f05_acc = FBetaScore(beta=0.5, include_background=True)
# 模型推理,主要是validation的时候用的
if args.model_mode in ["3dswin", "3dunet", "3dunet++", "3dfunetlstm"]:
model_inferer = partial(
sliding_window_inference,
roi_size = (args.roi_x,args.roi_y,args.roi_z),
sw_batch_size = 8,
predictor = model,
overlap = 0.5,
progress = True,
padding_mode = "reflect",
device = "cpu",
sw_device = "cuda"
)
elif args.model_mode in ["2dswin", "2dfunet", "2dfunetlstm", "kaggle", "2dunet++"]:
model_inferer = partial(
sliding_window_inference,
roi_size = (args.roi_x,args.roi_y),
sw_batch_size = 8,
predictor = model,
overlap = 0.5,
progress = True,
padding_mode = "reflect",
device = "cpu",
sw_device = "cuda"
)
else:
raise ValueError("model mode error")
# 不重要
pytorch_total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print("Total parameters count", pytorch_total_params)
best_acc = 0
start_epoch = 0
if args.checkpoint is not None:
checkpoint = torch.load(args.checkpoint, map_location="cpu")
from collections import OrderedDict
new_state_dict = OrderedDict()
for k, v in checkpoint["state_dict"].items():
new_state_dict[k.replace("backbone.", "")] = v
model.load_state_dict(new_state_dict, strict=False)
if "epoch" in checkpoint:
start_epoch = checkpoint["epoch"]
if "best_acc" in checkpoint:
best_acc = checkpoint["best_acc"]
print("=> loaded checkpoint '{}' (epoch {}) (bestacc {})".format(args.checkpoint, start_epoch, best_acc))
model.cuda(0)
########################################################################
# 优化器 选择
if args.optim_name == "adam":
optimizer = torch.optim.Adam(model.parameters(), lr=args.optim_lr, weight_decay=args.reg_weight)
elif args.optim_name == "adamw":
optimizer = torch.optim.AdamW(model.parameters(), lr=args.optim_lr, weight_decay=args.reg_weight)
elif args.optim_name == "sgd":
optimizer = torch.optim.SGD(
model.parameters(), lr=args.optim_lr, momentum=args.momentum, nesterov=True, weight_decay=args.reg_weight
)
else:
raise ValueError("Unsupported Optimization Procedure: " + str(args.optim_name))
# 学习率调整策略
if args.lrschedule == "warmup_cosine":
scheduler = LinearWarmupCosineAnnealingLR(
optimizer, warmup_epochs=args.warmup_epochs, max_epochs=args.max_epochs
)
elif args.lrschedule == "cosine_anneal":
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=args.max_epochs)
if args.checkpoint is not None:
scheduler.step(epoch=start_epoch)
else:
scheduler = None
print("Lodaer test")
for i in loader[0]:
print(i['image'].shape)
print(i['label'].shape)
print(i['inklabels'].shape)
print(torch.unique(i['image']))
print(torch.unique(i['label']))
print(torch.unique(i['inklabels']))
break
print("Pass Test")
print(args)
# 训练
accuracy = run_training(
model=model,
train_loader=loader[0],
val_loader=loader[1],
optimizer=optimizer,
loss_func=loss,
acc_func=f05_acc,
args=args,
model_inferer=model_inferer,
scheduler=scheduler,
start_epoch=start_epoch,
post_label=post_label,
post_pred=post_pred,
)
return accuracy
if __name__ == "__main__":
main()