diff --git a/cli/read_and_process.py b/cli/read_and_process.py index 5f6427c..cd87a16 100644 --- a/cli/read_and_process.py +++ b/cli/read_and_process.py @@ -1,11 +1,11 @@ -""" functions for importing and processing images. """ -import re +""" +Functions for importing and processing images. +""" import os import cv2 import pandas as pd import pytesseract - def read_images(input_dir): """ Import images from a directory. @@ -17,38 +17,37 @@ def read_images(input_dir): images (list): List of imported images. """ images = [] - # Iterate over files in the directory for filename in os.listdir(input_dir): # Check if the file is an image if filename.endswith(('.jpg', '.jpeg', '.png', '.bmp', '.gif')): - # Read the image using OpenCV image_path = os.path.join(input_dir, filename) image = cv2.imread(image_path) if image is not None: # Check if the image was successfully loaded images.append(image) - else: # Raise an error if the image failed to load + else: raise ValueError(f"Failed to load image: {image_path}") return images def convert_to_grayscale(images): """ - Convert imported image or list of imported images to grayscale. + Convert imported images to grayscale. Parameters: - images (numpy.ndarray or list): Input image or list of input images. + images (list or numpy.ndarray): Input images or list of images. Returns: grayscale_images (list): List of grayscale images. """ - if isinstance(images, list): # Check if images is a list - grayscale_images = [] # Initialize an empty list to store grayscale images + if isinstance(images, list): + grayscale_images = [] for image in images: - grayscale_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # Convert image to grayscale + grayscale_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) grayscale_images.append(grayscale_image) return grayscale_images + def normalize_images(grayscale_images): """ Normalize a list of grayscale images to stretch contrast. @@ -59,26 +58,16 @@ def normalize_images(grayscale_images): Returns: normalized_images (list): List of normalized images. """ - # Initialize an empty list to store normalized images normalized_images = [] - - # Iterate over each grayscale image in the input list for grayscale_image in grayscale_images: - # Calculate the minimum and maximum intensity values of the image min_intensity = min(grayscale_image.ravel()) max_intensity = max(grayscale_image.ravel()) - - # Normalize the image to stretch contrast - normalized_image = cv2.normalize(grayscale_image, - None, - min_intensity, - max_intensity, - cv2.NORM_MINMAX) - + normalized_image = cv2.normalize(grayscale_image, None, min_intensity, max_intensity, cv2.NORM_MINMAX) normalized_images.append(normalized_image) return normalized_images + def perform_ocr(normalized_images): """ Perform OCR (optical character recognition) on a list of images with enhanced @@ -91,59 +80,51 @@ def perform_ocr(normalized_images): extracted_text (list): List of extracted text from each image. """ extracted_text = [] - - # Custom Tesseract configuration without strict whitelisting custom_config = ( - r'--oem 3 --psm 6 ' # Use LSTM OCR Engine and assume a block of text (table) - r'-c preserve_interword_spaces=1' # Preserve spacing between words (useful for tables) + r'--oem 3 --psm 6 ' # Use LSTM OCR Engine and assume a block of text + r'-c preserve_interword_spaces=1' # Preserve spacing between words ) for normal_image in normalized_images: - # Perform OCR with custom configuration text = pytesseract.image_to_string(normal_image, config=custom_config, lang='eng') - - # Post-process text to handle common OCR issues corrected_text = correct_common_ocr_mistakes(text) extracted_text.append(corrected_text) return extracted_text -def correct_common_ocr_mistakes(text): + +def correct_common_ocr_mistakes(text, custom_corrections=None): """ Correct common OCR mistakes related to special characters, superscripts, and subscripts. Parameters: text (str): Text output from OCR. + custom_corrections (dict): User-specified corrections for specific character combinations. Returns: corrected_text (str): Text with common OCR mistakes corrected. """ - # List of characters that might be misrecognized as mid-dots or similar - mid_dot_variants = ['·', '•', 'o', '°', '˙'] # Potential misrecognitions of mid-dot - - for variant in mid_dot_variants: - text = text.replace(variant, '.') - - # Dictionary to correct OCR misinterpretations corrections = { ',': ',', # Ensure decimal comma is preserved - '--': '—', # Convert double hyphen to em dash (if OCR mistakes are found) + '--': '—', # Convert double hyphen to em dash '-': '-', # Ensure standard hyphen is preserved - # Example: OCR misinterpreting '10' as '1o' - '1o': '10', '2o': '20', '3o': '30','4o': '40','5o': '50', - '6o': '60', '7o': '70', '8o': '80','9o': '90','0o': '00', - # Example correction for letters that look like numbers - 'S1': '51', 'S2': '52','S3': '53','S4': '54','S5': '55', - 'S6': '56','S7': '57','S8': '58','S9': '59','S0': '50', - '·': '.', # Ensure mid-dot conversion to decimal - '–': '—', # Ensure en dash is preserved (or converted to em dash if needed) + '1o': '10', '2o': '20', '3o': '30', '4o': '40', '5o': '50', + '6o': '60', '7o': '70', '8o': '80', '9o': '90', '0o': '00', + 'S1': '51', 'S2': '52', 'S3': '53', 'S4': '54', 'S5': '55', + 'S6': '56', 'S7': '57', 'S8': '58', 'S9': '59', 'S0': '50', + '·': '.', # Convert mid-dot to decimal point + '–': '—', # Ensure en dash is preserved or converted to em dash } + if custom_corrections: + corrections.update(custom_corrections) + for wrong, correct in corrections.items(): text = text.replace(wrong, correct) return text + def process_text(extracted_text): """ Create a data structure using extracted text from images. @@ -154,90 +135,70 @@ def process_text(extracted_text): Returns: data (list): Processed data structure. """ - # Initialize an empty list to store processed data processed_data = [] - - # Iterate over each extracted text for text in extracted_text: - # Split the text into lines lines = text.strip().split('\n') - - # Split each line into words words = [line.split() for line in lines] - - # Append the processed data to the main list processed_data.append(words) return processed_data + def pad_columns(processed_data): """ Pad rows with fewer columns to match the maximum number of columns in the data. Parameters: - data (list): Processed data structure. + processed_data (list): Processed data structure. Returns: padded_data (list): Data structure with padded rows. """ - # Find the maximum number of columns in the data max_columns = max(len(row) for row in processed_data) - - # Pad rows with fewer columns padded_data = [row + [''] * (max_columns - len(row)) for row in processed_data] return padded_data -def remove_special_characters(data, exceptions=None): + +def remove_special_characters(data, whitelist=None, blacklist=None): """ - Remove specified characters from a dataset, excluding decimal values and English letters. + Remove or retain specified characters from a dataset based on the whitelist and blacklist. Parameters: - data (list or DataFrame): Dataset to process. - exceptions (list): List of characters to exempt from removal (default is ['.', ',']). + data (list): Processed data structure (list of lists). + whitelist (str): A string of characters to retain. + blacklist (str): A string of characters to remove. Returns: - cleaned_data (list or DataFrame): Dataset with specified characters removed. + cleaned_data (list): Data structure with specified characters removed or retained. """ - if exceptions is None: - exceptions = [] # Initialize default exceptions list inside the function - - if isinstance(data, list): - # If data is a list, process each element - cleaned_data = [remove_special_characters(element, exceptions) for element in data] - elif hasattr(data, 'applymap'): - # If data is a DataFrame, process each cell - cleaned_data = data.applymap(lambda x: remove_special_characters(x, exceptions)) - elif isinstance(data, str): - # If data is a string, remove specified characters - exceptions_regex = ''.join([re.escape(char) for char in exceptions]) - pattern = f'[^0-9{exceptions_regex}a-zA-Z]' - cleaned_data = re.sub(pattern, '', data) - else: - # For other data types, return as is - cleaned_data = data + def process_string(text): + if whitelist: + text = ''.join([char for char in text if char in whitelist]) + if blacklist: + text = ''.join([char for char in text if char not in blacklist]) + return text + + cleaned_data = [] + for row in data: + cleaned_row = [process_string(element) for element in row] + cleaned_data.append(cleaned_row) return cleaned_data def create_dataframe(cleaned_data): """ - Create a DataFrame from the padded data structure. + Create a DataFrame from the cleaned and padded data structure. Parameters: - padded_data (list): Data structure with padded rows. + cleaned_data (list): Data structure with cleaned and padded rows. Returns: - df (DataFrame): DataFrame created from the padded data structure. + pd.DataFrame: DataFrame created from the data structure. """ - - # Flatten each sublist within padded_data and create a flat list flattened_data = [item for sublist in cleaned_data for item in sublist] - - # Create DataFrame from the flattened data df = pd.DataFrame(flattened_data, dtype='object') - - # Ensure that each value is in its own cell df = df.map(lambda x: x[0] if isinstance(x, list) else x) return df @@ -247,16 +208,12 @@ def save_dataframe_to_directory(dataframe, output_dir, file_name): Save a DataFrame to a file in a specified directory. Parameters: - dataframe (pandas.DataFrame): The DataFrame to be saved. - directory (str): Path to the directory where the DataFrame will be saved. + dataframe (pd.DataFrame): The DataFrame to be saved. + output_dir (str): Path to the directory where the DataFrame will be saved. file_name (str): Name of the file (including extension) to save the DataFrame. """ - # Create the directory if it doesn't exist if not os.path.exists(output_dir): os.makedirs(output_dir) - # Construct the file path file_path = os.path.join(output_dir, file_name) - - # Save DataFrame to file dataframe.to_csv(file_path, index=False)