Skip to content

Latest commit

 

History

History
14 lines (8 loc) · 1.13 KB

concepts.md

File metadata and controls

14 lines (8 loc) · 1.13 KB

stochastic rounding

An embedding is a relatively low-dimensional space into which you can translate high-dimensional vectors. It caputres some of the semantics of the input by placing semantically similar inputs close together in the embedding space. An embedding can be learned an reused across models. 从一个空间映射到一个向量空间里,而且具备相似的输入距离更近的特点。而且它可以做可视化,有降维的工具和技术,比如 t-Distributed Stochastic Neighbor Embedding (TSNE)

参考资料: zhihu Embedding explained

Embedding 层可能占整个网络很大(参数量)的比重,所以也可以单独做预训练。它的训练频率可以设定一周或一天等。由于 graph embedding等技术的发展,embedding自身的表达能力也逐步增强,可以直接利用它的相似性,做推荐系统里的召回层。

Embedding 有 User Embedding, Video Embedding 等

Float to