-
Notifications
You must be signed in to change notification settings - Fork 3
/
Stream.py
220 lines (182 loc) · 8.19 KB
/
Stream.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
"""
Code Adapted from Google Cloud API Tutorials for use in
TamuHack 2020 by Jack Wang
January 20th, 2020
"""
from __future__ import division
import re
import sys
import os
from google.cloud import speech
from google.cloud.speech import enums
from google.cloud.speech import types
from gtts import gTTS
import nltk
import pyaudio
from pydub import AudioSegment
from pydub.playback import play
from six.moves import queue
# Manually setting environment variable
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = os.path.join(os.getcwd(), "Google_Key/Blind_Assistance.json")
# Audio recording parameters
RATE = 16000
CHUNK = int(RATE / 10) # 100ms
class MicrophoneStream(object):
"""Opens a recording stream as a generator yielding the audio chunks."""
def __init__(self, rate, chunk):
self._rate = rate
self._chunk = chunk
# Create a thread-safe buffer of audio data
self._buff = queue.Queue()
self.closed = True
self.obj = ""
def __enter__(self):
self._audio_interface = pyaudio.PyAudio()
self._audio_stream = self._audio_interface.open(
format=pyaudio.paInt16,
# The API currently only supports 1-channel (mono) audio
# https://goo.gl/z757pE
channels=1, rate=self._rate,
input=True, frames_per_buffer=self._chunk,
# Run the audio stream asynchronously to fill the buffer object.
# This is necessary so that the input device's buffer doesn't
# overflow while the calling thread makes network requests, etc.
stream_callback=self._fill_buffer,
)
self.closed = False
return self
def __exit__(self, type, value, traceback):
self._audio_stream.stop_stream()
self._audio_stream.close()
self.closed = True
# Signal the generator to terminate so that the client's
# streaming_recognize method will not block the process termination.
self._buff.put(None)
self._audio_interface.terminate()
def _fill_buffer(self, in_data, frame_count, time_info, status_flags):
"""Continuously collect data from the audio stream, into the buffer."""
self._buff.put(in_data)
return None, pyaudio.paContinue
def play_audio(self, text):
output = gTTS(text=text, lang='en', slow=False)
output.save("Temp/output.mp3")
song = AudioSegment.from_mp3("Temp/output.mp3")
self._audio_stream.stop_stream()
play(song)
self._audio_stream.start_stream()
os.remove("Temp/output.mp3")
def generator(self):
while not self.closed:
# Use a blocking get() to ensure there's at least one chunk of
# data, and stop iteration if the chunk is None, indicating the
# end of the audio stream.
chunk = self._buff.get()
if chunk is None:
return
data = [chunk]
# Now consume whatever other data's still buffered.
while True:
try:
chunk = self._buff.get(block=False)
if chunk is None:
return
data.append(chunk)
if len(data) > 1:
break
except queue.Empty:
break
yield b''.join(data)
def listen_print_loop(responses, stream, category_index):
"""Iterates through server responses and prints them.
The responses passed is a generator that will block until a response
is provided by the server. *Modifed to stop at only one full response*
Each response may contain multiple results, and each result may contain
multiple alternatives; for details, see https://goo.gl/tjCPAU. Here we
print only the transcription for the top alternative of the top result.
In this case, responses are provided for interim results as well. If the
response is an interim one, print a line feed at the end of it, to allow
the next result to overwrite it, until the response is a final one. For the
final one, print a newline to preserve the finalized transcription.
"""
num_chars_printed = 0
prompted = False
listening = False
for response in responses:
if not response.results:
continue
# The `results` list is consecutive. For streaming, we only care about
# the first result being considered, since once it's `is_final`, it
# moves on to considering the next utterance.
result = response.results[0]
if not result.alternatives:
continue
# Display the transcription of the top alternative.
transcript = result.alternatives[0].transcript
# Display interim results, but with a carriage return at the end of the
# line, so subsequent lines will overwrite them.
#
# If the previous result was longer than this one, we need to print
# some extra spaces to overwrite the previous result
overwrite_chars = ' ' * (num_chars_printed - len(transcript))
if not result.is_final:
sys.stdout.write(transcript + overwrite_chars + '\r')
sys.stdout.flush()
num_chars_printed = len(transcript)
else:
is_noun = lambda pos: pos == 'NN'
is_bin_response = lambda pos: pos == 'UH'or pos == 'NNS'
is_command = lambda pos: pos == 'VB' or pos == 'RP'
print(transcript + overwrite_chars)
if not prompted:
tokenized = nltk.word_tokenize(transcript)
nouns = [word for (word, pos) in nltk.pos_tag(tokenized) if is_command(pos)]
if "wake" in nouns and "up" in nouns:
stream.play_audio('Listening, what are you looking for?')
prompted = True
elif prompted and not listening:
# confirmation
tokenized = nltk.word_tokenize(transcript)
nouns = [word for (word, pos) in nltk.pos_tag(tokenized) if is_noun(pos)]
if len(nouns) > 0:
stream.obj = nouns[0]
if stream.obj not in category_index:
stream.play_audio("Sorry, I cannot detect " + stream.obj + ". Please ask for a different object." )
else:
stream.play_audio("Are you looking for "+stream.obj+"?")
listening = True
elif prompted and listening:
tokenized = nltk.word_tokenize(transcript)
responses = [word for (word, pos) in nltk.pos_tag(tokenized) if is_bin_response(pos)]
print(responses)
if re.search(r'\b(Yes|Yeah|Sure|Yep)\b', " ".join(responses), re.I):
stream.play_audio("Okay, looking for "+stream.obj)
return str.strip(stream.obj)
elif re.search(r'\b(No|no|nope|nah)\b', " ".join(responses), re.I):
stream.play_audio("What are you looking for?")
listening = False
else:
listening = False
stream.play_audio("Didn't understand. What are you looking for?")
def main(category_index):
category_index = [val['name'] for val in category_index.values()]
# See http://g.co/cloud/speech/docs/languages
# for a list of supported languages.
language_code = 'en-US' # a BCP-47 language tag
client = speech.SpeechClient()
config = types.RecognitionConfig(
encoding=enums.RecognitionConfig.AudioEncoding.LINEAR16,
sample_rate_hertz=RATE,
language_code=language_code)
streaming_config = types.StreamingRecognitionConfig(
config=config,
interim_results=True)
print("##########Begining Stream##########")
with MicrophoneStream(RATE, CHUNK) as stream:
audio_generator = stream.generator()
requests = (types.StreamingRecognizeRequest(audio_content=content)
for content in audio_generator)
responses = client.streaming_recognize(streaming_config, requests)
# Now, put the transcription responses to use.
return listen_print_loop(responses, stream, category_index)
if __name__ == '__main__':
print(main())