-
Notifications
You must be signed in to change notification settings - Fork 433
/
ResNets.py
142 lines (128 loc) · 5.35 KB
/
ResNets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
"""
@author: Jun Wang
@date: 20201019
@contact: [email protected]
"""
# based on:
# https://github.com/TreB1eN/InsightFace_Pytorch/blob/master/model.py
from torch.nn import Linear, Conv2d, BatchNorm1d, BatchNorm2d, PReLU, ReLU, Sigmoid, Dropout2d, Dropout, AvgPool2d, MaxPool2d, AdaptiveAvgPool2d, Sequential, Module, Parameter
import torch.nn.functional as F
import torch
from collections import namedtuple
class Flatten(Module):
def forward(self, input):
return input.view(input.size(0), -1)
class SEModule(Module):
def __init__(self, channels, reduction):
super(SEModule, self).__init__()
self.avg_pool = AdaptiveAvgPool2d(1)
self.fc1 = Conv2d(
channels, channels // reduction, kernel_size=1, padding=0 ,bias=False)
self.relu = ReLU(inplace=True)
self.fc2 = Conv2d(
channels // reduction, channels, kernel_size=1, padding=0 ,bias=False)
self.sigmoid = Sigmoid()
def forward(self, x):
module_input = x
x = self.avg_pool(x)
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.sigmoid(x)
return module_input * x
class bottleneck_IR(Module):
def __init__(self, in_channel, depth, stride):
super(bottleneck_IR, self).__init__()
if in_channel == depth:
self.shortcut_layer = MaxPool2d(1, stride)
else:
self.shortcut_layer = Sequential(
Conv2d(in_channel, depth, (1, 1), stride ,bias=False), BatchNorm2d(depth))
self.res_layer = Sequential(
BatchNorm2d(in_channel),
Conv2d(in_channel, depth, (3, 3), (1, 1), 1 ,bias=False), PReLU(depth),
Conv2d(depth, depth, (3, 3), stride, 1 ,bias=False), BatchNorm2d(depth))
def forward(self, x):
shortcut = self.shortcut_layer(x)
res = self.res_layer(x)
return res + shortcut
class bottleneck_IR_SE(Module):
def __init__(self, in_channel, depth, stride):
super(bottleneck_IR_SE, self).__init__()
if in_channel == depth:
self.shortcut_layer = MaxPool2d(1, stride)
else:
self.shortcut_layer = Sequential(
Conv2d(in_channel, depth, (1, 1), stride ,bias=False),
BatchNorm2d(depth))
self.res_layer = Sequential(
BatchNorm2d(in_channel),
Conv2d(in_channel, depth, (3,3), (1,1),1 ,bias=False),
PReLU(depth),
Conv2d(depth, depth, (3,3), stride, 1 ,bias=False),
BatchNorm2d(depth),
SEModule(depth,16)
)
def forward(self,x):
shortcut = self.shortcut_layer(x)
res = self.res_layer(x)
return res + shortcut
class Bottleneck(namedtuple('Block', ['in_channel', 'depth', 'stride'])):
'''A named tuple describing a ResNet block.'''
def get_block(in_channel, depth, num_units, stride = 2):
return [Bottleneck(in_channel, depth, stride)] + [Bottleneck(depth, depth, 1) for i in range(num_units-1)]
def get_blocks(num_layers):
if num_layers == 50:
blocks = [
get_block(in_channel=64, depth=64, num_units = 3),
get_block(in_channel=64, depth=128, num_units=4),
get_block(in_channel=128, depth=256, num_units=14),
get_block(in_channel=256, depth=512, num_units=3)
]
elif num_layers == 100:
blocks = [
get_block(in_channel=64, depth=64, num_units=3),
get_block(in_channel=64, depth=128, num_units=13),
get_block(in_channel=128, depth=256, num_units=30),
get_block(in_channel=256, depth=512, num_units=3)
]
elif num_layers == 152:
blocks = [
get_block(in_channel=64, depth=64, num_units=3),
get_block(in_channel=64, depth=128, num_units=8),
get_block(in_channel=128, depth=256, num_units=36),
get_block(in_channel=256, depth=512, num_units=3)
]
return blocks
#class Backbone(Module):
class Resnet(Module):
def __init__(self, num_layers, drop_ratio, mode='ir', feat_dim=512, out_h=7, out_w=7):
super(Resnet, self).__init__()
assert num_layers in [50, 100, 152], 'num_layers should be 50,100, or 152'
assert mode in ['ir', 'ir_se'], 'mode should be ir or ir_se'
blocks = get_blocks(num_layers)
if mode == 'ir':
unit_module = bottleneck_IR
elif mode == 'ir_se':
unit_module = bottleneck_IR_SE
self.input_layer = Sequential(Conv2d(3, 64, (3, 3), 1, 1 ,bias=False),
BatchNorm2d(64),
PReLU(64))
self.output_layer = Sequential(BatchNorm2d(512),
Dropout(drop_ratio),
Flatten(),
Linear(512 * out_h * out_w, feat_dim), # for eye
BatchNorm1d(feat_dim))
modules = []
for block in blocks:
for bottleneck in block:
modules.append(
unit_module(bottleneck.in_channel,
bottleneck.depth,
bottleneck.stride))
self.body = Sequential(*modules)
def forward(self,x):
x = self.input_layer(x)
x = self.body(x)
x = self.output_layer(x)
return x