From 3bd8553b5f3198ff296ccea81aa25b905d146609 Mon Sep 17 00:00:00 2001 From: Kevin Buzzard Date: Sat, 7 Dec 2024 15:52:57 +0000 Subject: [PATCH 1/2] remove module topology code which is already PRed. --- FLT/FLT_files.lean | 2 + .../Algebra/Module/ModuleTopology.lean | 272 ++++-------------- 2 files changed, 51 insertions(+), 223 deletions(-) diff --git a/FLT/FLT_files.lean b/FLT/FLT_files.lean index f6183473..bb9f21c0 100644 --- a/FLT/FLT_files.lean +++ b/FLT/FLT_files.lean @@ -15,6 +15,8 @@ import FLT.GroupScheme.FiniteFlat import FLT.HaarMeasure.DistribHaarChar import FLT.Hard.Results import FLT.HIMExperiments.flatness +import FLT.Junk.Algebra +import FLT.Junk.Algebra2 import FLT.Mathlib.Algebra.Algebra.Subalgebra.Pi import FLT.Mathlib.Algebra.Order.Hom.Monoid import FLT.Mathlib.Algebra.Order.Monoid.Unbundled.TypeTags diff --git a/FLT/Mathlib/Topology/Algebra/Module/ModuleTopology.lean b/FLT/Mathlib/Topology/Algebra/Module/ModuleTopology.lean index b8c26cd6..485acb7b 100644 --- a/FLT/Mathlib/Topology/Algebra/Module/ModuleTopology.lean +++ b/FLT/Mathlib/Topology/Algebra/Module/ModuleTopology.lean @@ -1,6 +1,7 @@ import FLT.ForMathlib.MiscLemmas import Mathlib.Topology.Algebra.Ring.Basic import Mathlib.LinearAlgebra.FreeModule.Finite.Basic +import Mathlib.Topology.Algebra.Module.ModuleTopology /-! # An "action topology" for modules over a topological ring @@ -83,211 +84,36 @@ the corresponding statements in this file -/ -section basics +namespace ModuleTopology -/- -This section is just boilerplate, defining the action topology and making -some infrastructure. --/ -variable (R : Type*) [TopologicalSpace R] (A : Type*) [Add A] [SMul R A] - -/-- The action topology, for a module `A` over a topological ring `R`. It's the finest topology -making addition and the `R`-action continuous, or equivalently the finest topology making `A` -into a topological `R`-module. More precisely it's the Inf of the set of -topologies with these properties; theorems `continuousSMul` and `continuousAdd` show -that the action topology also has these properties. -/ -abbrev actionTopology : TopologicalSpace A := - sInf {t | @ContinuousSMul R A _ _ t ∧ @ContinuousAdd A t _} - -/-- A class asserting that the topology on a module over a topological ring `R` is -the action topology. See `actionTopology` for more discussion of the action topology. -/ -class IsActionTopology [τA : TopologicalSpace A] : Prop where - isActionTopology' : τA = actionTopology R A - -theorem isActionTopology [τA : TopologicalSpace A] [IsActionTopology R A] : - τA = actionTopology R A := - IsActionTopology.isActionTopology' (R := R) (A := A) - -/-- Scalar multiplication `• : R × A → A` is continuous if `R` is a topological -ring, and `A` is an `R` module with the action topology. -/ -theorem ActionTopology.continuousSMul : @ContinuousSMul R A _ _ (actionTopology R A) := - -- Proof: We need to prove that the product topology is finer than the pullback - -- of the action topology. But the action topology is an Inf and thus a limit, - -- and pullback is a right adjoint, so it preserves limits. - -- We must thus show that the product topology is finer than an Inf, so it suffices - -- to show it's a lower bound, which is not hard. All this is wrapped into - -- `continuousSMul_sInf`. - continuousSMul_sInf <| fun _ _ ↦ by simp_all only [Set.mem_setOf_eq] - -/-- Addition `+ : A × A → A` is continuous if `R` is a topological -ring, and `A` is an `R` module with the action topology. -/ -theorem ActionTopology.continuousAdd : @ContinuousAdd A (actionTopology R A) _ := - continuousAdd_sInf <| fun _ _ ↦ by simp_all only [Set.mem_setOf_eq] - -instance instIsActionTopology_continuousSMul [TopologicalSpace A] [IsActionTopology R A] : - ContinuousSMul R A := isActionTopology R A ▸ ActionTopology.continuousSMul R A - -theorem isActionTopology_continuousAdd [TopologicalSpace A] [IsActionTopology R A] : - ContinuousAdd A := isActionTopology R A ▸ ActionTopology.continuousAdd R A - -theorem actionTopology_le [τA : TopologicalSpace A] [ContinuousSMul R A] [ContinuousAdd A] : - actionTopology R A ≤ τA := sInf_le ⟨‹ContinuousSMul R A›, ‹ContinuousAdd A›⟩ - -end basics - -namespace ActionTopology - -section zero - -instance instSubsingleton (R : Type*) [TopologicalSpace R] (A : Type*) [Add A] [SMul R A] - [Subsingleton A] [TopologicalSpace A] : IsActionTopology R A where - isActionTopology' := by - ext U - simp only [isOpen_discrete] - -end zero - - -section one - -/- - -We now fix once and for all a topological semiring `R`. - -We first prove that the action topology on `R` considered as a module over itself, -is `R`'s topology. - --/ -instance instSelf (R : Type*) [Semiring R] [τR : TopologicalSpace R] [TopologicalSemiring R] : - IsActionTopology R R := by - constructor - /- Let `R` be a topological ring with topology τR. To prove that `τR` is the action - topology, it suffices to prove inclusions in both directions. - One way is obvious: addition and multiplication are continuous for `R`, so the - action topology is finer than `R` because it's the finest topology with these properties.-/ - refine le_antisymm ?_ (actionTopology_le R R) - /- The other way is more interesting. We can interpret the problem as proving that - the identity function is continuous from `R` with the action topology to `R` with - its usual topology to `R` with the action topology. - -/ - rw [← continuous_id_iff_le] - /- - The idea needed here is to rewrite the identity function as the composite of `r ↦ (r,1)` - from `R` to `R × R`, and multiplication on `R × R`, where we topologise `R × R` - by giving the first `R` the usual topology and the second `R` the action topology. - -/ - rw [show (id : R → R) = (fun rs ↦ rs.1 • rs.2) ∘ (fun r ↦ (r, 1)) by ext; simp] - /- - It thus suffices to show that each of these maps are continuous. - -/ - apply @Continuous.comp R (R × R) R τR (@instTopologicalSpaceProd R R τR (actionTopology R R)) - (actionTopology R R) - · /- - The map R × R → R is `•`, so by a fundamental property of the action topology, - this is continuous. -/ - exact @continuous_smul _ _ _ _ (actionTopology R R) <| ActionTopology.continuousSMul .. - · /- - The map `R → R × R` sending `r` to `(r,1)` is a map into a product, so it suffices to show - that each of the two factors is continuous. But the first is the identity function and the - second is a constant function. -/ - exact @Continuous.prod_mk _ _ _ _ (actionTopology R R) _ _ _ continuous_id <| - @continuous_const _ _ _ (actionTopology R R) _ - -end one - -section iso - -variable {R : Type*} [τR : TopologicalSpace R] [Semiring R] -variable {A : Type*} [AddCommMonoid A] [Module R A] [τA : TopologicalSpace A] [IsActionTopology R A] -variable {B : Type*} [AddCommMonoid B] [Module R B] [τB : TopologicalSpace B] - -theorem iso (e : A ≃L[R] B) : IsActionTopology R B where - isActionTopology' := by - -- get these in before I start putting new topologies on A and B - let g : A →[R] B := e.toMulActionHom - let g' : B →[R] A := e.symm.toMulActionHom - let h : A →+ B := e - let h' : B →+ A := e.symm - simp_rw [e.toHomeomorph.symm.isInducing.1, isActionTopology R A, actionTopology, induced_sInf] - congr 1 - ext τ - rw [Set.mem_image] - -- it's the same picture - constructor - · rintro ⟨σ, ⟨hσ1, hσ2⟩, rfl⟩ - refine ⟨?_, ?_⟩ - · exact induced_continuous_smul (f := @id R) (hf := continuous_id) (g := g') (τA := σ) - · exact induced_continuous_add (h := h') - · rintro ⟨h1, h2⟩ - use τ.induced e - rw [induced_compose] - refine ⟨⟨?_, ?_⟩, ?_⟩ - · exact induced_continuous_smul (f := @id R) (hf := continuous_id) (g := g) (τA := τ) - · exact induced_continuous_add (h := h) - · nth_rw 2 [← induced_id (t := τ)] - simp - -end iso - -section function - -variable {R : Type*} [τR : TopologicalSpace R] [Semiring R] -variable {A : Type*} [AddCommMonoid A] [Module R A] [aA : TopologicalSpace A] [IsActionTopology R A] -variable {B : Type*} [AddCommMonoid B] [Module R B] [aB : TopologicalSpace B] - [ContinuousAdd B] [ContinuousSMul R B] - -/-- Every `R`-linear map between two topological `R`-modules, where the source has the action -topology, is continuous. -/ -@[fun_prop, continuity] -theorem continuous_of_distribMulActionHom (φ : A →+[R] B) : Continuous φ := by - -- the proof: We know that `+ : B × B → B` and `• : R × B → B` are continuous for the action - -- topology on `B`, and two earlier theorems (`induced_continuous_smul` and - -- `induced_continuous_add`) say that hence `+` and `•` on `A` are continuous if `A` - -- is given the topology induced from `φ`. Hence the action topology is finer than - -- the induced topology, and so the function is continuous. - rw [isActionTopology R A, continuous_iff_le_induced] - --haveI : ContinuousAdd B := isActionTopology_continuousAdd R B - exact sInf_le <| ⟨induced_continuous_smul (φ.toMulActionHom) continuous_id, - induced_continuous_add φ.toAddMonoidHom⟩ - -@[fun_prop, continuity] -theorem continuous_of_linearMap (φ : A →ₗ[R] B) : Continuous φ := - continuous_of_distribMulActionHom φ.toDistribMulActionHom - -variable (R) in -theorem continuous_neg (C : Type*) [AddCommGroup C] [Module R C] [TopologicalSpace C] - [IsActionTopology R C] : Continuous (fun a ↦ -a : C → C) := - haveI : ContinuousAdd C := isActionTopology_continuousAdd R C - continuous_of_linearMap (LinearEquiv.neg R).toLinearMap - -end function +open IsModuleTopology section surjection variable {R : Type*} [τR : TopologicalSpace R] [Ring R] [TopologicalRing R] -variable {A : Type*} [AddCommGroup A] [Module R A] --[aA : TopologicalSpace A] [IsActionTopology R A] -variable {B : Type*} [AddCommGroup B] [Module R B] --[aB : TopologicalSpace B] [IsActionTopology R B] +variable {A : Type*} [AddCommGroup A] [Module R A] --[aA : TopologicalSpace A] [IsModuleTopology R A] +variable {B : Type*} [AddCommGroup B] [Module R B] --[aB : TopologicalSpace B] [IsModuleTopology R B] -- Here I need the lemma about how quotients are open so I do need groups -- because this relies on translates of an open being open theorem coinduced_of_surjective {φ : A →ₗ[R] B} (hφ : Function.Surjective φ) : - TopologicalSpace.coinduced φ (actionTopology R A) = actionTopology R B := by - letI : TopologicalSpace A := actionTopology R A - letI τB : TopologicalSpace B := actionTopology R B - haveI : IsActionTopology R A := ⟨rfl⟩ - haveI : ContinuousAdd A := isActionTopology_continuousAdd R A - haveI : IsActionTopology R B := ⟨rfl⟩ - haveI : ContinuousAdd B := isActionTopology_continuousAdd R B + TopologicalSpace.coinduced φ (moduleTopology R A) = moduleTopology R B := by + letI : TopologicalSpace A := moduleTopology R A + letI τB : TopologicalSpace B := moduleTopology R B + haveI : IsModuleTopology R A := ⟨rfl⟩ + haveI : ContinuousAdd A := continuousAdd R A + haveI : IsModuleTopology R B := ⟨rfl⟩ + haveI : ContinuousAdd B := continuousAdd R B have : Continuous φ := continuous_of_linearMap φ - rw [continuous_iff_coinduced_le, isActionTopology R A, isActionTopology R B] at this + rw [continuous_iff_coinduced_le, eq_moduleTopology R A, eq_moduleTopology R B] at this apply le_antisymm this - have : ContinuousAdd A := isActionTopology_continuousAdd R A + have : ContinuousAdd A := continuousAdd R A refine sInf_le ⟨?_, ?_⟩ · apply @ContinuousSMul.mk R B _ _ (_) obtain ⟨foo⟩ : ContinuousSMul R A := inferInstance rw [continuous_def] at foo ⊢ intro U hU - rw [isOpen_coinduced, ← isActionTopology R A] at hU + rw [isOpen_coinduced, ← eq_moduleTopology R A] at hU specialize foo _ hU; clear hU rw [← Set.preimage_comp, show φ ∘ (fun p ↦ p.1 • p.2 : R × A → A) = (fun p ↦ p.1 • p.2 : R × B → B) ∘ @@ -303,15 +129,15 @@ theorem coinduced_of_surjective {φ : A →ₗ[R] B} (hφ : Function.Surjective exact ⟨Function.surjective_id, by simp_all⟩ · -- should `apply continuousprodmap ctrl-space` find `Continuous.prod_map`? apply @Continuous.prodMap _ _ _ _ (_) (_) (_) (_) id φ continuous_id - rw [continuous_iff_coinduced_le, isActionTopology R A] - · rw [← isActionTopology R A] + rw [continuous_iff_coinduced_le, eq_moduleTopology R A] + · rw [← eq_moduleTopology R A] exact coinduced_prod_eq_prod_coinduced (AddMonoidHom.id R) φ.toAddMonoidHom (Function.surjective_id) hφ · apply @ContinuousAdd.mk _ (_) - obtain ⟨bar⟩ := isActionTopology_continuousAdd R A + obtain ⟨bar⟩ := continuousAdd R A rw [continuous_def] at bar ⊢ intro U hU - rw [isOpen_coinduced, ← isActionTopology R A] at hU + rw [isOpen_coinduced, ← eq_moduleTopology R A] at hU specialize bar _ hU; clear hU rw [← Set.preimage_comp, show φ ∘ (fun p ↦ p.1 + p.2 : A × A → A) = (fun p ↦ p.1 + p.2 : B × B → B) ∘ @@ -321,8 +147,8 @@ theorem coinduced_of_surjective {φ : A →ₗ[R] B} (hφ : Function.Surjective (_) (_) (_) bar · aesop · apply @Continuous.prodMap _ _ _ _ (_) (_) (_) (_) <;> - · rw [continuous_iff_coinduced_le, isActionTopology R A]; rfl - · rw [← isActionTopology R A] + · rw [continuous_iff_coinduced_le, eq_moduleTopology R A]; rfl + · rw [← eq_moduleTopology R A] exact coinduced_prod_eq_prod_coinduced (X := A) (Y := A) (S := B) (T := B) φ φ hφ hφ end surjection @@ -330,13 +156,13 @@ end surjection section prod variable {R : Type*} [TopologicalSpace R] [Semiring R] [TopologicalSemiring R] -variable {M : Type*} [AddCommMonoid M] [Module R M] [TopologicalSpace M] [IsActionTopology R M] -variable {N : Type*} [AddCommMonoid N] [Module R N] [TopologicalSpace N] [IsActionTopology R N] +variable {M : Type*} [AddCommMonoid M] [Module R M] [TopologicalSpace M] [IsModuleTopology R M] +variable {N : Type*} [AddCommMonoid N] [Module R N] [TopologicalSpace N] [IsModuleTopology R N] -instance prod : IsActionTopology R (M × N) := by +instance prod : IsModuleTopology R (M × N) := by constructor - haveI : ContinuousAdd M := isActionTopology_continuousAdd R M - haveI : ContinuousAdd N := isActionTopology_continuousAdd R N + haveI : ContinuousAdd M := toContinuousAdd R M + haveI : ContinuousAdd N := toContinuousAdd R N refine le_antisymm ?_ <| sInf_le ⟨Prod.continuousSMul, Prod.continuousAdd⟩ rw [← continuous_id_iff_le] rw [show (id : M × N → M × N) = @@ -347,16 +173,16 @@ instance prod : IsActionTopology R (M × N) := by -- to always put the product topology on M × N, when we sometimes want the action topology -- (they are equal, but that's exactly what we're proving so we can't assume it yet). -- This issue stops the standard continuity tactics from working. - obtain ⟨this⟩ : @ContinuousAdd (M × N) (actionTopology R (M × N)) _ := - ActionTopology.continuousAdd _ _ + obtain ⟨this⟩ : @ContinuousAdd (M × N) (moduleTopology R (M × N)) _ := + ModuleTopology.continuousAdd _ _ refine @Continuous.comp _ ((M × N) × (M × N)) _ (_) (_) (_) _ _ this ?_ - haveI : @ContinuousSMul R (M × N) _ _ (actionTopology R _) := continuousSMul R (M × N) + haveI : @ContinuousSMul R (M × N) _ _ (moduleTopology R _) := continuousSMul R (M × N) refine (@continuous_prod_mk _ _ _ (_) (_) (_) _ _).2 ⟨?_, ?_⟩ · refine @Continuous.comp _ _ _ (_) (_) (_) _ ((LinearMap.inl R M N)) ?_ continuous_fst - apply @continuous_of_linearMap _ _ _ _ _ _ _ _ _ _ _ (actionTopology _ _) (?_) + apply @continuous_of_linearMap _ _ _ _ _ _ _ _ _ _ _ (moduleTopology _ _) (?_) exact continuousAdd R (M × N) · refine @Continuous.comp _ _ _ (_) (_) (_) _ ((LinearMap.inr R M N)) ?_ continuous_snd - apply @continuous_of_linearMap _ _ _ _ _ _ _ _ _ _ _ (actionTopology _ _) (?_) + apply @continuous_of_linearMap _ _ _ _ _ _ _ _ _ _ _ (moduleTopology _ _) (?_) exact continuousAdd R (M × N) end prod @@ -367,7 +193,7 @@ variable {R : Type*} [τR : TopologicalSpace R] [Semiring R] [TopologicalSemirin variable {ι : Type*} [Finite ι] {A : ι → Type*} [∀ i, AddCommMonoid (A i)] [∀ i, Module R (A i)] [∀ i, TopologicalSpace (A i)] - [∀ i, IsActionTopology R (A i)] + [∀ i, IsModuleTopology R (A i)] -- elsewhere def ContinuousLinearEquiv.piCongrLeft (R : Type*) [Semiring R] {ι ι' : Type*} @@ -392,7 +218,7 @@ def ContinuousLinearEquiv.pUnitPiEquiv (R : Type*) [Semiring R] (f : PUnit → T __ := LinearEquiv.pUnitPiEquiv R f __ := Homeomorph.pUnitPiEquiv f -instance pi : IsActionTopology R (∀ i, A i) := by +instance pi : IsModuleTopology R (∀ i, A i) := by induction ι using Finite.induction_empty_option · case of_equiv X Y e _ _ _ _ _ => exact iso (ContinuousLinearEquiv.piCongrLeft R A e) @@ -416,9 +242,9 @@ section semiring_bilinear variable {R : Type*} [τR : TopologicalSpace R] [CommSemiring R] -- similarly these don't need to be groups -variable {A : Type*} [AddCommGroup A] [Module R A] [aA : TopologicalSpace A] [IsActionTopology R A] -variable {B : Type*} [AddCommGroup B] [Module R B] [aB : TopologicalSpace B] [IsActionTopology R B] -variable {C : Type*} [AddCommGroup C] [Module R C] [aC : TopologicalSpace C] [IsActionTopology R C] +variable {A : Type*} [AddCommGroup A] [Module R A] [aA : TopologicalSpace A] [IsModuleTopology R A] +variable {B : Type*} [AddCommGroup B] [Module R B] [aB : TopologicalSpace B] [IsModuleTopology R B] +variable {C : Type*} [AddCommGroup C] [Module R C] [aC : TopologicalSpace C] [IsModuleTopology R C] theorem Module.continuous_bilinear_of_pi_finite (ι : Type*) [Finite ι] (bil : (ι → R) →ₗ[R] B →ₗ[R] C) : Continuous (fun ab ↦ bil ab.1 ab.2 : ((ι → R) × B → C)) := by @@ -443,7 +269,7 @@ theorem Module.continuous_bilinear_of_pi_finite (ι : Type*) [Finite ι] simp · apply Set.toFinite _--(Function.support fun x ↦ f x • Pi.single x 1) rw [foo] - haveI : ContinuousAdd C := isActionTopology_continuousAdd R C + haveI : ContinuousAdd C := toContinuousAdd R C apply continuous_finsum (fun i ↦ by fun_prop) intro x use Set.univ @@ -475,9 +301,9 @@ section ring_bilinear variable {R : Type*} [τR : TopologicalSpace R] [CommRing R] [TopologicalRing R] -variable {A : Type*} [AddCommGroup A] [Module R A] [aA : TopologicalSpace A] [IsActionTopology R A] -variable {B : Type*} [AddCommGroup B] [Module R B] [aB : TopologicalSpace B] [IsActionTopology R B] -variable {C : Type*} [AddCommGroup C] [Module R C] [aC : TopologicalSpace C] [IsActionTopology R C] +variable {A : Type*} [AddCommGroup A] [Module R A] [aA : TopologicalSpace A] [IsModuleTopology R A] +variable {B : Type*} [AddCommGroup B] [Module R B] [aB : TopologicalSpace B] [IsModuleTopology R B] +variable {C : Type*} [AddCommGroup C] [Module R C] [aC : TopologicalSpace C] [IsModuleTopology R C] -- This needs rings though theorem Module.continuous_bilinear_of_finite [Module.Finite R A] @@ -490,13 +316,13 @@ theorem Module.continuous_bilinear_of_finite [Module.Finite R A] Function.RightInverse.surjective (congrFun rfl) have hφ : Function.Surjective φ := Function.Surjective.prodMap hf foo have := coinduced_of_surjective hφ - rw [isActionTopology R (A × B), ← this, continuous_def] + rw [eq_moduleTopology R (A × B), ← this, continuous_def] intro U hU rw [isOpen_coinduced, ← Set.preimage_comp] suffices Continuous ((fun ab ↦ (bil ab.1) ab.2) ∘ φ : (Fin m → R) × B → C) by rw [continuous_def] at this convert this _ hU - rw [← prod.isActionTopology'] + rw [← prod.eq_moduleTopology'] rw [show (fun ab ↦ (bil ab.1) ab.2 : A × B → C) ∘ φ = (fun fb ↦ bil' fb.1 fb.2) by ext ⟨a, b⟩ simp [bil', φ]] @@ -515,7 +341,7 @@ open scoped NumberField -- these shouldn't be rings, they should be semirings variable (R) [CommRing R] [TopologicalSpace R] [TopologicalRing R] variable (D : Type*) [Ring D] [Algebra R D] [Module.Finite R D] [Module.Free R D] -variable [TopologicalSpace D] [IsActionTopology R D] +variable [TopologicalSpace D] [IsModuleTopology R D] open scoped TensorProduct @@ -523,11 +349,11 @@ open scoped TensorProduct theorem continuous_mul' (R : Type*) [CommRing R] [TopologicalSpace R] [TopologicalRing R] (D : Type*) [Ring D] [Algebra R D] [Module.Finite R D] [Module.Free R D] [TopologicalSpace D] - [IsActionTopology R D] : Continuous (fun ab ↦ ab.1 * ab.2 : D × D → D) := + [IsModuleTopology R D] : Continuous (fun ab ↦ ab.1 * ab.2 : D × D → D) := Module.continuous_bilinear_of_finite (LinearMap.mul R D) def topologicalSemiring : TopologicalSemiring D where - continuous_add := (isActionTopology_continuousAdd R D).1 + continuous_add := (toContinuousAdd R D).1 continuous_mul := continuous_mul' R D end semiring_algebra @@ -538,19 +364,19 @@ section ring_algebra -- Is it: for D finite free R can be a semiring but for D finite it has to be a ring? variable (R) [CommRing R] [TopologicalSpace R] [TopologicalRing R] variable (D : Type*) [Ring D] [Algebra R D] [Module.Finite R D] -variable [TopologicalSpace D] [IsActionTopology R D] +variable [TopologicalSpace D] [IsModuleTopology R D] open scoped TensorProduct include R in @[continuity, fun_prop] theorem continuous_mul : Continuous (fun ab ↦ ab.1 * ab.2 : D × D → D) := by - letI : TopologicalSpace (D ⊗[R] D) := actionTopology R _ - haveI : IsActionTopology R (D ⊗[R] D) := { isActionTopology' := rfl } + letI : TopologicalSpace (D ⊗[R] D) := moduleTopology R _ + haveI : IsModuleTopology R (D ⊗[R] D) := { eq_moduleTopology' := rfl } convert Module.continuous_bilinear_of_finite <| (LinearMap.mul R D : D →ₗ[R] D →ₗ[R] D) def Module.topologicalRing : TopologicalRing D where - continuous_add := (isActionTopology_continuousAdd R D).1 + continuous_add := (toContinuousAdd R D).1 continuous_mul := continuous_mul R D continuous_neg := continuous_neg R D From 104d0bba3fdf0ec2710b6b85203ac0252b4a995d Mon Sep 17 00:00:00 2001 From: Kevin Buzzard Date: Sat, 7 Dec 2024 15:54:48 +0000 Subject: [PATCH 2/2] fix build --- FLT/DivisionAlgebra/Finiteness.lean | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/FLT/DivisionAlgebra/Finiteness.lean b/FLT/DivisionAlgebra/Finiteness.lean index afa15e47..1dca4305 100644 --- a/FLT/DivisionAlgebra/Finiteness.lean +++ b/FLT/DivisionAlgebra/Finiteness.lean @@ -34,14 +34,14 @@ variable (K : Type*) [Field K] [NumberField K] variable (D : Type*) [DivisionRing D] [Algebra K D] local instance : TopologicalSpace (FiniteAdeleRing (𝓞 K) K ⊗[K] D) := - actionTopology (FiniteAdeleRing (𝓞 K) K) _ -local instance : IsActionTopology (FiniteAdeleRing (𝓞 K) K) ((FiniteAdeleRing (𝓞 K) K) ⊗[K] D) := + moduleTopology (FiniteAdeleRing (𝓞 K) K) _ +local instance : IsModuleTopology (FiniteAdeleRing (𝓞 K) K) ((FiniteAdeleRing (𝓞 K) K) ⊗[K] D) := ⟨rfl⟩ variable [FiniteDimensional K D] instance : TopologicalRing ((FiniteAdeleRing (𝓞 K) K) ⊗[K] D) := - ActionTopology.Module.topologicalRing (FiniteAdeleRing (𝓞 K) K) _ + ModuleTopology.Module.topologicalRing (FiniteAdeleRing (𝓞 K) K) _ variable [Algebra.IsCentral K D]