-
Notifications
You must be signed in to change notification settings - Fork 0
/
2.3.rkt
172 lines (138 loc) · 4.86 KB
/
2.3.rkt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
#lang sicp
;; if item is in x, return item and all later elements
(define (memq item x)
(cond ((null? x) false)
((eq? item (car x)) x)
(else (memq item (cdr x)))))
(memq 'i '(o p i t))
;; Ex 2.54
;; compare two lists
(define (equals? first_list second_list)
(cond ((null? first_list) (null? second_list))
((null? second_list) (null? first_list))
((eq? (car first_list) (car second_list))
(equals? (cdr first_list) (cdr second_list)))
(else #f)))
(equals? '(9 u) '())
(equals? '(9 u) '(9 u))
;; Ex 2.55
;; note that the first item of this string? list? is itself a '
;; I believe it is because it expands to (quote 'abcde)
(car ''abcde)
;; define some functions so that we can calculate derivatives
(define (multiplicand p) (caddr p))
(define (multiplier p) (cadr p))
(define (product? x)
(and (pair? x) (eq? (car x) '*)))
(define (augend s) (caddr s))
(define (addend s) (cadr s))
(define (sum? x)
(and (pair? x) (eq? (car x) '+)))
;; (define (exponentiation? exp)
;; (and (pair? x) (eq? (car x) '+)))
(define (variable? x) (symbol? x))
(define (same-variable? v1 v2)
(and (variable? v1) (variable? v2) (eq? v1 v2)))
(define (=number? exp num)
(and (number? exp) (= exp num)))
(define (make-product m1 m2)
(cond ((or (=number? m1 0) (=number? m2 0)) 0)
((=number? m1 1) m2)
((=number? m2 1) m1)
((and (number? m1) (number? m2)) (* m1 m2))
(else (list '* m1 m2))))
(define (make-sum a1 a2)
(cond ((=number? a1 0) a2)
((=number? a2 0) a1)
((and (number? a1) (number? a2)) (+ a1 a2))
(else (list '+ a1 a2))))
(define (deriv exp var)
(cond ((number? exp) 0)
((variable? exp)
(if (same-variable? exp var) 1 0))
((sum? exp)
(make-sum (deriv (addend exp) var)
(deriv (augend exp) var)))
((product? exp)
(make-sum
(make-product (multiplier exp)
(deriv (multiplicand exp) var))
(make-product (deriv (multiplier exp) var)
(multiplicand exp))))
((exponentiation? exp)
(make-product (exponent exp)
(make-exponentiation (base exp)
(make-sum (exponent exp) -1))))
(else
(error "unknown expression type -- DERIV" exp))))
(write '(deriv '(+ x 3) 'x))(newline)
(deriv '(+ x 3) 'x)
;; Ex 2.56
;; handle exponentiation
(define (make-exponentiation base exponent)
(list '** base exponent))
(define (base exponentiation)
(cadr exponentiation))
(define (exponent exponentiation)
(caddr exponentiation))
(define (exponentiation? exponentiation)
(and (pair? exponentiation) (eq? (car exponentiation) '**)))
(display "y to the power x")(newline)
(make-exponentiation 'y 'x)
(base (make-exponentiation 'y 'x))
(exponent (make-exponentiation 'y 'x))
(exponentiation? (make-exponentiation 'y 'x))
;; (= (make-exponentiation 'y 0) 1)
(deriv (make-exponentiation 'y 'x) 'x)
(equals? '(* x (** y (+ x -1))) (deriv (make-exponentiation 'y 'x) 'x))
(deriv '(* (* x y) (+ x 3)) 'x)
(define (deriv2 exp var)
(display exp)(newline)
(cond ((number? exp) 0)
((variable? exp)
(if (same-variable? exp var) 1 0))
((sum? exp)
(make-sum (deriv2 (addend2 exp) var)
(deriv2 (augend2 exp) var)))
((product? exp)
(make-sum
(make-product (multiplier2 exp)
(deriv2 (multiplicand2 exp) var))
(make-product (deriv2 (multiplier2 exp) var)
(multiplicand2 exp))))
;; ((exponentiation? exp)
;; (make-product (exponent exp)
;; (make-exponentiation (base exp)
;; (make-sum (exponent exp) -1))))
(else
(error "unknown expression type -- DERIV2" exp))))
(define (make-product2 m1 m2)
(cond ((or (=number? m1 0) (=number? m2 0)) 0)
((=number? m1 1) m2)
((=number? m2 1) m1)
((and (number? m1) (number? m2)) (* m1 m2))
(else (list '* m1 m2))))
(define (make-sum2 a1 a2)
(cond ((=number? a1 0) a2)
((=number? a2 0) a1)
((and (number? a1) (number? a2)) (+ a1 a2))
(else (list '+ a1 a2))))
(define (multiplicand2 p)
(cond ((number? (cdr (cdr p))) p)
(else (cons '* (cdr (cdr p))))))
(define (multiplier2 p) (cadr p))
;; note that A & S seem to have the augend/addend
;; definition backwards
(define (augend2 p)
(cond ((number? (car (cdr (cdr p)))) (car (cdr (cdr p))))
(else (cons '+ (cdr (cdr p))))))
;; define (augend2 s) (caddr s))
(define (addend2 s) (cadr s))
(equals? '(* 3 2) (multiplicand2 '(* 4 3 2)))
(eq? 2 (augend2 '(+ 4 2)))
;;(equals? '(+ 1 2 3 4) (augend2 '(+ 1 1 2 3 4)))
;; (equals? '(+ 3 2) (augend2 '(+ 4 3 2)))
;; (deriv2 '(* x y (+ x 3)) 'x)
;; (deriv2 '(* x x x) 'x)
;; sets
(write "hello")