From 994b43ab544040545ba9cbe0ab327b6732accbd6 Mon Sep 17 00:00:00 2001 From: Roelof Rietbroek Date: Thu, 15 Feb 2024 22:46:49 +0100 Subject: [PATCH] Breaking changes: change spherical harmonic index nomenclature to 'nm' and consistently use negative orders for Sine coefficients. Also improve documentation, and decide on numpy doctring style --- docs/source/api.rst | 6 +- docs/source/conf.py | 2 +- docs/source/installation.rst | 30 +- docs/source/introduction.rst | 24 +- .../notebooks/TerrestrialWaterStorage.ipynb | 100 +- docs/source/notebooks/visualize_filter.ipynb | 14 +- src/builtin_backend/Ynm.hpp | 7 +- src/builtin_backend/analysis.pyx | 11 +- src/builtin_backend/legendre.pxd | 4 +- src/builtin_backend/shlib.cpp | 2114 +++++++---------- src/builtin_backend/synthesis.pyx | 103 +- src/builtin_backend/ynm.pyx | 26 +- src/shxarray/core/sh_indexing.py | 157 +- src/shxarray/core/shxarbase.py | 96 +- src/shxarray/core/xr_accessor.py | 28 +- src/shxarray/io/binv_legacy.py | 21 +- src/shxarray/io/gsmv6.py | 16 +- src/shxarray/io/icgem.py | 16 +- src/shxarray/io/shascii.py | 12 +- src/shxarray/kernels/anisokernel.py | 14 +- src/shxarray/kernels/isokernelbase.py | 7 +- tests/test_basic_ops.py | 2 +- tests/test_filters.py | 2 +- tests/test_synthesis.py | 2 +- 24 files changed, 1227 insertions(+), 1587 deletions(-) diff --git a/docs/source/api.rst b/docs/source/api.rst index c541b3b..f09938f 100644 --- a/docs/source/api.rst +++ b/docs/source/api.rst @@ -1,6 +1,6 @@ -Python API Reference -==================== - +API Reference +============= +The calling .. toctree:: :maxdepth: 2 diff --git a/docs/source/conf.py b/docs/source/conf.py index f3e7d58..ab931bc 100644 --- a/docs/source/conf.py +++ b/docs/source/conf.py @@ -36,7 +36,7 @@ html_theme = 'sphinx_rtd_theme' html_static_path = ['_static'] - +napoleon_numpy_docstring = True nbsphinx_prolog = """ Download this Jupyter notebook from `github `_ diff --git a/docs/source/installation.rst b/docs/source/installation.rst index 5de098c..e1e3938 100644 --- a/docs/source/installation.rst +++ b/docs/source/installation.rst @@ -1,4 +1,32 @@ Installation and General Usage ============================== +The latest **shxarray** is hosted on `pypi `_ and can be installed through pip: + +``pip install shxarray`` + +Part of the module is written is `Cython `_, which means that a c compiler is needed to build the package. A binary wheel is currently not offered, but this may be offered in the future. + +Import and usage +---------------- +For most operations, a simple import will expose the xarray extensions. For example: + +.. code-block:: python + + import shxarray + import xarray as xr + + #Initialize a dataarray with zeros which has a dimension spanning degrees from nmin to nmax + + nmax=20 + nmin=2 + dazeros=xr.DataArray.sh.ones(nmax=nmax,nmin=nmin) + + + +Development +----------- +Users interested in developing can install the latest version from `github `_. Cython is needed in case the binary extension is being developed, and users can consult the dedicated instructions on the github repository. + +Code can be supplied with `numpy docstrings `_ so they can be parsed into this documentation. + -The latest **shxarray** can be installed through ``pip install shxarray`` diff --git a/docs/source/introduction.rst b/docs/source/introduction.rst index f7c87dd..b45c8b4 100644 --- a/docs/source/introduction.rst +++ b/docs/source/introduction.rst @@ -1,4 +1,26 @@ Introduction ============ -The shxarray package is aimed to make using spherical harmonic operations more accessible to a community which is used to xarray. +The **shxarray** package is aimed to make using spherical harmonic operations more accessible to a community which is used to xarray. + +Putting degrees and orders in a MultiIndex +------------------------------------------ + +Spherical harmonic coefficients are often put in 2-dimensional arrays with degree and order spanning the 2 dimensions. This has the advantage that individual coefficients can be easily referenced as e.g. `cnm=mat[n,m]`. However, since only the upper triangle of those matrices are non-zero, the sparseness of these matrices is not made use of. When working with large datasets which also span other dimensions such as time or different levels, this will cause large segments of zeros. + +A `pandas.MultiIndex `_ can facilitate the stacking of degrees and orders in a single dimension. On top of that, this multindex can then be used in `xarray` to work with spherical harmonics along a single coordinate. In **shxarray**, the spherical harmonic index is generally denoted as ``nm``, while when two spherical harmonic coordinates are needed alternative versions such as ``nm_`` are added. + +Exposing spherical harmonic functionality to xarray +--------------------------------------------------- + +Some of the functionality needed for working with spherical harmonics need specialized access to the degree and order information. The aim of **shxarray** is to expose common functionality through `xarray accessors `_. This allows, besides familiar syntax for xarray users, also chaining of operations in a compact syntax. + +Delegate common operations to xarray +------------------------------------ + +In contrast to specialized spherical harmonic operations, many operations on spherical harmonic data can be delegated to xarray itself. Wherever possible, functionality and broadcasting features of xarray are made use for a consistent syntax. + + + + + diff --git a/docs/source/notebooks/TerrestrialWaterStorage.ipynb b/docs/source/notebooks/TerrestrialWaterStorage.ipynb index 79aa9b8..a81b80a 100644 --- a/docs/source/notebooks/TerrestrialWaterStorage.ipynb +++ b/docs/source/notebooks/TerrestrialWaterStorage.ipynb @@ -655,7 +655,7 @@ " stroke: currentColor;\n", " fill: currentColor;\n", "}\n", - "
<xarray.DataArray 'tws' (time: 12, shi: 3717)>\n",
+       "
<xarray.DataArray 'tws' (time: 12, nm: 3717)>\n",
        "array([[-0.02487564, -0.01694817,  0.01025854, ..., -0.01075089,\n",
        "        -0.01266904,  0.00839316],\n",
        "       [-0.01374138, -0.01561931,  0.01075172, ..., -0.00521706,\n",
@@ -670,15 +670,14 @@
        "       [-0.02346409, -0.02034968,  0.01014107, ..., -0.00991265,\n",
        "        -0.00641819,  0.0473164 ]])\n",
        "Coordinates:\n",
-       "  * shi      (shi) object MultiIndex\n",
-       "  * n        (shi) int64 2 2 2 2 2 3 3 3 3 3 3 ... 60 60 60 60 60 60 60 60 60 60\n",
-       "  * m        (shi) int64 0 1 1 2 2 0 1 1 2 2 3 ... 56 56 57 57 58 58 59 59 60 60\n",
-       "  * t        (shi) int64 0 0 1 0 1 0 0 1 0 1 0 1 0 ... 1 0 1 0 1 0 1 0 1 0 1 0 1\n",
+       "  * nm       (nm) object MultiIndex\n",
+       "  * n        (nm) int64 2 2 2 2 2 3 3 3 3 3 3 ... 60 60 60 60 60 60 60 60 60 60\n",
+       "  * m        (nm) int64 0 1 -1 2 -2 0 1 -1 2 ... -56 57 -57 58 -58 59 -59 60 -60\n",
        "  * time     (time) datetime64[ns] 2020-01-16T11:59:59.500000 ... 2020-12-16T...\n",
        "Attributes:\n",
        "    units:      m\n",
        "    long_name:  Total water storage\n",
-       "    gravtype:   tws
  • units :
    m
    long_name :
    Total water storage
    gravtype :
    tws
  • " ], "text/plain": [ - "\n", + "\n", "array([[-0.02487564, -0.01694817, 0.01025854, ..., -0.01075089,\n", " -0.01266904, 0.00839316],\n", " [-0.01374138, -0.01561931, 0.01075172, ..., -0.00521706,\n", @@ -742,10 +741,9 @@ " [-0.02346409, -0.02034968, 0.01014107, ..., -0.00991265,\n", " -0.00641819, 0.0473164 ]])\n", "Coordinates:\n", - " * shi (shi) object MultiIndex\n", - " * n (shi) int64 2 2 2 2 2 3 3 3 3 3 3 ... 60 60 60 60 60 60 60 60 60 60\n", - " * m (shi) int64 0 1 1 2 2 0 1 1 2 2 3 ... 56 56 57 57 58 58 59 59 60 60\n", - " * t (shi) int64 0 0 1 0 1 0 0 1 0 1 0 1 0 ... 1 0 1 0 1 0 1 0 1 0 1 0 1\n", + " * nm (nm) object MultiIndex\n", + " * n (nm) int64 2 2 2 2 2 3 3 3 3 3 3 ... 60 60 60 60 60 60 60 60 60 60\n", + " * m (nm) int64 0 1 -1 2 -2 0 1 -1 2 ... -56 57 -57 58 -58 59 -59 60 -60\n", " * time (time) datetime64[ns] 2020-01-16T11:59:59.500000 ... 2020-12-16T...\n", "Attributes:\n", " units: m\n", @@ -772,23 +770,33 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 10, "id": "59e3818e-ef11-48fc-b07b-de7235ce94b0", "metadata": {}, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/roelof/cld_UTwente/Soft/shxarray-git/src/shxarray/core/xr_accessor.py:14: AccessorRegistrationWarning: registration of accessor under name 'sh' for type is overriding a preexisting attribute with the same name.\n", + " @xr.register_dataarray_accessor(\"sh\")\n", + "/home/roelof/cld_UTwente/Soft/shxarray-git/src/shxarray/core/xr_accessor.py:154: AccessorRegistrationWarning: registration of accessor under name 'sh' for type is overriding a preexisting attribute with the same name.\n", + " \n" + ] + }, { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 7, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAHFCAYAAAD8Jo2EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9ebwlV13uj7/XWjXu6Yx9ek46IfMAgRBmTSIGVOCLIHgRIQiieKMi8lMu6P1CwoUA4Xt5xQFUrldAAUVBwKugYQhcZE5EgYQEyNRJT6f7jHuqaa31+2PV3mef0+f0kKGTxnry2jl71167alXVqur6POv5PB9hrbVUqFChQoUKFSr8J4d8uDtQoUKFChUqVKjwSED1UFShQoUKFSpUqED1UFShQoUKFSpUqABUD0UVKlSoUKFChQpA9VBUoUKFChUqVKgAVA9FFSpUqFChQoUKQPVQVKFChQoVKlSoAFQPRRUqVKhQoUKFCkD1UFShQoUKFSpUqABUD0UnNb7yla9w9dVXs7i4eNh3l112GZdddtkJ79OJwPe//31+53d+h4svvpjx8XEmJyd56lOfykc/+tF128/OzvJLv/RLTE9PU6vVePKTn8znPve5VW2Wl5d561vfymWXXcaWLVtoNBpceOGFvOMd7yBJksPWmec511xzDbt27SIMQ8455xz+6I/+6Lj241j6BfCP//iPXHnllVx44YX4vo8Q4ri2A3D99dfz/Oc/n9NOOw0hxFHHxic/+UkuvfRSWq0W9Xqd888/n/e+970AXH311QghjvoabOOWW27hqquu4slPfjL1eh0hBF/4whfW3e5f/uVf8qIXvYizzz4bKSW7du06rv3cqG9RFB3Wtt1u8+pXv5rt27cThiFnnXUW1113HVrrR9y2NjrGb3/72w9re6zjCuCzn/0sT37yk6nVakxPT/NLv/RLzM7OHtbueMb7nXfeyfOf/3zGx8dpNBpcccUV/Nu//du6bf/mb/6Giy66iCiK2LZtG695zWvodDrHdEwqVHhIYCuctHjnO99pAXvXXXcd9t0tt9xib7nllhPfqROAP/qjP7LnnHOOfetb32pvuOEG+6lPfcq+7GUvs4C95pprVrVNksRecMEFdseOHfaDH/ygveGGG+xzn/tc63me/cIXvjBs953vfMdOT0/b3/7t37af/OQn7ec+9zl79dVX2yiK7NOf/nRrjFm13le+8pU2DEN73XXX2RtvvNG+/vWvt0II+9a3vvWY9uFY+2Wtta94xSvsmWeeaX/+53/eXnzxxfb+XLZnn322fdzjHmdf8YpX2E2bNtlLL710w7Zve9vbrJTSXnXVVfbTn/60/exnP2v/+I//2P7RH/2Rtdbae++91371q18dvv7+7//eAvY3f/M3Vy0fjL/3v//9duvWrfZnfuZn7HOe8xwL2BtvvHHdbf/kT/6kveCCC+xLXvISe8YZZ9hTTz31uPbzTW96kwXsP//zP6/qy9e//vVV7fI8t0984hPtxMSE/eM//mN7ww032Ne+9rVWCGF/8zd/8xG3LcC+4AUvWLWdr371q3bPnj2r2h3PuPrCF75gPc+zz33uc+0NN9xgP/jBD9rt27fbCy64wCZJsqrtsY732dlZu23bNnv++efbj33sY/af/umf7NOe9jTbbDbtbbfdtqrtBz/4QQvYV77ylfbzn/+8/dM//VM7NjZmr7jiimM6JhUqPBSoHopOYhzpoehHGQcPHjzsIcVaa5/1rGfZWq226ob+7ne/2wL2K1/5ynBZnuf2vPPOs094whOGyzqdju10Ooetc3CMv/SlLw2Xffe737VCCHvttdeuavsrv/IrNo5jOzc3d9R9ONZ+WWut1nr4/td//dfv10PR6DrOP//8DR+KbrrpJiultO94xzuOed133XWXBew73/nOo2777/7u7474UDTa9lnPetb9fig6ePDgEdv99V//tQXsxz72sVXLf/VXf9VKKQ/7B/zh3hZgf/3Xf/2o7Y5nXF1yySX2vPPOs3meD5d9+ctftoB9z3veM1x2POP9d3/3d63v+/buu+8eLltaWrLT09P253/+54fLiqKwW7dutc94xjNWrfNDH/qQBeynPvWpo+5rhQoPBarps5MUV199Nb/7u78LMJwSGZ2WWDt9dvfddyOE4J3vfCfveMc72LVrF3Ecc9lll/H973+fPM95/etfz7Zt2xgbG+N5z3veujT6Rz7ykeE0SKPR4JnPfCbf+ta3TsQuDzE9Pb3uFNITnvAEer0e8/Pzw2Uf//jHOfvss3nyk588XOZ5Hi95yUv4xje+wZ49ewCo1+vU6/V11wlw7733Dpd94hOfwFrLy1/+8lVtX/7yl9Pv9/nnf/7no+7DsfYLQMoHfpke6zr++I//mDAM+c3f/M0HvM3j3fbxtn0g+PKXv4wQgp/+6Z9etfzZz342xhg+/vGPn5TbOtZxtWfPHr75zW/y0pe+FM/zhm2f8pSncNZZZ63q0/GM949//OP8xE/8BKeeeupwWavV4vnPfz7/5//8H4qiAOBrX/sa+/btO2ydL3zhC2k0Gg/qMalQ4XhQPRSdpHjlK185/Ifr7//+7/nqV7/KV7/6VR73uMcd8Xfvfve7+fKXv8y73/1u/vzP/5zbbruN5zznOfzyL/8yBw8e5C/+4i+47rrr+OxnP8srX/nKVb+99tpr+YVf+AXOO+88/vZv/5a/+qu/ot1u82M/9mPceuutR+1zURTH9LLW3q9jcuONN7Jp0yZmZmaGy7773e/y6Ec/+rC2g2W33HLLEdf5+c9/HoDzzz9/1To3bdrEli1b1l3nd7/73aP29YH266HC//2//5dzzz2Xj33sY5x99tkopdixYwevf/3rybLsYenTRjiSNurCCy9EKcXmzZu58sor2b1796rvsyxDSonv+6uWh2EIwLe//e2HbVsb4cMf/jBxHBOGIRdffDHve9/7DmtzrONqMEY3ajs6ho91vPf7fe64444N19nv97nzzjuPuH3f9znnnHOO6RqqUOGhgHf0JhUeidixYwennHIKAI997GOPWZA6Pj7OJz7xiWFEfujQIV7zmtdwzjnn8MlPfnLY7rbbbuP6669neXmZVqvFvffey5ve9CZ+4zd+gz/8wz8ctrviiis488wzueaaa/jIRz6y4XbvvvtuTjvttGPq44033njcIvE///M/5wtf+AJ/8Ad/gFJquHxubo7JycnD2g+Wzc3NbbjOb3/721x33XU873nPW3Xz3mid9XqdIAiOuM4Ho18PJfbs2cPBgwd59atfzf/4H/+D8847j8997nO8/e1v59577+VDH/rQw9Kv9aCUWnWuAR71qEfx1re+lcc+9rFEUcQ3vvENrrvuOm644QZuvvlmtm/fDsB5552H1pqvfe1rPO1pTxv+/l//9V+Bw4//idzWenjxi1/Ms571LHbu3Mns7Cz/+3//b17xildw55138j/+x/8YtjvWcTX4u1Hb0T4d63hfWFjAWvugbP/uu+9e5yhUqPDQo3oo+k+Gn/mZn1k1RXHuuecC8KxnPWtVu8Hy3bt3c8EFF/Av//IvFEXBlVdeOaTAAaIo4tJLL+XGG2884na3bdvGN7/5zWPq49lnn31M7Qb49Kc/za//+q/zghe8YN1pnyNla2303d13382zn/1sdu7cyZ//+Z/fr3Vaaw/LLhqdqrg//ToSRs8LuH/Ij3c9xhja7TZ//dd/zYte9CIALr/8crrdLtdffz3XXHMNZ5xxxnH37aHA2v0FeOlLX7rq8+WXX87ll1/Ok5/8ZK677jr+4A/+AIBf/MVf5M1vfjO/+qu/yvve9z7OPvtsPv3pTw8f+NdO453Iba2HtQ+jP/dzP8dznvMc3v72t/PqV7+aTZs2Db87nnG1UdtjbfdQtb0/479ChQcD1fTZfzKsjcyCIDji8kE6+oEDBwC45JJL8H1/1esjH/kIhw4dOuJ2gyDgoosuOqZXo9E45v35l3/5F57//OdzxRVX8KEPfeiwm+nU1NS6kfhAd7RepHrPPfdw+eWX43ken/vc5w5rs9E6u90uWZYN23/gAx847Fg9kH4dDWu39YEPfOC41zE1NQXAM5/5zFXLB3qYjVKrH8l4whOewFlnncXXvva14bLp6emhFuZJT3oSExMT/OZv/ibvete7AIYszyN5Wy95yUsoioKbbrppuOxYx9XgPG/UdnT8Het4n5iYQAjxoG+/QoUTiYopqnBMmJ6eBuCjH/3oKhHlseKhmD77l3/5F372Z3+WSy+9lI997GPDB7lRXHjhhXznO985bPlg2QUXXLBq+T333MNll12GtZYvfOEL7NixY911/s3f/A379+9fpbNYu87nPOc5G7Jjx9uvY8HabR3r8R7Fox/9aPbv33/Y8oHO60QJoR9sWGsP6/sll1zCrbfeyt1330232+XMM8/k5ptvBuDHf/zHH/HbWu+cHOu4Gvz9zne+w8/8zM8c1nZ0/B3reI/jmDPOOGPD7cdxzOmnnz5c52D5eeedN2xXFAW33XYbv/ALv3BMx6BChQcbJ+cdrgKwItTs9/sP+bae+cxn4nked9xxB49//OPXfR0Jg+mzY3ldfPHFR+3PDTfcwM/+7M/ytKc9jU984hPDY7EWz3ve87jtttv4+te/PlxWFAUf/OAHeeITn8i2bduGy3fv3s1ll12G1prPf/7zGz78Pfe5z0UIcRgT8/73v584jvmpn/opwEXDGx2j4+nXsWLttgbR+PHg537u5wA3JTmKT33qU0gpueSSS457nQ83vva1r/GDH/yAJz3pSet+v2vXLs4//3x83+d//s//ybZt23jhC1/4iN/WX/3VX+H7/qrr5VjH1fbt23nCE57ABz/4wVVTvF/72te4/fbbef7znz9cdqzjfbD9z3/+86uyNdvtNn//93/P//P//D/D6eMnPvGJbN26lfe///2r1vnRj36UTqezavsVKpxIVEzRSYxBtPUHf/AHvOxlL8P3fc4++2yazeaDvq1du3bx5je/md///d/nzjvv5Kd+6qeYmJjgwIEDfOMb36Ber3PNNdds+PsgCI764HSs+Nd//Vd+9md/li1btvB7v/d7/Pu///uq78877zxarRYAr3jFK3j3u9/NC1/4Qt7+9rczMzPDe97zHm6//XY++9nPDn8zOzvL5Zdfzr59+/jf//t/Mzs7u8qSYMeOHUPW6Pzzz+eXf/mXedOb3oRSiksuuYQbbriB9773vbzlLW85Jur/WPsFjr0asEB33HEHwNC9e9euXcd0XG+66aaheHV5eRlr7XAdl1xyyfAB8OUvfzl/9md/xlVXXcWhQ4c477zz+OxnP8u73/1urrrqqvvFEvZ6PT71qU8BDKeVvvjFL3Lo0CHq9fqqVPVbb711mMm4f/9+er3esJ/nnXfeKlbB8zwuvfTSVW7Nj3nMY3jJS17CueeeOxQ/v/Od72TLli287nWvW9Wv3//93+fCCy9k69at7N69m7/4i7/g61//Ov/0T/9EHMer2p6obX3xi1/k6U9/Om984xt54xvfCMA73/lObr31Vp7+9KezY8eOodD6hhtu4Oqrrx6yuHB84+od73gHV1xxBS984Qu56qqrmJ2d5fWvfz0XXHDBqlT54xnvv/M7v8Nf/dVf8axnPYs3v/nNhGHI29/+dpIk4eqrrx62U0px3XXX8dKXvpRXvepV/MIv/AI/+MEPeN3rXscVV1yx6kGrQoUTiofJH6nCg4Q3vOENdtu2bVZKucoU79JLL11l0LeRwd6NN95oAft3f/d3q5a/733vs4D95je/uWr5Jz7xCXv55ZfbVqtlwzC0p556qn3BC15gP/vZzz4k+7ceBqZ5G73WGgPu37/fXnnllXZyctJGUWSf9KQn2c985jOr2gyOw0avN73pTavaZ1lm3/SmN9lTTjnFBkFgzzrrLPuHf/iHx7Ufx9Iva1fOxXqvl73sZce0rYHj93qv973vfavazs3N2Ve96lV28+bN1vd9e9ZZZ9l3vvOdq4wVR3E088bB9+u91pozHuncrj0HwGEmlC960YvsGWecYev1uvV935566qn2137t1+zevXsP69d//a//dXj+pqen7c/93M/Zb3/72+vuw4na1mAcju7rP/zDP9inPe1pdtOmTdbzPNtsNu2P/diP2b/+679et6/HOq6stfaGG26wT3rSk2wURXZyctJeeeWV9sCBA4e1O57x/sMf/tD+7M/+rG21WrZWq9mnP/3p9uabb1637Yc//GH76Ec/2gZBYLds2WJf/epX23a7vW7bChVOBIS199MUpkKFChUqVKhQ4UcIlaaoQoUKFSpUqFCB6qGoQoUKFSpUqFABqB6KKlSoUKFChQoVgOqhqEKFChUqVKhQAageiipUqFChQoUKFYDqoahChQoVKlSoUAGozBsPgzGGvXv30mw2q6KEFSpUqFDhiLDW0m632bZt28NWBsdayw1/u4Mn/dStjI2NPSx9+FFB9VC0Bnv37mXnzp0PdzcqVKhQocJJhHvvvXfdWoknAp/+9Kd51ov28tuv2sW7/nThYenDjwoq88Y1WFpaYnx8nF2veyMyjJyX7npYZ7k41iO5pt0x/e5YtrfBetZd/3Hs14brONZ1Hi+qEfnIxbGSp0doZzf67hiXH+vv1213jP0/7LfHQRpv2L+jredYtvFAyeuHgfw+4vF4EHHM998j4X7cw02acPd1b2ZxcfFhYWm01jzm/BpPuSTirz7a5tZb77hfxaArOFRM0RoMpszseAhri4xu8BAyvBhHr/6RtsKu13bl70YPLUdte4R1rlq+zneHfT/4bs0NbNjmOG9s9/sfLrH++2G7I7TfqM2xbmMt7u/N/Ig35/XOyUa/PdJ5XPP+sDGwzvo3Ws+G/X2g/8isc/zs0c7v2t+JNd+LDX432m69Zev057Dl6/XhKOsYPXj3+0FqtN3xHPMjtF3/nrLeCTnOdTxIOK4H4zUdOaaH3WN9kD7SdjfCmuNiE7fg4ZJb/MUfbCNJLX/41hnyAt7w2kfzNx9vPyx9+VFAJbSuUKFChQoVTkJ0u13edN0cb/29KYJAcM3vTvJ//qU7LCBd4fhRMUUbwPgWwpWQ4GhTVe5760KSNRH5KFO08lkM39u1Ufvoa/Q3azYrWN1m3e2t+f1R2YfjwbFG7OXytVH84PNGy1etZ8PlduPfD5fZ1X0cbTfy/Xr7dcwR5EbjY2Sj67E5w7Ew+ju7ehysYiLXnMv12x2BZVz73QZtj9jfI+332u/WYR7XRu3rsjBHGy8j7Y51zKz+boNxw+pl646dNX1d3Z/jvJjWGx/D79ZscnSsrLnGj3W8bNiW9T8f9ruN+nWMWI8RPOL5Bxiw90c4X3bNOVuPMVz1/hjP7brfr4HRDyGldhT8z2tO4dQdPi94dgOAHdt8futXxvmdV1/KF77SrZKF7gcqpqhChQoVKlQ4yXDgwAHe+Z4Frnvj9KqHn9f9xgTf+0HGP/7jPz6MvTt5UTFFG0FZ9yphh/8bwUhEZhlEYOtEDSPMEGUTYa0jlkbW41ijwxmk4fs1kZwdtBtu4/DfDbZ/2HaOtD9rsQFzslbncVjkdiRWqHxvJYdHbXIN2zMS+a1id9a0WVm/e78qSBq0X7UPds3nkebrhL/2qJqMdaL48jd21XkSw2jdne/Rk3p4m0H317IDR2OUhr9jnfWsXbbBfh23VukYcDT90LDNMY61Ve2PxgCNjJ8j6psGO7UeewSrd/o4mYU1rYerO+yaXMMK2fXGw+C3g3M+eBkQA6putKuGVeNGDNoOPpuVbq1aZjls7KzazSONpbV7vPbcDd5vdA8ZvB+5LwzvG3DYvcVKgRj+xp1nsd56R/sy+t3w85qd3IhR8h4epuhNrzubn/zxGk99QrxqeaupeOP/b5LXvfbn+Omf7uF51T/zx4OKKapQoUKFChVOItx222184G+Xufb3ptf9/ldeMoY28L/etf0E9+zkR/UIuRG0AC2OK539qBkfovzt2ojEjv6xK1Hj6LbWi8RGIsmj6UkO/+1R+r0Bjpo9tJYRGv3+SJH8uvP+I+xR2eeVvq4fth0tSF/3+JXrXvv+6FqbNcd/7bG36x/zjXRA6/bxCDhm7RUMo2w7iLal3fA3R9RbjGIwno/U5DA2ci2tcuTfH3HbDwR2g2ubo4ykNemY6+pR1rJJ67FNa75bP7vt8A6KklW0duVHdrBgyOyMMIWGw94LAxi3/+79BkyRcS8ry7+DZYP71drdW4eFXA/isGPB8L64qlHJBlkBQoI1jvEZ9keuNF11m7XHyNZZgcCuvr+Mfj3Ksq26Ka9eB8UDHYzHj//2msfz8he1OPuMYN3vfV9w7e9N8xtvmOUl/7VNs9k8wT08eVExRRUqVKhQocJJgi996Uvc+OU+b/z/TR6x3fN+ps4Zu3zeefWuE9OxHxFUTNEGUKlAipGI62gR7yjW8y7ZiBkpo/bR9qs2dcQg5PDo5bAMlfLvYezEeizTyG8eDPbo8H65BmLtdtZqJQb9KiPeQcQ6iGphZNlotHvYy65uO4yUHRsntB05HnZVfwbLDmOAjF2nr6PtbBl5DyL3QR9suX270m607aoDOtiAwApRRswCKwVWub8AVkmsJzBKYH2B8dxLBwLjg/bdXwDjg/HKvz6Y8jvrWaxnMYqhNsJ6BqEsSItQFqncAZDSOq2VGHRvZNyOjCdrhdtNI1fkUhasEaX2pRzkRqzoZKwYYSlGLoKR71ePoxUMx/Oqczf6XgzHwWE6mpHla8fk+tlWawb4qJZllHkrw00rV79331nH3ElWaV6sHKEqBveFUVZ5Lcu69kAMGZyVYzXKKA20Ro4lGxn7I9fZCqskVjNLds1xMauPzxHZzyPdS47CGK/VEB12rEfajeoTj8iCDg7OyKFZewxHmpR/Ryi9tfuVnzimyFrL7/zWFbzu1yeYmT7yP99CCN7xxmme+V/28F9/Zx9bt249Qb08uVExRRUqVKhQocJJgL/927/lvn0Fr/nV8WNq/+THxzzz8jpv/N1zHtqO/QihYoo2gEwEaq3uYJ0oYvjVqkhEHK6xGdFyDObLhxHkSKDhop2VNofpEtbDSDRoh2zESOQNq6JBW7IlaxmlDVmbo2DDrq2NvEciT6HLlwFZvgeQBYgCZGFROcjcInOLyi0yM8jM7ZTMNDLTiKxAZAXkBaQZ5Dk2y7FZhs1y140iP7YdOYHYYFgdFWuD6fWgGg1EswGNOqYZAVA0Q/KmR16X5HVBXhcUMRQ1gY4ENjaOqQCEb1GBxgsKAk8T+AW+NHhK4wlzWGaetYLCSrSRFFqSG4XWkrxQGON6qwtVjk2BLQRioNnTYkWnYlYzOquYnnWYxOExWcMqjY63IUMIK2yiHmEZ9eplg+2LkhEUZp1tjl6voyyGFO46Vwz/mvIvlMsVju0btJEj75Ud3hMG1/5qFkkczngcCWsH1rD/1ullhloee1j7FQZvg/vCBufkuFiiUayzX8fsQ7Rum5V9HcVGBP9GWs3B3/XYx+H9LDkxTFGaprzhdS/hmtdNUasdO59x7e9NcdHTd/OaN9zC+eef/xD28EcDFVNUoUKFChUqPMLx7rfvoFGXvOznW8f1uzNPD3jlL7Z43Wue8BD17EcLFVO0AVbpVTaYKx+NLtZGNWKUBRpEZBIsAiHtSiS2HktUag1W5sMt60aGg4hl8GHIBo38pWRhDCtR+WEam5X1reuHw0g/R6bWR/f3sOO3dr165SUL91KZRebgJRaVuQ2qvkYlGtUrkP0U0U2h18O0O5h+f9U2DBXWg+50oNNZtUwCtUYDsXkTerpJOh2RTCjSMUHWgtzIYRKNLbVFShoCvyD2c0JV4EmDHBn0hZHkWpFqj7TwSDKPPPcoUoXJFCKRyMxdCCoReDmoFGRWjoG8ZAY1K5orWD32SpZkyMKMvKBkYdZqTUZ/PqqTGWEp5XA82uF7WToTi2KlPwP92bBfw22VV92A7ZFgPItVwmm3lMB6IDwnQwPH4prR60utvBcSrBYrTFHJOK/NdjuMxWDkmoV1mbQNsQErc9iyNcuHGzq8K8e02XUz9jbYzpH7sMEGjkBxH5X9Xic7cl2N2loW7SHGwsICb7l+ng++ewtKHT8z9d9fM8lZT7mHG2+8kcsvv/wh6OGPDk4apqgoCv77f//vnHbaacRxzOmnn86b3/xmjFn5p9Fay9VXX822bduI45jLLruMW2655WHsdYUKFSpUqPDAcO1/fxSPuzDkmZfX7tfvN017/LffmOB3X/PTq/7NrHA4Thqm6B3veAd/+qd/ygc+8AHOP/98brrpJl7+8pczNjbGb/3WbwFw3XXX8a53vYv3v//9nHXWWbzlLW/hiiuu4Pbbbz9unwZbZuus1SS4L0dea3+3zlz3hm0GLBBr2m/ECq1ZyTBKMaLUS5Tz3FqUUbBbkRxhaVa9RjK4BttYFfkMsjoGUbhilebBqvL7NdH6qnWV74daIRhmrsjCsUR+z+B1CgC8dopc7sPSMnph6RGpB1oLGcfIZgNqNWwcYiMP6ytWWWpri8g1Msmg28e2O+ilpRPazwGDJPfVqO3chre1hcwDsLJkOkr9jy8xvqDQikJrMuENM5q0kWTaiWTS3CNNPYrEh55CdSVeV1Bvg9+FoG0J2k4sFiwXeO0M2Unc/vd62CR1+q8151gohfB8RBQiwgDiCOIIUwvQNR8de+jIDcQikhRRmXEXlBl2ilW6niFGdEZmyBgJTOFYIltSZUK5NrJg5Dpzmp7BGDflndNKxwxZ5Y7fIMvPqpWMPztsWy5XuKyzEVfmQf/WZn8JI1brnta8AOTa7MtjYHsHGkeXAVd+hmGYvIqRE+v8HdU3seaeNvL58PvhYAcPb7uqj6Nt1+JIXld2ZSXrMvnDda/9u0K1rbf6FW8mwTCDtGQhjdmgnw8SZmdn+eO/WORf/2HHA6pl9lu/Ms6ffGCJT37ykzzvec97EHv4o4WThin66le/ynOf+1ye9axnsWvXLl7wghfwjGc8g5tuuglwLNH111/P7//+7/P85z+fCy64gA984AP0ej0+/OEPP8y9r1ChQoUKFY4fhw4dwlPw2AujB7SeOJZc/OiQe++990Hq2Y8mThqm6GlPexp/+qd/yve//33OOuss/uM//oN//dd/5frrrwfgrrvuYv/+/TzjGc8Y/iYMQy699FK+8pWv8KpXvWrd9aZpSpqmw8/Ly8sA6JrBBnYlK8WsZHMNnV5hw2jMro3KBp4kciU6G0QlKzqCw7VDqzyFRjFYPtQFiVX9FEYgy0hyVMsjipHPa7JuRtmdYUSsgAEjJFei3tW+N87rxirrdBID75XBsTECNMhCIFOBSgSqD37oomysROSl9qQrwRjHIjxCWSIZOBdZuXM7+bZx2ptD+tOSdBLScYtuGkQ9x48LQt8xYFIarBVkeUyWNtHd7XhLinBBEB2C+n7XrnZvB3HnnoeURTK9HnJxGTUW4yX+iLanHGcG5ylkBHmhsFbQz3wKLSkKRd4vB0HPQ3Uk8bIgWIJo3hIfyglnu8j98xT79q/eLsemA7NaY7WGNFn9hZD4W2bwpsbIJ900ghU+RaQwAS6bLgYdggmcNuowNmbAphRiqGeSOcjcfQaGLKvUbHhNjGaUDa+FAVPl25JptuBZrOf2euD9hGCYwTf0bdICqwViwFblApkLRC5QumRZM1xGZub6PNDhyTJbU+YjOqh1DrQd+l2VmqcyE26wP4Nlg7YrGXLlvq99P8q2jLBPo4zSynYH78XKvU+u/HZVVhkj6z1sJ1y7w+6LIyz3en5Xw5YjzNDh7Nfg8xo2S4BdSzuNsPTmRIiKAFOpKE8ITpqHov/23/4bS0tLnHPOOSil0Frz1re+lV/4hV8AYP9+dwPevHnzqt9t3ryZe+65Z8P1vu1tb+Oaa6556DpeoUKFChUqPEBo+8AfiuwJeoA7mXHSTJ995CMf4YMf/CAf/vCH+bd/+zc+8IEP8P/9f/8fH/jAB1a1Wzvnaq094jzsG97wBpaWloavilqsUKFChQoV/nPipGGKfvd3f5fXv/71vOhFLwLgwgsv5J577uFtb3sbL3vZy9iyZQvgGKNRO/PZ2dnD2KNRhGFIGIaHLTeBBd860WUhXEmINXyuMIctWkUzw4B+tofZ+q8yaVyPMj6s3gfrCrtXaGmLFWW6v3JTAIOpLqHdPlgFwluZRrMapFwRbIo18xujtPJwqqysP6gjiwndi0ijQo0fFAR+QegVqEFJCNwUQW4kWe6RpD5p34Ouh9eR+MuCvCbQYVmPQghCY5BpBp0uPAjR0YMNk2UAiEPziE0tdCRIpqF3SsHM9gWetPkeLh+7ladEB5hRjSOu6wd5hy/1H8Xn5s8F4N/27iC/5zyadwkmfpAT37KX4r49D2r/ZRDAeIuiGZA1JEUdihqYqDxfgUF5prSOcFNo2kiKTKH7HrLr5lj8JUm46KbNagcKor1d5H0HKObmHjqiPwwpxmOSTe6a7W2SpBOQjUHR1FDXeFFOEBT4nkZJiymnWUw5HVgUiiJzL1KJzNy0rszKxITcvYaC5pHps4EB41Bo7YEO3P3C+hYbGAgMwjd4vsbzDL7nLjClDEoa1PC6AG1Lw8uRfgHYXKJThUwFA38PYdw1O7jmV8qUWHdNGycYH506GxUxD8rEOCG4GBGll8tGjSbXTpOtI5pe5flYTl+JQbuBfcGa4q3Dfo3ICOxAdF7eJ4crH6xrBIMpMmvE0OtgIB2wpSjdnWyxWnS+aiUMy+dYNSJZEOVnVZ4fZcspz8EOju5AeXCNWLmBPsR4MKbpKp7o6DhpmKJer4eUq7urlBqmF5522mls2bKFz3zmM8Pvsyzji1/8Ik95ylNOaF8rVKhQoUKFBxPmQfivmj47Ok4apug5z3kOb33rWznllFM4//zz+da3vsW73vUuXvGKVwBu2uw1r3kN1157LWeeeSZnnnkm1157LbVajRe/+MXHv0ExEoXoNULMQQrsqABzTfqqGRbXZMW+vxRarhJWj5YSGaTXl3+PZgw2jK6EW7djiw7/gTBlRFM48agoRCnkXImKYSRtfsTwbiMr/eE+RhovzqnXUsbihImwT8tPaPoJYXnAlLDkRtLVIUtZzMF+nflejfZSjI4DTCCxQ0MyD6FjwqzAS1KKubkjnKSHF3ppCb72H7S+BpNbt9B+0qkcevQm/uX8GO8MzTnBLDPqyOs4029wpn+AV7QOAJCfWvChC7bx13sv4ft3bKXx6FOZvH07je/OUtx59wPus7d1C2bbNN2tNXqbFMmkcCxLy6DrLuKVkcYLNEq6kh7GSKwRmEK6sVOKgeXAiLMsxyKKAjuStPBgwts8Q3H6VhZPielulfRn3PJsuiCa7LOl1WFrrc2mqE3LS6hJx+blVtHRjlVazGPm0zpzSY2lXky3G6KNh80VmJXre9Rgcj2myCiQg4SDgJIlERgLBjm0sTDCokdE1UJYV2RaWGeCKUChUcIgpcVThky5IK/wFFpatCcxnsWUNgkmcEJylYKOB8yWKA0nGRZBHrAhdkQUPmSGvBWrgFHrglWs0igbNZJ+vrpgcnly1mNiRljmUSsPqxyTTXlPHDAzq1kZt2EhV46TKDPhsY55toN7GmAGAvWyfIwT0VsGiSijBp7DLg7u06VBppXC3TuVmyEAEMogvfI1WqzXOtbRaIkpJHgnhs3WawtHV3hIcNI8FP3RH/0R/+//+/9y1VVXMTs7y7Zt23jVq17FG9/4xmGb173udfT7fa666ioWFhZ44hOfyA033HDcHkUVKlSoUKFChf98OGkeiprNJtdff/0wBX89CCG4+uqrufrqqx/4Bo1LiVWJcKmwGYhRRmVkPn2YluuD9ctoqJTImMBgfYvwDUI5ncag7Ie1Lg0XXYZHhYtsZBmNOy3TmkhnEMkptx3jC7e9AJAG4VmkpxHKuugGF6FaKzDGbU8XCptJRKmnUGVBQ5WBTIGRKBkLSjj2yIwYxomylomWoJUhDxTGCqSw1L2UCa/HmOfKcoQlFZUan6UgZixosccfY6+wLFlBroOhnsPrC4q6wq+HqHqMWPIfsan5oyj27Sf++H52ftyZOX792ZfwyadewoWPuwuA39v5T1wy0E0dAb7w+KXWLFPejbzffyrf8k/BBAE63EKrEWNvvwuzNlX9CPCmpgCwW6fJNjXoTvkkE9KV9mhCUbPo2GIjjfDL1HFpy0Kublxa66JiKMdc4MZVXgcQGOU0YXljgmiihr9/GbN3P6bXO+Z+rgdZqyFO30n/1DHmdnh0t0K6paA20+asyXkAzh07wJnRfnYFB9mi2tSkRmHpWsWijtivx7gnmwYgNR6FkXTSkG4nxCwF+MuKYNmZTXrd8hz0LSoxLs1d47QrciWV3fjOLBLcNa8D4XRFvsAEAh3Iof5O+5aiZB76vsX6BlGyD0JZVHlPELjrdEBGKK9k6TyJ8RU6NJhMUhRO+yRLphdYZcQKI+VQ1IpFALh7k/GNY0I8C8r1QcgVBsKW7Is1pU3AgB3MByxMeX8yG0tpBsz50KRy1MJArrHuKBkiIUtmqNTzCGmQyjFFQqzcy8AxRsbIoVZMFxKTS2whsbnEZhKEcCT6wFZhVDfpDpPrk3Vs0SAN30rHEAGowAyLIiu1UuJGG2dsmueKwlJS6w89HhxNUcU2HQ0nzUNRhQoVKlSo8J8RFtCV0PqEoHoo2ghaII0zGfR64CVOZwDOKG2QeWY8FyVqg4uOgpI1isroIdb4UY7va3xPDyMeYwRZ7pHnCp2W8WEunMFhX6JSUEnJUI0YLI5mtZlBhBoKithiIlxDz2W6+L4Ljzy1koWzaruBh0kkyIHwZcBUwWhpDmEcu2WUQJUkhU6dliHPFYUW9IwYloKQpWZiEFlJYfCFxheaUBbEMqfm5cR+QTcsKAIPE7g+6BBXtiHyUHGEbNTRi4vHfNqEUogwRPi+q+UA2Cw/LnblgcL0+9T/7ms86u+g/8RHA3DlT7+azU/dy9WP+gcui45+a9rpzbMjXuR7jc3kzYBkUhJurhP1t8N9e4fbWQs1Po6YnqTY1CSdDlmaKEtyjAnyRmluGDu2Z6hzA0QhoTTQHCYhDgz1Su2aEDjdR92Jb3RNUIwLkhlBN5OovsLr1fA6NYL2FqJFQ7Dk2gYLCXKxC8ttTKe7qu/DMikTYwDkmxokm0J6M4r+JkhmDGqmy87pBS4Y389jGru5MLwPgNP9jClZL9cUl/037NNdDmrFgXyMH/acAOn2pRn2zI+TzcUEc4pwHsJFS7hoCNoar+OoF9nLEUVRZpyWmUqexAYexleYQA7Hq2OH5EqJD7W27Id7gWNtdKiGuiATGbLAQmgQgUb5GlXqU5Q0eMpifYGxBbqQ6Fy5rLRMYjK5YvRYGm8O2WsJ1rOliaRbP4AMC4JQE/oFkZ87BkQaJBaDICu8YQmXfuqTZR46LWmefLW2cm2m6qhJrdMsObbcSmfsOszoGoylgYnlYJyVGWVDIsdKtwHFMFtvcB9bZXwJw+y9PFfoTGGkwqDKbD0xLEA9PFZmpb/CL1l/IZzZp7DI8hz4QUEtyqgFGaEqCJTGWEGmFUnh05UBPSNOmKaoyj47MThpss8qVKhQoUKFChUeSlRM0UYQrsSHSsHrQ9CxeP2S+cidzbyVoENBHjv/D23LOfzQlXkAiOoZY7WEZpgQqQJPGgoj6RU+7TSi3Q9JygjdGoXIBF4f/Lbbrte3qMwO2ZthJokvKEKBjlz0L3NBUUiKMtoqBEOtgJuXd3PiVriSE0oJjDQYKUfm08VqbxBbeqDolfdimJYyklmiBNrzSD3DkorxhIs+B8itGmYDpcZDI5BYPOV8XPLQUMRlgc+aIGvKsvxEAw/wAh+zuDT0B1oLGTpGiWYD24gw9ZAi8jD+yjO/zA2qm6Pm2+h77nVlJE4A7Ne/DcCuf4+Yffnj+K8/+Yv83oX/zEubh474u6YsiFWGUoZcuewYowQ29ByrMoDWiDhGjDUxUy2SmTr9TR79aUE6DnmrZCZrBUQGUZYbQQtI3XhTJTO5woTiWADhon4dOl8qHVtMTaNiF3aHUU4c5gTKMQ7aSJLCo5/6dHo+tuehOk5H5XUC/E4Lr7e1HNNlEdYB2xqKUqPktE7ZmKUYz4knEk6fWOTM1kEuqO/h7HAfZ/qLbFWOFfJFnVGkNmd3kfL9fBPf7p/Ct5d38IMFpymaP9hEHfSpHxTEhyzxnCacz/CWEkQ3gaTMnCsKl57keRAGEAeY0MfEHkWsMKFED9gfXwzLZ2AtUrt9G60BNCyN462+Zou6JK9btAWrDDK0w7IwkV/gKzdGB8c1SX0y4aGNQGSO9QBQqVjxVSrvSwPdk4kNpszstIHT/AV+QT3IiP2coKwFlBl3YxkwRdo4nyS6niv023esuUopdVYjY9wbsGAlA+Y5/zIblZ5NpXaJ8jABWIPTqRmBzQVi8H4k08+ULJPwDNI3eIFjuQK/GI654WVgJGk59jLPR0swVq2waeXlrvIVtshl0MLgVmB8d1Mb9DUKcybiHpNhn7GgT1yKuPrGZymLOeS5UjPanhjN44ORfWarDLajonooqlChQoUKFR7heOTZ2P5oonoo2gA2sNiBtiZ3jI3fK+fmU4OwLjME6/QExSDyCCzEmqjuwu5NpX/KRNCl4WVIDH0dsJjHzEpDphVp4qJpa11mh0qdhsnvWvyuwUstohhEnWXGRSAQxpmBDLLfpO/mz00mMUoxiF+sEcMMF2PFMFvDZI4pGEZTg6tukDkSMGTAhoUwyxGjA9BlAU4TWQhcRo0qMzcMgqy0/e1rf5iZVtiVLLVQFURhTl5X6LIYaYJyxzNSpK2YcDogWG6hOltQ3RSRlnRGljMMK5WEIMBGPjb0MYFChxIdOaZIh87jxYoQYep4j95MsFQQzLaxP7h7QwbqwYRJE6a/3eOH59X54Zmb4ShM0aO8BtvDBaIgJylNc1VqEP0M23f6KJsXTkMVhdixBulMnc42j95mQbLJYiZygqbbtzjMUNKSF4p+4pN3AlRPEiwJwkUIli1+xx1PlRmEKZmNWJA1JNmYIJ0Q5J5F1F27Zpyyud5mOurQ8hKksKTGYymPmU9rzHYbLHcco5O0A/KOQnWlKwicOR2MXcVGuX0v6gaaBbVmwlSzy0y8sv7E+hzQEal1x6BWspy5hUXjs1+3uDM9jR/0N/PD9iZ2L07QnnNsknfQJzoE0ZyldkgTLGR4i31EL4U0W6ExajVsHGKaIXkrJBvzSFuCvCnIa27cDx2tZWm+XIDKnOZOJe76ValjeYeMjraOPBJOdyRKd2rrW4K4YKzeZ7LmMvbGg4RI5Rgr6OmA+SRm3tbIEg+RSryOJFhy6/U74PUsXurYXKOc1nDAuuYtdx3khSAFfE9jggxPmCFTVJTZXGnudizr+YhlH3/JbSdou/uR17fIYoXhAyhiQd5w51JHOJaoWeDXc+IoI/KLIatjS01OP/VJEx/d9xCJQvWFY7yKwQXD8D5kQouOLGldo+sSISyRV9AMHLMXqcLdW4xkOQtZTiPaXkRGiNECm64U85ZZyXaV91PjC4qSKdKBcJ5HpWYp9nOmox47awtsCRYZVz0klp4JOFQ0ucefdPvPQ+PNtRaV0PrEoNIUVahQoUKFChUqUDFFG0JGBTZ3/iTCgtAWmZWZIakGaxHaYkuWCEp9jWeRgaYZu+hhc9xhW7zITLBMUyZoJB0dIYWhpwMWlF7lEzLw/xj4jpSm12WdnpVMliKW5LGgqENeKzUKscUMai+NzrdrCdplYhgtoZCQlTWfstU1n4Qp5/OD0q134PzqD/RSpVdHVGoGIk0Qu4iwEWa0woSWn1LzUoIy7JPCklvlak9ZRWo8jBUESlMPMmwd+iXDlEU+/TFF2pd0+xKv76H6Hl4S4fWa+KWuy+sZvJ7G6xWofoFIMkSSIzoJ8pDBVwoCx8CZWkDRCMhbPllL0ZuRLO9SaD8EplEZhEtuvY37cqJv30Mxe/BBHlHgzXeRWUwkj02D0JQJeaHwuoJo3hDuW6a48x5G68HZIsfMZnj1GrKoO+1RCCY2+PWcsZrL8oqD3OlESmdq2VUEi4L4INRmNdGhDG/JjVmZOHbJhj75eIQ3FWCVoqhBPhJJ+0q7LEKV40uDto4dXM4i5np1ltoxxZJzk/aWFX5HoHorGZVQskRikAG0Oo7VWtLLAmb7DQqjmM/r3OnP0FDJ0PvKF86XKLeKxPgs65i5rMahpMHBXoN+4kM+ELIMdCSCIpSo2EPoCBl4YGtYVepp6j7ZmEcy6Ry/kynIpwr8iZSJZo9NtQ4N3x0jKQyJ9plLasx16nSWIsSST7DgWDi/I/CSUts3UrfMZa46ZlnVciaaPU5tLXBa3TGIM8EykcjJrceBvMVdYppOGmK0RPUk4TzUZktG42BBsJChuqnLuFQK3QhJJwP604qeHuifJLouUMowFiRsjZdp+Y5xW84jpLB00nB4rGQm8DsQLuCYtcUcr5NBYUAJdN0VQszGfKxUFHFZT62mqY0lbBlbZkutzUTQwy9PeF8HzGV1DvQaHLQNdM9DJYJgSRC0QZVJiSobYXJqjolKxwWFhdTXtGJ3nwGYCdvUPfe+W4TMpk32+C1mBWSFwPS9oU5SavASi5dYx6p5zvMJSrfwmsAaxxUoaWj6CVuCRc4MD7BJLROJgsR67C/GqMkMYyUZDz3TDKAfBJqnYoqOjuqhqEKFChUqVHiE48HQFFUPRUdH9VC0AbywwCQukljJLnHfCW2dy61wWh+hrasvNvheMswciVROQ6U0ZUJTJWgrMVYSysJlaa1TqwzKzC7p5rlt6aarA0FZxom8VrJEdSgaFhMbiAtUqPH81ZkZxki0lhRFyRKlEplK5EDbUc7jD/1H7IjfiF9WAY+N816K3X4FtZxGnNIKE8bChJafUPdSxxoIjRQr1ckH7FBf+/SKkF7hk2iPVHtoI10mSc1FejoqWQor0EY6dslI+pnCpAp6Lpr32opgSRHNB9QOauL9Cm/vPHrP/nUdsCUQAvVtW8kftYWl0yPapwr6OwrGNreZbC0DUPNyFtOYew89BvmDOpu/WRD9wzeOd/isi+K2HzD2g018+tHn8WsT/86ErG3Y9uYs40N7nkDvexNs/g9N68t3URyYXb+xNRR33k1QCwknfZJEOvqFFZmMxKKBQitMrvCSkgVYMkRzOf7BLmKp7RqnGSiJaDZQsc+w4rkCfLPKS6ewkqU8Zi5tsJhFHOg0WVqswXxAsCCpLbhVhksWv2OcXsk6P58iFuR1iW04LcqwJqBnh6xRXigWk5huFrJXthDC4gkzZKs86XQxnjR4I547APUgRTcF7ZKJTb0QE3joUKAjSVHz8TsKr19qqEoWNq9L0nFJMgX9zQZvS59zNx/kceP3cnH9Ls4JZpks16mEYF5b7igmual7OjcvnsJtszOkqoYwymWilRZZMlu51nUwUmvNN0zEPU6tz3NOvA+Anf4cdZnSNSFNNU23CLnPGwMj8HqCYAlqB8pMtT3LiANzmOUOVmtkvYY3NYGV42TNiAE9ZUJL3Ex51MQcjxvbzRnhASZVB4D9xRjfD7cO+9dLAopFH6EFft8SLOX4sx3EcgeyDHwf2RpkQTbI6xKswPoWr16wbXyJC8b3cXZtP1u8xaHX0KKucVe6CU9spZ2EJESOKWpDfMgSLrh98nqOjTeBIm8q+pOuPp31PYq6hxSWMd/RSjujeTb7S/hC0zMBe4MJAllQaMWBvocOFciVLDSVWryudtooJZCFBCFLVkpSZGUmXuGhrSASOU3ZZ5NKqAvIbI4vDIkNOBQ2SPMTlH22qhDl/UP1UHR0VA9FFSpUqFChwiMYFheHV3joUT0UbQDfNyShwQSy9N8Ycab1JTIfCInsSnX5HEQh0LnzFQHo6YC+CcitR16aDGkEBpftYQYVn8FVfTaM1DEqNyEHNYyc2zM4DVFeh6Jp0Y0Cr14Qxc59deBUO2BqssIjyT0S4ZMZMdRYCOu2M5C4DOudUTryCsAHpHXZaKEhqLnGY7U+0/UuM1GHTWGHlurTVAm+KNBIUuPTLtOJ0sKjW4QsZjHLWUg3C0kLRV4orHUaFa/UFEV+QT1IaQUp40Gfcb9HQ6VDXdJ85jKJ9vTG2L04wdxsg959Hq1mjXFtEPsPHrFWWrF3H2LvPqa+1aD+1HM5oH36YwFnbXcaohdMfpPHBH18IfmPJyr+4pk/zmd/5gns/LQg+uTXj3MUHY6pP/sKvYNP5OJn/haXX3QrL5r+Omf6C8wZRwF+sXs2H7v3scx+Z4aZmyxnfv77FAcPURxlvQDcu59waxOvHyBzpx9ba0syqDSOFcPzj7UIa1dopUE2XxxQNHzyunRjrV5mVgalnkdqMq3oFT4L/Rpzy3XyuYjwoCKehdqsIZp3bb2lDJnmIAS6FpCNB+R1j7wO6SRkUxo57ljCsWafZpQSKrfXuVEkuU8vCclyD61lWZsNpHT1w6IwpxUljAUJ40GfTaEbM5nxWBpzGXD7xpscXG7Qb8bo2DFGYaAI2k73Y0f0PjCoH2YJgoKZqMM58V4uifazXa0uMD0lYVotkph7uS+Z4E5visy4TLSgbYkPlexHt0BYKGKFLJyPVt509wtjBbHMmPIcc7PFa9MUmrbMaJuIupc69te4+mNeYvG67tiK5S5maXmYRWnzHCElOvLImpJswvVTbko4b/MBnj71PX6s9gPO8gJ84e5Ts3o346pHp6Si93eaHAxil12nLTLRiHYXM7+ASVJkECDLwaVqASoNnP5R4Y5X3OHM+AAXhvey3etS3jqZ1x6+0CzkNXYH4yyWmZVeD8KFgmjWsT9yue8MhAIfb7yGMBE6VBQNQZYpcq2Q5U2yoRI2ecvURUZSpscuFDX2h00OBXWMss6VHEqnfotKDTLX5QyAGmZaen0oSja63Q9ZzGocKpos6hrjso8qb5YKgy8KaipDqUd+bcYKx47qoahChQoVKlR4hOPBmT574Ov4UUf1ULQBoiAniTR5Q5W+KgJRur4ihfMqKtMBhLZ4qcXru2yTNPRYCl10ut8rhllYU76LklLjo+3hg3MQuQvtsi/8notoROGy3HRaOr8yqFJPWb1boT1L7ikypfCUwccOdUXSX6k2jYCMgWhPleKlNds3IzWCLAwqb2tPUfhlLa3A1UkyVuAJTVMljKneMLOqZ4JhJJdbxXLhnLyTwqebBq6uUi4dSyZAlXXarBUEXkEgNZvDZc6K93N6MMt21WZsxEBiycBt+Qxf7ZzBl059FHu2biKZbLIpPg/1r/9xVMdq3eng/8s3OXX3WRyYn+b/dB4DwPx5NX5+0zd5XHiALQp+bOz73Hb6DIcu3Mqu7+yiuPPuo46do6H291/nzL+HfWNj/M8zX4Ru+Ki+GyPqvkM09txBgzsAjo0hKmG6PTdWBCAtUpkhA+crjRCWwNf0PYPxLToQFJGgqHmoRsSgAh6FxkY+uhWTNzzyhqCogY4MXlgQeu7YOt8pSTsLWepFZO2AYEERzTmWKJ7N8Oed747oO52SaUTkYwG9LR6d7YL+Nk19W4cLN81yTmM/AKeEczRVQmJ8DhVN7k6muKczyZ72GHnmofvekO3UQB4Yipp0OpMgoekn7Izm2eS18YUeMpa761P8IJ7h+2oTXVNHZh5+141zlZhhdqntCmTuYaWrUN9txOxujrO7Ps3+cD/bhwdqBfPGsDefYE9vjPZiTDQnqR2wNO7NCGadVku03bHwmjVk3qQIA7KWoJ949Auf1KzcjhUWVdYEAyisQhuJHclKHTJ7noeIY6SQiChETE2Qbx2ju9WntxnyLY5BetTMHE8cv4unxj/kfH+1nm1MhtRlOswScweiZJILkFkBWYZJUrAGkyaI0i9LZIWrBznidO0JQ01mjKuESekRloyUImWTWqblJYSqcP5pA/YmM4hemcnV6WLTFBGGKCXw6x5+z3lckUj6uU+3cKxWR0d0TQgSEuOTGHcsc61cJpldqQsnBtSpHLhaOxdymVvnK9UTqK670fTbIfdFY0QlE9Q2MZu8ZXw0ifVp65jcKHJzYmwVK03RiUH1UFShQoUKFSo8wmHWCaSPF9VD0dFRPRRtgIafkjZT+kaQ4Dtn56CszxUKgo50LI52Dq9+t6wmXqbpZKbUMRSSrFAk2qcX+0x4PXypUcISqZyan+GHjg9IAx+r3DZkAV5i8JdzZL9AGIP1nE4AoKh7ZC1F2pJkLUnecj48i/WIdi3Hj4phHSXf02WtMUMU5E5r4XmYwLiq30lZHb0nhjWwBvWvVix1nFmSFs77p6ssoVfQ8DMmAx98qMuUcdUlEgUa4aI3YFJ1aaqEWOV4JXu1TERifKxxmiqdlwyUtHRUyLKf0dEhmfWIRM5W5dGQ0fD8zCg40+/xnNq3uW3iq/zj9kfz8dMew52nbWLyjCey6WuH0Ld8/6jnWX/v+2zee4DmfWcD8G93nseXzziDTTNLNMKU+V6Npd1jTO+12INzxzeIjrbtpSW46TtIVm5Wx8MMrYXaMkN30idvuGzB0fpZXqkxU9IgPYsOLDoW5HXh2NA8GFq5ilxjlcL40o3pIYPpdEpF6eOSl0yhHb1ZD32tBDpSyGZ5zuohOvZIJ306WyXdHcCuLpfs2MNPT3+Hn6jdwSneaq0OwB3FnXzF30VhFHP9OssGSCQyGTCmTuNXWEHPMyQ1D4WlKRM2e0u0ZELXc346vtD0dcBsrUE3iod1BGVund9Vt2QphEDmAVYGFKEkb/rsbYxxa30rm/0lAu5mh7fyz8sBbflmsotvLp/GHYemUQcD4lmo7y8I9y1jZ533kOn2EYGPEAI5UaM0k0YIx7pJYYcMcmIVGFjUEQeLFnNZjU4aIDKJ0I7g1aHbAdWsIaVECIGphaSbavS2+HS3CZIZQ3PSMVQ76ktMe23nPG5zwvJaXjZ9bs19/q2/i9vbmwGYX6479/HU1Q3EWlAK6XuYLEN4PqL0AbOyPBcly621pKcD2iaibQISmQyPVVYyNb4oM2SlHXpHGSXAKwehlAilVtiwct0yB5FJeknAbOKy3+72p4b1FRPrsT8dY09vnIV+jE4VauSiMp5AR8JlYQ5qwvkSqxxjrnLwuqV2NPA5KFqkhcd8WuOueJrN4TINleLLgtT49ExAaqopqR8lVA9FFSpUqFChwiMclaboxKB6KNoAk3Gf0FtiLihoRzH9WkBed5FZURMUS4JwWeB3TalHKPASid+R+F1JUs5Lp72Yg6lHkvtk4wpTF2wKXLaWF+tVPkV7tCTLJTKTeInzI/GUQBiD6OdIY5Btt16v7eG3A4Iln2xMuSyTpiBvehR1RVqzpPXSUTrU+GGBpwxKGgK/QEpD4Sty36MoI04TKHRS1iDKSgfeMqNkiDIqslqQlxorXxpqMmWTt8xOr82klERCoa3LJOnYQxzUit3xBPfUprkjmWFvf5wDvQbtLCTJ/GE2kSgj5kwrlvKYfdk4U6rDlNzDmRsUpTnHr3PO5B388vh3+OSuXXzk0Y/ntidsp3XrUwDY9B8J3jduw/R66/5eLy0RfepmAE695yy6p7XozmxiruYYs22zhtb35tHt9jGPnxMNb+sWeo/ZTnuHJG9Z8CyFViwnjqnpZ77L4kp9dF4yg8rVHMvrApUpROEif8XAwV3jdSVhKMr6cZLUD1gudUpCWOpBhpKGOMzJ6h75uERohRWCPPbxEneLERbyWJBMQn+LxTulyxN33MMLNt3Ec2o94HCWCFwNuHv9OVr+TpQ0LltRD1yIV3RvOpXkuaKThSwXEW0T0TMhShjyMiNJI9EMHLmty7D0SlYrVAg9YD4cC6ND4Wr9Cad1S7TPwaLJ7mKCrnVZYrn1uDuf5qb2ady+MEN/Pqa2KAja1unEtEH4br2ipaBeR8+06M+E9KYF2ZQhHu+zvb7EtN8eavIS69E2EbvzSX6QbOHu9iTt5XjI3jiGrMxEHY8QrRATSLKWR39K0d8EyWaDmkqZqncBiFXGkq5xW7aZ/YW7FhZNjb35Kdze28LtSzPcO+9S1fRcSNQRyLysf1gPEOMtpO8h8wKUgkZZJb4RokNZZqoJikwxn8TsSSfY4k3hi4OMS8fC9YxHz4YYnKO99A06smX9NIU35sarZy0iLbCewjQidE1hfIbMZZEp5ntu+4GcYCmP8Up38fk0Zq5Xp9OJIZWlB5UbT3kNEJIiEshCDT24jOdYJKHB6w5Gn6TIApa7Hu2lmN31CcZqCWNRf1ibzpearDgx1bL0g1CVq5o+Ozqqh6IKFSpUqFDhEY4HQ1PEg7GOH3FUD0UbYCZsI2s5M3GHQ/U6s40Gy3UXmfTjAB1IrHRRq+pb/HaOyA2hEkRzPtGkC016HUkv8WkXDe4VlpqXM+V3mQ7a1GXKjmCerZErd317tJkfhtMshw1M6FHEirwuCZc8vJ5BZiuZIVbJYSX4wXy4LFyFbue9IdBlNovJJWkuKQKD8kfYKQHSM9ignEMXbr0mLCPxQVKFBOO7Wmei5tineiNlqtZlU9RhS7DIzmCOXd4yu0Z1IeX11wC2KLgwSJgNb+Oe+C7uaMxwTzbF/nSMQ1mDXlHWUdIKKSyRcll7qXF1hm6TOZqDPMpzOqWBv8ooJmSNX2rN8kutT/HlUw2ffMLFAHz2vrNYuvPRNO+UjN9RULtjEe7di+50Vo5nma1mb7+LxsFxGq0GNvCch0+7h75v73GOoBMDNT5O/ujTmNsV0Z8WZC23XC575B3F4sA1e1Bfz7poflDvzpTV1PNMIksnX5lpRJqjsgKZFqgsRBQBwkhAkcoy68czBErTChNiLyf2c+aDGv0ooqj7ZG3HdroNgQkha1nMZM5Us8v2eJEtaglnhnWEfcQSipzIy/ECTR4ahgk/WmA9iy01PoWWLOcR+9MxAGoyG/qDHcqbLGQ1ssJDKIuOLdmYE0FlDR9ZMmXGc+xZNg7JJoOcSdg+sci2aMnVo7OKg9od6LmiwW39rfywM82hpTqqo9w1aEFHimKqgRhz58BEimw8oDej6G4V9LdrWtuXuXBmH49t7ebscB9N4fQ3ufXYU0xwW38b31vazJ75cexcSLQo8LtOB2UHVeobHtoX5A1JMi5IJyGdMoiplPGx7rCavLGSfdkYh/IGGkm3CDmU1TmU1DnYbdBux+h2yRb2pduHEJJxiVERfsPH6zeGHm0DTVPRUOQ1gVFlrcZMsZTE7EnGmfankcIwVTpnaytZ1hG5UU7nGGjyyFLUBFlLOm0b7j4kc+P8g+oeybgibwjnfK5cxlpaesHNJzXamWOfktxltyb9oMxSlFjlfN2g9HpruGtA6MPrTGKhLKOGysHvOG1cESuSRkC/ETPXqNNq9JmMe0yGffITxBRVODGozmaFChUqVKjwCIbFaYoe6Ov+TJ+95z3v4bTTTiOKIi6++GK+9KUvHdPvvvzlL+N5HhdddNH92OrDh4op2gBNL2Ei6pNbxUzYZjIcY3cwDsCs3yQVEcJIVOo0REIb1FIP0hTlefiLLjr0O3Vk7oPwWA7qHKj1Oa1+iHHVY6c3RxBoTg9dTautwSJTYZdboi3sj8coGgHpuMTveMPK4gP203qDKttlbTK/ZHN8MJ7TlNiyRpXwLEJarGFY18cagdUCtISi1GcUwtFFAnRoQVmsbxC+wYsKanFGK3aR7Ka4y9Z4iV3RXOkjtMS0PHLEDzCjGkwrw2a1m13+QfaHY8zrBm3tQrncqqGg0BeaSOREMqdrQu7Ip5jTTgsxpbpsUjAl6+tu56mR5KnRtwC4e+r/8qWzTuMLi2dz8/6d7N4zQbx3mto+aOwvCA8lqMVSb9Ttu9pOhxZcNXpjMVl2VN+jEwUZxxRPOBeAxTMi+jNQ1J3WQuaOKQwXBN6gGn15FzRKoENBEYOO3Zhx5xmyBggjV2px5R4yyRG9HNFL8bMCjMWqEB1IilJblzc9ZNMyHiSM+X3ymmQ+rrMvbjEX10lrAXl3wD4J54weWYQyaCNZzGPuzqc51dvDjGqs3VUAOiZBE9PwEmbiDr2xgAVlyEqtktHSOaL7hjDMEQI6ecDe/jjLRYQvDHlZVK1XhMynMdoKx1C0ChKlyMaEG/sDUiuwmFqBauVMj3U4ZWyRR9UPcko4x6TXJbEBi4W7vu9Oprm9vZndCxMUSyFBx9U0Mx5kLY+8oTAlE5s1pNNUbbawuc+uzfM8ZnIPj2vcw+n+LC2ZkpVuUXuLce7Jpvh+ZzN3L0ySHYoJFyTBEvhd56kzuBfoUJT12kqWaNLAZEZrzLEZjbKafG4l83mdVHt0ipDlLGQ5ieimAWkSoFM1FJ2YwFI0wHquSn06JvASidf3UJkdyUod3HvK/NQc6Es6vZC9UYsxfwopDInn7g2B0LRNTG7VMOPOehYdMqyF5+AhCovxndYoHRNkTcgbFmKDF+hh/btcK7JCkWlFkvnkiYfJFGRy5Xz6K+z44LgNMiplKvASUH3c35IpGtSEtB4UERRdSdaX5LlgyYIqmf9cnyCfIvtgaIqOb/rsIx/5CK95zWt4z3vew1Of+lT+7M/+jJ/+6Z/m1ltv5ZRTTtnwd0tLS1x55ZU8/elP58CBAw+02ycUFVNUoUKFChUqPMJhkA/4dbxM0bve9S5++Zd/mVe+8pWce+65XH/99ezcuZM/+ZM/OeLvXvWqV/HiF7+YJz/5yfd/hx8mVEzRBvCFJpKamkiJZL4qS8xawawRpDpCZgIvUfhtH7UkIEmxWQdZur1GhcF6LYrYI2/6zI3XmR+ru+rLsmBcZkMX2bYXs8efoBGk+GFBFvroyEX7gyrixk25oyOLjg3UNCrU+EFB7Bf4nsaXZpjFNYA2soykPNLUdxXn+wrVl8i0rCNVRkbGc+s3sUWGmriRMtnosbnWYXPkqsnPBG2mvTabvDbjqocvDClOP3Q0aGtQAuoiZ0p1qct0KCuR2JIdKojKUM1YQWI9ujZg3rgt3FtMkZQpJb4oqMuUKdVlUvWYkoYx6Q99WLarmGfXd/O4aDe3TW7m5lNP41sLO7jjwDQL+2PifQ1qBxzjVDtQEM6nqMUeomSNhFKIKARtsFmG6fePYyQ9cHin7KB98XYWzlJ0d2q8aTe2avECaEneCRGHQsI5QXOPobE7wTuwBMsj2XLNBnpTi97WmN5mRTJF6Wdk0ZHA+iN+M9pDZiEiKxB9jUgLVK/A6/vIXA7r4yGg5mfMhG22RQsoLIeCBjUvQwrLIVEnV6VGpO9YCOtZhIDCSJbymL35BD/wFohEn5aMD9v3FE1dZJwazGGakjG/z1yjwXLudE39wnfOxXYle7GXB/QLHylWj0ZtJLl2ztBBUCDHDKbh6sMJAbLMqqsHOc0oZVPcZXO0zJZwmWnPZYa1dcS8rnNvMgnAHe1p7l0Yp3uojj/v4XccQ2clTgPju7pxANkEpNOaYKbPadNzPGZ8DxfW7uVRwSzjMkUj6Gl3vA4WTe5NJtnbbdFrh6iuxOs6JlAW7rq2pc+OjqTLiK1BXreYuiaOc+pBRs1boXQKo1z2V+HTzkK6WUCS+2gjQVikr7HlMbCRJK8LikwiM4HqSbye8/DxewKVWIYlv8r6jypxmVs6VGRxyFxYZ184Rk3lqPKf41DmpbePR2HLf6QHcjcBtqxmb5RASOe4nsdu34o6mLpG1XLiKKMWrOxbpl0txTwtWaJUObtzYbG+haBkzX2DH2iEtMMstrznY9qKwIohIw+uvpzU1vVFC6wAFYLOJKaQ6LJ25YMigD6BKIqC5eXlVcvCMCQMw1XLsizj5ptv5vWvf/2q5c94xjP4yle+suH63/e+93HHHXfwwQ9+kLe85S0PXsdPECqmqEKFChUqVHiE48HSFH3mM59hbGxs1ettb3vbYds7dOgQWms2b968avnmzZvZv3//un38wQ9+wOtf/3o+9KEP4XknJ+dycvb6BCA1Hm3to4RBW4kSlqbvIvTN9TbaCA4ZQd+GCCMQJkCYJr42iKVlyMoK1u0+/lJEuKRI2oJ+N+Bg0uBAfYwpr0Pb5OwvxgH4t+4uvjq7iz33TRHe5zO5F+JDBr+jEcY6H5Jm6X80JknHFem4ohjX2BYEfkErTJiJu0yFHSY8p5MJZYFB0NERe/pj3NsZ58BCi7yvUH2BXwYNXp+hp0feEGTjEh1LfE8zFfXYES+wM5oHnEu1q5VUkFif/bpBYvu0ZZtp6a9ynx5FxyTs0wX7dZM5XR+6XrdUqVVSy2xRfbaqiFCsrs+U2ozdhWM/vp9PcyAf4+5kitm0SScPKax0NZe8nImgy5awZLX8ZTZ5y7Rkn5bsc3H9Ljb7y3yvvpVbJzezZ2qCZMr1I5nwqc16xAcDgsUY2csQealyEsLpJspzS7tDcfDQ/RxhG0ONjZE/5nQWzo7pnArZjpQtm+d49NgcM+EK+7M/GeMHC9P0+nVqBwTjd2qat85R3P7Dw52xDx7Cy7YTNLbQ2+Q8X4q6wcQGYQaZRCVjmCtU5iOzCCkECIENnMP1QMcGrhr6eJCwKWiz2VtGCYMUho4OmY9qdNNg6FRuyjpewjeEcU4rdDqkmkwJhCZnfV2GRDAuU7Z7C/iiYMLrshDVOZQ7Fmgxj1nOY5azkE4W0s99srysE1ZG8APGVCmDpzRKWmpBhioz8oRwdQL90mI68goaXsZY0CdWOdpK5osGBsFSEbM/abGn67Lb9i+2yOYj/HmPcNFVe5e5YzyM53xxMteUbNwgxzImGz2moy4NlaKEpWtCtJXkqOG94EA+xlIekxVqWB/QDjSEoatFOHB7LiKnDdOBayPK/dJG0iv8oQM5QGYU/cIvj5NHXjiWTSmz+l8D65ypta8wytVIlLlYcQEvXL04cH5mVlqEcRm5OgQdK3r1gIUkZjGMaZTXd82qYW2yTCunCSszwaRmpZ7kgD2SpWYpAB1biDX1WspY7GqngWMddfkyuYRUITKBMAKrLEYZVOjObb2e0ohSIi/HWkE7C1n2Y3IdYfoKK0AYW+6XdTUghcUK51llfDCRIYoKYj8nUgVKHXa1PQQQD5qm6IorruAjH/nIquVrWaJVWxarmTBr7WHLALTWvPjFL+aaa67hrLPOesB9fbhQPRRVqFChQoUKj3CYB8mN2vM8Wq3WUdtNT0+jlDqMFZqdnT2MPQJot9vcdNNNfOtb3+I3fuM3XJ+NwVqL53nccMMN/MRP/MSDsg8PJaqHog3Q1SH9NCK3ErPmCb3hp2xrLuMpw6GgQdePXZ0oFdGQgsBT0CmzmaRwzsB9i+oLkr7HXFLj3mQShSWxHt9tbwfgm/edArc12PZtw9jXd1Psvu+wfgWDPows8x51GsnpUyyfMsHenRPcuSNn6/YFHrfpXgAe37ibM4P91GXGXKvOf4ydwldrj+I7YitFUidYLLO9uha/7+bQVSZKJ1tFoRWeNDRUSrOsYxTJHI0kMTHz2vWmJjM2qWUSb5kdJOuyRSmaRROyp5jgvmyS+cIJLsZKVuvUICQS+9iuDr8BhMLnzNIdeLNaoC5TEutxKGtwqF9noVMjSzwXfUo7rClXizM2N9rsrC+yNXTOwaHMOaM2iyc1oSq425ty592PXR0mz8eEEr/tr1RPL6PzgV+UUgq5tIzJsnVG0PHBm9kEwPKPPYq58yT9U3MmNs9z7tgCm6IOdZVirGQxr7G3525o9y2M0z9Qp3avornbUN/dxe5Zn9aWQYCdbJFM+KTjkE0Y7JirkWe0xABFv6yrV4O8LlFJgCfdOMibPmlLUDTA1MqoO05p+AmRzIeM6uBakcI6fVvkzoFWFqkMcZSxqdHhzNZBHt24j/PCPZzqpUzJw9Voy6ZP22i61icrKYpAFK5uVkklGOvYkMV+zHI/Iuv5mEwNNSDCc9mTAH7kNHehVzjPo7IOn7HCMQ1l3/u5Y1cS7bGkYiLlNIWFlXTykLmkxlzbjdusEyC7Ci8p63KVDvBWQhG6Y6njUgMUGbyyL70i4GDWRAnDolcjEjlmpF5gTwdInGP4Uj0nSxVZ6ctjfOczNcws9FZYInCZpUUhHVNnxJAR08a50Ge5oigUulDYAUEnHMMkRrWTpsxG1QKRl9mNGajE4vUNXq/U6RiLVQJbaoBU5jJZda5ItUdf+yP6P01uFYUdsHnl5g2sIgutdfoi4dgpl+Fm8KOCepgxFiQEZV2/pPDo54FjBrVEZAKVuDQzEwJWoMpM3HqYsaXeZjzoYaxkPq1hrWC+52M8tdIXVrRFxnPsV96AfEwTjKVsanXYWmszFvTJHoTr/5GIIAi4+OKL+cxnPsPznve84fLPfOYzPPe5zz2sfavV4jvf+c6qZe95z3v4/Oc/z0c/+lFOO+20h7zPDwaqh6IKFSpUqFDhEY4Hp8zH8bFNr33ta3npS1/K4x//eJ785Cfz3ve+l927d/Nrv/ZrALzhDW9gz549/OVf/iVSSi644IJVv5+ZmSGKosOWP5JRPRRtgHYR0uu36ORBqSkyNHwXETT8lMmwS8tPGI/63BeO0w4aWOVhRUhTgD9XRh25CzdkYV0ElUn6uc9yEbEvG+NA2uLbB7a5jd7eYOuXc4J//uZxVUsv7rgL7467mAQmAW/HduZ+4hQ+dck0APdcOMmV277KT9T2clGguSj8LqcGhwjkxXw920XecVk/QVsg2hYvMxhPovoCkQuMEUgsoSxQZRilraBnQpZ0jbZ2jFBTJajAMKM61GSwXleZknVyr8N+nZJbxXxWp6sDDkjnhN0pIpeZJ+7lHH/j4dmSMZdFli3qP9jsLdP0TuNWtYX9tkXWUdiuR7bsotM0CFmuxRwca3DqWJ1HNQ6xPVhgTPXYFTmmINVuW/eliqwfojJXG8mK0j1YCYwvXH2kMpIMWgGRFJjbf3gcZ2t9dJ58OgAHHyMpTu+zbXqZ8ahPoj2+t7CZxV5Mvxtguj6yU9acawuaSxAuWvyuwQQKb+tmvOUaNs1cFfMJJ2jJtrbo7AjpbBf0txrsZEZUy5HSkCZBmfqz0h9XTVxipY8JSv3amCBr2aGreeznKGFJjM980SC3itm8xUJWIylZDa+M5j2licOc6VqX0xpznFvfx5nBfnZ6XcZKRtGUVEHHpBw0mv1FjYN6euhj1dYRyzpmOY+YyxxTc7BfZ65Tp9cOsR0f2Zf42aD6uUXHTlcCoKShHmS0wmSYlZUUHt08oJsFQ4dkbeSQ6Yr9nEaQEqnCsUUjWiXAaX2UHbIJUPqGec4PqqhBUSsPbGgQ0pIbyWIaIcUYHR3Q8po0VLrq+pLCMhl0yWouS2sWSGWIVR7GF6j+SraoLWvYGa90e5YDFs0xQ6UBNVpL0tyjyBQmV9jSl0zY0rtHWkalIla7618mEpWU9RDzFSZl4KiNFWjfsUQDzzTrre5HUTJ9uVXOi8y6GnRSWgplS62U00s5SBCObdOlF5sNDb5f0AhSGn5KIFe8w5Q0LrtRC1ReOrZbx9gJs6Kzqgcpm8IO26JFN4aVu8cv+jUQFmHF0INJ5oMLQjgNXs0iWjkz421Oa86zOWrjCU06kgX3UOJB0RQdZ6bcf/kv/4W5uTne/OY3s2/fPi644AI+9alPceqppwKwb98+du/e/YD79UjCSZV9tmfPHl7ykpcwNTVFrVbjoosu4uabbx5+b63l6quvZtu2bcRxzGWXXcYtt9zyMPa4QoUKFSpUeGCwPDw+RQBXXXUVd999N2macvPNN/PjP/7jw+/e//7384UvfGHD31599dX8+7//+/3Y6sOHk4YpWlhY4KlPfSqXX345n/70p5mZmeGOO+5gfHx82Oa6667jXe96F+9///s566yzeMtb3sIVV1zB7bffTrO5fhXujdDXAQfzBku9CK0lUlrqsbM6nal32F7LmIraTIcdGl7G7cKyXLRQqcLrB0MdiuqkYBxT5GrtCJftIezQnygrXBTldSHe0+aBeicX9+1h7C/3MPXPTqdy74vP5K2Xj7N41hd5QfMOpmSdi8O93Dc2xd3Tk+yfcyFusCidB0mKS0RyZaHwPU3Ny6ipdNjnvKziPZu3WMydS/BU0GPS6+ALgzzC8/YW1eC8YJa5osGhvEG7CFnOHVs1qt/K7R7O8r2h39B6OMev8yhvLxdFu/lm4zS+OXYa31vYzMGlBlmvrE5uXNRYaElhJJ7QTHodtniLJDbAF5qlcvuHGg2yOMB4TstglUBLgY4EWUOSNVwNL9fZgHDXDGM7xwm+fMv99i9SF5xNe0cZSY8ZlGdY6kUcWmqQLQf48x7BoqDZdo67gwwdcLoLqwS9GVcdXeoaQs+47nmurhlA1oRsHPJxjWjmhLFjiYpCoROF7EvKBCHn5CtAh5Ki9MBJxwTZBOiGyx4D8KUm1R4LRY1lHdPTPkt5zHxao5+v1rMoZYj9nJqXE6schSGxPgd0RNvmGFuwaNw52F9sYX8xxmzWYqGo0S1CEu1TWOe11St8lhPHLi33I9LlENH2CJZl6eMzYGqci/fAf6gWZUxGPaYjN0YHGVCp9uimAVm24pItlUEHgtAr8ISh5SfEKie3Ek86R26APFcUiURHLtvJeO7YGd9piXTdQMmsBXFOFORILLlRLKYRSeHR80PG/D4tPxlmaUUyBw/yULmMsbx0ag4VJi1ds8tLZeBfpmPnURQ2MsbqfRphSqD0MPssKXw6MqBnQkwhwUjn5K0FcsAWlRC2fBWlfsm47ehSo2P8Eb8qnM6piEvdTWPA6uiSXVP09Mo17Px9HBvneZosNuR16eotlj5FKnWaMB06fyIdWYRvCHxNpAoilROWVFlhJZGXuww6ueL0PdgHKJkkoOblbAra7Ajm8YXGF5qDaZP7fIPFMWFev9SgdbQ7l55AagES/LBgMuqxPV5ks79MbhWJdyKyz9xxe6A43umz/4w4aR6K3vGOd7Bz507e9773DZft2rVr+N5ay/XXX8/v//7v8/znPx+AD3zgA2zevJkPf/jDvOpVrzrRXa5QoUKFChUqnEQ4aabP/uEf/oHHP/7xvPCFL2RmZobHPvax/K//9b+G3991113s37+fZzzjGcNlYRhy6aWXHtF9s0KFChUqVHikQyMf8Ov+TJ/9Z8NJwxTdeeed/Mmf/Amvfe1r+b3f+z2+8Y1v8OpXv5owDLnyyiuHXgrruW/ec889G643TVPSNB1+Htif9wuP5TSk344gcaK/tOYoYG0kkSpoegljXh9Vt/QKn9v7AelynWRJEiy7QyvTAmEtMiuF1trRl00v4ZRwjjGvz+y0S0e+bUud3qktwtVZjfcbxexBdwyuP0hn/5N420/9DN+94Nv85PgtSCKWdDwsyAgl5e/jhJOBE47a0FAPM1peQk1myFIM27Uhh/Ime/pjzKc1jBX0ipCW6tMO1xdZj2Kb8tniL3KfN0nXC+nrgcDU0DMB+/IJAGb1kivfIXMmNzCF9IXHRYHHRcE+Lonv4ov1c/hGcxd3Lbk0+3YSoqRhstZje22Rs6L9XBTeyw7PkltDU/bZVzrsfS/cTAaoHLyexesZR+NHiiKGdBKyqXLeoK7pAgsXesSPfyyTt2uaX7uHYt/6afHrwdu6haVzJkjH3WcrIe8EFEWIWlY0DgmiOYgWNF5ZBHRQNDNtSbIxyJtQxNalZFuXSjyYMhye28BiI4OIC7xAO/Fr5lH0fUTHw+uIlUKYxo0D4zkBbV53U2/ZuIF6QeivTBf0dMCh1I3fzHh0yhIb2qyU3Rig0GpYrDU1Hvdlk9SkS17omYDlwp3bhazGYhbTzQNy7aYVlTR4wpWvyY0aik6Nlk5cmzkhsErKVGqzYjIpB+nYQcZ40Gfc7+MLzWJeK/slKbRyU0o4MarwIArcVMnO+gLbwiVqKqWnQ3xhWM7cHKpUteExc28GU3cW3dDIRk5cd/tYCzICTw+ncnKjVpWIkMLgDeakRsLVQQkLm0tUKpApyIyV8hhhKVJuaGoTfU6ZXOC0xhxbwmVCmZMbdy+ay+vsT8bY12uy0K3R64WuCGwmV0TXI2nxohRhI11hVoQ7pqLu7mMjp9aJvQNXjkjXjCurIVyx1k4R4GXuOPVVXtooBBgr8D2NjAp0S5BKRRGV02fl/g2KsZrQIJQrXWRK+cFg+gwvIQl92nFElvroTDrJQyGG9giDcRgoTU1ljKkekchJPJ+Gl7rp0lJk7XfL6bPFFGEtEJG1fFRfUJRmpL7Q1GRKYn2sPDHTZ2utYe4fqumzo+GkeSgyxvD4xz+ea6+9FoDHPvax3HLLLfzJn/wJV1555bDdsbpvDvC2t72Na6655qHpdIUKFSpUqPAg4OFIyf/PiJPmoWjr1q2cd955q5ade+65fOxjHwNgy5YtAOzfv5+tW7cO22zkvjnAG97wBl772tcOPy8vL7Nz504yrZzwsqvwOhKMwPTdoFzUgnuEJZAav6YJRc5M3Ga22eDgRES6oMgWypTkvu/YIm1RqUUmgjT3UMKyzV/gnHAftRkXonfPC9jb28bO9PF4n7npQThqK2j8zdc4dekSPjV7MV846wy2tJbpZCEHDrXc/lFGn5SRbugExTJyKbB1LyUQBal1bNlCUWdfMsa+bov5Xg1tJO0oIpAFO4LtnO7fxZSsb9ifvTqnrWNUKWJtlSVUYpkx5vVoyoTcetyTT3NnNoNGEomcTZ5j8s7yD3Gmf7jh30VBRF18FzkS8u7zWhgEm+Iup8eHuCjazYXBSvHRpkz4QTQLQOSdQVu7cg3hUoG/kGI9ifVD5LhjDIldNN+a6DJZ66F2GrpnhsxeXOO+Z55CeOB0avuheV9B7Z6yLMd9+9HzC8NtqrExOGUrndNa9DZLzKAgbiag8JCJIFiGYBn8nivFUYSCrClJJtyNLZ12rJVsZo79MYIi8aDnoXqukKco09OFoaTPPfKyAChGQF8hU4EcFc0GjiWyHkPxbNE02FZOWM8IS2GptYJe4ZNpNYzgDcKVywhAFXbIGOlSJD3Xq7PYj9mtxlHSDH9XaOX6BeSFotAu9d1ThsAvqCtN3c+Iym0veytlCRZziempYYq4sE5s7RgzsOV6R1kZlxouyYwiN2UpjRJSWYKgYCLusb22xBm1WTZ7S24s2QlS47GcOlYrawd4S4pgyTE4VoGtlwxdpKk3UqbqXQDqfoYnzVA4nWqPHMd6GcSqMRtKVwrjYNpkttugvRQjF3zCeYHfdkzKYMxkPhjf4jVydkws8viJ3VxUv4dd/hyRKOiVDffrMe6MZvhBOMO9wQQHQ5dI4tgVhc0FlGwZRVmXhbKkiGcxK/p+x0gOP5cWCNKxlVZarHHmjd00QApLVjJ+UVkSIzOKrLTB8AJNXhMUnkXHZVHiwhVhdckeFjxXwDXNSwuFIiAuc+cbXoYUKwVO52iglY9Jyn0RdiiM7xU+PR2QGH9o/uhLJwjXwiK0QKWljUo3ReQFvhCELQ+/LUh7HktZREeHJNbHrGPuW+HkxklzNp/61Kdy++23r1r2/e9/f+iXcNppp7FlyxY+85nPDL/PsowvfvGLPOUpT9lwvWEY0mq1Vr0qVKhQoUKFRxK0FQ/4ZStR0VFx0jBFv/3bv81TnvIUrr32Wn7+53+eb3zjG7z3ve/lve99L+CmzV7zmtdw7bXXcuaZZ3LmmWdy7bXXUqvVePGLX3zc29NGutTcXKD6Tm8xYIryImCeBndJgyc1W6NlGipjpt5hcbJGulyj13VtVeYTLA3STMHvQq8Tsi9p0a7H7PLneWLtTrfR7fAxYbi7vo2J05/C1Le7qNt3r2IYHgiCT3+TnfrxHDw4zp2bx7CeRXUlwaL73u+76E+HLr22aBiCWk4rcKn4ifHplfnoe9Jx9vZaHOw06HcDrBHkueIuNcm4fyrjqstTogMAzKgVRmdWd/hONsat6XnsSSfo64BQFWwpO7HTn2eLt0RNZuRWsr8Y4958in2Z06E0SuHLYlTDF/ewyzvcamGH5zOpOnhl5F3YknWQmmmvzbm+WtU+FiEXRq4kyljUZ1aUZpv9AtlPsYGHTH1UZlGpQHTcZdP2Y/JCEYc5oVewfWKRxkxGdIEz+usVPge6rn+H5nfBgXOIDwjiQxa/6ywadOSKYXrdQW+cDmJAGugIUiFJJtz7bAzS6dIQcSphqtkn8gq6WcDyUoxc9Ilm3Tn1+nYoIShiQTbmXkVTQLjCSlgJRq1ocKws068jKOoW3TCIRk5cy4jDHK9McTcI+rk/ZHy8UvcT+E6zlHmu+ChAP/NJcp8099CFhPIGLQQIadzfAfUgnHmhUmZooDgWJEyGPVpeghSGbuDGoScNSebR7fnYdsl45m4dtgc6kmQ1d76WajGHAsdeSmFZziM6WUiauT4NjO2U0oR+QcPPGPd7Q93Tknblee5YnmLuoDuv/v6AaNZd18KUZT0iMJ4lqOVM1btsrTsWo+5lpNpjOY9o25C08ChKu4+BdmrAOgSyINE+B3oNFjs1WAwI5wXhAgRti7CQxyUz1nDMVBjmbInbnBLOscufY7vKkMASJRNt+zRVn5aX0AoSEu1hrKArLan0KIQ3ks4uyyq+w2FZjouVf1XFQDemV+xGhHWOiQbQUpEpj540w3M70FEVWpEUHlnugQXpWYQssKV5ozXCvbRY6Uch6fcC5mUNX2kilZfHNWVL4Par4aXc5efs91tk7QASV/Il67txONtt8EN/Biks036bjo7ol3YBVpZFd/2SK5CAtYhco1KDl0hkT7HUj5jP6ox5/fK+eGKmpMyDMn1W4Wg4aR6KLrnkEj7+8Y/zhje8gTe/+c2cdtppXH/99fziL/7isM3rXvc6+v0+V111FQsLCzzxiU/khhtuOG6PogoVKlSoUOGRAmsfJEfrSlN0VJw0D0UAz372s3n2s5+94fdCCK6++mquvvrqB2V7oqx8ILRjeVaycwSpCpgLGtT8jEAWjPt9ZuI2SxMR9/V9+okLu2XuYaVA5RaVWfy2IJkP+N7cZmbC0/BFwZTqALDJa3Px1H1kZ3vsaU2ydGYN1T8Xqxxrw3hG3FjJlOstxcQ/DNj6lRR1481ru78u4jvmGG9uptMfGM6taInAMQp53WVZmfGcyUaPlt9HCcOSrnEod6zPvv4Y8/0aST/AZC7K1YXTSsymTb6XbB8KA2eU09XsL8a4MzuDO3oz7Ou1SLRHzcvZXlskCl3Ut8s/xNl+QUvGGAz3qf34QpMan33ZGGmZSZNaH73BBR6LlaKaAJ3UfS6MYlx11zWDfFLo1ntqfYHbox3oQKFjD1HE6LpHMuWRtZzdv0zL7R4IKbKITgEdAUXDYqdStm9Z4OKpezmvtndodnnHthm+tPlR3HPXDAgPlUK0VBAuWfyOQqVlRlkhnPmdVzIOPitZOHVLMV5Qm3AmkZtaHWIvp5OFtNsxYm9E827B2D0F0f4eIs0xdbfv/S0xbRR5XYCyyLBw2UTClXtwBT3Lg6FWdGU6Noh6TlTLaEQpgaeHUb82kqzUanjKFdaVyhKoUr0kzVDHkwjfaYVShckUtnC6JuFZpO90Jb6/UhLEU8YZnCrtNEo4xi+3EokrXwFOJ2St05+Iwl2jQccxFypx2zbeCrO3VxqSmkegNP3Cp5MG5HmZeTYosGqEYzOMpK8DDuVNFkSd/ekYty5tZu/BcbwDbmxFsxDPu2tb+4K8IdAR0CzYNNbhtNYcm8P2cJzNZ/XS3NKnmwQUuUIpgzECX+lVpSsy44ox61y6chsZqMwitctCtGqwf44p8j3327aJuDef4KDO6ZqQg4WTBOxOp9iXjHEoqbOURfRznyz3hvotZ5tcsj+FcMaNRbmsLGeCEgycHgeJciIvi8AaAGdgWSDRgXUlgqQdZtxJLNpK+rlHPw3ceCicVk96ZljEedBea0meetjMZcnpQtIuDXAH+qSpoMe036YuU7YGi7S8BCUMe+w4qQ4RicK23TU/Z5rkhWI5D5mJOkhhhtmzAw1d1iwzHidqqF6OiXyMXxYY1oIk81nMYhb8GrHKSfVq5rnCyY2T6qGoQoUKFSpU+M8Hl8TwQFFNnx0d1UPRBhDConxNFlhX4FCuFGBUCXhtQRYFHAib1P0MXxhilbO51mFpPKbdLaONvkIWknDJFSz0uxAekszVWnxVnUa7iNgausyW1Hjc25sgKTyENOiaQccgmjnbtyzwjC238dzWtwCG2VO3/ESPP3juT/LZbz6RbTcKGp+4GVusX6BQNRrkW8coYhf5DSPjkjjRYalbGbfoTTlTm9rsas2zKXBM1kJRZ3/ios6D/Trdfogp7e+FNHhBQeQVzmtIB8MItWdCuiZkNm9xV2+a+7pjLCYxhZbEfkGkCnrxSjZRS7p9k0hO8Zqk9hCJ9YesC8A2f4FT1OGeRQOMq97QqswYV3wyUjm7/Dlg49+d39jDZ5rnkDUVvRkfscmnPyXobYV8c46q5ejUXTZq1qe2F1q7C8KFHBNIOttCZs/cyqfPbTK/o86j6s4rarmI6Wc+qqOIDkHrzh7evkWwhmB6DHBal7yunOdLZJ2/ShmtD3Q+o+4SuVZoI5nv1NBzIc29grE7c2rfP4idPQRCoLaVmZebI5dJNqaJpvq0agmZVrTbMbrrIQtWlfkQwYClEghpCXznTxSqYpjJk2ifpPDIB2VqlHbn08vxldMV9XLHqPQznyz10H0PkShkWTbCRi5TzfM09dBRlpGfD/cvKTzaScgcdaS0+FKj5EpWWycJ6S9FeMuSYAmiBUu0qJGZQUcSqRWmzErrhz6dIEYIV8w204o089G5gkIORahaQD/1WQxi9nquaGthFLNJgz0L45iFgLDt1uklgGXIEmXjkE0XzEwvc+7EAc6p76Mp3YFd0jUW85hEe/SSgKznY7XEeAbPc+xazXPHYMzvkxqPRHssRjFJZNCxIi/LthjlGF1wOiYip9tZziNu627lzv4m2nnEbNLgUM81bHcjp60p91WURWDB7YMtJCIdZKIKl5VYMCysaj2BERY7GITlT6V2Y0YNGOcARAiIlSy+yWilBM58ElPo2JXh6XqIXGA9V6JElkzRWC0h9jNyo1jqxXTaETb1UYnAJgFtI9jru/vL5rhNEBfs9OfY6c9Rlyl947OUxGTtEJkLZK88bknAUiZJUp9D9TqhX7giubnCSksRCdLxMgPOhqgsQPuCZFyiI8eWWSNYzkIWgxqpycjyE8MUVdNnJwbVQ1GFChUqVKjwCMeD4VNUmTceHdVD0QawpdtqFmuKunNHVWWwI6zLcJE9Sb8Tsj9q4klDw08pjHRz+1GZ+VRTFLHAS2Xpam3xO4Ji3uNA2CI3kruiScBlZhxq1+keqhPOegQLzlm5CBX7Dmzhg0tNdp/q2j5/6iYeF8yzScJzJ/+N9kURXwtOZ3zrJUx9NyXcPQ9JqT9q1km3tljaGdDbJMibTqMiyghvIGMwHuQNi54sGJvssGtsge3xEjWV0dMBB5Im+7ouOlvo1shSD2sEQjktQD3KaATpMCskNSvaHWMFEkvdS2n4GUnh0zUBuZHMpzF3J859equ/mUm1m0d5KxlrNWkZlz16Xjh01N6ilvHFERif4CDb4kUA9kYthLBsjxd5dHBkt+2d/hxeqNExJBNO39M7reDss/bwUzO3ss1f4ObuLgA+eceFFIeahAs53r//EN1uM3XKDvzudmZVg3/zdtDb5LaXFB7zSw2iQ4LmfTnenfsoDswigwBRizHl/hZ1yMcsJjKIXODlAq/vdF+mK8hyj551TJoux1qa+MhMoHKXNQdA4CNqNbLNLsmgs82jt8PQ3NHmjKlD1LyM/b0mnW6IzJz3TegOFzK36DILSNcEWkuEgFA5Vi8TLjLu5QFp5pEmPiaXgGBJWJRvUGUxUFMyOnniYXseqqvw+k6PYhUUhUALKHw9LHipjXS+V0lIrxNiux4ilc63RlqMAtQKreP1BMGCIFxyLFF4KEFkBSbysTIir7v+ZmOSIlNoLdHK6WgsLtOJXAzd5tGCTPgsyBhjBYt+hDaSxSQm7fnIfOUfJx0CQqAD5/qdbNaMbW5zzuQsFzbuY6c/N2ybWJ/CKnq5Kz5rMuVcpJVBSUszSJkp9UdbwiWMlYSyoJsH7On55D13HzKBwCgoykskbxlUXOApQycP6OSTdLOQ+U6NdDHEWyr9gLqCOCstqryyiGxkMb7FKouwAlmMaIo0K0VfyyQwq8D4xrHDauUfWKEFNl/xhgIQvqUZp+yoL7E5cvuVG1eU+YBtQs8jmFdubPuQWTB1t86xqM/OuhuQ+4IWd+op+h0f2ZfIAgodsOA7BuxAo0m3EVIXGU2ZkfuKHwabCb0Ca50G0OuVHZVQ5B6ZFszlCj8snKdS6iGN0wzmdTFsLDTowN0H8tJ/SmtJNwuZTRrUvJw8GxFlVjjpUT0UVahQoUKFCo9wjJqP3l9UPkVHR/VQtAF6eQAeSF9jaopcS6x0g3LggyJzgel5LC7XsFYQ+7mr9dMLoZybF8a1NQootUnCukjMJB7tXkShXdtCK3rtCG9RER2E5n2GeDZF9gt0zaO3tcbXdj4GgM+eeiHR1i7TLaf3mWvXEYUkmYK5C0PUmVtXHG9bkExbzESOirRL7+z6+AvOiXeoJfFKjyILSlqCUkTV0REHkib3dCaYXXLMQ9IJnAZBAIFGlNqEfuEz22+SaJ+5MpIb9/s0VUIkc7YEyyicG/gB2aCThiz0a9xqnCN5twiZ1w0uinaz02sjgYMmpG0iuiZElUzRook5kmxwl9fkvNpeAGabTYyVnBEdQB6Fgk5sQJ54hMmK78zk9iV+65TP8lOxiwhf2PgPAB4VzfK2pWfRuzNkrGSg7MISfmcLsnAuz7VSaOEJg5AGDKhUY3uOdhRhSDFVo7uldNzdZpAzCb605Ishak4SzTlvGqMg6Ql65WWb+Qa/pQnCgn5Tk0549Db7yHwSNdmkaAa0Ty0z8HaCt63HWdMHOa0+R0/77LUtitQj6AqCNoSL7tiq3JLXBDqUqESgSwYlUs67JymdiHsqcKxO30O1nQu3YyEseWixvl3RrOQS1Rf4bYHfKTM5hct2TCd8slyyWF4HYZhjjCTpBMhFn3BOErTdb6x0NfmK0pDc+E7r5/XLDNGeRvYyRD9DFAav4SPL7MgBI6qUIfAKpFb0wDkyF2LIANnCYq1HHzBG0g9Lr6XUaYCEKGuBseJLVMSQjxvUeMamRoet0RLjqkckc5LyQkyNT187B3BTyBVmSkDgF7SChC2lvvDUYK403JMciFscrDVIo4AiclmCA1YXcPXoooy41GL18oDFbky6FOIteEOfNL/r7l1WlHUOY4Zu1IbVPkTGd1m2Bne/ssrVzzOhgVgjPDN0Add9BUIhjHP1hoHbtSXyc6bDDjvDueExOJQ1MEaiupJw3rnHO28nhZ5y56Dlp5xVO0BDJdzpzzCf1OipGip1nl4qFfR9N7b3jreYHWvRjQKaZEMtYaYVIpV4PfDdbdLtoxCYQKE9i9XOD4neirP7QLozONY6dKycrllQFlNIlnsRhZEESlN0VzKCH0pUZT5ODKqHogoVKlSoUOERjgejnEhFFB0d1UPRBljqRsjYHR7rG0wo0INEDTkyl54LdN9jydZoK4POJabr4y2XGTk9N8/uIg5BEQtX9TmwCM85AasyOhNC40cFec2jqDstEoBa7KL29Aju9mh932l6km0NOluaLI43y4gPGulKdel0zHkNARRbMzZtWmJHy0Wh9y2PMdsbx18W1PdYopIhMAr604qO8VkI6uwJxzBWUljJ3k6L2YUmeqn0X+orsGACgwVyaWlrSbsbsbc8Tl5ZnbwZJ2xrLrO9tsiU36Xl9en4AYeSGv3UJ+kFLJTZV/uXWtw3McbdE9OcX9vDJq9NZhUH8jHnal3WXlvSNZrye1x8BI3Q6YGrZ3ZbtJVuERKK9bPyRnFLbzvqYEB9n8XvGnSkSHOP7WoJiFe1/ZWxffzjGfdy52mn07xzC6ooEFMTJFMe6ZTmok0HuHziNsB5x+zrNdnXrFPUPYJGHVkUiM2b6G6P6G5364x2dNgxsUgnC9nXCZApRPOG6JDLbjO+RzJdjgvfMFHvEaqC/crQTZuoRIII8bs+RbxSJ61oGGLPZYQt5jFLWcxSEkOiHPM5Uh196Gps3PIBIxAoTdNPiFSpKSp8hLCIVOIvCYJFp4EznqCoOR2GjkdcqgvnDB8sQ7Sg8VJLEQr6U4peokgKpxHrtRRSGUhd3cFwidIF3GAUZE1JOl5qlRoMmRPjM2RwKDQiKxCFHdboshJk6ZBd9zO6BM5zSTuWSPX//+z9ebBl2UHeC/7WtKcz3yFvTjVKQrNACIEtjHE/BuFWG0/RJmzCOBiijaHDlsHgIPyHFYSRsB8QooOAAMJtm/azrOf37DZgh0F+ZrLxMxoQaChJNWRV5XTne8Y9r7X6j7XvuZkS1aWCUiHB+SJuZObJnfvsYe2de337G86v68COOaASwb2IANuokLBMYE7gwrnpdbh+VNeztbQxU5shcesxu7AJtdXBvdf1h4V/HH6R+LXD0ogWI8B0bK3vGuzPf7p/EKA8kbGkuiGSdq01K43DxR6bXHTCnV8CvsuiCsxJl0Fk/MUmWYHXIrjQmi7DSoTvkpElTpp1XlUVGayIEI0mauicjIK2UpSNwXlBr6OQerKi17GnsgpatuTMhftiJii67rVM1zwSH64zzj4SX+GuD4xgPO2YrjichNlOylE9YGozEtFwZIfcLsZM5xlmqohnrPWgQUfVjXffJWe3ElWHsanKC5cxdHldKet7tpdAKylXEXWpEcrj8s1/o3+UsDmbG2ywwQYbbPB5jucKq30h2Lw+e35sHoqeA/UiRp1PA93Fe3xgPbPzukuWdQJbSywKSolaqvU7bFV1DeWRwEVhZtsMwWYOYRxSOlQ39Yu1w/QtS23Js4R6ZMh3UnoHMelxi1616/fdonEkUxfcKDp0Dqk69BA5LWAsqM9noMay01txJZ1RWMMNt4WeagbPerZ+ZwrP3g3rNJreQ1eQTZ+zOOZuPKJuNdYJTmd93HFMND3vdAuztbYnsdrjpMKVGvIwu9flxbE87fc52hlx69KIR0enTKKcvI1ZVjHFMkaemXVKdB1HPFUYrJNh1p3sk8iG3MWcND0OupykG2Kb46ZPM/7gOo3603E+Ow2J2JpbzRZLd4e+fG7X2kfnV0kOBMOnVuizHOEm3HpowK++8pW8Pnr2M5Z/+eCIT44epZkkxOMhbpRRDyVyUvAlo2f5qq7X7tTGfGjwEDf7l2kTCXGMzDLcIKEaStpxYAgeGM25ms25Q9hP2YCqHLKxOCNwRoR0c2A8zHnZ8IRYtjgvuNFPabOINhYhzdl7VN3pSeaS1UnGY26PXlrRWslylYALCczV+KLzSTaABGs6dqHLdamtQgtLz4TjWsaGAzOg8kHnkZ56zNLhjKDckrgopHwDuNThtFwnd0dzS3SUgwSzzEBG64b0pi8QkYfIhWvOgS4cZt6GrBwjqDv2ypkw+/cKdCmwicRrifAOrEM4v2a+nPHo2DKMS/qmprYqJDk3AlleaOsg6GkaJXFa0RByy1wrEY1cO7Ogc1t1OT6qEtjccLLqcTOaEMuWKjLI7vpuOnpJiq6TzovAxDWKvIyY1inHTdDsnWcbnTU9zsqQ6WNWErMMTIawnSaICwGuFCFN3NHQTyqaVlECdceoNFXochSNWOur1m9kBKGJXl9Qhq6WnVYo6CeFE3glcbGCpCHtUuiNtiyswJYSl0tMGcZDO1dMVynTJltn7AxUydjkRKalICR0m5VFthJVKPy5rky2XFILruolh3YeegzrsP/JmcNFgmYQ9ntVGhZtzMKlKOu5Ue3yxGwHd5jQP4DswK3Zn2okqAddtpr2COXxbdB4qqpzFXfLOnXOSIXx62MXlrcCUUtcp61zxef+pZTnxXl9tsHzY/NQtMEGG2ywwQaf59gwRS8NNg9FzwG1UgT7WdAkyHvyNyC8g3fG42OHjCxSe1wr8F22xb3LBq1DyLloBtD2Q46Rd4KyiGiaLkdEW7KkZnuwQg6XlJcN00dT5mcJ5sxgFtFFT1nnIPGKrmVdEM0hnnt06UDIdd5GszRMy5RVElNaQ1EZoplgcLPE/u5j9+93UdLbew3LBzVVfd5krWhXmnga3CIQjse588Yrj9QO30hkHZq8k9MwC4SQ+5HnESd+iMST9wx5a5gXCWJmiE4kunvnb2NBKSNOhxnLNsIIy1jllM5gRMhhAZiVKSdFRmEjmq3381XPTf7gkEzrlI8urvHvzJS/Pjj+PZYJJ+xgNcDkoM9y/K279JRg8MgO//vtN/L/GD35Gb1p0yYNab6FhWWONAZdeFyt7stpksIjhQvMi/XQNPg6OKTOtTsQsqpKa4L7sTnP8xG0maba0pTb4CZhhn5tMGM3XrJsI8rWQKHQK4iWjmhhQ1fTehIrkY2hXmjKLIXIBXYgcjQ7nnZwoanRecjkkm3QYpipokxijrI+V7I5l818vV93swFzNUQ1QScUH1e4WOFMTL4n8KMw7R5vLXFOsoj66KXG3RbIVQlFSSwE5pJZi5lUbBkPc/IoolxovJLIxqMXNajABokuVdurwLo6LWgTcdFw3loQEry/0P9EnkFSM45KItkyl3HIYKoCs3muO0Gwdpf6RoYUY+Hx7QXTIjo2QTZAMCXhlcDGijyNOU56jKOCTNb0O9pU4YhUS6RCf5x3ICuJbwWFirkdj+h3LJzCYaTlqO6zqGMoNDoPGsVzJkN2LKBvQ5ZUYPIcdZd0LqVDxy1OdZrBRNI2ElEqVBnYRFUHrVeLxBqP6vLVlHZYJUNifa4vxkMlqdBUxtBPwrYOkgrvBbNS42YyMHsloedxEXFaZWvn1LZacC0+YyvLeTYdB5bbhXyt0LMW9i2WLQNZMpaCSFhqp1CVwCw90bwNaeV199+XD+5OiaN0hv1qxPGsT3Ik6d1xpEf1Wgdq43D/cDpoo6RyoYevWw+ee5jFTk/U89i+RUYdvdaowC7W3b2+fGkYnBdFaL1RWj8vNnzcBhtssMEGG2ywARum6DkhaoGIxUWuUBNcGMBFF5DyiNiS9Goi09K0itwLXCnXfUtOh582C0nF7dAi4jDj8JXCTw2uW2+lPXnfkk0Kro5nXBktYASn2ykHiwGrVYKtu/wj6VGRRWlHU2uKaURyVwGS9MQSzR1J0iX5jjVn2xnLfkwkQ/Jtq7noMLoXWtOkkmbgGY1z9voLjvMeuQvJyl0NGsL5TuMCZlAzGeRUrWbm+ti5ub8rrvLIOrg8rJc4Qv5KW+vgQFmxZoqEDa6UplUY4RirFZfVDInjIBpxy4wBmBYp8yrhieUOvxa9ii31IV5rsvt2RXXiL93NNG8ux/wn/zrgo5/BFn2sDrNe50MOjuvFCKUQq4r0xHPz7ha/+PAWf7l30Xje+JZpnaFKUIuS9uQEuVzRu7OFPoj47ekDvDa91a1Xclz2kZVAVRbKCpfnqFVJtHLoZTivx/M+1knOlhmylAigTSVtIih2JOWOpzcMzEOmG6ZNyjPLCftHI+IjRXLmiZYOVVmcluhO7xDNwxRYlYK2p2mGHjtoMf2aOA7Jv2UeZtHVaUxyGPQb0Szk2+Q+4iTtsRpHjDpKZaJXHPYGPJvsIFpFfFKjbx5DEhP3dxBekw3Dsm++fJOeqvit5CEO55eobykyIaCsEEWDcODisK2jYc7DozNOoowbpynCSaJZg9oPNGUsd9A7qhuHnTPKBAcYgGgdNE0o9xLiwiGWOMZJwSRaBVelCwnXqhSoHHQXN+Nk0CmtHXkeQHRaoqDHEZ8+477HseesoLWS2um1jgjASEuqGrSyIDodSxloqVYYZlHG3ThoyXq6pqcqSmtCjlmXLn2uJ8Lf853SI4SncYppFbriVnkcOvrcxXKIoKFBeoQN7KwqWDsDKy2hu4SiqMUbyFsFwqPKcJ26HLyUVH297uHbTVeMojJomFYKnUvkKqSwUyry1hB11NquWlJHh1zrz3i6t4eLdGA0W38fu66lZSBb+iImETWtk+FekTt0YfFKrPdLRpa9ZMFlPaNB0XhJU2jSJcSzFj0vcWnnUvUerwU+Din8UnjaSq+7Bb2G89L7NusS/ofhOtHaYa2kccGyJ9rAJlK/NK+kNt1nLw02D0UbbLDBBhts8HkOt3mgeUmweSh6LnRMkFchx0SIezp9LKHvyAukcmRJzTgpqKwOSby5XjvVvOpyVGKwfYsZVhhjqSuDnXdpvbNuvU7Q9CXFZcWzraKaaGLVsqgS8iKizfU6BdcnljRpuDRYoKVjvz9g5keYpSI5g2hhSU7DsuWWpCgMEs+1dEa+HfE7V3rMH4nYvfUy2sefDLscRdhXP8TsUYl5eMFXXXmKscn5sLzOsRohazCrcBCEh3oocJHj0mjFq7f2cV7ymNnjsJ2A07TZ+Xt8qHY86VbBQ6MzduMlR1Wfg2jAukbq3syW8xBkL7FIpPAMZcmemXE9De4c5wWl1fR1TeU0N9sxV9WUibxgi84zX3bMgr6umVcJT8+3+P/aN3KnucHX9j/Oa4yn9JaP1SEoyCjLdAz5tYxeuYfvMnlcqblRXYJ7mCIjNNvxCpuCjzonSlUSHyxJD7d46nSb3x09CATXTd4GysIZAXGEiCKQMmiSyu5cLWNOnKBeRpg85Nm0CdhIUk0I7I4O+3VcZjy7GHNwMkTejYnPgiuwTSRNGmGT0MkFdA7FjpHz4c+2J4jjlsvDeRhDOhzb2SLkI2VHjvgs6DdAM9sJbfF7JgzYXTXnMBvyW/HDSAv6dEV76zYAyVYPWQ3WzfdvHtzg4egIIx3/2/6Yuh+DkkFXVTfg/ZrRmaQ519Mz2k43ZFYesz9fr1snMeahznrlxYUL9LyLq3X4ukFojZcXTBGxZRBVxLJl3iYsq9CrZuaCaMlar2cTsOedX+dwXfmXu2es0uUVCbAR2NjjI4/qetlqpyhstB6HFknjOsdbB9GG+4oqBG2pgn4IWLURqWwucsy6nKBzssBG0GYdE5o19OIaLRzTKmU+zZBnJowfQr8ZdA4qfa5rC5k80SKwvsKFnKDz/rleXGNUyDyqZ+E4njuzVBFyjDITDtjDveCA1NLxkdLQLNPAEgvAXfQeAgw6V9nIFNCdN2k9wnWaou77M1mzJSWxMIxlQaTCMRSu0+Tdc16TtOZadMaDesbcR/R1vU7Y91LgI03b61Lg+5KmBzJtiU0bMqPWJ6PLbjpninpgBw7Tr+llFUp68jIKbkQX+t6EBT59rHxOIDZM0UuEjaZogw022GCDDTbYgA1T9Jxw2oeOHxNyKaxQiK5BWrVdnkUtcFYi8WS6IVEtyzimUBcpuuc9aa0LzFMct/TimgVQiAhVQnIWFlaVpy4kTkvKKOGuE+AF9iwi2Vf0T7gnb0OzvG5wDwquj6eM0pJZv4dNuyTt1UUsq1lG5LUiUi2vSu9wOZpy8kjG/ukVosUug2GYdbtIcfbqjNWjLV917Vn+L6OPY5E8nW+DE+gSosU5XUboipKh0frl2RGm0+5MVylVldFm3Uw1c5grOV985Q5vHt9gIEs+oa9wKx1xFGe0qVrrN2wC3hDcLE3KrXobhUMJz0CVvDILmUpXkzOgm1GqJQbLrVawkAsSIci9p+za5Mcq52o6ZdlGnOQ9nplNOCkzPt6/ysPZCSOdc7uaANBYRdv35LsasxogWo/TQf+xsJ9pcfvq0Sd437XXsHqgR//JMXY2B++RDRS1pnCBqhnpnGFU0fYdxbYiu7KNzFLanQFNX6xnp74V1LmBXN2XcdVmQeMgtKfqXDd36hHFIkYdRyQnYSZfjQT5JUEz6Brcu3GoSjCLoJvRRdDMNJXEOYGWjkheTHdFHbrQ0sOa6GCB68WUkwGikkSq5WFzBMDDuuROuk8UNwiXwtlsvQ61f4YuBuu09oejI744mrKf3eQX+q/F6xiaFrtYoLMUdU/ReKJa+qpCS4doJGbl8SenFws0zVqzZ1MPvRZaiY1lpwH0eO9BiC7XqLsWuwyeaZNxazXi6HhIvK/J9iE9vdj/ahQ0XMIKsIEVEa7L96lF0PXc6y7t8mx85PEmdNxZL1k2EYdywLy9GDfTOqXpRCtBl9jpk3zQ3DVtpwN0msZLnBchh8hx0VrfaZ5cr2NChzkPDqYhrbxMQ/v8SUgC9xLq0blmUUDiQVlsLTvnlw99YkXQ8p0fhV5UsZUUCOG5tYxpzyLc8pwlB6Sn1zFFD8an7Og5zgtujUecDmJ0IQPpI4IW5lxb1XhB6UMHHJXE5B69CG5KWUdrd1Rfl2vW9yFdsRXnPGH8hfbnnty42Fi29JKRBFxNLBqkcbQJVGOFixLKSfj+4hK0Wy29fkWsW1ZVBG1wzQp70QsHHcOWWKIoOAatD9eLr7sE7K494N6x8LnEphD2pcHmoWiDDTbYYIMNPs+xKYR9abB5KHouCJCxJcrCLKbSEbabQqhKIpuQ51LnmryOaL0kkhYlwzv7c32CWRE0HAbqWqKkYxCXeA9FmuKMwnUsgexmjs4AsUVKT5Nr4iPF5HHH8FML5CI4j5rLQ05el3Km+xxHDb2oRpmQACw8yLLB2DCFiRYGijDr3FJLrpoznphc4taVbZbXImTTW+9zORHIfsNWtCKRDSdtn9MqQ60U0dwTzcLxcFoiG73WDDReUTrDvE5o69CY7XWnZcgs28MVrx7c5TXJbRSO43ZAGjX42GFTtdZKuBhc4hDCM61THi8usbAJW3rJll7xmiToSi6rJbsKDJLcW46s4rYd8eFqyMrF953KxismJudSsmTVRBwveixWCfvTIR9LL9OPL1qu53kC0ocuplShVxZVedRS8sRql2qnuS+r6KvSZ9i7OmX+0C69R6+hD3u0wxQbhTb2fheTvKdnXE+n/M64ptxOya/3MMOYaqIpJ4K21/Xf6eASk41cZ+E43bWIRyEJuSo7bVKlUKeG+DS0k7cp1GOod1uiSYlWjnLV5bIcxKGhfnXu8hE0A0ldGYrW4JRYsxSyEajaI2sb8n58N0PXnoEu2e326ZLK2NVz4qhLWm/vEVcUJcIRnFYE19El1WdXz8M1YoHlKmzb2RSdW0Tb6bJ+jxu3EBf/IdjLE/JLXafbXsX2zoJVEdOcaGwkOmdS+Lm3p9C1ioPVgIPVgMOjIclTMeNPOQZPF6hFiUu6Xr8mxcaatgcukqF3zApUIdB50NSsE6EBEXfXbDeT9z4cy2mRUrQmpDGfj0WnqG3odrOxw6YCyhAoJVpBWYVze1IElmTZRORFhMo7N2CXGC6cgDis90p/zmsHd6ic5rjMmDJCF2AWId3+/PL2kSMdlkSmZW4yqjpB5wLZ+LWz7bzbTQrP0BS4VHDc79P0Dc0isCNOh8N7fp4sAofECIuRDq87dtUBTlC3mlMbNuJmO+J2s8Wzywl6roinFj3N8UYh2yyMf2BPX2RhXVJ9LidzXBwcr+fn9JyNdy6wuKdOcGJT5m2Kd6FBoBpJqpGk7HogiyuWdCdn0suxToaMuFwFJ153G7DnJmN18SXWS6pG01QaUcngWKy6AXAPy/m5Qki0fjHCGzd4Pmw0RRtssMEGG2ywwQZsmKLnxLl+KI0bUtMwV45llxHkFyGHQ7RgY0kxjCj6hijuZkqi0xIBJvfIxuOMRJaS1koS1eLiipOkxSaGNj3PNBKUW1BdaXjg+glXsgXPzCccn+0AIKcr3N2DsF5rSa7FyFLivSDVDSZqu+ZrEZKS2zCTNCuPyiXHZY9T22dE3qWjhlbs8xmXsB5dgltEfGpxiaF+BSdNj6dOtolPBPGsReVhx3w/Wif/NlbxTLHFadXjk/uXkDdTkuOLd/4u6hJ28SgcpY9Y2ISyCbNiG/u1S8r2HHJYk8YNtVXcLUas2pg8idjVC15jgvvrkuqvz9UQqP2C38gv8d+mL+fuKmS9TJKQkbOXzOnrmli2pLoJM/mVgUpxohJOY4sy4VjZWqLakIEiPOi8IT0W9O5EfPD2A/zi7v1ZRUoEt9QzQ6i3U+LG0vQ1Lg6dUHE3ECJh0TLkStkYmp7ES001ljRDcGnnrlEhGVy0F2nJXge3kYscdB1cAKw0eiXWSczNAKq9hp2rM6725+St4ekqjB2dC9JTT7bfhK4uYSh3BPU9zMC5/scZT5NJ6q0YhKAZGOqhgNRihKPsaL2lqyhd5wY0wKAPJydhY0ZD2ixk2ABcVoH2GogSIUKCsc/Dhru6RpVunQPWuuA4TFQDsaMeGPzVXbQU+EtbnL6yx/LhcL6uXz3locEZT8+3uBP3gtZIKYTREJkuA6c7WUvFkRzgc032rGbr45bBh/dpn34GC6h+GFOpfZA2GdKmEq9C15qwQXejV4H9lc35RcPF9RsFRx+EWX1tFVWr124zt2aSQEqPiCwuCqygbAR6IakJOribVnKaZdSNpj5NyE4F2WFIZ7axoh4YVt3xOm+UV8LzbG+LG+klvAydZcJfaGRkv+HR7RO24pxn0gnPlLs0UxP2pw1ZRBThol1UCWXaMePKUUUem4gL/UwlOViGc/878QOMTcGz+YTTRYYs5FpLKRwUjWa/GgHwpNrj2Wqbw8UAswyddrQWIo2NBSYN18vLokPuxUTnXbJ4cFGK1iO6e2xRRjxd7fIRveBOM+ET80u4hUE2567A4H4F0Dsle8MFPVNzUvRoSo1eSfQqMEXnTHs4UeEEWxe0XtZKfJdTJdug08MBFS8J3IvCYWxenz0fNg9FG2ywwQYbbPB5Drt5ffaSYPNQ9BzQS0FTKbyHzNRI4Sm6VFRnNLINbh+vBfnYULaGvWzJKCk4SFpcdNHLoyrfNTCHQX2euSHVReYPhHfYbQq97ZyvvfxJ3pTd4JOTK/xc8xXMDyakB9vEJqy33epRbEncpObaYMZOsuQ0zziL+10nmgh5HoQcEFVKTvIenyiuksqaJxfbiJkhnnuis/BSXDaOLJEUB4pPjS+xaiKK2lAc9hjNwqzuPAW7zRR1H+jZkO1TZzxxsoN/NmP0JKQnlnogu2UlqypiaWOmtseJ7XOzmDDLE0Qt8Rpcp49Q45rxaMUwLpHCM69jaqtIVY0U7j6G6NPxeLHH7x5cZXmSgRPcHIT9ujQZcL0/I1KhTd57AbVErUIOkIslbXahhzl3tjgForFEJwX9W5r8qR4/d+ktXHrglwB4pVnyG8WDHCwHwSnWevCd89BB0ypOutZzIyy38gnNMiJZhWMpbJj5nrtp1mOhkagqjC/hQsKyjUMis47sBVPkApskfNhWG4PKWgZRmLqe5D38YdBX9W/C8KkCc7TEDlLkrsFriNKGSVyQ6ZpVFsb3YphR7kQsGo2ZKJpUUE0Ci3Vc9/hQGbKX7ugpj5XXghYpgfbyGHlwiNCa6qEJ5Y7n4V5gji53560na1THpv7/gxGWnqpRWUM5MRQPDjGjhHI3ZvGgwFwODNQjg1PGpuCmHF+cPy0RaYJPI1x0wW7olcRVMemxYPJJy+ADt9bZRwB2GeLa1TN3SQcxTT8JnWppp9Oruk6v3KPzi2u3LQVeyOAQ9GCMZZBUCOEpGkNRhWvWtoHVlfKCZTpPGY9mXQdZ12hfn2XMh0HfZqaK5LRzA96e4o2m199iMQvrXTYxiWzYVkuuJDN00uBMdF9KM0CcNlzLZlxNptROczPZwmsTcpKawISpLln9bJFxU4/xXlDX+uJ/U9GxJEvJ6VEY2+8vI6R0lHmEP4mJZwJVBn2g8FA3msMqLJuqhtvFmKrWKELXoR33aMYx5QR2RuEcvMIsgYtrvfGqSxP3gQW3fs3GN4XmxmobgGdWWzx1sEN0qImn4fpo006PB/STht75/bzRUKqQSF93zjp9cS2ekyrnTJ+UDmkczvigA/XBzSleAk0RbDRFLxU2mqINNthggw022GADNkzRcyKagp9pinGE7C/pRxVREsQJtQ6zCrPyeCVQucQ6wcgUDEzJ/njAqh+ySdpEoEux7kpLopahKVmKGGclUQHxNMw6ZQv1UNJYxUSveH10xGU952OXr/IrDw6ZnsVk4zAjKieSxcOey1emvHYUsns+ofZCsq8UuNggulAKG4UZRl5G6xnVrbMxZiYxK4cqw36J1qFLh1lKqlnEgRnQNgq1kqg6rNf2g86g3NJU2zCcrLicLiitoSwN8Zmgd2gD+yQCSyG8wGjLSBdI4VjahOOyR50bRCvw0kPH1PT7BTvZikhaFnXMqo5YiNDzlbsYuNDz3Iun2iFPLXdYnaWY4zD7barwzH8kfHDTxGVwWjkRUsqbwCL4btYHIIzD9Sz1WFNOFNEsRi9rzNKSHBk+fucy7+19OQCvzPb50Pwhpkd9tqZg5hUir5BVhqpgVRpu5iH/6KTOePxsB31kyI498WmDlwI1CjPgcw2bbxSilBezV9exVolHZy1J0lCdMw/nE8euB8tLDx5WdcS8Sji7O2T4dDgG4ydKzI1DaFsYZ1RDQb1tedlkyqP90AO3bML5OuzX1FsahEQVIUOpzcK2fepsF3gdAJMo56AcUtcalUJxJaFXPYKXkuW1iHbccim6cBFB6KPTygUGZziAxQKZptSZwpmO2RR+nWujtKPtQbGlaOOYckvR9Fjrn6Z1yrKNOV70UIVEeI9LDGLUpx0lND251rbJJjAYySlkd8v7WKJ7YU/PiA62ibcimp7CRUGbQgKNDc7S864+WTqME7SJoGwFaM+4V/DAYIoUnoO8v3aUtZUOeUrSg/D4WqELQXQG/X1HfGZD2jlQ7CjyS5KmH8aBqj2qaPCnIZ8r3c6IT4JD7WA1YGFTLqkFmaqRyt/XxXY+tr0XNF6ytAnzJsaVCp2DLoPuUVUKVYR/WC9DxpJ3gnoeYQoZrhUR1qcLASdhv6q5Xrvzgk4oLOMiQs6alUzroJVK1IBlGyOkp+nBak/jTI9qKCgveV7TD1lXfXH/f023yjGqkKjSIjpX7Zo3cYJplfAMWzw128IdJvSPID0Oy7WZXLOF1glaH7SdVW0QnZMYf+H8XXflqRCvL4RHSkdkHEp6llbQ1hKzEohVxzC9BHAvQqL181K0G2weijbYYIMNNtjg8x32RRBJb16fPT82D0XPgXjhcXNBmRvclmAclfTSoNWodA/hBLoImhBZhPb3rWjFSOfcHQ752DC4LdpMYYuQqutiH3qdkjMO6iF4MEvo3QkvpdWqwZk++w9kfOSh63xJ8iyl19ROgwyz9WIrzKDLHbC7NQ8MpgxUyX41YpaH3BFhHS5W2CQsW40kNvNI4LRMKVtDtYpIbGCRmuFFrk81VLQpYAK7IqXHKrAGbCLXM9l6IGgGjocHCx5MTzmqB8FR40KXkleSpnPi1GPHl2wd8cbsaS6rOUftkNZJvAst8N54dBIEAlkUfj2rUo7nfcpVhJAe7+FjvWs8njwNwCvMhd7g8WbJf5p9JU+fbcFKr2du69lhoygas9Z42FaBE11/0f2JtCpyeOOotiT5SqLqiPhM0fYUXoCtNDdXgf1pneKZxQSx0JjcI+oW3Pm0HFwjOa3CDHnexMznKck8pIKrssUm+r4+q7BSgayCo0xVF6nHLg4de724Dq3pYdG1w+gc3gvKxpAXEeZMkZ6EvzSnBdQ19HqUlxLyy5DtLXnF8IhL0ZyTZkDbbYgQHh87moHARsHt46VHLBUnh0N+uwjjZZCWWB+a5onC2FRFD+GhyQRCQm7DspUP+U4rb1DCUSXgt4bIsyny0i7VSOE7psh5wbxNOKsz2loRufNZfBhPuoTiNBzXT7GL94LqLCHNuwTnSYTsaeqBohpLbFeT5jSoLrV4XfH+HPC394n3BhQ7KU5DMwo9iLIWtD2B0+HaSk9ANUHfEhxXnkFc8lAvJHDnreGO675rqVG5DB1bxiOdwKwE8dyT3amI7lwkgpvrY5xOsF0GUtMTtL2IWGvcYomelZhFYIpmecKp7XHZR6FbzYmL3CHv11rGutLcyUecVj1uHG9jjg3RuVZQdanq52OxFdQrg68VahF0N4jzvKywTaJbr8nFRSr2ObtpWHefNaXmeBVyiiQehyA2LfOxJb+saDOJjcH27Dr76EbreX3nSP1gXfPkfAedd65FKXGRXDtWUeFeVVpNXnaZTiuPWVq8FsharplY6yRVq2mcomlCS4FwFyxRm110xfnIhevTXWhBU9MgpWPWSppFRDT7tOv3c4gXR1O0YYqeDxtN0QYbbLDBBhtssAEbpug5oQuPXoGvQ2bKJMrZSoNO6CQZB71FFWxGussfymTNnp6zk6zCLANAqK5wRuCN53K24IvS/dAqHVlkA+YsCBTEyYxe35AcJXz05Aq/kryaWZvyoTvXSfYV6bFfO8pKJ6GbHT1TbPOp2S75QZ/RSZj5tami3Amnt9iFdmhJlGNVx+u+HxtBuSVwunuJLsKf621HPCrZHqwoGsNxL8YmGmsEuvv+exmWWLakqkYph1dgjYCeopx0ybM7JW8e3+Ar4ikKwcdkgQyFT4EdSC1pxxQp6TjNM45PB4jDmGQeWLbDSvH++MG1RuVL06exXvI75YP8xskreGx/j/o4RVUiuENiv+6GiiIbcmNaTdMqnL1giWQLlALbuX5s5FDG4VNLPZbkVejBsomgGYKKQxv4ORzioiW9F6OEoB0YbHLRtQVQW7VOC7ZG0PYNTV9TjUKa9Xq8OBGcjW2YFdtIhOypyBGZkJi+dsPYLoOn03p4DcpYlHJIGTKozjvVbBahtyc0Oz2WVzXVruXhwZJUNZw0A26strk9C+xmtYzhPJNLe7Bhm4QTOGcoull320p0t48uDjk2LhKd29IjF4pPLfcA+N0hvNIU3G4vhQ4pA+04xVy9TLs7oBoJXBLOV+skh9WAO6shbmlQ5cW5UrXHzAWuc2HWRWAgTBmOWdMT5CiEU7SpoO53HXDdNnoVusDyKwnD69eeW1e0XBLdmWGuJzgjcFs1o0lwvM3OerRZWKlXivTYdQ5PAZWisWptn142EdU8LJseKsw8nJOmL9bddF4GNo6yAts5U8sBXoSm9rZv8VIRzyKioy2k7/J6uiHjnaByhsZrGq+wrSRuwvhxQqzfmbhWMitTjqyiPEnpH0MydUgL5UBSD6EZdCuNQl6WWiiieUhMd6bbnp4D46AJY0QvJbq8YC3vdVOqStAsDKe6v75eUtOglUP0GpqRRNrQ7aaWko8fhPHyv/T+BH9u9NsMZcWvLF/H8aKH6Jjttm+oB8HtB6DjlkSF61KIoKfyIiSbu44BW7s7u21orMK18iKZvHN42uQepkgHJ2lbK0ppiJQl0Q2DpKLoR7Q9g9MC95J1n70YNR8bPB++YJmid73rXQghePvb377+zHvPO97xDq5evUqapvyZP/Nn+NjHPvaHt5EbbLDBBhts8CLAIf7APxs8P74gH4re//738zM/8zO84Q1vuO/zf/JP/gk/9mM/xk/8xE/w/ve/n8uXL/N1X/d1LBa/t2Npgw022GCDDT7f4QnhjX/QH79xnz0vvuBeny2XS775m7+Zn/3Zn+Uf/aN/tP7ce8+73/1u/sE/+Af8pb/0lwD4F//iX7C3t8e/+lf/ir/5N//mC/oe2XSvVrwg0w178ZzChtdMjycWJ3UQWNoQ9960CiNberJCCrcW9qkiCGvbJFDEPVXzsDnGCEs/q2jj/joQ8dxCD9A4yZ1yzDOrCeXtPrs3PMOnivVrnnISQ6U4q1JKq7l5tEVyNwhrZe1p+op8N6y32nXofoP3ofC0yg3UEhd5qq0gHD1Hm4HNHIOoYRSVxKrlLOthY43wYJbBvp+cSaKpZH8+5M5gRGEj2lYSd699QpVEWKeOLAMZSkSnruVWs8VpkYGV+MiRDCq2e+HVhJKOw9kAdSth+FSg9+uBYI7h9mjMf09eBsBHFte5sdji2dvbmDsxZg7Gh+1vhuHVmUrDtirl8D68wmraIESVPrx+Ohc042R33A02CefPi0Cpn7/qaDNPHLWhfgLQ0mKkDaLkvqbaiVGloZwo2izst+xU0K2TCOmxcYhTsHFEPRCUO9COLKqLe7BlCMo7tz873YlatUNJR2slbdUVt5YyCFu7KhAXO3pJwyTNkcJzOkioxt142UswPU01NlTD8DqubA1PLXeCGHg2YnUWFMlyrhG1uK/uIAjow/eITngqRKgysZHE6s500Hj0qiGeScxM8exiDMCn6j0ScZujdhjOgYKmpxE7A8rdmGoEMjnv44DTKuN0eVEZEV5vCJwK16UOGX+IVq4jFZyBehhiMGRLeFci77dM29RR7kpmrcQsrhDtH+Lb5ve8B7RPPEX88m3wht6w5M2Xb7ITLXlya5cPRdcByNsMVQmipcesQE8V+7MhTych+uLudER0GO4bvVuQnNkQZnpZYFNPPQJhBSZPGLQ7yDJsS70dU02gvVSTjQvyfspyGZEcD0mBZpysXx+lSc2OXjCQBQ6Ja0NNjHAh1NN1gmSTtGhlWVURcqWIFqDLEKRZDwTVlsePwvdL7XCriGgqiM/CGKsm4VWe2S2JonYdDdGqBGlVCBPtXtd6BTjQefhD48NGnHloB0Xo61VhgKkC4pknngpWZajo+XftF3P3wRGv6u+zX40w2rIcefK9IMyuBwIb1AxI5YNJ4PwNtAmFzvVAhkLcLJRMA8RRgxLhfuC7KIzz8eF0F/LYvcoWyoMT2FLjWsXsXHCtLVpbGhMKd90XkCV/8/rs+fEFxxR993d/N29729v42q/92vs+v3HjBvv7+3z913/9+rM4jvnqr/5qfvM3f/Ol3swNNthggw022OALDF9QTNG//tf/mg996EO8//3v/4y/29/fB2Bvb+++z/f29njmmWeec51VVVFVF41+83kQ8goX7OUIT6ZrrkRTqi4FLkobkHEoJfQeWStaL1B4jGhxXiK64MB47kiOSpxOUYXEIRjLAqsFw7jkKALXFS/KYZ9yO6Lcdbx564BX9+5yUA6QlSA5s+ijBWIUpofCx2AcsWqprKZdaXpzMEsLSlBOJOVu2Cc3aYiMpSyiUJSYK6QNs++m77Fxx2pVYVatlorFPOU0akh0g9RBQC1bjz4LjE/WOvK9jOlZxu3JGIC2MAwWkBxVyKolm4RZ3+Ik4YOLhxmrnJvNFv/hzus4uTVGLhV21LI7XPKaSTh/qzbm6cNtsiMYP1ERneQU1/qsrhhsx/YA3Ci2eObpXYYfN4yetqjCUU0Uy2sh8E7IizlR20qciy7stT78CBvs3bINFQ4AspHYNJw7dW4x7kTlsoW61pxW4Ry0TrGqY/AhsqAeSFQcogicAd8qZmVgX2qrcK3CyyBWtYmgHoa4Apm261kz7t6ZqwgC7sSHc+AFZasDmwSYirVQ1BnwsSONGvqmpnGK08xSD8LxKrYk1oTyYeFALTT7hyNO0wzbKtpcI1dh2RBqecEengt6nQqzcNExcFlakUUNrZWhULUBXVjUqkZXUShM7hg4h6RGUTlDayWSrl5lEJi1egRx1pXnKhts040CK3ARoZC2208bXQjIhb2n5qQLWZRNKG7VBZj6ohDWK4HbArvdsDIaVUVcufMo9qOf5LmQHOboIgjQ96I5b8husmfmTOtAUzx+co3kWGFyjyk80UywOkt4JpmECIizhOFRWFf/TkN8UlJPEsqJwSYesVNRTFRgDns94kU42OVEUlz2bF1a8Mj4lNvpiMPpDqtDjbQDqrGmDGQUrx2f8Zr4NpdUTiyaTqwfzpuNBc0orPPaZM7Lhid8yu2yEqHUVtYOm8g1E6riMKBspYimit4dyI5abCRpExnCKfs5W1m+HtuHraRpYqALQnSdCaAJwZOB6QsnrE01baaITRsqkApBduQZPF0gG0d6HK6tE9/jw/E1tqIVl+MZb9i9y2/VhrnsE58GFvc87NPViuNVDyGgqsy6BLfJJC4K1xtd4XKsLYluu+u2MzR0bKvoAhwx50yRw7fdvbwQVK1g6gVZWuGcDAW16mIsfm4hXhRL/qYQ9vnxBcMU3bx5k7/zd/4O//Jf/kuSJHnO5cSn5Y947z/js3vxrne9i9FotP554IEHXrRt3mCDDTbYYIMXAy+G0Hrz+uz58VkxRV/6pV/6glYqhODnf/7nuXbt2u9ro34vfPCDH+Tw8JA3velN68+stfz6r/86P/ETP8EnPxlme/v7+1y5cmW9zOHh4WewR/fiB37gB/ie7/me9Z/n8zkPPPDAmhkQTqCFYyALRl22v1LntRwe4fx6tp7JirHKSVW9nmmb3KJmBVFmUEW81iWpLsQszHTPw8I05VgSX1nwF3c+yJuTfXIX8Tv9h7FG4COF7XXR+mMY7Sx5zeiA/XLIM2I36Ag8tImkGkO9E6bIvUFJ2yrcaUxyKNFF0N7UE49LHL7uQvFySTyF+FRQ5il3rWS8FbQ+QbfhkavAFIm2JVqkUEmcF6Hk1gnMyqPvnOJPpwyjRwFYPNDj13dexjOrCbemY8rHh4xuBX3IIpU80J/y1vFHAThp+3y4dxXajOh4hTiZIfd6tD14cPuMLxnfAuCj86s8WyqyQ0/vqQWibYERxW4X6d+E6hUI0f4Ij9AeoVzQHnSiJ2FDYe+5AMprQIY/qirMdHXpEU5gFoLiLOaGDlP0JGpYLhLUQoWgPBm0R06HsVMtDYcuFGG6RiHPgr0cOlYjvrD92rrTCXUaGghaEJsGK7lUntZKysogim7ZhhAH0FUTCOlpnWRWJ8yLBF/L9bTHRWJtTTc5JIeCpoxpMxPYH8k6PNEqv64ekfU91m/l8YlbMzqDpEIKj3USWUp04ZFlZ6uPBW0PrvQD8/qwOWa7o+Osk+sQxTaV1ENBO7Ls9nMA+qamajXeyXVoaSj17DQfPli94R4mTwa2KBzPsM3R0mOWQV8C4fw0I4j6NfRqVmWP/OER8Ud5TsjpCrMYMV/EPFtscSWaAjCOuhPZb2kGinYevlM2IEpFUZlgO28vzqdZtqjTFZEQqNLglWdrvCJSloNoyNykxGfnJcqB4b3Sn/Oy3hFaOPbHI8rtGNUYyrGgvRRW/MbxTb40btAk9HW5ZorwwWLOOITDvnHrNq/M7lJaw12zg7ShNsOLCzbUdno1MTNkd2H8eEF0d44dZdSDPqsqBNVK4VHyQnsTdDweaQAnwnXTdlEK3BOQqjy9uCYxDTOVImtIjlvMUwf4vKDvw6R0/lC4bl6T3eF/6j3OdBDxH3pfzH9IX8vhnTFqoaFjg+3KcOwGId5gZYiKEEPgOz2eV9xHkIRSaNas7DmrJlrCfaJjikzc0pQaj0I2Au8UjTaUqovF6IJVXxqm6EUKb9w8FT0vPquHog9/+MN87/d+L/3+czeUn8N7zw//8A/f90rqxcDXfM3X8JGPfOS+z771W7+VV73qVfz9v//3efTRR7l8+TLve9/7eOMb3whAXdf82q/9Gv/4H//j51xvHMfEcfycf7/BBhtssMEGG/zxwGetKfq+7/s+Ll269Fkt+6M/+qO/7w16LgwGA173utfd91mv12N7e3v9+dvf/nbe+c538opXvIJXvOIVvPOd7yTLMv7aX/trL/j7ZBsC6EQlyW2EQyLv7YPwIBuHsD7MsoCBKtlVK7bNCtfNNrwU4P2FRonQYbPyEfMyIZqDOuji/dsW1YxJoobXxwdcUwP+ZO9x/t+jt9D0E1w/odrqCln3HF+xd4s/PfoEH9SP8H79UHiPf64jGEI8CbPZYVpxeDogPpH0b3tkC6vLApc49KSkXQVniDiUZAeOaGbJp5ozFbOMW4Q413EIzpPKRN3RY6nl1aMDUlnz0f4VQONPzrDLJfqZAwCy/Uc4vtvjU7lB3UnY/V3P4Omcciciv6p4ID3jbVmwE+XulF/aPuKj8Vb4Lu9pM0V9qeH/dvmjvLUfcqd+Ub2B3x48iJcG4RwIETQqScd4OIEsO21QV8hrE4/PPtMq4pRYO3TaNGgrILiCdM6aAdA56JmiptMJqQS5VMQn3XI+sERedg6pucIvwzTSFIJoHrQuwoHv3gALK3ClXlcm6FUogz3XKdkkaIWk9FSNpin0urYBoI3BxWDTsM3zZcJsntEuDeZUr5kppwIzJSyo0pPYUI7ajCT1xOFGLTq9cGG1pYGZRhYCWd8z2zZuzRC0VlE0mmoa0z+FeOaQjcUlQSfU7DS8ehi0Yo+aBQZB6TVNqUmroNuzUdCAyWHNpW4M9HXFET1cV8Fgo1CIawctwrjAgJ2FW5fOQ7CgsOfuofArIrB80cKiy3C8mr4mt4IsqRknBc+UmsUDCdl4jJ1OP2NchBOn0QWI45gP9B7guOrR1zUHRZggCuVp+lBNBLIJzJ6PHWnckEU1q0FMM0i7saUw3iOXJfE8Q68kdaMZRBVJVpMPIlTHGDoDyFBfYYRlZArifk09jFGVoBpDMgon97XpLdKufDmTgRU6r66wEWSDMEH94v6zvCa+zbPVNv/DvCyMhbxBWI/JDXolaUW4v4R7hSV6Yp/2zl30pV2yK4+wmGpm8wznBVXdFROXOgSIak8bdcy3DCyjbDodWBeImPQrHhhOSVTDybKHlSCth6YBGapMAKoteMvlW3zL8FliEY71o1sfBOAXeB0n+yNEd22pXOKLCOFBdWXK63xVdx7QGu4FqyoiMQ32HifX+q1Ax17qKNwjsrSmkJ6yVtAEN6Zrg61dCo/XDq/US8gUvRhql42m6PnwWT0U3bhxg93d3c96pR//+Me5evXq73ujfr/4/u//foqi4Lu+67s4OzvjK77iK/jlX/5lBoPBS74tG2ywwQYbbPCiwL9Y3WcbPB8+q4eihx566AWt9KUSK//qr/7qfX8WQvCOd7yDd7zjHX/gdcvaYXKPKgTzOmbl4vWTuvdh1iBa17FFYbAlomEsLTtmCR0j0fQMLouwcajV6KmaXmeHKSvD1tTRPn3hjuvfvszRNOPUxrxMQ0/USBWyRIJmpdPJ9Cxf1DvgVdEBT1R7YEMJol621INQgnlpEPRAW0nOgRsSzaB3YHEKVlc0ZqvkVZcPuL0I7prlnW2iuSV9ZoYu++SXEvJriqRXUyUep8S6hgARykJHkxVvHf4ul9SS/3P3YY6zHr4J++cXYeavmo5FqRXZGQyeypG/+zi9h65jvmSHkS6QnfilLxPeNHqGD/dfidcaoRRNT9LfXvLW/sd4lQm1DvvZU0S9t9CmEe04xcaKxTVFcdnjxi2+FahVGN6qCEyRNx57flewFw4dZ6DunpurHYcftngr8FKjSoFqOreLCvshOw2WaCVmLjCr80qOUITa9MKyqgwsC4BZEJZrPC4SNKrTLwGiFqhzVqvotEKyY4ASj9ceZyW2kVDo9fefZxg1fY/rd1qeWYxaKNLZBcsFnS4nC/usi6CjEi4wZH4L4kHF3iiEnDovODgb0s4C06SKsC1tj6Bh6hxlZ6uUcpqQ3jL073jikwpahx3H1AMw/ZotHcZg4+HIaW7ku/iFCeyLCy68NoO0VzOOivV1UNQGn2tMpw+xyqOSFh1bah+tM5RUETRS5xUNrfLY1NMMJHVPYJYXmqjzX1PT8EB/SnVJc/RgwtYbHkH++m9/xj1AjUaUD4zxCuITQdMMeGy/Bz0btGmAbyQ2c1STkA3UDDyq17DbW3I1m6GF4+mzoHFc3THERylyXpAd1GR3E+bDAdW2pq0VspFr56H0QKE4LTPmvcA0JVHDou9p8pDRc16eHN0TxNSTFWjXOfHCcpM0MEoPmBOuqoKJWeFV0LKJxiJE0ACpKjgeITCa0aLFnU3DmFgs0UuLmWuqk5hpqdZVMKKS4fqOQ2WPB1qpkFXQ2tkYXBaO1/ZgxYPZKUp4Ho93OYuhHiii65ew/ZjjN3SVKK874/95+f8gFtF63yYy45H4iK005zTqrx1tshJB1+kCMyV8iB2ToQkpMEeds7JYRSxNGx4wlMPrjgVtLoqVzzWjvahGCk8dG1yhgu5IerSywc0bRaHo+6Wq+XgRWJ5NIezz4/dlyZ9Op/zWb/0Wh4eHuE8bEd/yLd/yomzYBhtssMEGG2ywwUuJF/xQ9Au/8At88zd/M6vVisFgcJ/dXQjxR+ahSJUt5A5VaorW4LxYa4qkdIGGFJ1eyIKzkpWLaTwY0a4dDG0CLo2wqcJFnp6u2FKCuV8SR81n8JnxjRPk/hXeXzzCm+Jn2bcjmkITLRxqWmC2w0xK1BLnJY2XnDU95EyTHbREBwuqyRbOwNXO+bMdrfiE3kOXEJ1UuEThlebK1ow/e+mjfLQXXIL/cTLGK4FYrNCpQTUJQnmypKbQHmn9mv0RSiHby4zSkrckOalIec1on/+SPAi+e1BWYXZWDwRiu6SX1rTZKOhO8hx15wAz37nv/T7AI/EhTnfaBO9xCrKoZk9djDXrJbbtUqh7mmJXs3wA9AMr+mnFdJbhZ2F4n6drO+0Ruiu6LAVmCSb3ND2xTgdmq2Y4LCgrQ5MrfJcV5Aw0I2iGNkRnAzIPs0d8cHe1CdTjwBZ47YMjq0te1kVwsTkVxkTbh7bvcKlFtBdpvOvcIXXOfvjg7mkFvtCopQwJ3ATtUjvwuEmDSRvaSiFmhuRAEE8BEVyKAOWOx2YOWUmSI0F22JUeFwJhBbFp2U0Dq1O2mn0/RK8kZhGYq7pzfkljL477IiK9ZRg+FXJmzPEKryU2CoWv3kme7sJ0fsM8wkEz4iOnV9BzFRgzLWgTQZt5RlG9vr6WTcIsT1HziwLVNhN4J0LhJ0GLBZ07sAiFy8KBjzxkLVXcUXFSd38fjruXITV9J14ix56DB4ccvyHlyvTVuI996uL6f/kjLF69zeK6wiaBOYmnAi8UTV9RT7p19hzOeJqBD/qZ2COlJ1Et15MpY1Nw9lBgehbHW2SHPbKiwZzkDJ41tKmiqDO89uhKrJ1qCJCF4myVctgfkOmKWFtmicMmHetRBhblk+UVvj79BLEwSDxR1tAMYoQP4zozga6UeJQIzlehfHAtJhoX6zDG9QV76TXYRBEPB7iiQA4HeC1QDUQzicvNOrUf0ZXEZi3ZoMR7QWFTvFbrclh/nl4tHc4LCmtCSbLyFNsKm4xY7QlWbwps4d/7ot/gTdEFSwTwZLvkY/kXMyvTkDfWjQUvQimzkIGFbddOxE4r1AbtGUCVG/IkCsnWkcMmHmc6hsldpLWfb2ukLKIrVz7fV6MtvahmlcR4FfOiSH0+C7woOUWb92fPixd8Or/3e7+Xb/u2b2OxWDCdTjk7O1v/nJ6efi62cYMNNthggw3+2MITHor+oD+bZ6Lnxwtmim7fvs3f/tt/myzLnn/hL2DI2uJrv37Hn8gLZ04StVQGXCQRVgWdRSs5tT2ObMLMZmEmQ+dsMhIvO/2KFxgk11TN9eGMu9tb9ET3bOodLJZEM8HjxR53B49x0l7G14poYRGHJyTDYFvS8z771YijrM9BNSSaCeL9Ff7wGP3QGG8kL+uFKN0r0Yz/Gj8SHFRnK1wSIdqE7STnzekNxirkw/yn8Wtokxjk+bZDnDQM45IT6VGFw56eXRyHs5dR1GbtfOmrCunA1Z2QpmMR6wE8tHfCg/0pv3bUo54kaMCtcnQJc5t+xvEXFmgsNE3QniCYOcukO1QfKB7BHifEcxcYkVHIbXnF9ilaOharhHOlhZedo2zQEqUN1SzGLCE9dkRLh5cquAQJ/VCJaVnlMWolMcvARjQ9qEcOvVOe7xaNS9buk1aHbqhqxyIGDd5KcGbNaMiGoI2JQ5J1teWQk4rIOJpC47tZv1OhP8rrLsfIhKhd30pkrjALsWaK2gxcahmMc/pJxcmih21i4jkkZ6Ezrul3G3u95PJkwXSVUrd9sgOIZxZQFJdElzLdsR9e0paGbAHRPDA6NgY/bOn3q7XrSM80vdswerJA3zkD7/DbQ9pUhmtibvgfB0GPeHM1YdlEHBwPMRU4E7qp6n7obBMiMEQAR0WPehmRLIMuyumQS9R0Wiah3EWasQl5V0FzB0SO3rDEDyA3GV4ZoulFGrbwULdh+x9MT3nF1QGffNV1VDNhcPUij211RbO8LqjHHlkL0iOIpx6zctQDyer8+jYS17M4HzKJVCFppzG3hiMe7R/zYHzKl+6FbK1feaTH7DjGLHroaUFy2pCcKpqBpBlZbOrW+3g+Xqoy4rRKkcIFxidrcZFCNlCdhuP1fxy9kuvRKa+IDli4hCypWUw8XgaH6bkG7MgOGbYluYtAepq+oNpNaWNBOQnJ165Lfq4qQ76riB++jB4OsJOMcksHrU4VdDznGpw2BZdZJlsr9voLlnXM7WUcXF01gcXpEv6necoTZpdFEzM97RGXQYNX7gjyV9T8X1/1cQC+afA4cPF/zH/IE/7Xoz/N7xxeZT7NoFT3ZIsFt5sXHi89rQiMq81l0NW1F3oyUUnaVpLEoKOWKvbYSKwdn8JeMDLOC6wTuFYiG4FoobUCJT2ZqYmilvoedu1zjRdHaL3RFD0fXjBT9Na3vpUPfOADn4tt2WCDDTbYYIMNNvhDw2f1jPvzP//z69+/7W1v4/u+7/v4+Mc/zutf/3qMMfct+43f+I0v7hb+IUG4ruldQqobRirHdIyIlo7ShHfu5ynGQsBZ0+PpZofb1RjfXDxveikQ1qNzwbP5FgfWsqMkXzQ85PFrj3DpVS8HwD72KRj011ESmVDs6jmia212eY6ahXfuuuhTOIMRoakdB7KsccsVwgUXyKvSuwA8HB3RT74M33r80QlSa+LZmGUT0RMNl/UUgChpsXECxuAijU1hlJXsJDk3lEeX92f8JIcldxcZt+2Ca2rAUT3ALC8IWre8SMN+sD/lK0ZP8duXr5HvjRnHScgyaWHa3M8UzWwWMpda2x2/8PnUGZ5ug0PqA9OHSQ8kyUmNcB5nQGWh92texzS5IVp1B9KDSx3DcU4WNewvI8wKsv0avaxp0j6im4VJ4alahZ3GDPdhcNPitKAaSui1TAY5jQuajuk0RrRBt9AmwQWmtir6vZLlKgFn0B2rY4pOH6U7/dKwoT8okdKzcALXaS68EuskXhd7iF2nKZLITgd17mhzOmg1+knFpWzJqorIfdDYmJWlzTS2y1x6YPeUN27f4hPzPT55q4fJIb2zwixjVpcTylqv3S2tk1BKzCporqqhoO17RttLrg7nPHM6CdfIStA7aANLtFrhd7Yo9zKKHRXOx1JxcmsMwGnWRwiPzQ0ygnIruPiaASCD2+w8+2dWJFBdOLHgnBTwaOUgbaiG4dZVrfSaMQi2p5BW3Itr3EhSNoLz25ysw3fO8oRpk/JgfMobJ7c4fqTHtNjGdvcyXQYtVj3xuFGLKyXtSnX5Ux5demSnp/Gqa1V3ClUJohm4ueKECR/PLvPw3jFvHj4NwOHDAx47fZjkNGHYOETrUFVgdOS4JklrqipsQ700iFYiWsG0SMl0Q2oa0kFF2TNEZ5LoOOzXJ+Mr/DP/Ft44ucXSxiFlPPXYUoATHC3DcX3/8hGmacZ+NURqRz2C1Z6iTQTVNvhRQ5QE52jTSPJdhS4yop2EJpMU2xKbdD1htstSImjjets5r93Z51K84InFLrf9BNk52oIDLByvxTzliUZTLWPMnYhoFu4P5Y7nytUz/tTwcQD6nevsw3XJ/+f0LfznZ1/JYr8fehu7436flkf4wBYaD7HFCXCJxBm11hNBYJBcK3EuZA2h/UWPnuc+zY0WjgKBbyR6FdKvbRaS8iNpMdpSSf7Ia4p+8id/kv/5f/6fuXv3Lq997Wt597vfzVd91Vf9nsv+23/7b/mpn/opPvzhD1NVFa997Wt5xzvewVvf+tY/4Ia/dPisHor+wl/4C5/x2Q/+4A9+xmdCCKy1n/H5BhtssMEGG2zw+8eLY8l/YXjve9/L29/+dn7yJ3+Sr/zKr+Snf/qn+bN/9s/y8Y9/nAcffPAzlv/1X/91vu7rvo53vvOdjMdj/tk/+2f8uT/35/gf/+N/rJsmPt/xWT0Ufbrt/o8FOseS16GLKRENM3/eji67xGGBjRRNL7yfzl3EzWaLg3K41pKENFcJIugjnjjZ4Td2X8abk6eZ6Jz6Ukv+sjEAvell3LiHMzDUJROZ8SXxEcPJino4Itb6vvKasSl4lVnw2t4dfmX4BlwSgQrslYxaXhYdAiFNeBCXLCxrTVB6/DKOVn2mLl67v6R0YdajFS4KuUqTNGc3WUBisbG6732rWtW0qz5PNQMGouCgHKydPgC+DTosVQadyrZasttfcjyZIHe2oKzAw1l9vz5tarNw/GON6PdoeoJRVGGE48QFtm5/NQh6n6LFJhoXhXyReR1z62yMuRORdu3kbQpV7Lg2mtHXNfuHo5Bvc7JC5BXywV7o1AJ6cYO1Ej2XDG45es8uaYcxiwcShHbEpqXMwxRZLhXxGUSLwAB57emlNalpWTiBWQniaVhvfNbiIkk5ISQV65BSDQT9WXfYzp1yvuvxQjt0ZGkaibRh5n1+jF0kEI1ESUema2LdknuBqhx61aKGF1qpSVLwYHzKHTNGNIL0uEY+s0+0Nca8KqHwgn5Ha9U26DVUFRxz1Qhs5nhwNOWB3hl35sOwsSXEJzV+PkekKdW1IdOXG4o9sLFHtAJ9Gm4xbqlwqYPI0U5aXKxQRXANYQXLRUJru96vNkzdbRpkZV4H55uQoW8rNi12FJataonwweWnV+APNbnvUY1MyJuJHDbu3IK1QK8E5TThcGdAPGx4Q3aT490+/3l3iN0P7EQ888RTQZsJyljijafpBd2atIo2Zu1WdKnDpA2NFchGkZz6Tg+kuLG9zdl2j6/sBVfbn9pJ+dS1SxRP9Rg8LdDzingaI1tFf1jwxku31lloj53ucXQ8wNWK01kfrRyXsiV7wwXPbhtsngaHISBvRDy+usbNyxN6acVilYSxUoM8E6yiwBT9mnk5dyZj8tYglaMegmhDVlXbd5ikxZiOKUotzVCR70mqUWCImn5IyBZBikZ7TvBu1bx+b58/Pf4USjhu5RN8G5KlVcM6LR7A14qyUphjQ3oYzlkzCDlGO+mKpqNtfquSfLy6ws8ffDEfu3GN6HZElncu0J4P1+v5zcgJRC2QTuC8w2qBSlu8cthObLZOgXcC1yqaVgWtlWPdf3bek5Z0+U+TpKD14V4v6+4+1pe0VqE7ZxrSrzvYPtd4UZiiF/hg9WM/9mN8+7d/O9/xHd8BwLvf/W5+6Zd+iZ/6qZ/iXe9612cs/+53v/u+P7/zne/k3//7f88v/MIvfME8FL1g4u/nfu7nfs9es7qu+bmf+7kXZaM22GCDDTbYYIM/PNR1zQc/+EG+/uu//r7Pv/7rv57f/M3f/KzW4ZxjsViwtbX1udjEzwlesG7+W7/1W/mGb/iGz+hBWywWfOu3fusfmZwivAclcMaT6RqH5KAJyc+zeUav67qq+5JmGPrFnBfs12NOy3Qtc2gGkO/p0I9mYXHS430nr6WcGM7aDBJHOQnMQ2/YBxEyM5Zdpfk1NeCh8Rl3xhOGaQLunFKAS2bOZdXnT/U+xY/vfA3tOMHEcWi9FjCQIcl2JAyJalneQ/iZpaWoDCt3UYarpA86lUjjTciayXTDtlmR9GuK3T7mHqec7cd4D4d2wJFbUju1TsS9F2YFN5dj7gwnSOFpM/BbQ8RsiXCeg7xP4cODdipichvjNLTjFJlF1EPYTVcMhKW55wW+F2BTTT1QNH3Q2jItU6r9jK1nITsIr3KX1xRoxyP9E/qq4kPRdVTtEYscrAtZOeMwQ35kfMpR0aNwY/SqRc4LRC8k1+o4rG+16lJ3DwWD2xZZOZq+wRtPGjVoZXF1yNhJT8K/iaY1zcAgWxVmq42kqExIqi40umt9F/YetkiC1A6lHM25hsIHBgC6hvhG0NqL8iXhQlq1XtaYlUFWHVPT5Wy1XqIKgTktaE9O0Eoi3B5ZWvOyLFBrsZzwu9ohG4kqLLKRoDzjqGCi84vxUoCa5fiygr1d5g9HzL7IEe3luEojjuK188tXgkYJXM9hBi1tT9HMDSoPmVF2ZijaC3cZkaMeuZDg7gNr5ltJWRniqEXrLges39LmBrMQJCee9BiqE02xp6m32nAddkNGtiALaE81+6sQYf6q6C7TQcZv9B9FtoHSGNyskJXF5BlToSh37Tq1GkSXm9StM23J0pplK/HKoOrg6mszzck04azJSERgHq6bU9KkRrY99LNHtLfvMDi4RDV+GccPZQyvllzr6J9lG3N0PAhM25lm3wqG10seGpzhEDy7NCQn4dz2bkN8qihOB5xMeggP8ZkkOQ5jwXQdYWd2wkcf1AzTEq0dZd8i6+Ce9Z2DVsgLgU2b+cCO9S465YS7GJ+2S6ne2VrwlskTvCV7kv02HFdRydCZJ8Oxsr2uM9FYyDV6FVgiaX04x6lFS8enissAfGDxCO8/epD9Z7eI93VwIXYskR1ZiB2+03XJSqOLwGzaLhne6ZCp5SOHjwS+Y+6FA98K2lbhnEC04X4r25Dw7rVnKwtj/OHeCVo4bpntC+atS5PPdE1mak4UL2H32Yvz+qxtW+bz+X2f/17F6MfHx1hr2dvbu+/zvb099vf3P6vv+9Ef/VFWqxV/5a/8lT/Qdr+UeMFMkff+vsDGc9y6dYvRaPSibNQGG2ywwQYbbHCBFyWnyMP73vc+RqPRfT+/16uwc3z6//fP9Qzw6XjPe97DO97xDt773vd+1mXynw/4rJmiN77xjQghEELwNV/zNWh98U+ttdy4cYNv+IZv+Jxs5B8GRBv6xpyBVDWsXMwTeSjFdcdx0A5UjnZX0Qwt46Sg8Yr9fMTJqrdeTzUJHUSye7cuVorHji+hpaW2OsyCz2carUWeLEgPh3x0egV32SGRjKOCWxGBvcqD+0yVIbsH4JXaEfVrbBJjvEdVDltLVt3L/IbyM/bPa4FWjrG66JvqxTVlKkJXm+n0HU6ihGPcK1heHjD+klcBIE8XzK4mCNNw2vY50gmRtJTbgq1+H7tcrterKs/+dMhjoyvkTRSSmgcJuqgxhWf/dMh/LcMx+7J4Tu4ibOapJxGy9tgkuMJyL1m4kM3ifOh1Krc1xZak3m251M9ZVjHRVNG725IcBvap3MpQkeXR9IhENCjlUHV3LOOYeiAZ7c4A+PLJDT4V7XE728PFEp/F1GNDPYZBLxxHNw/HNTvwpHfzLrnXQK9lr7egdgrfCkwOehkYKFlbvIzW7ee+lVSrCN9I5Co4l6CbyZ6nAIsQGSVE0NMEx839ThphQ36P8zLkJ/kw+xZVgyrdmlWqO8ecxK97+85hY9jpL3ldehMAI1uE8agazLwhGul1z5UUHtfl3ugKxCLH1Q2+F5Nfhq1Hznj19gFPzba5O9tBVd33Nl2mz1gQRS1KOYpKwSowRaJV2C77x/fbkDw+bGhTGbq1WoGca+pcUSUOGV0YOs4ZjPTYkhzXNH3NPI+Yo2lHds3aihaiRXCDTmc9Gq94uQbSJ/lfBl/OqmM5omdPcXcPGK8epu5PaAYSmzpsCrbrbFuvU3iMtpikpc08TSbQRdChiFpwWvc4dUHTc9COWMxSHnqqpr19J1xfB4eM//khdf8t/Nr45bzlyg0AplUCZxGDpwMDsswT7gxGvGp4wOsmFftbQ7wM682OWlTpSKaG5dWg/4lmkB054mlDPe3YwkixGiUM05JBWlIOImwZmENVCdpC36fEdYmjGcqgjxQenECXIafIqwvX1U5vxeuTm7xcG3JXBs1SKUPvWQT10KPGYSBGcUNe6nVye5uGLKhsWBBJyxOr8J/nJ052md0aER+FTKZ6CM3EosY1vbTGeyiW58yGRtaBeVIFICSVUbh+0Pvc6w4TttNRObE+icKyTrT2yrOXhXvXq9K7KOH5UPQAuMAUCRuSridRTt5GPKtDev1LgRdHUwRf93Vfx3vf+977Pvt0lghgZ2cHpdRnsEKHh4efwR59Ot773vfy7d/+7fybf/Nv+Nqv/do/+Ea/hPisH4rOHWgf/vCHeetb30q/31//XRRFPPzww/zlv/yXX/QN3GCDDTbYYIM/7vAvUnij1prhcPi8y0ZRxJve9Cbe97738Rf/4l9cf/6+972PP//n//xz/rv3vOc9fNu3fRvvec97eNvb3vYH3uaXGp/1Q9E//If/EGstDz30EG9961u5cuXK53K7/tAh6ja8O9eegS6xXnBYdDPJM0l62qIaR5uCGDaM45JZk/LEdJv5cR/ZvdtuB5Z24qEVyDrMIBfzlGfSCT1TI5TDmnMBUoM7OGbw7CWevLvLbz/a8gYjcV2vk5vN8Z2mKJ4+zM0yiNccPrAJzuPLClW0UMUc2bC9M7cK7MU9M6ZqpJj0ci6rat0cP4hLlhm0fYPr2K2D1YBbScilqbZg/spwMUWLPqvLEiE8nyiuYJE4Lyh3oH3jK1Af/CRyHF6nqtpTH6d8arxL0RhsAvUkQp1poqnF38r43x99MwB2+4O0XmF7jmJLEc8csoanplv86tYXsbSBKZquUgRQDSTlDqS7OY8MTnnC7VC0YBYWlXc0CRlx3PBQdIzzIaPE5B43myO3t7AJXBmGd+yvS25ROYNPHE0maSYp+a6i3m240p+zaiJkHg5kcuZQs4Lm0oB6CNs7C1493Odm0eX4tKzdgi7W1CNFPQSbdsxPLZGFQlYX7jNnwgzcRYD0OBv0D96eU0eBGYHuV+mR+HVv2DnDxKfR21o4BrJkO17S9jy2180Mkzi4HaOKXRUyoPbVOJy3yqMWBWYRoSod9EjigmESLVBW+LZBqJBM/JrxKa8b3GZeJ9z1u5iOMAz5VYK2r6kSvXbeQaeDqgN7CWAjCdqhIhscRM6gVpJoJpA1uFhRj8NBsD2H1x6nBLL26KMF+lTSZlvklxXt5GImL60gOXXoXFBcjblbj+nLhC+J4NWTA/7P9HJ3cdS4okAfnGBW4+C2Oj/8bWBpo0Asko8jiqxGSUc1sJRbGoSkyQABh2WfD6weAeATi8vomwnpBz9Jy/248q8e48buq/lvnUEnL2KyO5Ltj5WYkxXxfMKd3QHzKwkPpaf0s4q6Y6CSowp9tEBVY5osodwKxI5sHHpWI7oLXBeBtbuULUlUS9kYljODXglUIbCxwnWdjdI4XK/FagVN6MfTK4HKIZ6DNazZTYCBrIhFRO0dszpB56EnrYmC9miQBdZWiOBKFE1gm+oRtHs1r989Yjte8tg0MBDTwwHJoUJVgSVqr9Rs7SwYJYHZnpUplQ6MrTUOZ1TQUnYp2qLLq6JjWNemKyfgvDdPW2yXUyRclyLuBIkKGrDLZhYy05RDNqC6fCqtHNtmxSqKL663P6L4nu/5Hv76X//rfNmXfRl/8k/+SX7mZ36GZ599lu/8zu8E4Ad+4Ae4ffv22mT1nve8h2/5lm/hx3/8x/kTf+JPrFmmNE2/YOQ1L0horZTiO7/zO3nsscc+V9uzwQYbbLDBBht8Gl6MnKIXim/6pm/i5OSEH/zBH+Tu3bu87nWv4z/+x//IQw+F+p67d+/y7LPPrpf/6Z/+adq25bu/+7v57u/+7vXnf+Nv/A3++T//5y/15v++8ILdZ69//et56qmneOSRRz4X2/P5g7JEtB5vPJeiOdt6GTIrCO+t9bLFS0GbQn9YMolybq7GnBwMiW5fpHzXl1ri7TC7qWYJYqlwlaJoTHBUjQqqSWA//CDD3ayJzyrcWcpT9S6P6ruhk8rf0ykGxFPHjeU2jW+5Yx1NqZG1C7N2H5YvfZhJLZwmb6Iwe4wiRBxTDwS7cYFBrBVHWjpsDE1fY7vm6KOzAR8FzlYpLvKsLodjUI4lzQB8oflv+4/yRG+X/eWAZuA4+6KUreYVUIQZl8k98aHi9taYLK1oRpZ8V5HcNcTHJYMbA37t4ZcBsBcHxkaNK8pJhskF0RyObk74X6M3rc9BcdhjWACdu+XqcMnD2QnHVY+TTqPlxXlWlKAX12yrJSe2j60VZt7i6hpRhL3X9zAgS5sE90wbUsuroSAeVewkK1ZNtE7nVYUFIWiGhnLH86atA16V3mXaZAgnkK1fMzZNX1FOJNXE44ctQjm8Vetm7vP+pDYKugYXeVAebyVNISFX6yRrG3WMSgzOdCnP55A+dO3FBheHrCmAvqm4bKY8kJzRDi31dkw6HkMUhbFiNXk3XipngibGgaht2A8XjtFIFSQmnNdWAbZzFTUW4SGSLVm3obK+yGlKj1tkq2l6kjKOEVngSrzpOskcFz1xpcRKDbSILgdGNoJ4CumJw2nBai8sm1+XuMxSTyTVlia9bRBF3R17IHLrHkJZQ3a3RDaOcrvPY/PLcOl3Afiq0af41d03hG3aHsHtO9DLaBOBix1eO6RVmGW49mSXWN/2FUUvJunViKyl3FU4051PAXfnQ37ThXvlrbMx6RG0Jyd8OuzpGVuPOe5c69xbAvoziJ7Yp719h9HyIWYPX+Pxl+8y1CVNq9CdHFAfzHC399GDBKcT6omnzQRmoYhmBqfPHVmQDireOL5JX5VM64RPmgHntY6yCf1hACZu8UZQC/BCIYpwPzArSE4cXtO58eCsyMhdhMOR+4hlFaPKwCR6AagLPUxVGsxUEc+CPqfpw5XLU75y6wmcl/x2ez3s05kmmrLOUBpvL7k2mNF6yfGqx6qMLiLbMkszFggvUcWF1kkojzIh48uvunt3FRxnAHHUUvcsLlbd33lUJcg7F6LEIYXDWYkuIJ57iiIIlrf0imUU42XoW/tc47wQ9sVYzwvFd33Xd/Fd3/Vdv+ffffqDzq/+6q/+Pr7h8wsv2H32Qz/0Q/y9v/f3+MVf/EXu3r3LfD6/72eDDTbYYIMNNnhx4b34A//8kX7X9yLhBTNF5w6zb/zGb7zPlndu0/ujUvPhl3lgXjQ8FJ3wMn3K0HTvxX3oRrOxpO3B9cGCsSl4rN5DHxmyfdYz9HoiSaIGrRzVMg7JqnlIU91L5kQ7lt+6Ht61Fg+MyI62aVV4US2FYyQTtqIVbRpYnnO2SLawaiJOXMm+HeAaBd4is4xqGCGyloEMU8mVN6zqiLTxoBSi38NGYebxTBuzb8P3n+Q9END0JLabvduziP16DKVEudAJBWGW5zXoqeKw3uawNwqOocSxuiYxecrgmTA+orOa3q2U050E9VBJfDln8eCA/u2U5NkpoycTFg8FfcRH967yxaNbXNuZcmcvIzkTRAtPektzQ+4huo6w+FBhFgRWDIGRlkxVZLoJzhglQHVMkYJYORSe0hlcpdB5FWZNbQsuHEuAJ6rLfGx2mfhEEs1qZBM0B8ZYpHCUrVm31EvrcbGhHCvcpOHB9JSBKljZCFlITOERHZPilcImQV+hkzA1d1XILAoOxPOU6tAa703oPMMKqCVqGWar93VOpUDiMMrSOhWSqF3I1rKZoU3kOqlbC4fBMlI5KmuohjFZvwciuJsOlgOerIOe47QNTkAbC1wWr5mPnq7Y0kvGaRhX+wkQh+MmqgZVwbxOWNqE2ilkLTB5uB+YWY0XUE4MzVDRah863TKLVxJZiXUGjJ5LZCFp+zI40TrmTDhBNA3MVdt9b34V9Kiiji3zZUx8OiA5KnBGBFeacfjOOadLMM8e4w6OmWy9nscO9lg+WtKXCV+aPEu713TX4YBs/hD19QnlDrhxi5QOMKjKEy3sWqNSLCVVqXFZg0nawFhpHdgIK5if9FjM0+6eYkgc6Eu7tIdHv+d9R3XdYzqytImB7npvn36G4c0r3Dkas53kLBcJe6ddJ+KtO7i6RgLlNshHVlgrWbiMaBkhG78eL1v9nNemtxjLnN9OHuSTwgcNTqepac8dWXTMhBWIJpwbWQfWN5oHvWWyHc7B6SLjdjth6e6wcgOslV2eUceUeqi6vKz2NGF0F/p3WpqexEWCV00OeEv2OE83u2EMA2YhMCtCC33sSE1D3hruzoasTjNEI6FjG6NBjU0spYqJT8J3Ayhj6WUVi1aCvOi/U4XEtpLENNT9iqYX4RXoyqNXktMqnK/cxTgvsY0MbPe0waxirJUMVJfZJfl9UAsbfD7jBT8U/cqv/MrnYjs22GCDDTbYYIPfE+IP7fXZHze84Ieir/7qr/5cbMfnHfwqR1UWISWX9ZTr2jCJQtKpV13isJG0medSumTbLHBeoHNBPPM0/YvcGa1c0AVVEjMXOCPIy4ihLrkaz/jw1asALK8PSO7uUk8ifGq5pBZIJA8kpzR9kLs7iFl4RVmNBFeiMswOvQEnsIki2ttldcWwtX3CZR2WndqU5SpmuHJgLRiNVzCrE95fPMKTZcgGOT7rk1io+0Er5SJQuYQ85MQgoBmdt7n7wATMBfGxwCYR1Y6DcUN5FZYrTXYYZn3xrRmjWLF8ICJ9ecOrtw/47+UjLG4mJM9CentB705w0t1dDvm6nTlfvvMs/9uVHerbEemJI5oJmjOFTTonURPYOuECa1a2htzG1Oc6Hes5t9VJC62VzF3Cqe0jarn+O5EmeA3nzfdPFbvcON4mOYbotMJH4XPvIW9jFmW8ZoqE9fhE02RinZtz0Iy4sxqi5xKzbFGrMNN3sUK0QTfjvbhwX/mwfRd2W483DhnbwJA0CtGIkNh7zhR1LKSLAO1wXjCtE/IiCi4uEbRQbSrWs9jcRuy3I07bwMjZWEA/xDLrwnM6S/lkHtxXzkuksVTDiGYrpemrNZNlhCXTgVGxCZAEF5uoLbIKjFvjFVIE19c64VyE86WaoF3BCURsEcbiIoUVOnShAfE0XDd1KSm1Qg5r2pGkHmi8EahViy6746c8e5MFiW54srrC8tigGofrWEKpPO060drjjk5wVUn2xCnN3V0eaxRvjmEgLFEvnKtiq0d0ZUx+Nabc9fRGBdZKmjjGRgKbSNrkotsQ6ZHCoyMLA6ilx+calUvEMlqzSl55ih04etvL2f1FT3t0zL04e6XkT74s5BQNdMkv3f0S/N42dMvFZxa7MpyUGT7XxGdhzJ2zxy42lJccX/vwkwD85/w1lHcMSccodXIherJap2yLWoYmexc0YL7TSlW5wRcaNVchR6q7zrw4b723naMQqnnMM/U20yQIbpVyNCZo31wUHLy2CdeRnil6dx3pzSXycg8vNA+lp7zS1EzdiqIKNKhZQLTyNAOBUB7rJPvzIcXNAdmRxMZQPxiYoge2zpDC84S9hD9L0DmoUiCVZ5IWtFZRiKDbNKvgdFyNDGxBP6047fewRmKWDp3DogrLWiSZrELnXg16VhMtIqaNxgjLSOeggvbvpcCLYcnf4Pnxgh+KAKbTKf/0n/5THnvsMYQQvOY1r+Hbvu3bvmAsdxtssMEGG2zwhYQXhSnaPFg9L17wQ9EHPvAB3vrWt5KmKV/+5V+O954f+7Ef44d+6If45V/+Zb70S7/0c7GdLzlc06Jqi7cRCk8sDFpe6KWE8+BCWmqiGhLRIrupmJchxwPAJ+F9eNEYZCGJp0HjslhEzNuEHbOkl4SZXtOHdpzQpBJhGiQOkCh8mHFtjxCDoPcodgQP907JhGblYrwVuFjQXhqy2hO8ZnTKUIT1fqK9TDuLMfMwO/S9DBtDaxUfz6/y8bOOIZgGJ1I1Cp1tbc8jW9C5QNiQTOsmXTJtr6GaxURTQ3risZGgGQn6kxX9yzW3m0uMnwzDKz6bkVhH/NrLZKbmbdu/i8TzW0+8lu0PR8ijGelxyPaZFzHbasm4l/Nfdl5B2d8mmYp1irBPwqy3GQiavljrbJZVxEnTY1HHiBZk6xD1eZq0J68jTm2fWZuBE/hIIZTCX9qiHkDSsR+FM9SlplcBEmyqukRtmDcxRR7RP+9D9iGl2StwVnKnGrG0McfLPqoCWV9sg1q1RIsIvZI0tUIm7VofFfJR1iMLl0hkvyGKWhrlaPPAfqmm03J1zIeLPFI76lZTNIZ6EZN1VsI2PWczwnccFT1+J3+Iu+UQVyusEdhhgmhd0I7lhjvFGIBRVKBjSz2CasvQpuH4H1UDDprROh3ba/BZ3P1ehdBjBEZYhqbC9hzVqNOILCPaNMzwQ25MyNZSxiEk2FoiuqRsswSz8ggrqCeCJK0hrSkWQ8p9hV7aNevhFDw4OOPR7JjjVY9yssXgpkQ1oa3eAqLrrGtTjYhjKAqYzTGzPT5RX+HN8TE32x5tl74tXGD2mkxge45hWlJbxUmWUY0VzoS8KYBqx6GzNqRaa4tSDik8pZWoU0Vy1LXKA+WuoHqwZv6qmtMvfjl7//3ljH/lSXxesHjr65BfPOP7r/yncA5ky4e/6DrLl2+TfrQbblogjGMQVaD9+hicw0USOan4uvHHsEj+2/gRvDKY5Xn/nuRo1ufx6jK7esFx2UMVgvM6O1mDXHXWzZUinkris3A8miy4HauxwBSa+EystTsyV9wstzjqx1gkiW5ZJeF+1vRDP5zsuupkG3oX5XSBGicgNTt6wUgmNF5TFoEGHS9BFy4430zY/nwRkx5I0kModkF0zN6btwND9czJFmYJ2WFIfm+c4EpvjhCep/WgG1vBFVqPFNVVzVaWc9K32DhokWQFtntw2FYLxmpF2qtwOkZWDWblacpwXxvIEiK3dmBu8EcDL/ih6O/+3b/LN37jN/KzP/uz66qPtm35ju/4Dt7+9rfz67/+6y/6Rm6wwQYbbLDBH2f4l+Yt3R97/L6YonsfiAC01nz/938/X/ZlX/aibtwfJqTRCO8RteDE9jhzh8ya4EqQdUiLlW3IT8nbmIVNaKzCKWh6grp7k2jGFVeyBXdWQ7BhVuYFiIXm5mqCEY5lEWbbWaeTAaCV3Gy32bc3eWx1BVWCNwrbD8vWY9iNFlRYbtXbyEICjmZgaEawmyyYd7kzH8kfwJxo9HKFSFOaS32qLc/VuGTVxpzmQVsiK4kzYAehZ8hrj5iq0CfkQ6bMcBKmlddGM54S23hhMKvwzt1LeM3OAX9i/BTvcW8m/2jQKvXbFn/7LsnZHs4L3pzcxOy0/MblV2J7EeKZnHgaZoNHRYQRLbsqpx9XFF3aLIBLPNEkUCG1iahWF3qNutHMmpS8iZBt0PuI7i4iPMGNYxNyF3UN4Jpk7xLV5QH1xLOThP2KZGBw2gzKSynlRFFPPOOoYdVE2FyjzoOdBHgtw6+15E4+YmkSWitxUcgmiqNz10tLtHCYpaJpJVpbfAptpENacJf8LBuwiYQx9JOKJlJMC4OXap0ddM6AOwNKO6wXLIsYsezOlRA0fUXdZ51QvKxiPjm/xFHeh0LhIqgnSXBRRgJRC46KwEJK4dHK0vSgHnSOsJXgxnSLobnGWRHGixfgsgg1GuFTg9MEF6CsGZkCspZ6EJiHckuHDKzeeVeZCI5JQEigSxaGsI8md9hIIhpBErXs9pZ8ahlTbiUkp/eks0vPpXjBa7PbfHh4nSeTLWTrkEuHKhVWOXpdZ11+OcY/chV+ewppgnBwo9rlpPcMHyheiz8J11Yytai8Qbh4rUyVeHzsqCeKegTNuGM+diqyrEIIj/eCRLcYaalyg6wMvX2HLjqXWKSJJjl/51X/hexLav5fr/yfeObRVzB8xjN7VPClV27z+ihd34P+9OUn+KXrl+hlGbQtxZZitD3nK7ae5mA5oNwOOrzzVDRvJCapecCc0PiQGq4LT3IYxraL+8zuZnzggYd5MD3laNVHlQLVBMZb2gsHoCoF6SGkxw4bidBRNvHUk8CO9iKxTlaXleB2PuZmM2FhUyLdYjNH00iaoWUwKBEdrZWbLFyzPuRIeeUZqBKJZGoz7CrsTbTyCOtxMSS9mkFccuiG6Dxo4JwWXB2HWPGvH36Eo3bIv/VfTHboGT1Z4mXCaSt5KDtloCtuRKGBIbjIQvJ4WRsG4wrdq7Fx+F7ZXrxi2lVLdlXDldGcs3QE3qNLh6sUpTNs6SUqtoiXyHH9YoQ3bp6rnh8v2Ew4HA7vS7A8x82bNxkMBi/KRm2wwQYbbLDBBhd4UXKKNnhevGCm6Ju+6Zv49m//dn7kR36Et7zlLQgh+K//9b/yfd/3ffzVv/pXPxfb+IcCORritUS2gqfqS+yqBYdFcO7IezqtZAOHRY9Mb7Mo4sBKJNAMw99P+jmXkznzJl67cUImiOAo79N6SXUW3A7jhUdWLdJGUEl+N3+A0hl+6+BBkpOQBWOHYTZrE0/jFY83MR+YP0R8KlFlG7Qkqcd5weNd7sxvn10n7v69GA9ZXYtpLzVc701RwtPai2djm0A7cIh+A1YiW40uz5vbPeMsZNRcy2bciYY0FqKZxcWh2v2V/QP+74OPM7uW8a8uB6ZIJAn29Izs2HKS91B4HtSniF4b0mTrBr3qnDSVYuFSEtlQ1Aa9gmhuaVKNF5AmF6nebRZhFt3vW0VpDd533WFG4rrZn40FkQmar9arwFJoAcM+1UjjMrvuO4LgnqkHsLiuKbfB7lb0oppVHaFWClV3mUJa4mIZmI9GclZkaOHIkpqTLcfqsiKaB1bFzCt04ZCVAuEZ98JxvFtq/HGM7tgnVUPbE7RW0IvCvi6SBKdDIvk6+4Uwy1ads9G2XdaPDUxMmNkD/U7TJBxnVRo641qBjSG/FNrKbRpccSer3voYOCdxsadNBLr06BzOTns8Ge+wqqLu+6EZxiSTMW0vWqdy2/MZrbgnUykRtFkYX157aAQ0ChvJoK+KLM0wUEX1QGJWouvvCuvainMGo4J6mNCmkk7WBBKGuuQBfcKldMETGkTjUGWLqmOMaXnFdnBvffChjNmrhkxOruN2RngBh/WAj9R9PjR/kPg0XAfRSYFcVKiqh2gEqyrCOtk5PLvMpK0gLOv1SrwXFGWEkJ6oV9CPK2ZpinCQnLRER4GpKbZHOG358/2n2JY9mkd/jX/4zF8kOdGIFqbVBUsE8HByTDMAuTUBaym3BW/au8W3jH+Lxin+3cNfFe4bWxPs6RleCJyVlN5gvcRaiS488jgwKqlRJEd9PnF6iXJkWBZxuJcBTnfMz/mpc6HjTRcOpxVtBlwqiZOGVdwDrzCrbsxWcGsx4rHJNYA1Y26jTlMZXVxbS+NxRkAUYWOFjx2ZrHA4jtpBcLvS6Ylk6NO7PppzvTfjhtnp8o/AxfC6cejV+tOJ5WP1Pm2j6N1tMZ+6TTZ+mFPg1ekdVnHML2evDsOlNcSnNdFCU1rBOCoY9kvKpBfckRVUTRjIibBcUwOu92YcpQ+Efc0tMjfMbMaunpOkNdZf7N8GX/h4wQ9FP/IjP4IQgm/5lm+hbcMVZYzhb/2tv8UP//APv+gbuMEGG2ywwQZ/3LFxn700eMEPRVEU8eM//uO8613v4sknn8R7z8tf/nKyLPtcbN8GG2ywwQYb/LHHRmj90uD3lVMEkGUZr3/961/Mbfm8gt8ZY/shFPFmucVAlpyeC0yBthfR9FQIQSxTbvhtinkSLNGetWj0vKxTCo+PPE33hsJFnqpVHCwHqEVXSFh7XKRoehKU5W454rjuc3Z3yPUTh2hdEOESXp2cND1+M38FHzm8EqyzbagecZGncprHihAK+czJFv05IARue0i+K0iHJUNdMm8TnLtYp4tDrL4AqCR6BToPVLjwQXB6jrrRmBXEx2UQeS57WC+5rPp8Re8J/tl2F/TZxQjExyXToz4frkIEwHlRJ1wIzL2VrFyMbPvMi4Th1JMcldgoReeSuqO2rZWoNrzKlDU0raR1MrQKKGgzBYTXkvUAtrKCnqzIrQm1BdbjlcBFwbY+rcOri9Mqoy4MsYFqC8pLjsEovOqaLVLMTK5rE2wqqQeKNgnnfFVFjBLFMC6Z7RYUpz3Sk7C9Om+RjUdaENpxvT8j0zXzIqGO4gt7cxP2x1mJEJ5EtyjtgrjaX4jOz89XZFoibcMbNSvWlv0mg3rsGIzDto/TgqI12O5VaZsGe7WwIT5ClYLFNByD1kqaRuFNWE78/9j772jJsoO8G/7tcGLFm/t2mO4ZzWg0M4owAoQEGowlC7SMwbwfQXy8HyZbGAOD0WssYwQWyGAMsk0QMhghjGTsZdJng2AIygIlZKXJsfPNlU7ee79/7HOru5GM3KOeEcj1rFWru+vWPbXrnH2qz37OE2y73VwzLmJMe9xMDNVAEy53aVLt39cqRk3KqE5wlZyX2ArnsMrftnPaIRov6nWNw4aCtF9QHVqv6xRZS3Th90VWhDRWkYY1WcdRp2J+fgHEsmZdZRyNRvNwT1EaRANx2PC0rr/NcvFol/0Tm/SOr2IDiXCwXfS4vzzCuazvReqAaNqdLPznzosQU/vqEb9/HbKNU6hqTZkHuJmGyFInJcfinHEaMw26qNLbzwHCaZ/MCVakPx8CYVATRf/RmnhfcffZIzxyg3/tKd3DuvZzhgFYTZPCs3unOaV7/N9Lf8Z/uv4LALA3Hkd+yN/LqnPN6XqFWNSeWRBA4/ernBaE4y574w5JWGNqhRS0gZTMa2j85JLUXUGdK+qOoO45VpembHbH3OsE1X4P1R5bWcLBqMPHp5t0VEXZHCqw23oRK+e36GXlb/GipA8QjSwdWWKcZdSkyKJ9XdNgQonpWI53RmzGI6SyPm6j9nPpRLznX4vkuPYl2MGoorm4hZ6eQCrL08LzGARheniLK0AWtT8XpWMjnnAu6XM2WEEaL8Q+mPnbw7smwQaWRFXz27WqNKgs4nw14Hi4RxzWmObJuX22YHmeHFz1RdFsNuNf/at/xR//8R+ztbWFtVdmNDz00EPXbHALLLDAAgsssMACTxau+qLoW7/1W3nb297GN37jN7K5uXlFKexnE+rVDs1Ag3RcKAZI4eYR9MSQHQkoB5KmY2mMZHvaRY40OmsrKFqB6DiPOZMPOSgSkI6639aEdBuEgLwM5mLSJobsSMx0UxAuFUhhOZsN0GOFbCymH1Ms+0NmE8OoTvif9QnGO12Wc2g6inxVQr9ECccj2QoA5ShiWDpsHFIvRbR9n5zLhxxUMXXVTgMBNvArLpdr9EgRTEGVDhMJnICm9ULvlh2KWUhn4lAHMxCCaK/DxyebXFj+c2CI6/gVqhl6hk0dZAQXurxl/5kMgwxyhRMWkSY0SWvPDhwKS+00TaXRuUONcsJeiJ4p8mkbFlgqojbkz0QC2zJFzrU1F5H0gk6gGsBaMiMQhv0qJZgKVO71cFb50sszE5+hMM0j1HaInnkBsu34UL5RHtPsxKT7vi4CoOwrimVB3ZouiyJgEsf0osIXUfbSeR0E1vnamAakdqzFE/q6oBNtUAQ+bA4uY4JcWz3SgDWiFVm3P79sHaKVJQ0qlLI00MYRtGLz1LDa9V7/I8mEraLrndDOBy82SWtBlj6g0x74+Z1b4asLQks19GyoiS5FAYSHjE7HUixJor3Yr/od5FXAbt1hr0yQuUIfluc2gAQbW4gtrpCIzAfmWQTL3YxO4KmHB1mlmHZIL4CewWwUs7eUoJWhSR1NKn3gJUAjyExIJBzHon2arsUkGj0qUTXUjaLbqtg30ilbXWhSjawMqoCLeZfz9ZDS6Eui8EGITDRVT+C0xRqJyTXhzL+vjQSmDXo0lUKMAvRM0nQtbk2wFk0oOpp70hVsKKGNLzGhoBsdJn/C3flROmcEycfOEa0MuLA14P7ah5ie0g3m0Bx8yKJKGCov2r4p6LKy6Wt8smNDemf8uc5Mc19+hM3wACkcdSIgvSTg1hk0k5BRJ8YaL642kWcLTeyg488LE0nyKsBJX9VhU0MaVKS6Io5qxrFnWg+PbTPTnJ0OWIpz6kaBbH9ufVxEnft9kIxAT2poDFYLZGDoCX98Sqvnwm9hvUjfho7l0J+7plIEM0c4NqhSXhL0A0syRQVXLtC1tqypAoNAKzM/rzD+O04py5Ke0Q9LzijPtAczi514pujeapNj+gEmTdwOSoD1BbpbZY/t+El0W7trwxQtbsF9alz1RdHv//7v8z/+x//g+c9//hMxnv8lXvOa1/Cbv/mb3HPPPSRJwhd+4RfyEz/xE9x8883z1zjn+JEf+RFe//rXs7+/z+d//ufzcz/3c9x2221P6lgXWGCBBRZY4FriWgituQZZR5/tuOqLoqWlJZaXl5+IsfyVeNvb3sZ3fdd38dznPpemaXjlK1/Ji1/8Yj7+8Y/T6Xjq4yd/8if56Z/+ad7whjfw1Kc+lVe/+tW86EUv4t57773qDKVyGNAMJVY5doqUxkmqllFRCcyOSMolcMMaKR1ZrpGFnEf6H65kZ+OYB8QqRRlAI7xdPnbIyFDViioL0O3vVH1BsSyYnTLctLpHV1VtbYWg7kjcsZTpUT+pw0FJZTQX8y5iqrABzI5opidgZXWCFobTxdCPZaZwAuqliGJZYxUU45iPuE2axq+CAdBufs7ImSIc+RoNG7She6mZr1b2iwRbaM9caAXGEk4cd2+tc9faKWY2gjbav1yNidMUrCPagw9sH2c1nSFKiUnArSxRDdvCyDgnPtx5wkcYuFDjVFv10RZWysJrTlR1iV1pnKSoA8+WtBUcACZxdHXJxMScng4J90HNKpzW1B2BC9w8QLO8kNI7IwgnkK/TllEKJpOEaFcRHVxaapVDQbEKTc+vPJtpwK7sUHcldXOpmgNA5jXOqktBlE6Qm4CyUQhzKQjPr44BBJMiQghoSk3ofKWFk5eKPWXjm7NDaYjCmkb6aotwaql6CtH4ygWA5XDGtIlwTiDqS9ojG+BLaUvQY7+/aqlxvQY6hsoKrPZVJgiHtYKgnbAuMVRdSd3XPmrCQdlochPQWOlX5ZetTG0ANrEE3YpaBDBti4aNINE113d3AZhWERc6KbIRRAdQ7Gr2N1IGcQ6dhiYKidpC2GAseWC2zmRJsabHyEFF1Y+ItkBnjv1JzOnCf19ljaeChHGooiGYws6kw+5SFy0stU/cINsIEcZRLHtGVyqLMMIzwAYwAlqNjLOgM+nPkwQi3XAkGtM4xcdSS9XT6BW/4XxN8Jyl8/P9caYY+oqcC1uoxLMRPXmYDKqJRe33u1bQGGQN200P8BEDK6nXEe2trNBd6iGcQ08U90yPUHcUUlqaVGA7ftuyrIlGlmBfMe0mvqYmbK3zrR1ftcXGulNRCocNA19iLGE/T7CIOWN+yKwdhnHOqpBINyhlITG+YkX5Wgw38uxLdAB6VELT4JRAh4a4pRFLq+ffn4BnT1tNZm5DbKGJDyzhbkE4CrhQXtm1mcQVdb9DlKZUkT8+hZPMXEDT+O8XWbehrgKEcATCoIWdh4FK45C5f+19+RGOBvvsFB3/fZKGmMSfqHtlyiPFKkUVYKonp+bjWrA8C6LoU+Oqwxv/5b/8l/yLf/EvyLLsiRjP/xJvectb+KZv+iZuu+02nvWsZ/Erv/IrPPbYY3zgAx8APEv02te+lle+8pX8/b//93n605/Or/7qr5JlGW9605ue1LEusMACCyywwLXENQlvXFwVfUpcNVP0b/7Nv+HBBx9kY2ODU6dOEQTBFT//4Ac/eM0G91dhNPKBZIes1cMPP8yFCxd48YtfPH9NFEW88IUv5N3vfjff8R3f8Um3U5YlZXnpPv947O/T111J3RcQGMZFzKSMaYr2s4bemVQtG6JOhXNeW6DwOo3LQ+soFBOXeidOI7CRwyYGaQXZOEYeBPPaiDqFctXROTrlaDpm3MTsjH25aNUV5KuK7Lhflaz1MrImYGvUQ+WSJoV8A8zJnBuHuzROcX7sWyv11AcMZusB5UCABLUTUO0F/rI4alc6nQYVWEyuUYVAz/AFsX1Bse6IBuU8rn9cxi2DJcivG6Aqi9WC7CDhj/ZupRcU83v8082I5MaTmFCjStjb7fowPAHFUKGP9ij7LQMkHQcmxTrvvqpTQbWWkq9qqr5Dxa0WqJLzgDgTgQosjZUUZUA8BZ0Z6m5bXCo9o/JYucKFvT5L+w5RG6q1LtkmpCvZ/HMFI0Vny6EKS7GqkIFBSYctNOGB1zAd6oTKIZQrBgKHKCRyrKmtYOTANhKdCYI2lFKWtQ+r0yCkZVQnHFQJo70ucc6cKWo6PjwTHNNZjG0kFMoHMqatE+zQqZZLsiLE9gSRNkwCvINmYohjgZpJitYJFEhfVGprSZALXxvTMkXCeQbk0E1kKoEBVNxghKNxAbISiEIxncaEkT8GQnjdVd2RfhlrvYansYpYN7j4kltSGOHPiciSxBWmkTjVzv1CkjfBvFA5VG3+WebQuT8OWRGy2R0TdGpsEBJO/GvTC4IPX9jkI2vH6Mmc/iCnGCZ0lSIaGcR2xN2bPsR0VvlwVadEyxbBJAvZq1OEcHPnVb4sAUG55NBpjVKWunU1OuF1LoclpdQ+jNNJgQ0c/ahgSc/YlV1fKBwJymXP1ORr8Pz+/fPvmmkd+6qgJKZZ6+FWSm4NDsVSmljWWAW2EyOaBhw8kK3D0sPs2tn8dkrdhWYpxSpBMIX7dtZorKSuNToAdLv23ZmRXuiSnE+Y9ENEp8aklqYj565H0/jXJt2CcNkwUQlMNKIWjHa7TIIEW2okXOakBQKLcZLKKEJlCHsVJlZI5TVZrq0PCTLnS5KVokkEUdCgsOTOMDOXalWcaANjhdcalRZEKVGFQU0LdN5jp+pyOfpJQTUYkCwNcYGgrhX312scmJSqdZSp2s0pF2t99U9lFQhfr2MCMXfNjZuY09UK0yrCKqgGIXVPYyPHrA55ZLZCPgux2aIQ9rMJV31R9JVf+ZVPwDCuDs457rzzTl7wghfw9Kc/HYALF7ztdmNj44rXbmxs8Oijj/4vt/Wa17yGH/mRH3niBrvAAgsssMACnwYcC0v+k4Wrvij64R/+4f+t1735zW/mK77iK+Z6n2uJf/SP/hEf/vCHeec73/kJP/vLbjjn3F/pkPvBH/xB7rzzzvm/x+MxJ06coOoK6j4QOGZl6PVE00vhKCbxBZHWSGZZhC00UjmqJYGJnHfZHGKmkEbglIPEIgODqyVqLyDeEvOKh6oHzaBhqZORNSGPjJYoz3boHvgVfb4Kct2/uBOWbM26FDsJ8cxnjJRHGp5yZIf1aMID01XGF7yOqrvnV7nZuqBc9qxEMPHltE0CxTG/MlpZndAJK85uLyGrAJ0BEsoVcJsFK/0ZVcs8HIxSZCmpBrB/c4gwUPWBXPGx3SNsdCdEbSXH9ERCOBkQzKzXBU0D8jTAxpZ8TSObYM6sVZOId+/fCEA9DXHK67uyNYFZrVge+tu2+07QdBVVI6i7EEa1d9sUmt4M9MxXnvhJAZXVnCmWaHZikl0DzpEdCShOVXzR0dM8OvWun4vNgHDcuuYi6PVzlpKMPfqoymdJHZak1j2g14ARyJFC54JaKkyicFa0GUp+HjghaDohVR+SuGZcxTy8s4K+4KtKrJc0Ua447LB1AI1CRClbRsZSrErvFGvzdIIp5OOIySAiDmpsYrHa171EY4meaYrmEpNrncDVCp37CgcT+1W+E20+0qEerhI0jUBpixCOJtOoiWe+6iam6LcWocbn21Q9gWy1XVUZkJmQUBpE2lB3/Xw51DBh/Ze7aHOXZA0qk+zPUnY7fuVfNN6RqTNDOGoIZorcCl/10SkoZYd41zMqwUxy5roef37qBv7O8COcHOxz/8oyLlSEo4Z4S3N2fwhAElWY2FEONcJE3g1XK/bKlLy+VC5sopZFixyRtkhpccphQueZ1U4zz72pC4eNvC6M2NJtHXQHdYIsJLK2bRYWNF3LsWB/fjzOzfqIBsTKMtMTMRtrO/TlJafYudqPuxnGnsmI4Hw+4K2FYLs5yqT0DFTdgWLNsyw6g/F2hwecoM4CEge0sSl2b58A6G1cR74pcUOLWykpXUS4L/1xz1p3a18wSHOEcIxtB3kQIGae3RPa4bSjHrSuuNAhtKWoNELESByDNEcri5KW/VlKLuP55yJQuCCh7gjioKZ2ioumZLfszN1nTrbsqXBYJ30ZqvAVIa4tWS7MlXcpOkHFbldAr4OTAlNo/md2HVMTQXb43e1wofaZWUayXXUZlTFO+HqZOhWYbju3hGVkUvI6wAVQLmvvOE4tRR1wth5gJyE2f5I0RX9NtvHZjqvWFP3v4ju+4zu4ePHiNd/ud3/3d/O7v/u7/Omf/inHjx+fP3/kiA8EPGSMDrG1tfUJ7NHliKKIfr9/xWOBBRZYYIEF/jrh2hTCLtimT4XHnWj9qeCucSCCc47v/u7v5rd+67d461vfyvXXX3/Fz6+//nqOHDnCXXfdxXOe8xwAqqribW97Gz/xEz9x1e9Xd6AaOGTUUNeaehKi27JCYcFKr5OoxiGiUOjCOzTq5QaRNoednbhMIyuJkw66hrTvl/nZdod4W9C54ObOh3Io0J2GSDWcmQ7YfmyZ/sOSZNtRDgRN39LreKaotoqdvR7RBU00gnIJwqWCm/rbADy8s0L6qD+8nYtem5OvQ7NZQSkJHtOEI/9ZipbVevrKBZbDGTuTDhQJ0dhS9iV133JkZUw/Knh42+ehiHMx4cgnFJdLDqc8GyAryd6OZ6j6iddqXbiuYpyFdM559kRPJM2SQnVq8nWNusy1F54N+HN1PeCIzwYEM+ezVFIIOjVLiWeKZkVIk8TI0rN2vZYpwghk5RDGzt1nNrKEsuGgSggPFNHuzLuLliTHj+3yJUv38PvGp7NvGdC5oUkVdd9x2/IuK+GMB9V66z7yabrgM3dUYNs8Ja/TqXugI+PzklQ0z3JxSUCxGlCsW5468Hq4/CCmv+WZn2zYzpe1kl6vYHKQoPc1Ovfz0K7UNAMHIkSfbR2II6h2NePVmM3+GNGtqTsxTklE43wmUqvTiUTtXTbGj1PVtAWtDhuAnoq5Y1KVICrvHtPaeldbCeHY5xkVps3d6RrqgaUoJeHIs0XmIOT0cMggzgnihrrn318V3vHGTDOLImytvDmxLX0tioCDyrMJlxcUC+NTjIV0rEZTVtIZZ9UKwcifB9G5ku5N6zwwWeP/Wip4zvA0H9m4gboXEB6UxPuw1+bOdJOSeqVhciLAxKHXxFjBbtZhkkfI6lJWlNPMz8vD2xZOgQu8czQKPKXR1AorfLr4oRZlv+m0LkdBNGqwraZHONg1XWDCPfWMs2eXuX7U4JKIfEVyLJmxb/38zpzh7Ts3oQsolwOqnqQaOkZlzO+Nns1ulTJpHZN1DybHPAOIhWBPMxUpopRemxO02ro8x57N6ZxbR2cpKq5Z7004Gwypmw7BVCBbRqWoAta6U5bTjFnmg4zCcZtV1oVmYCD2J61Q3n2ZTyOKPCSMGl+E3ZkQqxpjJZny3wlWCUwnxAaSOoVYWbZMj13bYTvvzL8HrBaYUCCUo83Xx4XOlwUvJTQJaPGJDI0NxLwImlJyrhxQWj2nSJpY0vRCTATWCnbLLuPSM3FVV1AOIeq3Zb+tY7WofBl11ZFUPZ/4XzaKvAiRmYTiCeMWFvgM4Am7KLrW+K7v+i7e9KY38Tu/8zv0er05IzQYDEiSBCEE3/u938uP//iPc9NNN3HTTTfx4z/+46Rpyste9rLP8OgXWGCBBRZY4NPA4v7Zk4K/MRdFv/ALvwDAHXfcccXzv/Irv8I3fdM3AfCKV7yCPM95+ctfPg9v/MM//MOrzigCv/oyg4YoMjSV8toO0zIEgfPJz0agxz7PR1jPmIhOQ7dXkGV+FWcLiZ4Kmp4j7hXcsr7FuIq4b6dDMIF431AO/OqsSWE48Amr5w4GxOcVvccMOrOUgwCbWLqR1yzkdQB7IekF74gqlwSDTs7JZJdzxRL5fszGaX8GdM5WjK8PqVcMJ4/tsD3u4s71CTJ/j160yCh8rQABAABJREFUWSBP655nQ4/5E30TTCHZqrE6xIWO9XRKZRXVttc8LD0oCGaO6TFBsWmQSYMdBYR7ClMHjKKEGzZ8nordGLFzsEq8KwjHlmhPMtvQ9JdmjDcU1Tgkae+0ds5BMAtxAtItR7rVYEOBaCTWSJ/yTNsNZq7sAgO8QEaAiTVlv03cHZQcSw4Y10fQGahxDnWDieH63h5PCbfmq9FgCnpS0SQJpmu4tXeeWNYI6VCVQ5V2zkBbH9zrk5tbp56NLOv9GcYK9sNLejoXKIqhRG/MeMbwPA/PVlBTn3vkhKDu+2N1bGOfTlBx715KvNsmECeCqFcw7OScq5dx5/1KONlzNB3BbBajBwcknZK6F9N0fQ+Z05C2GpfVYMoZvXRFKrbTrTYutNjyUkaMyj3jJ6WjnxZUXY3T3jkoG5+nBWBWDXJYkgUx4PdBfF5xMRhSrGsCbZgN/Ubrwv9+MJbUMgTpmRffueXQys5X/klYs9OxVD2JKjROg5KW1WDKkWTCowmXQlsOxkQHa0zqiBN6xot7H+FNx26nWOkQ7hcEUwdt7kykG/qrM2bHBzglaFKfMzTOYopZSJj9pVRx4eYCV2HanKxDxqFls0ylUGXb42aEd4RWPbanXaJRO5c6nqkSteaBcoNHonP8u62/TXpfSHR+F6Q/9wH+JPe3+v98eiMfv/8YwzHky4rZMXBrBVkd8s4LNzDOI4rMb9ctNUwCRTgWPm8qE1itcdphUqiWPAMXJQk2z9G7U1SekoYVTx9eIFSGe8YRwTRA5WJ+vKRwdKOCi2FD1c4L4cDEAkJL1PVzy1lBNYkQUwVWkPca4qgmlIa4Deo63KfCgQ0VTaowsd+3p+sVMhsyzi/pjppUeievdJRG+yR94ahTSTUMaDqgWxFc7RpyV1M2ft6jPUOGEeQmRAqLa9nwchAgTODT3KUjawLKwz7F2Ls/k1YLqbAc1CllERI3l+V6AXkZUs1CglIgyifnltRCaP3k4G/MRdH/zu04IQSvetWreNWrXvXED2iBBRZYYIEFniQsKjqeHPyNuSh6stH0LEHXoJWhanyqqw3bfIuOd9bYUqFyRXiAd2kNIYh8outhSnR6URJMYRZIhp2czxk8xtlyyP1qE104ZGlpIv/aerXmmavnWAkz7tlaR2cQzHxDuolBdmu6ob/fPS1D9FQSjSyq8u6m5TTjxugimYkQpSTZ8yupcHuKPL6M6tQ8a+kc9+k1HtZ9wqkFJK7yK+meLFjTY5wTxGNHeGFC0x2ChI14wsWihx771w4ertGzmqqXkilHlNSU+yHRPiAEk0FIesyvEleHM7b6Q4TRpFs1TRwyu0Gy1p0SB82cRQKIxg7dZujEe5ZgUmNDSTDTTKcBu4lnX+pZQDqDYAZ15lN2q9hnxphQUPc15dBvc3Vpyo3xRR7Nlr0+ZVaCNVjldQMGwcXMO5/iXYe6eIAcRhDB8XCPzEa4WhFMHbI0l7SKutXL5D4fxoRAYjjZ3ydrAvblKjpvc4pyn0487GbcEG9xNh8gC0k4sVQ9MD2vUbl16Cmze8xRon2fTp1vSAZpwY2DHXZGXcAvV8OJJTpQTDO/ko7DhlnkdRN+zjiGodfeLOspiaq8tk20LFHkU8qFdjjlkOaylahwDDs5tyxf4JFwmYfHm4QHCtm0/XjAcGXGzcvbPDpYYqtaY7Av6J5xCBswDlM2Nw7Qm/7zj+gTXtQ+H2msMB2LSSwmBVLDoJOzHHk9TaprTi9V5KsxslEcmowiWbMZj6iWDNWKp1bicQcnIdE11+ke12m4eWOLx5ZvoKekP8cqz+ooaVnqZEyW2twaAaKRlHkAuZq77w5zxlzoGazGSK9Vq1sWslKUwrM05N51KGuvwyoazayJqCpN2Gq0DrOabOiYNjHvyk/yjjNPof+oReyOsEdXvRZNWt49uQmA33voVrr3B4QTR74mKE5VrK9OKGrNaKuLmmpc6gccr+REmzWjvQ7B2ciznTNBPXCUy47xdX4Hblx3DHvvAzDNCMcwLSIi1bAeT7k/bnAyQBy6v2pJbRQ6LAm0ocK7E0X7QPjePYDaKagkwVh6JlEoyiU/JyurmZUhaub3gS483ea7CaEyikeKVaYmoqgC5KELtSvmmW97ZUphNKL02WYm8PrNQ/fZvi3InKNx3p1pQ4XVPg07kg2Jqub5ZnU3QNY+SV+147f2ylBDa/1Y95uU3bKLKdTcXSms77WsMj9n/nIX4QJ/8/GEXRSdPHnyE4IdF1hggQUWWGCBq8c1KYS9BuP4bMdVXxSdPn0aIcTcDv/e976XN73pTdx66618+7d/+/x1H/3oR6/dKD8DcB1DEDiMlT6N2oh59lC4UjBIc/bGHSBAlW3eS+DvRzsHat/v2u5pRzi1lANFGlQ8NT6PcdJ3JhW+a+ewtX6wNuX5gwcA+JPoJkrlV5lNLKgG0O0W9APPFG3LLsK2rejWr/6HYcFTgy2KOIDUgG01Elnp9TDackOyTW4DHlInCca+/0ke+FXvxMZ0ZOnzRUqH2DtAT3s4KTmZ7KKl4WPteRmMK/TeDF0koBxRWFNZ71BStWN2QpFqf2/+xs42701PompNeHFKmg6gEVzX3ScZ1PzBQZfynNcqqcKvBG3gU8XDkUIYSzBzqIkiS7xWS0x1y6Q5dCYoy4DK6Pkqv4nlfL+upVM29Mhn5xigqkBKnIZE1RQuYHfiX7y+1WAvbKNOrSEU9FTBxMaQKYKpQdYW02YKkTbowEDt9VXC+bTwlWgKdJG1INjzbkOxvY8uhggBHVline/L0rml6ipU4leyT+1cYNSkCCsIp5bowCBrSagbVqMpYdjMv9hkZVGlRJSSWR36dnJ3mLrs280Pj0FwKBgSPv/FAU3qUIl3SjodXHJbCe+se8pwh5csfZRz3SXekKXke8sEY7CxH8H1wz3+r/X3cWa4ws+Pvxj7YIf+hQbQ5Ncpnjrc5impd0O+q3cD97pjxGf1vCeMYU2U1nSSkvXOlF7gWa1E1fQGOflqjM5971pda6YmZjWYolcLJic8U6TKIVVXzPOBAG7pX+CBwQ2YWCOsm7vKqkYTB3Xb4N4yHo3AGQnWO6vA7x8TgogMcViTFSFYPMsoBK6WmNZpJirpWYR292ppCaTxSc4B1P2IfK3NalotuD7epnQBs1HM6r7/pWItodhsuC7dZ6v0+sfqbIfhWYdsHOWy4PjxXY51xnzg9HGSxwKCCUyv9wfs+tVdPmd4mg/2T3DP+DriHYlooOkJmkHD7LhfnGbXL5FcGOBmGZ0Lhv0LHT6yvIl1Ams8CzNPlDaC2ioqo3z6fKtFk02bZ2XF3Nl4+OflrIkQDomjMAFZHhJO2++NmUVY512ZwiegXyz7ZE2Is2J+blW9Szqr3bzDrAzRM4kqHar2TfUHbU7TRaOQwhFIgwnBRr4LEgFSWJ/m3vYwOh9W7vO+lCXVNYE2NPjMLJ3DbOYHsV30mDYhrmk/v3O+A6+SmFIha89YPXHBNn8J10JTtLgq+pS46sP5spe9jD/90z8FfCbQi170It773vfyz/7ZP+NHf/RHr/kAF1hggQUWWOD/dDj36T8W+NS46ouij370o3ze530eAP/lv/wXnv70p/Pud7+bN73pTbzhDW+41uP7jEEEvhG+ygPUTHl3SeBwgWOlN+PUYJ80qWiDVv3qstuw3p0SKoOeCfRM0Dlfk1wo0DnEqmFFTbH4PJBoZJCVpYmgiWCzP+aGcIueLBDC5/NUXUk5kNQ9Rxw0SOHmKzOnwITCt0k7n1i8rBpui86RDnPqjqLuKDAGnVtMI1nWU66L97ChQ88qorNj4m1BvC3YqvoMZc5aZ4qJBFiLbCxCOW6MLvI53Udp+oamb7CRAiF831JSs5xmWO0dWsHUIisYBDmDIOfG+CKd1DNcYjxDZwYk3NK5wAv693NkZUQ9gHpwqXl+dhwm1wmyzdB3KDU+68YZ6R/yUr6TqL3Oo2haCuSwp0peypqpnSJrQt9abwxEIU0HTsU7DGWGsRJjJXrWYMsCnEOFhqGaUTvlu+CyVpfQ8Y/B0oxBJ8cJ3+kUzByukn7l7Xxuj9yfIfdn2N09dOF8P5sNGNcRKoNg2iAN6NCgQ8PR4ICB9toaVTpUaRANGCvnXVe0q1Mb+P2Pg6wKmc0idAayce1nd/OxHJiUSROD81qiugemawmjBqUNTjls2Lamp16/dkO6w+fEZ/nC9H5uWNqj7lnf2t5iJZrxt5KL/IPB3dx+4jHqvm8hj8YOJ+BvL32Mf756D/989R7+n5O/z/DYGKdBz0BUgiBu2ByOONKZIIVjv0rZr1ImTUSkG5qubfvefLr5o7nvOVwdzMiOCP/YiDAR84438E67pgNNV/n9Y/2jbBRFHeAar30RDhAOIS1Oe/Zo/tAgtWcZhPD0m3CXfkcqi1SX/Z4GF/hE654u0MpiAqh7inxFkK8Ijq/v89z4ETb0yDMtjYMkZrap2Ti+z/P6DxDKhlA2BCNJvNsgG6gHhmcun+NockCTB3TOQeei9Y44I3jW8Cz/99Kf8SWr9+EiSzj22WTBWCC0o1w1lKuG6fEAsbaCqyrSMxm9BxT3PnSUhy6uwszvP6f9QyhH1SimLQN5hcvTetfeIQJtIDHUXUfTdZiOYZAWdFvmz1TKZ2MVIGrfE9fEng02VnBQJRxUse+QjB0m9uy5DQErGOcRs1mEKoRniUqLzmE36/iHTQmxLMe5P+5xO0lrwayJyEyAqRWmVt4BOXPzvslBmNNPCpz27FMwBTsJsJOAvdKz1yI0Pv098OeaqL2uyH/vO6xeXG18NuGqb5/VdU0UeXrxj/7oj/iKr/gKAJ72tKdx/vz5azu6BRZYYIEFFlhgcevrScJVM0W33XYbr3vd63jHO97BXXfdxUte8hIAzp07x8rKyjUf4GcKQjiaRuIyjZ7I+coCfPbL4SpINn5lbjWE/Yqn9HYYJvncqaBnNbKocRKGUU5HVOzXKeGBJNwtkWUzX52l2vcAna6XGU0SZNUyUDEgfQfb+azH+axHXgZtHxPgHHoGZ6YD9oxmTdVs9CdUPeF7uowlHDWYXJPKkluSszR942vOd/eJ9yDe831NJ7XlWcOzFMsCwhBRW5wVHNEjnhGdQS2VqKWybYsOMLF3VN3U34Feg9WXNAddXdHVFaeCHZbTbO4iwgKh5WS4w6lgm25YYnX7WSPf/9WcKMiua5itC0yiEMb5xOzAIAOD6NeUS96l4jRgBFWt/f1/26Zr1/5xUCY8UB7hzHRAMHW4ssLFAdXA8gXJg9wa1ERBQxQ0iENNRSBJk4pjakQqK0QjkJXFKd+1Vnfh1HCf4/0RNnTIumXIcsmkiX2uCoBW7cP3LQnhyGzEQZGgc7ybzXlnlJKWWFQEwsxbwq32Wo+qURzUKXWt5gxY3VW+fy1w5KVf3QYzrzEzoU9frqymsprHyhXftWV8X1ndd4iO11P4Ce/3/eFDakvtFAc25MAmVMazpcHMZw0FY8l+lbIkU/oy4WXrf0a2aWlSibAOEVi+NH1sfs7cETtuWbmIaCDedz4N3Ui6QYUUju2sy71769y7t86DB6ue0YksJm6P5Uhz/2iNrbpPElRUfd+1V3cE0sCZ8YB76hngWUETOeqOpEmFZ3O0wzlBYy/ljTnp04mDuEGEbf6UaB1WjdfVHLJz83mhfKJ1nFbEaQXpIYsAQjtCaVDCYW2bayRFm8UEm+mE49oRixoqOWceq77gtpXzPDc+TV8X9HWBKiEcVcjaQmw5Fe+ypDMoFMmeIRr7PjanHM/v3sdNQZfb04fAQfdCw+C+jM5ZYKYg8UxOvgbV0QGy20EdzOidtiQPB7hzCSqT2MDRdCxNxyJDg0UwLSPqQoMV2MM+skOGVjiEcCRhTdipMP2GZmAIehXLccZKmBErn/F1OGdtKGg6mrojMK02bVxFTMoYa+T8WNnAM52ullSV9sdCe2YcJVAVzLKIWRZxYFJS6Tie7FP3/Huo0qEyyU7ZYVQnuErhKkUwc22fHhgjWQ5mbKRTTOza72uQmUJmitoq+kFJ0iupe74n0kkQLfPoxCVm7cnANan5WGQdfUpc9UXRT/zET/CLv/iL3HHHHXz91389z3rWswD43d/93flttQUWWGCBBRZY4BrCXYPHAp8SV32Ne8cdd7Czs8N4PGZpaWn+/Ld/+7eTpuk1HdxnFKJNTS6l74KyzFeYxkqmdUyWRaRjCKaOYkkQRzU3JDvMmohHW1bEaYmNA88sJLv0ZMVe1SE8AH2QYTvR3HERq5oLzZAPjE5ithLCiV+hOgmykMz2UorCb9hUCiXARH5FGh3A+YtDPnDqJHekD7IaZxzE7aqgqgh2pqjpMh1Z8oxwl/76lLqXImYZ0dgLBLImYkmmfFHvXn57+QshClHTAjlLmLmQI8q7nwCsihBt+3Y3Krkx3eJd/esxUYSwDlVB3eZ99GTBUpwzigRojWszRFJZYpxkVCQEEz9UXYDTjv4gI49Dmk4XYR1B5hmoMPLv308LLlYKedgCXwvyIvDN5AZ/77/NXBnnMXfPjnBxt8/xbYMZjVHXbUK/5tmhIBCJdyUBwoTt5xP04pKTGtb0BKTzn9eqeU7PRjxBCosNnf/MhUNPA/bKlFg1NCnUR3zBsI40xYpgKSwpnGZaRISFZ3WsvpT5YpCUNvDJwZGgSX2eS20VO0WHutS0VVaUfd/VRGSoa4Waes2ECaVP804bsnb/3D9d58KoD42gSR22awgiQ90oqsy30h/CSWgKzQf2TmCdYNzEPLCzSrQnSLZ9thXAg/uXmOGXpgU/dOqAYmnJsxi1ZCCvjOQYBDnBBHqna5wMya4PqKyisZKdUYd62iY/BxYdNT6ROfKp3sFYcGGvz4PJqncZHrq/HAQT2N3p8o7sRtLOfWQmxAW+788GAhv6fRvp1mnXus9M6JCxIYkr6kLP54vOva6oLDRlc8l9hfPPq9DMe/3qWmPDANF49qAwmnEdUxYByQyCSYMq/OcqjCZzhkfrVYI9jT57Hre7j7BHWQunHFXBXC+oM9B7M4JU45yke0hVG1CVA+twXc/yfVG8DyTcFIyhlsRnxoiHTjPo3sz0eEjV5hmVS47JyZhhdgRhLbq0hAcSq/2caFIHPX8eJGmFc4JZFcxzzEwM1rXOPOWQ7TEIdUMc1lRhgKvlvPcRfD+Z1Nbrg4C64+dO1WPu5p2WEbMyxNbq8LB6xs4KRCWwjUQGlrpvyZeld1xaqHM/v7abPrHY4oZkm6ZrsFqgc0swUexmHbr6kjNRNl7Hp7OQzEiWghnHE837U4OTba7VZQnVK9GU5W7GuW4Xc3DJoSfm2kXns78W+KzB4zITOuf4wAc+wC/+4i8ymfj/zcIw/Oy6KFpggQUWWGCBvya4FrfPFpdvnxpXzRQ9+uijvOQlL+Gxxx6jLEte9KIX0ev1+Mmf/EmKouB1r3vdEzHOJx1C+Ic9dDldRj/WVjGuI5ppQHTgiA4a8rWQyglSWZKo2t97B0ykcImiHlieEm/Rk5ZpE/lG68bQdALqgd/wkXjMzEY8PFoh3JPo3GFV27FVgdrV2GlLEyjnO5NicEoQjS3qYshfTE/y7PgxBmFOS3rgshyx5dDjVWJRc0z1eObGOR4ZPI2gqonavJRDt8Uzwm2avgXrELsjor0VHirXWZEzTNv5FEwNYmuPcLxEbRXLeko/KcjVAFVY9Ax2Kp8SXThNKE2rRzi8DhcULmDb9NgZdehv+WfDqSXb8KvNKGioJajcImuLyhSy1cBcP9ijqDXT8ZBgIpC5opYRumjZvFjMV6fWSM7MhrAdkZydYJ1FVI13Fwl/oIrarzrVKMMAqjAgDX2ZcEzve81IYxGNRZX+4r92kpWgwIXOr04zi868K2YtndJ0LNPr/D7VaxHZEbgxyZg2MVkeEjcOEynqjiBp449rp9mq+1BJr1/qSEzk7bQHZYIt1dwBVvW8NkgGlqbQRDPvjimHkmIN4m41b7Q/PR6S7SeoRmATi+x6rUcxjZC7vgH9MGNGKhCjgPsfPcKju8vgoLqYMpj6FO1DXNju8kgz4ZT22TpfcOQR3tNfpnPBEm4HvL+M+KJLdVbkJiQ+cMSPHWCiZfZmbQ6OkzR5gG6zvWzoaIaejbCBZ2mDCZT7MWf7A4pae2YGUKXP1JKjgIfLNSbpg0SywYUWE2ms8swjQKgNSlpEaDGRw4aOIG6I2jmlWkIhmPkcHVGJeWDe5Z1xUjpC7WklIb3WTVVAptgtUqRwmFy3+pWKYOYn4k7e4f66zwenJ0nPQ/PoaT83Mp8jlYjDACzPmLJ3gO4liDpFYX3WVEtimEgS9nwGVl/6OXZM9XyW0P6YZjIhPjMiHK9RtZ+hGRomJzVOdtHFIZOGZ8UjzxKlfc9IdaKKyiiKPPQt8AJM4iUpJnFwGTtirKRuFK5UqJmiNoLznT6r8YzKKv892pKGTSz8vO4BkcVaySSPKbPAv087Vtdqu2QlsY0ijktYKcmnCbqQnqmZ+PnycLlG3b2fo8E+dBtsEKB3DeEkIK8CYlWjO/7g1mmAU97FZo0kFg1HohEqaXDaM7TzZHMgVbXvDxSX9be1fzrpXYnucVELjwPX4opmcVX0KXHVh/N7vud7uP3229nf3ydJkvnzX/VVX8Uf//EfX9PBLbDAAgsssMACMHcCfFqPBT4Vrpopeuc738m73vUuwjC84vmTJ09y9uzZazawzzScAyEtBD6/RRifQwLeKWSdQDQCXXqHmSoC6loxsTG5CZCtPkE4hwkVLras6TEBvklb1uACTbkcwppfnT278xiBMOS1bxR3EuqeoO77lZbOBRy2WHcdNnDUA0G9J9CZI5gJtsoeCsdmNPKuNcAZg9nZI5iBapcKz+qd4b7uLaRNTbTjV5wXZ57ZWZaBz94oS8zWNuHoBs5XQ4o4oKk9TREclDQXt0i3TrKfx0gcaVCRA3paE41Czk4HgE/KBvwluHPeUWMUtdNkTtHkAclemxY+bghmIc5BHNRUGmRt0eOCIIup25XkejThoB9zb9JH7CvCA0HTNrFbDeVAULUM3CCqmZQx4a5Enr7oCZHxFFsPqJ0/UJNdn2jtHvJJ7MHujFmrxzmqp3NdipyVBG06717ZYRjkPqOlE6Aziypgf+LZArQjW5PtPFDUKw1aWB7LlzGjEFlD0wsol+B46jda2IDT2RJ65l1cTSwwiUMIyOsAUcn5ytSmXpchHZD5hG+E7+Cr1muOdjOmlWcfDnY76D3tj8GwIUkrylIj9wLS8wJVencNeDdNMJYwDrFhgIl9L1oTe4ZCF23n207AB8qjnNL+Fvpzuo/xLv05RBdmDB4c8Ibt5/NFJ941P6cqq5A1cDAmGPeQVYyWlrCNg75c12Qa6dmIVhumDchMklcBxoq5G0yYNtHdClJZcVT5vjpi61191aXtGisJVePzhdocK3GY+WXFXFN0mE5N4EjDGucENd7JqCrvmjOtXs5ZgawEegZ6JpkUEZ2guqQ7cW7OLFSNYtd0OZsNSXavXLKvh2MAuqrN82rAjsbIfBlMihIWKfxnwjqckvM298vhgsu2W1R+f7dQnZp8U2AihSoFTrWOz8ThYkuY1nTbbUrhKPIAk2lU4TVVNmhzeQKHkN5hB1A2miILCfY00R40qWYv7PFYnBPrBlNL9GXsiw28w1EEBusEda5xswBRC5zy47cxyEIgS4HNFK4LnU7BaFVT7QdEBxCO/DH42GiTC0PNUGZE3QoThcjKoGcwrTXL4Yy1oT+/Rssd6q7/b8/UktopUlmhQzNnsw4ZU2MltZWURiMrf44cMkZOOlCAOTzQTwIWLM+Tgqtmiqy1GGM+4fkzZ87Q6/WuyaAWWGCBBRZYYIEFnmxc9UXRi170Il772tfO/y2EYDqd8sM//MN8+Zd/+bUc22cUtpFemKYcJvQuGBF6PUIvKOmHJcTGZ+8In5XSVIrdusdemc4TXFXuU6uxXkOTOcesDpHGQaAoh5L1lQnrKxOeHZ3miD5AtyvZuiMoVqBcMzRd6++zN+3Dgost1dBRDgUm9rkZUlg2lOGp8Xnqnk8uFlEEzqJKqFpBymawP2cc5PYBcvuA8bjtHxO+w4umwRmfqBzJhjU1QwcGHRhEe2EcTBvqRtFTOd2g8mPIaoKpY1zGjMuYymli5bOaMNZn8zSCQDQMVYZQvg9J2LaF3kISNBztjakHFhMrRG3QuaNuFHWj6OiS9XgKkUHWEO1DvOudQyaCYgXMao1ZrelHBXmtiUbQbO8A4GYZ5Ir7moo/KzXhuYDwXIDNL3WVZZVfOi5LCanBhhoa03aWwW7htUVhp6JYFtQ937Re70ds7faQhcSE3q1T9YHYcFDF3LO3TritUaWj6knKVcuJzj4nOvtYBGdnfcIRqMJitXdPBdLM29rnmS8BoBy2VqipRPuYHuquz8xKg4pxHjPOY+Re6HVDDsK0oheX2EYS7guSHUcwvbQMtQHgWgfUzHdU2ZWK2XWW6VHvVrJaEO0L3j562vz3jgQjr705fZ7lD095+4M3XXFOHYnHPjerk7aiPZ/y3g9KZGjmn0sYAZWETM377VTRaou0oRNVmMh5XVDQ9rylluekj7AkU74geRgd18gGwqlDTyR6IpmVIbVtBVmtRsg0ksb6QqzD9zehoE5B9Wo2OhM6UcueVP5h60tfm0J4JkjWoErf5aWFRUbG54QtxVQ9r/9a7cxYUVOkcAhzaX+XQ7gjvReA66Ntro+2PZNl/LmAhEjUWCeRpU9d14XX4xw2us/H062xK97xaJc6/lhKrwGSykLHUK015EcNxYahWjKY2GceIS7VQRSNpsp8mr/OhWecDtk5d6Xot24UNvcsUeeCo3Me5H7AuIzJ6wBb+eOoMzzL6LxuTEc+o8tlGjX1jjKbGv8Y1JjU+rT3iaScesZTdxrfaegg3PePB3ZWub/aIBSG1d6MqusFoUHuqAtNIC1Hu2OOdseUy46q32Z91ZK9puPdnodZSm1DgXCe2Rs3MeMiRmWCIHN+PwggcDht/S88Wdk/C0v+k4Krvn32Mz/zM3zJl3wJt956K0VR8LKXvYz777+f1dVV3vzmNz8RY1xggQUWWGCB/3PhuDYXX4vwxk+Jq74oOnr0KB/60Id485vfzAc/+EGstXzLt3wL3/AN33CF8PpvPAqFKb3LZa5faP8S64aVcEbQqal6IU2ndblYQWYCCqPn9/JlUaOVQBYB202fbb1HXgfoBnAOqy41fA9kw8z5X3Sy7ajqO9RSiSkVdhbNHTI4ILDYBOqORuU+2TlWNUsy5inhFnXP3xwX/S4cHCAsFC4ADBY5d1m4sb/fbotNP2ZaPYdu771HcGN8kacFHVb6no4w3T4CsKGkG5ecCnbZiCc8pEFYi2zcfH+tqCkb0XjuhhPGayNW1JQjakq3X1B3/EowHPtcns3umOcMTvOxI0fIV1OibY2qPBsHEMuazXiETmsgJJg6lBK+l6wH5YolHXrWJwlqzu4NGY4uWyopCQYeqld5qFwn2rvy8Luqpqz954+FQsWGphegJsFcc1DWGiUcw07OwUoXnflVu97X2Ez57qn2LU3knUo7WYfd7T79HdCFJVtXsFRyQ+IZLOMke9OUYAI6t4CCwKGVpWwu5VaBdyX6gUiCmV/JAjgt0NpgrCRvnU/BRCBLrxfqdQqWkowteqgCz8B1hF+B47u2ZCkR1ruTxErJrccucFAmXMw2iPf8F2u8B+++eAqOvm++30QDZm8fWZSI08/igvFz64jq8rf6H+d/HP986qNDmkR5V5tVxKpBaYtt9SSyFshMonNBvAvxgaUYSmzkONE/IJSG7e5yu189w0Ba89xoB+jytKDju/Zch2Bq0G2vV1EGdCKfvyMt0PgMnKZ1VB4mE5sYmg50uzmbyYhxFYH1mhKnPUuStudsElfMIlq9nP9ZrBuitKYcxGTrmmLVb/epvS1u0GNWohln4kv/OWXHHM8I/XfnTeEFf2w1CKVwoYbY0FcFj1WrBBNBeG6EHqTzNvfL0R9mZNcN6OY3Mb2u5xnKFk0RQO73O7EB6XCNz2ITRtBUiiLw7GhjpO+Iq8UlZtqBcGK+Dw7PbyF8e7zOIN43VI3XjinhUNLiGknQspjhxFL1JDa2DDsFeemzxYKJT4rXqRd2DfoZ+0EHN4sJRwKrA7I4RIcNdc/htJhvc7qTcndxlBO9XU719/jg8hGaVKMKhxsHXCx66FbYZRKv0wMQpWSn6qLwqf3zb4fLXMaFCahq370oDN6FFzqIDAKByJ9ESdGC6XlS8LgCypMk4Zu/+Zv55m/+5ms9ngUWWGCBBRZYYIHPCB5XwsKv/dqv8YIXvICjR4/y6KOPAv622u/8zu9c08F9JiFzBTOFLKRvZy7BNX711FhJJBvCsGm7oqRvqse7u2LVeK1D4BOtRWORpWCn7jG28aWE3MaiS8eoSBgVCedMwrbpU1TBvMXbSYfSFhXauTMDvO7CNXKekzHPrrGasnVUucD5RydFdbs+86g95DMbXdIIKIVQap49EgjPTpAmqMGApgMn9C4Aq8mM1WRGNQiQUUyxFHC8P+JmbTke72Mj/5md8ivmWDccVTnHon3vhlPS6ykErMiM63XIUiejiQRNJHCt1mQlmnF75yFOru1RLAmcbnObSoUtFZGseWpygdXBDJO0SbW5Qxq/0neDmkFaMEgLKqOoJiHxwaWMHbGyjIssYxNztlpCmivzSUS/i3OC3JXs2QqlDVVfY/rJvEm9qAOmTUgc1NQDS9X3LE4wg3DfO5IOdSpNx2fiVLVGjDTxnkPnBhsI4k7FRjBiIxihhKWuNbrwnXpAqxW79Pe5u7Z1Z2G85kO0Sd4A1glmVYgtNbZsmUvp3WrDOGcY5khtQfrkbK9/sVRLFrXU9liljqZrWV+e8MLV+3n++kPUS2auuUi2DTtnh9xfT+dz6nDVbLOMcCSYWDiMNnpxMqU6XpJvxNhQoDPB+XGfi3m37b1qmRgBqhAEI0i3LeFBy54Oaj5v6RGeO3wE2auQvcr3yRnPVqyqS+Gxq52ZZ7lc61AzfqWtpJ3rR4B5DhG4uTzk8HyKtCFqbaSHmiFZe8ZvNZ6xGs9Y705pusazoMI7lqwTKOV72+qOoOlamq7lSDRiKDX6srwhvbaKXb7MItZCVWCrChcoVNKwpsZkJiTeg+aBh5CPnMcehNiDK13AT13eYXRKMXr6CgdPUVRrZq4pEmNNuKPQIwWl8k6qwzlUSWylqBr/8IPwWU6H3y2yOtRJClwj0MqilfUOvdaZK2ovSrKRYy2dshpnPnV85vxj0vj36zacHOyTxhUyl8S7ns1UgUEFhpuXtziyNsJEjmACyUVBPQnRymIHDVX30nHVB4r7Z+sYJ7m5c5FizVL1FaqyhHuK+w/W2ClSdloNoA1Eq88U7Fcp4yaZO+mAeW+ltQLrJKpNQLeBwIQ+00nHzTwz7UnDQlP0pOCqL4p+4Rd+gTvvvJMv+7IvY39/f+5EW1paukKAvcACCyywwAILXCPMr9o/ncdn+kP89cdVXxT9+3//7/kP/+E/8MpXvhKtL919u/322/nIRz5yTQf3mYQsBbKUyFLMHV+UfoU1KmPGTYwxsl2JOmTjcEaipWEY5dQ95x/9CBsqhIWsjVjuhBVNIkBLVOE4GKUcjFI+VJzk/nKDogj8qqwElUvqQmMOHS/tFb+sfR+aLKR3xTR+JXch6/HRWnNPeRRRC5/9EWrEoO/butuV8dTE8xUgSwNYGiBDf4Fbu1ZvkEaIbgenIHN+7FkTkDWB72Mb9imHkuPJAV0Z01OFZ1EChVUQSEMgDbEQdGTp3y/QOCWuYD+sE+jSoUtHMKnQGZTG546sJ1NsALJoiA5qxFQjphqF49boLDcvbVF329ycwjuBTOJIeiXd0D8mZYze1wTjZn58i1NL6G5N7XxXlQnwTsIWZnMZZwUfLAP+rDhKXWqaWNB0gzlTMptG3D9eY5THniWIWy1Icykdue76h12uODIck4S1z7fKW6cdPiE5EMYnFtM6gASefWxzUWrTdnAJN2eqLk/Ste1K1uo2vbjSZFWIs+CsZy2bFEgMsWrTmNsxlwNBueyZGDeoieIKoVs3koRY1wxUNmdNVGFRhSXabwh2Ne8trgNgYuIrxiQamDnNrBXrBELTX8qoet6tGe7DaLvLxVEP2whsZLGRxXQsNvKsny58mrmJBIOlGS/o3MdzkkcI4oYgbpCNI5wY3CRgx2Tz9z6STnz3XEfOW+qDwBDrGh0a38YeOHRoCNoV/yFbqEr/yKuAmYkoGt8Np2rnE62VYynMWAozjiQT6PiMG2GgzjXbecefw/Uh6yAQVjBtYs4Zy9lsSDiZU3pXiFI+Up7gI+UJkt1LrGYc1xxROQZJOPavbXZ30ROFnigux+cvPcT0lGPvFsnk5ob+0TE6atBRg8ok0Z7vSRSV8Gnc2l7K3jECKRxSOLpxSW+Q44Z16wD125ftvhFGECpDqAzDOEfFjU+sV34O2tg7Ko8mBzjp0IV/qKLBKa99etbgDMtJhi6gc96QboGpFaZW3JDucNvyBWziU+KTHYcaa+Kwpr86pVx1czZeTwUPjVY4sCknox3kekGx5L9zoz24uN1na9Jja+ITv33ektf7VUZhEMiWDRKu/S5tvJNQCksc1JjY0cQt+688ey/Uk3uFcfi98+k8FvjUuOqLoocffpjnPOc5n/B8FEXMZrNrMqgFFlhggQUWWGCBJxtXLbS+/vrr+dCHPsTJkyeveP73f//3ufXWW6/ZwP5a4PDKWl7576wO2StTqkITl6BzQ5ApyBW5CejpgqZ1fpVLmiDzf89NQCgM6+mU+5agXko8w5D5w3BvdgQpnHdCtKs3VUCTaa8nusx5JBzIyqfpqrplq2rB9rTLO2c380C2jp61rppA4ZZ6NIlvYQe/qjehQHW7mBWfZK20ZWxz9mwDVmCTAJUmCAPvz25A8iCPbnvXz4nMgtZzR1npanbqbuvQ8AxH2fZunTOai/XAr0YDhYl9y/mBiXmMjO1xlyO7LQuxPSYcd9kpO0xsTGW9HkbsjgitRU8uNbPfFJTc1j3H25JbEEYSzAzCeGfLWn/KMPRJ4edGA8IDgc5qHF7HsXddSLczZafpcbHozdNs9VOux13cZrqZ0FQ1/2P8bM7mQ9j3H9QqwWFhubgQ82CzjqsUQSYvZQcJwPpU3mrZsxDr62NuHV7gbDZkR63MGUbRQF0r9g6tX+1x8OxG28rdCIpae93D5QyRA2ybIxThdRYty2QqSR2o+Wq27nrmR2rDrA4pjPap0ZHPyal7DtXqQupaw1ShZwJhYXva5aOz41wo+qiJQlWmnYOezdlp+sAeI5NildeoIfzYL5hD+5OnzoTweh5ZWaKxI9gJKJVDhga1XMw/f5UHlFlMnUpUoWgSWOvMuCmYMrGgVZsw3vgU9HA/5oPVMi9JWleYqqm7UPbl3FXXj2pCZfw5ph0oRxg2hMrbig6Pazh11GNBlkWMqmSeXo2bS4HmrF6iaq/Xac9VNwvYnXRoZgFpAap0qDaF/qFslQ8kJ3hob4XNLZ9c3eztw+zG+bF/x77PdkrP5vN93E8KrtMdBjqbJ+WDZ4b/Ml7YuZdfOfU88vWQm49ucbKzzwe2jwMwNh10Dg2e7UhS78TLK4VofEdZFPo3ONobI4XjfNRnO+xSixhZS1TRvm99yX3W1RVh3GDDS3PTKccwyOmpAqF9BhmAaKx3l/bHPK9zPw9nq5ytoHM2R1Uxu1N/Ii4FM1aDKX+UPg1VSaKxJZgqYt1ww2CP922kmIvefRdM4eJOnwdOHOFkuM2R5TGjpZR0R/j0+f2QrO2/c9Int8vm0lgVDq0vJVof7te80jRWEQUNJnHYsP1eNgLTSD+XtZt36z3hWDA9Twqu+qLoB37gB/iu7/ouiqLAOcd73/te3vzmN/Oa17yGX/qlX3oixrjAAgsssMAC/wfjGoVELi6sPiWu+qLoH/yDf0DTNLziFa8gyzJe9rKXcezYMf7tv/23fN3Xfd0TMcYFFlhggQUW+D8biwuaJwVXdVHUNA2//uu/zt/9u3+Xb/u2b2NnZwdrLevr60/U+D5jcIFDKIeVgobWlppcsmBOqghTtLd2GosqLSpTXCz69IMCIk/vVz2NMN42vFV6S/5KNKNYc8yORTSJ8LUGwE7VZRDkRHFNPUguBfUZgcDblVuttn/etQJJASYW2BCqWnNftsEDo9X57QCbaEyqMakjsxEwYbfu+EDBI+tUQ09Dm6bhfWWXbdOHStL0/JsJC+/dP8XD+Sr2nLe16mkG2sflb5U9/qISPDBbRxgwkRdaz3Kvzvyz/Cl8aHQCWYLpRFRLITKs2bNdzjVLlDsJ4b6/ncB0hqwdeR0wsxHTOkTnYPcPkM6h80u3z1Zkx5d/CginlvCgQh4NIDU8pb9DX/sd8BGzSTgDUTWotVWaG4+RbcIgaLgv2+ChvZV52GazMUAOOxTLEpdp3nr+JvamKeG+RBp/TKOx/7NzWlKNIpCt5VteOj4ATeIQA7/hE/0DjkYj9qvO3KaPEMjGUWUBZyp/W3KgM0JtfAhl6ueFLCVFGaCUhdBig7Zk1vjbp76awlH3xaXbAqWi0RYOCza7h7e8BBfHPawTmEwjgtZuHFlogzFNHhLtKKIDqGvBbC/lffF1jLKYcHxJzF2shPOA0F0742w5xClQRzZAK2wA9xZHAXhJ8ggfqCpmWcRACKzyY1Ul1EYQJxUnl/f9vkoP2K9S3mdOkV0MkbX2Il7A4JBCEAX+No+JwGpvNvhofoKXJA/687OOsdqLy214SdA/q0OqNpTVBo4oaIha4fnhrSmdWXShMJXCIgiUwQZu/rltI8jb+8a5Ca6IRJC5pCoDRHOZxbvd7l6Z8mC5wWwco8a5zwB1FlleknY+eOCTHld2p+1tLsEwzpFIbowuUnf+arbg6YHgc46cobKaF618jJ4sOJ0NARjJVYRrb/F2G44ORxRNwNlZCEL5EmbtB7uZjOjrgq725+XFWtLkkb+lakDWksr4+aKlIY5qisibA2TjEJWkcYpAGIS2WOUPoBO+iHY5yrgp2Od4vM/7ALU7JakNauJvtyocJ8NtwrRGmpBwvyJoa4ie0t3mwdUVith/b8XbwMWYD01OcHxll+PdEVtLR2hib+BQmcS2unWXGKqBROX+Fl/jJFJYkqhmGvtzp+3kpZkGHFQxWlhcZOfzTM8kdRGgQoMLLc5cEsUv8JnFeDzmT/7kT7j55pu55ZZbHtc2rkporbXmH/7Df0hZ+lmzurr6WXlBtMACCyywwAJ/rbDIKfoEfM3XfA0/+7M/C0Ce59x+++18zdd8Dc985jP5b//tvz2ubV717bPP//zP5y/+4i8+QWj92QannWdnpKPpOFxsibpegRfqxouIrfCr0U6ADbx9/8x4wDDxVmjwwXg29CLOBw9W+Wj/OMYJmuWG2WZwxXvulSkdVbHczTizkWAijQu8INQJP6ZDa+yhXdoqvxo2MVRLlmFckZuASRXNVaHlUoAJJSa2XKwHfKA6x/l84G3aaz3qjr82NpnmD8bP5KBOEJUgXw1QfY2J4fy0z/lpn2DSrpZDiV0dYEM4n/X40+mtPDpe8qGGqyF1T1CWfnq9be9mPra1gaqgWomYHlV0+xPGJuae/ChqrBCHGfaDPuVAcH0yI5Y11gn/s8NHi6ildmJRIWpBeFCh92aoOiVIam7rnpu/1jofpCiqBoYDpicTijXLsrTcc7DO5HyPZZ8/SN3VuKWQuiOQueTCxSFMFWnubbxOC4KpP7hdA9VYUHd9RYGJwQYOrLf72sgRRC0LgWNsEvbKxLMU2mESNWd1TudLfqyxIAwaJh1aFtGXstaFJuoXqLTG5G2dyEShZtKLPYWfB4dVBKKQGKkRrXiauC3fNJL8IIFKepZJg2lFx0z88Qr3JdE+6MKX2Yqp4uJ2H5dpOgWUQ//+5VAg13KksHyk6vLQdNWzVsdWMElAk8D9uV80faBzH380vZWm8M+XS4o69SyXUI5BWvCs4VkAnt+9jz3T5fRkyGi4TrLjWaWdWYeH6h5rasZmdwzAg8dXcDKkGjom7clxTz3jsckQaVoZxqFBoggpygA7CtGZ32/GHgqGr/wfwwkQ0tLVJcNIcy5uhbb4fThpPEtRWe2rMizzKgghLcSGuq+RRmASv20pHLVVCOmwqT/3ZZpitaN2DYHQ88gMp1vWLglYi3zUwDPD8+Rrlw3yf7GkPZXusqxnfFHyIIVThPJS5ADOs2txt+JoOman7HAW2vgOHzwJXkA+0DnTIKITlgRJQ5UGmFihcpCFYJa3+2CgSYKaaerLdGUNaiY5X/RZCSYEcTOv8XHa76vGKlIhWA/HmAhwDjkr0Zl/f4PgiB6RJhXQQY9KolFCXgdsBGM2u2MeCD1rHM4cyUXBvfvrfNEw5Ug8ou77GAdZO1QlOMxmDLoV9cC7FUQj2M9T8jQkCWpGicMqX/YMoMaavTylE1YQ+pJuVXlhdz1TEBpU3CDsZer3JxKfhRc1ny7e/va388pXvhKA3/qt38I5x8HBAb/6q7/Kq1/9ar76q7/6qrd51RdFL3/5y/n+7/9+zpw5w+d+7ufS6XSu+Pkzn/nMqx7EAgsssMACCyzwV2BRCPsJGI1GLC976cFb3vIWvvqrv5o0TXnpS1/KD/zADzyubV71RdHXfu3XAvCP//E/nj8nhMA5hxBinnD9Nx5W+HvRocPElqBb0UuL+Y+zKvChel2YbWpM5K3Re+MOkzxGFO1KL4QmEsgKtrb6vD29ydcAxA3Fqg94o9UUnR0NAAhVQ2clI48jnJFgQVS+GmQeuHg4t6Vr9UQOu1Szks7QwiJxNG0/b7auMRG4qOaBbB2D4LHxEBNCvhFTDvySU2aCd128fq4VmG5KnPK28sZKsiKc21hnx2OEjagGMMpj3rt/iv1ZguvC+JSiWAXXWpk/vr1BdrFLz8LkqGZyynHzcJ+RSfn4ZBOdC+q+12iUyxGz6xy39c+xImeE0vgV3/ISrt+dM2Ud6W/h1s7rQ9Sshplf4qVJyc3RefaMjxpoKkU0toi8wg47zI5I5HpGqBrOHQyIttQ8TM8FknKgaOJ29TzWiNoXo5Z9gSol4djP8bA2gKLu+TLVumd9VELRJsce1igA0ybk/skaj+0toWft9gaauusP5F7ptVqhbFDC0aQOE/qQx2AqKEtFHNR0ooqLTXsQpopgAoiWqUp9QpuoBSr3ha6m61exuuN7Y0yuEVOFLL22w6YWIuNLO9tVejDxK+KmLUZ1EpgF6LGfi8Wyf1121LG2NGFqYt45vZmH9lZAwuxEh7IvqPuW7aIHwJ9Ob+HD4+OAo1z2TKOPHWiDN6VloD0jckwfEIuapSRjP/SatmAGu3sd7ik3Odq5ny9ZuxeAB5+5yu7RhP7mhM3wgEeaCe/Insr2QZewxAedtgv5ahaAFQQHimDaHusqoI49e3MYL3EY+KhCQ0eXZDrEBW6ua3JGULX/sE4glJvrxJyEMDAEgaFYCXBSYrqerUt1TSQboqQmP5KSAOL649CrCYTf3mrqs97q9Q3k3VD3tLf9A08JUvKjBn3jDZDlc+bgnnrG0wK/OH17kXBQp2yGBwTCsWUitjJ/Hugp6MJPzDBo0NKQ1wFkmmAqqLSgac/Z0mp26i5nsyH7eYo1Ahd6plqVnkUspp79GVcRsa5peoaqK4kPLMFEcno65IZ0h25SUg38GEyikZVnl7etpCNLmq7D9hNE1SAuk+esyIJhnJPpJWRWEo0su0VIJGvWkwn3tn24qnRE+4KdUYfCBhyJRtCrsSokHDv0DOp2X3XSklEvxI0leirZ3u+x3e0SqYamYzGRIpj5F4cjwWQW0wtLVNxgotAHimYgK4lUFh0ZjPvEmpYFnhycOHGC97znPSwvL/OWt7yF//yf/zMA+/v7xHH8KX77k+OqL4oefvjhx/VGTyZ+/ud/nn/9r/8158+f57bbbuO1r30tX/RFX/SZHtYCCyywwAILPC5ci0Tqzy6eCL73e7+Xb/iGb6Db7XLy5EnuuOMOwN9We8YznvG4tnnVF0V/3bVEv/Ebv8H3fu/38vM///M8//nP5xd/8Rf5si/7Mj7+8Y9z3XXX/W9vRxWCMPeuLpMKgsC0IW+QVSGTcYIoJXUXpoFf+ZvIYUchjQRVtXULHaB1XMj9kHuDDeKkQmpLvWRQM4lqNSLjc31ms5heL6eflCRRzWQWU44jVOZX94dw2oc5CiPaiglfOKqlpTABxklM6pdd2YbEhiC0477RGo/Oltg/6BDEMDmu5oyScI4LWwOcEwjhmQAbO+Sgoqw1Vakh9Wfm6AaBU4JyxWCyiLvLDapZCMuGas0hOs08YG+80yHe8gWUs+Mgr59xsrvHY+UK9+2soXIoVvxUzFYl6tiM4+EeMxdSWc/amM0VmkFI075/1VZHTGzsV8xK+DDJQNCNKoYy42LjmTc7DUh2ahhNMEeH5Gtwan2Xo+mYs3tDdA6yXUo2kaDqeiefML7iBQlN11EZgc4FoZezICuLDTTlAKq1BkKLGGnv+hPgQksn9jo0ieP8tE+5k9CZHr6PZ9SIjNeAAaHs4Jx3g5lIEU68hkFmPkTuZG8f0wokdrcjgsxrOKyGemBxsUXOFMFYIGuBbbUpdGuCwGBK5WsnjK/VEJ0aHRnqaYisW7dbA00E1RKUqwYX+W3qWVuN4HcrZrWmFxU8nK/y6HSJ2X5CHML4hKRaAjEsyRqvnbkv22BcxUTdiuKoopop79hT4GrJOI85V3hd1YPRGntNl92s07q6HKpykGt2mh4bUvP/G3wUgOWnz/hIdpzNcMQzotNcMAkfnR2nmYVE9i/VoRgJhQ8gPCw2rQpNngQgmJ8HdVf4gD/pyI2vtcFyRXijbGmaVFfIuMFEgdcTtUxHGlfk/Ya6DnC6PQ+bgLFJCIOGbE3Ru+kpFJt9dHyJaTiSTAC49+gJltZWmSWSWRO27ymJ1zNmt6wSbxVzx+R/3HsBd66+g/eV67z+zBezNetiNgTHgn3uLTa5sOUP2PIOhGOLqhRVrdkrO2xNuugDhc6g7l0KZJw1EafLJe7dWqc8iFqRlfMhhjOvkZT7/thuLXdZ7cyg21B3I+J9XyVyfm/A7lKHpSTjzIrX/9R9jaocF/f7fKQ8RuU0pmuoVlOCUTnfD6UNiIRjKc4ZRwKsJcgsdaGJRc3JZI+3dvx+dQKCzNFkAQbJ8WCPsFMDIdFBTXSgmLXOyjSsmaY1iIBwDNl2xNnhgJXUj7+JFVF7fgcTmGQBasUy6OWMOol311UgatDaMEgLGndp3E8oPkOaoqslGd72trdx55138rGPfYyjR4/yile8gu/8zu98Qsb28pe/nM/7vM/j9OnTvOhFL0JKf7LfcMMNvPrVr35c27zqi6Lf/d3f/aTPCyGI45gbb7yR66+//nEN5lrgp3/6p/mWb/kWvvVbvxWA1772tfzBH/wBv/ALv8BrXvOaz9i4FlhggQUWWOBvEq6WZHj44Yf58i//cr7t276N//Sf/hPvete7ePnLX87a2trjEj1/Ktx///3cfvvt3H777Vc8/9KXvvRxb/OqL4q+8iu/cq4huhyX64pe8IIX8Nu//dssLS097oE9HlRVxQc+8AH+6T/9p1c8/+IXv5h3v/vdn/R3yrKcRwyAzzkAkIUvIay7gnJVEIXNvMB0NElgKyacePdZsW5xYavlGCtkI3wtB1AuO8olfKFkJjBbMdlQEfVK5GpOJWPCi/4wRDuKppNwcEKxeWSf1XRGUQVUuSLcF6iSuabGxO2qvqYtiPUOpYvTHvsqZZpHuLCtGlnzriihLOf2B9Slxk0Cmo5jmoI7zHHRDnEQzvORzEqDSrwWZbaXIqZqvlLOjxhvvxKOZhQhZ22lxHLFkbURsa45s+uPf3QhIN7xrpdis+HZRy7SVSX/8+AY2ekegzFUrQMuX4d+N+dctcSj5SpnDwZICcWRhLor5/v1kWKVj6X3s930cIGjXI6ITJ8m9fqUzIU8WvrMF32gCLcn2OmMJtXUR2r+1vp9DFTGx/c2mIVdmnZ/IgRNSltFATiBjZ0vhCw9K6fyw1wbr0Oplh3hUkGVBwQjSbwDdQ9Ep+EZq+cBWA5nbM26qIlflZsIilUoNxrCtPbaDmDHdaitwkUWEyuE87UTh5UtN6Q7NNaverfjZVTp9VB1R0DgCHsVtQhx08NKhvZzOUEU1tSRwgQWrMTFljitCYOGOg/mK1EnwSSeJVLLJaZSqEL7ygR3SQcUphXWCR4YrXJ2b4iYakziK0OaoSFNqzlTtF+lpLrm1Moe23GXg4MUcxAiS4koJXkR8sjMCya1vIkLRZ+dvS5J5etO6o6A2DBQGV0Z023n4Tf1t9jvPsLIGgyCe6pVtsoezrbnivAuQACUBSXmujzZgCm018pZMa95aBLPMNWl5sxsyF6e+nHa1gDpfDbP4XFN0oomTgimoDNBPo2Qsm3glMz1hY/uLWGdIMtDOhE0q11MImmKgA9UFZ8bhsiWaspXJMPNNUwkuJB5XZbFcmQwZv9kDyeTeQ7Zf3/wNj42OsJDOyvUZzo4AX/mJArHI7NlZFuHEe8ZdGaQtSIvNeenfbL9lHTsv0dsaOeapkAaTo+HmEc6dHYFTReq1QabGEykCWYQ7fq5NVrqkgQNOm5o0ghhHcmuY3wh4fzRAcOo4MFVv7/yZemLc/di3je9ntVgCrGhHASowszZr526iwVWohkPdgCtPDPbKDqy5KnxBVybAWbD0Gulcr+frwv26KUFwnUIdmZ0+pr91lkZ69qzPlFCvCMI9yUHs4SNzoSkV9J0I8QFP1+CTEChSHVN3B2z1x9gtWeChfG6rJVkRm0/Sd/KE4BrUuh6ldu4WpLhda97Hddddx2vfe1rAbjlllt4//vfz0/91E89IRdFN998M5ubm7zwhS/khS98IXfccQc333zzp7XNqy6Eveuuu3juc5/LXXfdxWg0YjQacdddd/F5n/d5/Pf//t95+9vfzu7uLv/kn/yTT2tgjwc7OzsYY9jY2Lji+Y2NDS5cuPBJf+c1r3kNg8Fg/jhx4sSTMdQFFlhggQUWeNLRNA3j8fiKx+XEwCEOSYYXv/jFVzz/V5EM73nPez7h9X/n7/wd3v/+91PX116Qfv78eX7qp36Kfr/Pz/zMz3DLLbewubnJ133d1/G6173ucW3zqpmi7/me7+H1r389X/iFXzh/7ku/9EuJ45hv//Zv52Mf+xivfe1r+eZv/ubHNaBrASGulJMdMlifDD/4gz/InXfeOf/3eDzmxIkTqAriAwvCsxNrnSla+lXc2WyF7llBkEG2Aa7foJOaZjcmOvAr9GKl1RRtlIRpTXkQE13QhPuCIlB010uOdsfcJ9bgvF8Jds85mkhw0NNExxqOpiP2spSiFET7fmV7GH7r2QxfAitrWkdTwG7dRwigFnMBhF2qCdMaawTVfow+UGAFzdAQLBfIVvtT7MeEFwNkBdWSQ3YqkrhmstshfjQgOvDloQDFDYbl1QnjaYw4E5FsQdUXmCOGZ62cpXGKh8/4UJXheUi3LKPrJZ3VGU/vn2O/SbnvzAbdhyTxvqVY8h+s6VsaI3nb9o3szDpk57p0gXxV0cQC0filzvt2r2M1mHK6WMamhtmmxqkEE0HVaB6sNngo80xRMBGIWYFTkmqgWTmyx1f1/4JAON4xfCrv769QDi7NDxP6fa2KljGwApP4nJdw4gi3fKiREwJcgo0tWhuqcUrvEUfvTM3+TSHBIOP/u+a/PIYq557xBuNsjXDsGch64AiXC6KwYdpmvkxcjJIWGRuqfkATQzBzBGPBpIjoqYITqU9+/vPEIIwinBhUoXHSMexmjJWlHml0LuZMkTECJX0BahYFPo8mtIRB41mNy6J6XJsETadBB4ZmFhBMBDrzjrRDpigJfV7X3jSlGoco6x14dD1r4JxgXHpqcxgV3NTbYqAzHu2u8F5OspsFUAPaoZSlaAuEH5iscXo8xI5CnIbZhiDfgPWNEbfGZz/hHF6SKZYZD9Uhp+sVCqP9/hu0DrHUsxQ6tD4jLHGo1iEockUZB54RbN1nJmiT4measwcD6lrPk8J9UbPAtkKlSDakYcWB9o69aB/qfkgmfV4VFvTUvza70OX+LMSO/Rs1nQAnQO0EvGnvC9gbfJidwnNgdReKIx2aSLA16fFnZcNQlnSCivOrEMwkqiUoioe73Hu6S3JB0N2Bqge7aZ+/CI8xyhL0zM8BYcFGEhuAs4JRFiMnPnfIRiCXKm4d+MVjKn36eOeMoHvWMjsqqZYEol9jUoXYEsS7tGMN2eukCOEZUGEh3m1ILgacGQ942vIWesXTWsVyh2gEaip5YLKG7Xr3nokFOEdrQORcPqRwkuVg5r/rAoWsLa5W9FTOETWm0/fbtDok2jPoqaa0AUf1lCOdCRfUKmJ3RBpqgrHXVcW6od8/YK8/gHManUGWa0JlWO5mbKWHBcb+vJOFRArHajzl42kDQqMLn30UacNmOqZ6kpiia2Wnv+uuu/j+7//+K5774R/+YV71qldd8dzjIRkuXLjwSV/fNA07Oztsbm5++h/gL23767/+6/n6r/96AB544AFe/epX8+u//uv81//6Xx+XlumqL4oefPBB+v3+Jzzf7/d56KGHALjpppvY2dm56sF8ulhdXUUp9QkHbGtr6xMO1CGiKCKKoidjeAsssMACCyzw+HCNhNYvetGL+I3f+I0rnvur/g+8GpLhf/X6T/b8tcB0OuWd73wnb33rW3nb297Ghz70IW655Ra++7u/mxe+8IWPa5tXfVH0uZ/7ufzAD/wAb3zjG1lb80zA9vY2r3jFK3juc58LePHT8ePHH9eAPh2EYcjnfu7nctddd/FVX/VV8+fvuusu/t7f+3tXtS0nQBUW2UjoGJ61dM6nWAMft8dIdh3RgaXqKerQ0O2UHOzEhAdeA1L1/QToDApOLe1xP2vIs13fJ9WXHOlM+Fur9yKF427tmaLowBAqwaiSbHbGPLt3mgt5n32zSjBzCAdF27/U9AxoB1KhnU8+DkYSJv6evQ2gXvHal+WVKWudKWcOhrhxSnLeMx/NZsOtmxfmKbYfGZ0g2vM5HE0qSJOKXlwyyXv0H3F0ztccPMWvcounODa7Y7IiRI2gd9ow21Rk0nFDssP5agBTv796ZwzhqObgxpiTy/s8NbnAH+7dhjob0z9tkY1j0k4X228oq4AH99ZROyHxxK/gsw2BE6BzP9aHz6zxB+IWukFF0K3INgKE9QnRB7OE+/MNdoo2WNSBS0Lk6jLZuuRZKxfmuS639M7zZ8MbqIZeUCKsTwkPZniXmfMpxXWbih3v1bgzXickoghdLoN0NEYRb0lWP7CPu/8Rut1nopOcL5335YUcScacHkP3XM3sSICTjjSpMEZSjtsvpVIhujVB3FCtNJTb2rNTExiPE0ZNQl/5PCYVtQxIZghm3lXWjwtCbTjbSXAjPddo1KWirLV3FioHbX5SVWuEcLhazjULVrd9YQLqQqNGmnDs82CqvsC1PWqdqMJYSVmEPg05dNBpCOIG00iKaTj/Hu8ul3xJ7+PcFOzzZ+F13D9eY1f2sZElXMm5eX2LzWQEwOnZEpNpjKwFVQ+ao4b+iTF/59jd3BSMgd4V5+pjzYQPlkc4Xa9wvhqipaXbK5hUCkrJ4XexcyCUbTVi/pxRhaAptO85bLVHNhI+oTpTFFnofxY7mo5nfqgFO4XPlVqJpmjl045FA+HIER4Iir5ChAYbWVSrKQr3FCaL0Y3AKiiHGgQEI8GfnLmJSROz3WYKNV2YHQ08Y5SH/On0VjaDAwqjaVKvIRPt1Iq3vSOqc9ESHRiydU12oNlZ6mKMRLQaqmJJgvDuQaktTaVRmURaqFLYWBnzRT2f/3RgOlgjSXYc3dMZJu4wsoKkU5L1NAhNNPL7q94RTDdCwk5Fk4ANfMJ8tBewN+7AMiz3PQW0v9JB1V6Ts1ekLEd+PzoBsjIEXtLEVt7BIFgNpt4VKCUqbxBFSIDhpLYsdfw2K9cn2iuIdnrs1F2OqoDbBuc53b0elxfIi/sE05YpUg239s5zz+o6TdJDVuAaiRaW1WTG+fRSUFIw832WjZX0dYEKjD/GU4sqFYEyHI/3KZsnKafoGmmKtNaflNj4y3g8JMORI0c+6eu11qysrHzS3/l0sLS0xPLyMt/4jd/IP//n/5wXvOAFDAaDT2ubV60p+uVf/mUefvhhjh8/zo033shNN93E8ePHeeSRR/ilX/olwF+9/dAP/dCnNbDHizvvvJNf+qVf4j/+x//I3Xffzfd93/fx2GOPPWGWwAUWWGCBBRb4bMPlJMPluOuuu66Qz1yO5z3veZ/w+j/8wz/k9ttvJwiCT/o7nw5e+tKXYozh137t13jjG9/Im970Ju6+++5Pa5tXzRTdfPPN3H333fzBH/wB9913H845nva0p12REfCVX/mVn9agPh187dd+Lbu7u/zoj/4o58+f5+lPfzq/93u/d/X5SrLNrnEQdiq+sHsfE+uDTP7/wTMIpo54t0JVCTo0DOOcAzEgnDjifcP0aOt2CGuOpSMeUiuoKcS7jnxNsBrP+FuduxmZhI+GNwC+ndtJ3w/0zP4ZXtS5m3u7R7hPnkRVXt9y6D5TSxVB2FAEERCg8rZ1fOq1DXUH6k2/6rll5SI3dba4q3oaO7MBnS1HvixQkeE5w9NkbZTvh811pBcd4cSQbWrWulOu6+5zJlwl3jfEjx0QrXqdjgoNT+1vsVekTEyPaNRQDiRKWo6He4yaZO6YircyZGUwccyzhmd5Wnie326eQ7QL0V5NsRKQH/HLoJWNMVWtqfZDkgve3VeuOkxqkbmcd68F5yIe1qtct7FHv1twsJ4STLy+ajaOOJNdcj7WfUdxrI8eJhSrXNGLthkcEHSruf5EWL+KDSYQTiyydjSJouniXX6VxUy9pkgUpV+9tZlR8R6YD/sTsvvAiIlVXA7rJJ0LjvhjZ5H1JrvPiJDCUTRqnvkSTARlI9DHSsRqTrHWI9kT6Mzh9iIey5d5SmfbvzZssBpkaQgnDtnmXQ2jnPOdGhv49GAAOVPksWc9DrUJrvE5Pc4KRCnnkgUbth1uRmBnIcmeIJg4nBTUfYgHXssxiHP28xRTt2ur1BB3vCPNzAJUJqlat+Cx5IAXJQ3QYxK2+98KSA23bV7g/7PxfoK2Tv4368/FVAppBc1Sw/p1+3z58Y/x4t5H6AlN7Rp2rR/Dh6pl3jP9Ah7KVqmMphsU9IOc9d6ELA8xRYSYtenyFkTgQDufG1Z5pshUEtGtMR1PvdSFblOLBY2RdDoF+aqgqGOCkUAVkvOjfruvC6RoWSYh0KXXoqEsy8tTpklEZT0rGe5L9NT3zVVDmAg5Z/JGO13+pzo6T5OvlgzT4wobgG0EHxqd4HS0xH6egvRsXmuAQ1U+ZVo2gPRaQtEI6lohpaPp+mOQr3vnXT00RIGhygJ06161ARzpTHhauAXABdNFaYNsfCeZKlJQjuVuRlmE2ECjytalNRNQSeLlmvFSQ7GkiPYkwczRTAMyEzKIPbu5NTRUM4XTjtooChP4+edANHa+zaIJCLGs6ol3BdYGlVfoaZfCBSzJlKXIb3O7cahze3QudjlfDEhExIv6H+W3174QkcS48QQ9OzwHBdfH22wMJlxIekQlUPn52w8Kz3a2YkxVeJavMJqg1ZP67jODKhSBNFwX7pKHT0732TVxn10l7rzzTr7xG7+R22+/nec973m8/vWvv4Jk+MEf/EHOnj3LG9/4RgC+8zu/k5/92Z/lzjvv5Nu+7dt4z3vewy//8i/z5je/+QkZ32//9m8D8OEPf5i3ve1t/PEf/zGvetWrEEJwxx13zBOurwZXfVEE/t7gS17yEu644w6iKHpC7hV+Onj5y1/Oy1/+8s/0MBZYYIEFFljg2uAzcFH0qUiG8+fP89hjj81ff/311/N7v/d7fN/3fR8/93M/x9GjR/l3/+7fPSF2/MvxzGc+E2MMdV1TliVvectb+M3f/M3Hta2rviiy1vJjP/ZjvO51r+PixYvcd9993HDDDfzQD/0Qp06d4lu+5Vse10D+OkLPanSuEdLxlGCHok1RVpFBNhqZN+Cgm5RsdsY8HK6jakEwaVBtQ7zEoaWhrhXpCNKtmsl1IR1dcmMgOR7u+VRqIDgocaHCKc2zksd4WtDhVGvx0IXDRGLev9TpFPSTgi0nqCqJEz5xOGhdU03iGS6A5w0e5Nb4LH8enWI0hc65EqsjqrDheZ37OVv7fBhRC7pnS/SoQD5zyNOH5/nbg4/x/vXrMEEPZvm8R6qTlnxh734O6oT3pJfuLydRzQm9y6N6Ze58UtMSFyjqnuN53Qe4OWiwzrv3ZOOdZ8FJn+T7xZsP8uH9ozxSD1ClTwQXxzOOL485tzWEiWfrwn2Y9SLshuBYb8TeUhcTRT6deqwZ1xHrsWd07t2oGJ+MiPcVddeRyivtp1pbip5fdjvp90MwUZfce4FPizahpFgJ6XbblBylqDuCZJgz7ORkqjvfpr37QbZHt1zxPo9Nh/QfzGjOnSfUCp1dhxAO6wThgX+z9CIIJ2mOKNYHE06vx5TnA+IDR3Dg+6SOJQf+tXFF3TKH4cQQjAImZcywf0CU1FRhPG8dD8aSKgihdWJ5dktgSw2NQDaX3Fc2cLjY4qwgmEiiA9Al5Muewbhu4I9VqmvO1xpXKoQAFTWkccV4GqNHimAiKPp+FX59tH3Fvtia9FAThVtveN7SQ3xNd5fzxi/nf1c8BzLt+9lWGz5n7TQv7n2EU7rgtJE8VPf5ePE0AD4+OcpD4xUmRUQnqrhxULMZj6hSzWm9hCvk3H3V1ALTbxDSd5UdsjQYQZA0kPjJXTUJqlJzzc5ad4roOR5u1lB5hJ4KZrteC3Oh0yOQBtMxNIkmyPDsclrznLWz5Cbgz+pTfm6NUvTM64XKFUu55t1NwgC5Ym/cIW7TreWwIhchovFjf3S8xMWg692eBi98aOUvTnpXYLHs85yqrmeLbC29rqnVtZVL2ud8tf92jZx/RidBCodq/+ftiIo4qmkSgU1DTCRwoWEQFuzFFSZOLiWFt/Npsz/GOcFsc0i857sh1VSzm6dEuv3iSBvqrvKdkk60aeGXJfW3f1XSkkpHr9XPifEUNxoT7W9wYFKgYDnymqIdB3Zrm/Ti0XmH4JcmhuZUjl1fRkymhFP/ucZVRCD85zivPLsmC0nWBKRxiQstVrWssXHICmqrME7gnEDWDpU3yCYk0g0ngl1m+knq+/wM5BTBX00yvOENb/iE5174whfywQ9+8Orf6HHgZ37mZ3jrW9/KO97xDiaTCc9+9rN54QtfyHd8x3fwxV/8xY9rm1etKXr1q1/NG97wBn7yJ3+SMAznzz/jGc+Ya4oWWGCBBRZYYIEFnkj82I/9GE95ylN44xvfyO7uLu973/v4qZ/6KV760pdycHDwuLZ51UzRG9/4Rl7/+tfzpV/6pVeIl5/5zGdyzz33PK5B/HWEqEEd5ESdgCoLKJwmbjUPQjiEdQjrNUCDOOdEso+MDU5qhLFXtD0DNKUmGlmC/RJVhgTCkIiIyrVJwYA6vwvdFNEkDGUGaFJZImuBnjUII5G11xw05v9l79+Ddcvusn70M8aYY17f27qvfende3d3Op2EACFAElQkP8WEsoD66dGjVCFBpLQ4FChixCq5yE08oCiIBuVAHS3P0SMED6InIAIaMAm5dCBJpzvdu3t37/u6vfd5H2OcP8Zc7+omwXSHTifA+1St6tXvmmuuMeccc+7xfebzfZ4u2V440A4bOmzHzAjjK79Rz1dZX5I+wX2BI5SGcArhjQnhxg69uOJL44KPqaf9AByEN6e44xNkPeLV2Q3+bFrys/s3eGTwqucczygt+KLoFnf7Q96ZfS42kDglSMOa/SBn2FV4AFiL0yGm3/Lq8C4D2ae1kqBwCONo+vA5+75j4cuHH+ao6vG085W8CeHenRNev3WN/25ezviqZ4p07vUgkWp5oH/I0xsbtGGEmrLS1pxqbx7f22Gyt4uwEnDcbYbADQCmJkVKu6qe46zGGkm1TKmOJbJ1FLuQ3DvHWsF4PCB72tvbi7Kl2BJ87v5tXtW/xf/znl12u0N2bUNzJ33OObszHXD5mQNawNy6i2wvkYU1RaWRnT9L71YLLuDkckh/pyLbyqlHQ5+BtoTDRY9i0+uPhnHB7SGYOECVBj3TzPIYOXAM05I7aQYTP1+C3CfTN4FDxi2EgBG4Wnm2oj1zfjb9liBtMZVClcJ3PpquY2vQrLQcpQlYzGPUUmFDSxi2JLph3GREM58RV3Z6jZHKV+fhveVl5tcHZHcEyw3PlkokadcmdSsfoE8UQQFWOu6Jx+yrgrkVvLe4zPsWl7m+9JqxoyJjmse0RpGGDVlQsRvOmLUxzgrPnnb3lwsERgCd03tQgquhtNBPSwaR1yk9XSnckXeMrmtJohv2kxkHgz4NEeEETOyvwWIv5PJojB5UtHGAsN47TCnLq3s3UFg+2vdM6tKkhHPvCcSgYbS5JC9C6sMEWUrMJKLe7Dyg0po6sN5p3AomiwQpY9oyILC+E9M9i8k0sfc2UpXwDI4D2+nFVoxn11HojHe/p/HdaFZ5Ld1hkfFo42ewxBIFLeVIUO4l1AOB0J2uRjoa5bvMTv++Sloe7B+yGeW8a39AdVOiKoeeSQ7mPbb7ngVUkcGkFqcdrZFM6xhqr2ezUYAN/T4j1aIRNC5AVWCPTrBVSTSBE9MDTjgX+27Fj2qBrWv0tGbZnBXqr7l8g8NLV8huROilP69Hix53m6H3smpBFaCWknGVMAoL32l4+q+i8F2I1gmUcP657zoPK+GZ0i21JFK/62H/6YBbB8J+IpycnPAd3/Ed7O7uftznV65cwZgXzuK94EXRzZs3eeCBBz7uc2vtp8Wxco011lhjjTX+yONFMm/8w4ZPpGleLBbEcfwp7e8FL4pe9apX8c53vvPjurn+43/8j7zmNa/5lAbx2QjVgJjOCeMAN+vzTLvJQPoK2dSq60zzVcUoKtnWC4LQYBUgxOp9exgYok6II8wZu9RTXteyMPEqdb29eQvV66EXuz79nZbSae9YnbdIowi6TppiGTEW0NQBzrKqYmSLTxRHsJH46vxVOkCLgLzVZAcG89TTBPdtMswWRELz6rBrlQwc7vAYM5kQFLAX+ErswewuH5Gvwi2W6NxXRcYJ9lTMeT3GBW6VZG6sROOIxdkCWRjfuSRCy57yldy8iXzH1LLGqpTzXdV3TzBBCkeQC6KZI28Fg7Di/viA98WXGHfVUpA7VCWIVcv98QEf7p/jmXjDd4gZ70dyqmO5dzDmKN1FWIdeCB6Zn+PO5nuQ+Iwl5wQ69tdou79EScszi5DqWCOMoD1X85X3PkpPVfzb2euZP+k7j5LDmmYArx89yV8efJj//MrPIXjoZbSPPu5/fkfy/trrul4bhtR1AO1Zp4oJYS9ZULcBy1PPmYMCYWImJxp7WbDbX/DMxoDkrs++my8iiq5bcDdZcm3TUo0CkqMancOy0ATSsJfNuTsYYI78fNFznwrfDiFKG7KkIi9D8nGCrIXPzov9tY0GFf2sZDzOEMbr2U69r07PE8BxnmGnIeFCUG94jVMvrLwWaQnhzCG7PKpj0wP8Nf6Pt1/L4AlJdteSXwxoujCyJ1v/OLp+vEF8CAioBPRUSeMEH2u2+a35FR6b7lJ3nmFSOJKowVhDFlYMgnI190wrCZuz5HoTOXSvxlkJDvTcMyeyEQyikvsHXr93ZzrAtQnRGNpewLyOuNJriHRLaz1j13TdTM4JziVTbvUHLHVGkFvCmSSvNJms6MsS02lmojH0bhqcUlTSce9wzIHucfswIToR2IWi1P7aJjs1aVIxbySmCKgXITI0gMCGDhcIONUDCa8psqFD1n6eqBrsXGFjcaYjcd5LSS4V1ghohXegzjyzfDjr8audDm4QlBgnqTdgfiHw+Y3KMm8i8iIk6hy+wTNNQdiyH01JVM27ei1OasKFJT6WTMcpy8hfE60NRWr8ta01E9d1Pkpoe9p7EgGBtEwt3GpGnuWsPIunl45p6xnYc+EEgDbpciCLhmV9xhT9ma2P8LaLLyMbDZCdE/5iHnOt3GJeeW2WbP1zZF5GLJLIe5p1x+Vk99UtRoTo/l/553usGjLR4n73a4FPFz5DmqLPRpymUAgh+M7v/E7S9IyVN8bwnve8h8///M//lPb9ghdF3/3d383Xfu3XcvPmTay1vP3tb+exxx7j3/ybf8Mv/uIvfkqDWGONNdZYY4011ng+ePjhhwHvlv2hD33oOfrmMAz5vM/7vE85f/UFL4q+8iu/kv/wH/4DP/iDP4gQgu/6ru/iC77gC/jP//k/8+Vf/uWf0iA+GyEsYAyitchGcrcZMpe+jLGV8pWH8J4jsWrQXRuHT5g/S9zuhRUbQY4KDSbSmFTTpmdVDrBKuwYwiwVBDsemD4xXVbToPHJOt3V5QKmc94hxAmG9q204c0RTS76nGGjPRmnhL/O8ihneWGKNQS9aLqTT5x50bDGdOC2cudXfbpwimjrMZEJ825fIt/KExnXH3Aj0vCacKU7ymLlTNE6d6apagzDPraYmecLWuEWOZ6h6RNOVZ6ULOCh7xEe+Sy7fjZnVEarbWUewEc4dwVJQmoChytlNFjyZOKz2VVwoDf2O2YtVg7Cgc+82fG26weNNj5EsKEyIEA6tO6YoWdLTFXeHfZqeRhhIBwV/ov8Yl/Uxv3r+QYqtfQCiiU9OH6qcXdXj/3r5/fzsF7yJfscUxUfwv3L/qvly8FHSpMae24GDQ9TOFm3m2I9nzJqIztIJNSuJG0N0MqJoNTvJkqeGLSb2mXRurjmuve/NRpjDRk25FaMXCtGCayShNGynY66NNlh2FHI46eaZFQzSkgv9KYc6o5jGK4+rtmuei6OGzSRnnvtqWlVuVUFL4WitH+yiDL0jcgMoGMUFo7BECIeq/DXSM7/th5cXaAZP85uV5rEnz3PpydYntlchS+vdvH+79GHM9XFCf+4zvMKoZVMtKJ3iiWqfq/NtxkVKFnoGbjPOaZ1k2YSEylDZgKlJGdcZtu70dx37YEct5zbmTPKEtk2Ix35OyVoxikouxScAvFffg8m9Q7SJJMfzjGLYOZ63EFQO2XWMpmHDfckRT6VbLC1EJzXCwfFcs7QRkWhYLP012Ltp6T0xoU03mRrBKCyYVjHBQpLd8nO36XWP5B1IdMtcsGLb7MChopa2L2kXAadNlKcdZDZ0IEF1bBEIGiQu6GIWnNfheW8mgYkdTd/63DHpKOYx77x9PwCJbpgtYlzmfdWavmfVjhcZZhp6H6f2lHbw56Lp7nvXSO/XdrugjTPmlwNk50O2PVhwCNS5pqkD6jJA1gITCapRQEcC0VrJR+o9PrI4v8pDOz2GqhP99GW5ur4yDBF1y2Rxxhi8MrpJsQNmu4+Tnf6pCLhdDCnbAKfAhv550bSKSRWvPIvAa9BOW5EqE2BPtVzKdwEHLxVD1OEz4VP02Ypf+7VfA+Drv/7r+Wf/7J89L4fu54tPyafoTW96E29605tetEGsscYaa6yxxhr/G6wXRR+Hn/mZn3nR9/kpLYr+KMAqYNCnHfkUdCkceWfkIhoJzuC0d5yVwlG6gLZWq+qpI1lIg4a+KtHa0MaCNvXV0Hntk86HKl/5w5xCGFZ/qy9LX9FlvrNlJSkzAiEtQWQx0uEaTZBDemgITyrmlzKGYfGc/S6rkI1bR1hALmt2wvlzfi71mVJfL11XwS+5VY5IDnxZKm973UVe7NN0RimyBTUtiJKAMg+ZmJjS6bObuPWMG1ZQOkMkLGWl0fMaN1sQlKx0MrkNOc4z4hNLeHNKfCliVvpKOxCWrgGQcNYSjUPuzvtMTUqiGp9pFflqrjTByoF80UadLssS5JJlETGxKX1ZIoVFSd9ZAtDTFZs6Jw4b8s71uDUKLQz7qmU3XfBUd9foWUVyEPLw4l7eMjjgT6Qf4/9x5c2rZK700PBb0ysAfGXvI1wajTl56F76H9HY/U2cdkhhCYQ983xpDXLWopcjykYzGBToXo2JNOEUgqniztL/hYEuiLOaahiTJhJpHFR+4t0Tn3B+sM2jycjPKSe9h1MtUNKyEy2ojeKGEwSFZ+DqoZ9dgbIMwgolfRelbNyqbUXKs+rYdtocp4CkZTdZsBHmCOWQLejCrpiiR8b7vGM04NdnDxEcaPS89B2LoSMULTNb8ETpu7Rk7rui2h7sDudc0p7BudsMOClSqjpYMUWBtNStoqg1Ra0JxDaTKOV23vddTQpM4q9tupFzsTf1upMlxEcVTkmEUWxFSy6G/u+EylCXPueuGkaMS411csVWAqsOpWFccDE8IQ0aVA3BOPfikzpCYVHCYUq/cXJYw60D9P0jpLbsRTNuLIfomaB/o6ZNJPPLftssqtlOlhxNM1zlu6DagaCXlRSBpVlkhNPOB6zxGiLjwEmvJzx1Mm/Tzp0cb2sUWJ/hJxuvTWKjBuWwlfJeSddH3YV23r9KQjN0mMwigWIZeg+qJci6Y6AstHXAcd3joOoTzBTJYYW6eUjcD5FNyG7mWwBfNbzN48kujx7sUsxjKCXKQj2ANpFUG12emlU8nF/m0fGeZ72EBGdpErF6NnrdpZ9/IgwReUFzsEnlGiKhaVDezX4npo07XVAjmFQxUjiavqPc9CxYIGBWxchCrbzYbMcIWSeYNAmm8h1rTnlncP/cV5QvkQD6RWGK1gurT4rntSja2Nh43q7VJycnv68BrbHGGmusscYaa3wm8LwWRf/0n/7T1ffHx8d8//d/P29605t4wxveAMC73vUufumXfukzFgL76YANod3uke9FqFHJllpwq/HeKKL13h8mUtgQQtmSmwhXK1TlPk4/Y07LbHHaueCIOzvdnWBG04W5C6UQgfa5Rt2S/rwe0w4N1WaAXtqzrkzlyNKKYVJStwF3zAhVKeJbC+TJHFVlnIueqxkyVmAOfEeWzCt6QcnvCcFqjEsTEkxLDOByzz5J6diQKReCyUo/JWuLbQMaFAp7ZoqhnusRapzFWuHDqIzv2Bt0Y9lUOUpaX+kull7PoiyX9RH39k54MvTMi160ZHcV1w97XLu0g8RhE4MJvc7nqMhWzMNxkXbeTV4DppQlFRWZaIlki5R2laSeqIZBUBAFhqLrNJpNIj5aXuB+fUwoz9g0Nc4ZXkv41esv43j/1zFE1MOzUiy9nvOBWxcBeHx3g3PpjGv3SgavehnNZoKwcKccsmzCs46XKEDUxo/XwUgX9LKKKs6Qx45wJjicevHPbrpAB4YqBROJZ7nzhqSyYjta4iI/F4WRBCUEC0le+wsmhcOZrlupZFUhC+FWeglhPFNkta+OI21IAz8vQt1SRY4W0EnLRpgTyXZ1LjEO1TUhnuQpj5XnuFWMkAaaXkCTSWzfoIXhrjHcLn26tWx9N1U9clzpn7DfaYqWbURZa5pGsajCbk4PmOaxZx2AvA6Z9mLGyxQarxc5ZYoGSUWsGqo6IJ5DcJxjBzE2gHPRlHu0Z0Ej3dJYP59xEISGnWhBLxox1Z4lOmWKBrqiLwus8+yMKGqcyCA1vDy6TSieNV/KFmrvEr27OeeLek9ydbnD3RLCoxyxmWBDz/Q9MDziXDzl6vEWben33WwJhklJP664cRLjOq1gUHVau0735USniXTgtIPMX1hbSxhL9NJ7NDUDgU4btvpLThYpxe2M6Fh197LvNmwzh+lZRK9BBZZmqdGF8M+5Z0mKnIOFCVk0odctLRrsZIqq9jGx43Wb1wD46sHD/Gb8ADfnQ4rDFLXwzvHFnvdaE1uekY5UyxPLHQ4nPQYOgnvOA15nNm9jnmnnXK/OUtdFEkPdkN6W/MTkQb5t4yker/YxsaXYUpjO/0i0glkVeyf5zYY8VIhBQxw2LDq3ctl2Hbax786TwjFrYlgqVO1wQnRvCCylC6jcH6DuszU+KZ7Xoujrvu7rVt//+T//5/ne7/1evvmbv3n12bd8y7fwz//5P+dXfuVX+Ft/62+9+KNcY4011lhjjT/KWC+KXhK8YE3RL/3SL/GP/tE/+rjP3/SmN/Ed3/EdL8qgPhvgBDR9Tbkh6WUlWrSctJ7SOc30MrHCxI5Itr5TqxHI1q2qNPDalnGTUVdB5x9iUbXgsB0AR2hhMJ3HlNrcAOv1G6Xz1fx+MEX2G5o08JqQZ+U1DZOS12zeoHGK/75MUFWIvHWEOR4jzD08GN9+zjEFyuJOHT6NWXXMncI2Z4xOkwkeCu8CKf2g5CjwPxN9z1JsDXwX2msjRTs0mF6MiRRCWWLhdVSdTAiXhNhYI7UhFRotAs8mKIFIE5oMXpH55PRX6ZTzvRk3o12QEqsFF3sz/kQMx8OP8EvDL/DjMJbkbkV0J+Xp5SZb0QKVtthQo2o4nPR4pHcO8FoBq6HckFQj2MxyBrJEC4cUDiE6Z3A867ehl/SjkrH0TtDhoeb903t5TXKNNKhoTiPOlCS6W1A8OeBnXva5PlNNgur1MIsF8vFnaB/zTuA/d88XMW9i6hEU9/SwgUCWkqdnG+S1XjFFZpAgGutdgqWfW72oIo8A4R14lzPfrXW8keKcZ7+s8kyRygUnVULpNIlqQJ91HgWl87ldecS4TqmtWlX7p54sAEp4rZNzopvLXael8nqbNPCClTRsmIUO57yHTWsV1gmc9Zo8E0vMqQWWdBgEoWxp+pZ8R9EmAhHW3G2G/BaXeGK67e+vylfiJrGMdI5BMLMRCxNijKStAmads/u0lcixJpr7bqqlcN5PyHSUicTnfXVYtBHlMmQwd4iqxuqUtmd5IL7LhcAbhmnpfXRsKGn6sDNY8FByi6fjTW4E4MSZSzT4ezVvtWfalKIZagbbc74kzjmx9ZkYxDhEFFFsSf7k7jXelBzyG8mYjxmQiwoxjDFdBt8fHz3OTjDjv0cPkpegF1DlColjGJXcCM9c81XpEE03IG2xWp55CGlH3GUgNjrASY1ees1Xtemdty8PToiDhieOU4LO/TuaQZN6TZLIGvqDAucEzSJEtv6QbNA9B0PQUctIF9Q2oE0dJtOEaUqdBbhhy5v6HwLg1WGC4Sr/Vr5ulY9Xjxxuv2Rva865nr8GaVBzUPRoc42JoL6yi9WSZgCHZY//VV7iqaVnimwAjIaQF8SH8B+uvZa+LPnw8iIuslSjsxw7lUvGk4wsq0gHBWrkGCS+Y/LkuEe6OPO1qvuSZmhIde07YJcSVVlsILAR9FRN7RT1HyRN0RqfFC84+2xra4uf//mf/7jP/9N/+k9sbW19gt9YY4011lhjjTXW+OzHC2aK/sE/+Ad8wzd8A7/+67++0hS9+93v5h3veMcfqkBYVXUVg/DdR9ebLZ7MfSUbLAWysbRZgNW+mm+dAus1DFbL1XKzNorjJsOWAUHpUIVBlfBUtQP9o44x6hAEUDfIGm7XI+AmsWjRUYsToBeG5MTveDmXSByvTG+hheE9yb3Iskd79wDwRfJD0Z1ux56ykfJZpYYOnpNHBaw6lwDqgeAV2lNY56Mpj/dCJOA2fOfThb7XX0gkclDTjCJMLJGdiMS4M38Um0U0fU0Yl0TCUwfWSHAtaE3bg1dH17u/LLmUnvBMCAiBVXAp9eL9r0gn/K3NTvjiHMHhnOgkZVLHPNi7y2BQkEcJegHlYcLVzC/SjZG0fUexK6g2HcOwxCA4thGzNqZuFLpLutbCsBPMOZ/OeCpxyFYQncBHj3a5vrXFvckJv37Bl5LFpSHhtCa9LfiFW6/mnt4EYUBkKSwWmOmU3ff7bX/53CtJhwVOOYpt5d2FDZzMU0yriE7ny2YE1vkKXTisEz6FPfa6HuFAlH7jaRHTGokNfLUedE7G4yLlqOljEdDlMp3qvlQNbaE5qRIaq3DKYWJfbZvEbxvrBuskxkhOGxKdFGdZW903p//FCZoq4HYxIJAW20pMCNXQV/YA23FBX5aMdIHNDPXAD8gtNP/t4CFCabh5cxOA3rTTN1nBUd3j8WaHiUlZNLH/m63Edfl24UQRH3kNTLktMMKRdp1phbbYZ+nZGiuZVDGuCHyXaKipN0LkRsV9+oBYnLq1+99pE0U9gPsGx9yrj4hV4x3TW4fofIryVnPS9ljUkdeBxZpyQ3HvaEwiIjTN6r6SywqkoO7D6/pP0pMxW3qJNEBegBsiUj+/Pz9+hlQ2SBx6CfHYUSwklQnoU3XjOLumwnb6odh0uiTh2REHUejvSSktTZAQlI5wZshnmsZIzsUzMlXzZLKDcP6fBFU52lhgI0dvULLTWzCvYuZ02YqCVUdXm8FmL+dV6U3OhT3+1859LM+H6JMdqmFA1FvygD6luDUKx/E8I73lc+maTLC/M+X/vPhBzusJAB8r97m5GEIjMREsLkaY0HsSHeQ93jO/j+MiXf396tKI8DBE5467NzZ4x+BzkMKh0pZqQxP5Zl+iMZRBzHxXsrU95/JwzEAXPDXbwi00enHGmFYjCLZLdpMFVyfb6KVAlRYTS5qB5Z74BCXsc7oS1/iDjxe8KHrLW97CK17xCn7sx36Mt7/97TjneOUrX8lv/uZv8rrXve7TMcY11lhjjTXW+KONdUv+S4JPyafoda97Hf/u3/27F3ssn1XQOeh5jc4143nERxYXuDrxTJGe+zwvq3xVUdmAqtMR2UDQJmpVmRsrWbYRtL7Sttp7uxzXPY7tkqeqnZVLM22LLQr0Eq7lWxSuonQBAl+dhscFsvKl++J8wryOGKmcTbUgVAaKZ814CfeozqykY4rq5owJslm0yjY7hajOqmqjPQsEoGWL6ypuJ7sq2p5tK5XFRl4XYxrJtWaHG/Xmqpo2kaLuK9LYj+eOWdAuNHK+BGNwCvZXtrVesKMqh5tM0blDdS/TI6FRyVmOHJMpermHFI6Hkls8MjrH7yQbJEeC6EQyHflKstcvsaOGstWYnqW2isfrfYyTPL3YpMxD2tCf18KEjFTO5fSYdw5anPL+QMd3+3zs3n0ejO+web9nrk5euc3oCYlewPVntpntxOAEbncTOsZu8M6rfr9bL2N2v0Y2gmKbVVeUqwJcrVYsTDny3Tgm9izjYd2jNgFOO5rU63pEl6VV1hpnBS5wtKlYdR4VleZu1ac0Ghn4KrZNfEVutU9JX9ZelySUo8k6vUKvY8ukoTQBppHeoV0JbOBZqrIJOKn8eV1WIaLpOqOKgDuLPoGyYCQmhmokaAb+2mW6xiBXbsTCQbCE5KbicXcBHKQ3/fxMjhw2EARLydXJNu+MX05jJUdl6o/XCILcz7/oBKKx396G0B8WXOmfcCsfcBL2vZ6oO7fGeqYF64+nHaUUW4r+YMZAVsy7sU2LGNWc3suwHS0IhSE3Iar0jtaq8judNxFHbZ9lFaItuDCgTQS9zk3+kaZPeNg9Zu8eYosSJOwor53JbYheOtx0hqx3AH8O4s6QK69D4gWEc4uqFLVR1FbhWsnp7S1bny1IYgizhmbqM/tUDfJZDs2hNlSBz7ELckNQaion2AiWDFRBlDTYjh32jDe4nmG3P2c3Wfg5U0nfqWh8hyBAmzr2szkvD2/ThIoLe69mun+O9CDz89IJjrqO3A0J7y/vpb2ZsvGxBlVair2IzTjny7NHON/N19JqLA9C6/U75WY3d5VnmR6N9ihb/5CtNyzTKxG92N87wTjg6ekGV0YnbI0WHG1GhBN/HpJDn6u4IMRselY6lTWPmj30RBHOHE5199cW3LM9Zjea8+FmHz0DVVmqDQUbNS+Pb5OJ5iXLPnsxNEXrSNlPjuelKZrNZi9op/P5/JNvtMYaa6yxxhprPD+4F+FrjU+K523eePv2bXZ3d5/XTi9cuMAHP/hB7rvvvt/X4D6T0LlDzkrCeYJbaK7nI2aFr66l851nbSJBOMZ1Rm0VshG+48rJFVMEUBqNk466LxBW0/S8D8eJcRzWvVVHmTMG2pagcNwp+tw1NcZlXu8ivCYhzH15GI0TlkWEFJZBlwEUlGez3gbQl88aBJDP4tX37SDisj4BzrKCnn3TSAMzWzCQCbfKDVTHUMmF9ym6NvGeTQtb0lZd9W+BRcB75vdxo9gg6Ay1nZbUfUEa1ixsyYfqEeFRgDg6wdVep2Gf9bdvFSOSwxazWBAfNdwshmdD7FgSkdfY6QzRwigseW18nY8NzvHB8D5UIYjGUC27JPWhJezV1IXX8tyd93nX7H60sNycD7GzkEr7au9mPqQcae6NjoiHJSbSZLct6TMB775ymSsXD/mi3WcAeMcDG+h5QFA44puaKT2CwLG8MiD+UHeeO1+ovV8boOpd5pe8J4tJLWTGV3/5WXdMm/g5ZEJHUWluLEfMywir8F1vHRsE0FSBv2aBox4IZNKxT1ZyUPSprVqVhvXAX98284bLyypcaYJM6nDS52qB1wpNqxjbXVcTSUzUaWiKkIPAs3llEXo20ApEI5kXMUpZnBGYmC5byp/XZRPyWL7P1fkWcqlQJYQLi7glCBa+Cy457joAZ4a6rwhywcFxn3fJywCMlwltrRBGILtuq1NdTZtBvWV49dYRl9Nj7yvTZQKenoNQGZKggcjQpIpmGFL3BYluWTrNofECqMUiYbM6daZ3tFZxYPocFlnnCu7OOpTagHGbUTcBoXO4QOIEzOqYq+2CX559Ccldv6056YQtDnIXATnXiw3CufPdimWDa/w9e9MMMU5S5CFZfZY9pztHcc/QdZ2FBu+/FRnisKGWXmekKlCFoDWefcqiGhc6XAA4fwxCOHqqxDr5HLdyJ/011L2a8+mMQBqWlXezDmeeya0zX1Pb0DLQJZn0bOAwLDlOwYQSVTvqk5j/uvgcAP5k9ij/v6NXkz0jSR8/gNYQvuICpQnYVC1b0msWY9lQtwGi9brCNvHzSbaCehZxOxwQBd3FH9UsLsYI6/MWVQl5GbIR5gy2C945T3HP+M7h9NDAIbRJQH2/8rmUwjIrYqJjiCeGcqPLzNtoecXoLhtBTl5EDKcOVbSYKGQ4ynlIH6CFA7nWFP1hwvNaFDnn+Kmf+il6vd4n3xhomuaTb7TGGmusscYaazw/rDVFLwme16Lo0qVL/Ot//a+f90739/fRWn/yDT+bYR3CWoR1YCTWCZLIL/bmI1jua5pMgDIcFBnLOkKWEicdbSJWjreVCVi0IQjf0dUmima7YVfPqJEUJlxV/iJNEcLnNVUmYG4DlLBkUU2RCWwcItpOU+O6qlo8y2/Inc148wlOvzw5C1lrs4B99dw75LRbDLw/z3urHn8qMTyTbyBa4++nmX81Oj3a4tFmyaHJwAhMKBDGoXLJwycXGS9TTpvb2lRRDQUX4pypa/jt4l6iYzDjKTJLV+fqFDcWQ/oHSwygp+VKwwI+5RpAzBaYugYBu9GcB3XCvdERCNCFQ1iB6PQUoTIQ1dQyRs0Vs6Mej6T7bEQFZaVRuUQYv+2Tx1tc39nk3vCIc6MpB0mfaNKy8VjAtf193ju8snIKj/dz6mGf/jOO7IbAhJq2bxg/GHDx1Q9hPvTo2fl+/CobGyn5Xp/y/prR5hJjJPPjjHAi0d25cgqaDGzkaJqAu/M+yzwC6WgzniMsMIXXx0gB9dCzGmZgCIE7yz5Nq1bMWtuz2LDLu5KOPI+wrYDKz1kXWVTXqbasI8om6H7m/VpWnUalZip9ppxpJEI5bOJw2nqPIuPZUxN1XTzd3789HbCsQ06mPYKFn+NW+w6paOYISs8QAYjW64CEATsLudlu+P1UCgzIRp4lw0uo+4JyC6KdnEvpCVoYxlWCWChUBW3XddmPfCfRk0lLm4SY2I+jNoqb7cbKsd7UaqWlEg5OmpSn622mRYywftzPnrO50RgjcVL4zi8Bx0XG/you8/D4IuHs7JqpXg8bes1M5Rru5H1k4xBK4bTXCgFcq3dYmBhbBtjAd/LVI8tWsuzOkThzIHeeGQ7ClkB1eXU1nbu+z7qDrqtQO585pyRWee8yLQxTG1JVmqxjd1XttTVpUrEdLTiqesynCf0DSI+83brpWiZtatDScGh6HJs+h3mvc0m3RMYR3wr5+Vuf549rc4sP3TlHb+xgNse1LeHiPIfLHteaDPDPl1vNFeZltEoPcL6hDlmDnAXMwwQx9DdNmDY0w4gmE4QzR1BAbSR74YwL0ZirW9scRp4p0osWlTeEF/sUVpKqitxE5IuI7WNHOGlWTJHIWu6JT7BO0uSaeGxRywqrMkZxwZ5S5M7QPM8IrN8PBGufopcKz2tRdO3atU/zMNZYY4011lhjjd8T60XRS4IXbN64xhprrLHGGmus8YcRn1JL/h8FuEBg05A2lhBaRmFJT3uR8/svDpidhniGlnGRMl/EBGUXFql96CvAooyo2gBRexOypg/RqGIzWJBbTd6GdH5p2J0hou1TDwRDaShdgHGSYVwwGUF5LiMo/XuDui+Io4ZUVGhhUdLb+5/CxNB0QYXJqdB0ekbzGi2Qv6tB8zQ8FCAoHA8Xl/lTyVVaK2kGkZ8s3WtRsQj4YHWRWNQEacNyLyQovHjz7rRPtQjpcm4pthTFHlxIJ0ys4qPLffQShA4QO1u0my3n1NlUnJcRg9q/GzCpZtidd4tFdqZ9rvA8v9WwE85X9gGyFuiF5dnr/SRsoAZRS8KJoBYB052YvWRBHDU0FsJxJyS+k/GRi+d59fZ1PnfjFv9ldJFg2RI/M6Ea7PI/d+/nyy4/AcAgLVnEfcJZSzSFehCy2LUsXmE5mG+y81iIrevVOMSHr6Le8Plkg5JXbN3l6mSb5VyR3oFo6udL3RM0ff9KwjlY5hGmDHybfuoDSk9FvnIaeJGtgrZvIDMEcYOzgvE4wzYK19kiiNRg+85z8EZgpiGiFkjjW/oJz679ogy9iLrxgZjVhsB0QaiUkroz4MSB67U46dBxi5IWYyRCgo2dF8Z2r7mqo4RDEmThReXlFpRbPkZEL0Dn1gew4oX5bdyFblYSihC9EKjyrFX89ByYGFoF1ablQn+JFoZnyk1uHo2ITnz7+KnjxSgqORfPiOPGH4vzr1pmi5inql3KrjtCKOtfjTvACU6qlDv1COd8i341lJik+/tWMK5TTOubK5qBj6UomoCPFfuc5OkqjDS4cB5zboty2xLLhrumZFlHiFigzu2T7ySI7jocNAMO6j40gib1ome5U3IhnXK7GHSvzzoxuOyE1tJirEDWAtX4wFarfRwL4EXmXViscA4nIVD+Ah03fcwkIjnsXssvLMIo0rBhGBTcyDcQE0164AinDeWmpvJem6SbBf2g5Gq9xwfnlzi4O2RrDHpW+Vdwd0Keue7tTMpGUy4iUi1wWxuIrtFiNk34tcUruRh6u4uHZ5colj5S5PT1mbBeQO6WgjoNKOLTHCFA+FeFOncES0FeKVJVczk85EI25W7oA2WFcciy9fvqIokOzAC38K/HgmkJ+IaUIDT0ZcndZghLRbA0iMbgJERBixYS41rMS0ThvCivz9Zs0yfFelG0xhprrLHGGp/tWC9oXhKsF0W/B9pE0A7jzjDPEauGQeBb36/vTbnbjryQN7AslhFmFhI2YCJfTZ4SFctFhDWSYH4aHQBpVDM3CY/W57i1PIv5qLdTbCCoNrw4+GY7onQhtVG0GeR7Aarxl6wewXZUYRHkXYXbdpSQ6vWwEUysZ1sG3Vjks5oCnRKcWMvGs16gqqRF9fuY+Rxp4GY1onEt9/ZOePd9V9jb2sKc9xWfk465idkJZ1zZPebJ+1KiiRfytssQimAVdLs8JzAXSu5LDjkxKU/NtlCVQ25ukD+wxeaFKT15ZhdQNwG2awGfX074M6OnADDOrlqxsV6c2iaw2aVY3qo30HOBXhjaRKyYr42ooDEKWQrCGdhQEAWGVw9uAvC+aETUsWhOKR6f7jDaLfjTw4/w/z33ed7E77En2AkD5lc2eWrbl8ixbphp0LOG4HhBcn6XpTY8cPGAx+sLbH/uy+F9H1odl81zwrnDhQ3b4ZLH7C7RoWTwTIto/BOvGmiaoSUaVUjhKJchVNIHlCbGC2cXXgiqp15s2/TBbhgGG0ukdMymCe44QtViFd2hNmuyrKRqAqrjBD32bfEmgmbT+mvfCa3rOsDkAUHj57INOzZCeYPPVf5lbAh7NVHYIqWlbgJMq0A4bGrAiFVQaTAJCHIvnm4zyM83RIOKpgpon46JTwSq6mI2RBcIGwHCEc4k6S2IZhYTCqoNsQrlNbG3IaDXoqXhbjXg6mwLe+BbrBGsxN6xarxJoW6p8ULgcGZpJxE3qxH7nYC+PygotmMf/IqPTTlOUqKgZbHlRfwmOmOCr802MUVAG0G+7aNBYgF36wF5HSK7sZavPM/8oiY+tyAVFbdMQtkGqJ6kvn+P2T0BYebn8rRNuJmPoJGendqEzeGCRNVM67iLGupidLSPeVF4Q09VeBbJhGAyy07q9ymFQ9aCcG5QeYOwMVoZQtEyaRKCiSK965lNVRmETRjFBRfDEz4qzhEsJfGkRbSWclNR3usfKG+8eI2XJXe5WW3wvoN7CG+ExGPPqmAFeuEIDv0z6jjugYNyG+av3CRYGtpUYGchv3T7FQwi/4y9MRlh5yHS+pZ8IUG0nnkUxs/DtotPcU6gKkFQOnRu0bnAVsqbbWIJhPVCbcAGEhsGWA06MBgkkyZF5pJg2Xgz2dNgZGUxSBYmQrZedO+CrknACaa2YWIVC/sSWSKuF0UvCdaaojXWWGONNdZYYw0+Rabone98Jz/5kz/J1atX+dmf/VkuXLjAv/23/5YrV67wx//4H3+xx/gZQZNAPQi8LiJXPD3f4ELPV5JZWBENK+pcg4NmEaI6A7qm17VU6+59/1Ijl4pw6tuPrXYIAdfKLT5iznPrYESvEz3UfUU1kjRDS20Uv7W8n6O6x53pAJxv6T/VUrSxD6q9Vu/QV54BsLEg2N2BNMUquNUJHy4FcGAW3liyg5PwZDPi/lMDNCCMWsTeDsznCOs4qnsoIfnC3jV+6cEvYPgFVzDx2Tr6qO3z+fEzvH7rGs/ct0Fxs1MRzQNkLVdMUTmwXDl/xF4w5fF6j+uHm+wtHG5zwOyK5nV7Tz/n3FeFxmkIzp9jekXwFf0PASmVa1fMg9ABanODegBDldO4lseXu4QTCJYN9pxGZr6S3YvnHBUZQeGr1nJLcKE/5SsGv8NmsOC90X1EE/+3g1xwdzygL2u+KCp52+VbTLcukQD2kcfJbr6OaenP614251YCsjHYm7dJDzyD9Pqta1QPBMzv36f3vufOq2hiKZwgUTVlHRCNIbmVYyN/K9pQw2bN/mjGrIwp5xE0XtcmI4NrJaL124Zzz/6ZGGRk2MqWlK1mXPaJxxLZQNnpWXq9gouDKXeWfeoqIzrxv1vugOg1bA2XmI4COsl7yFwhWoGJHW2ADyCtBcFCYtouEDa0xFFDP65Y1iFVoTG5RiiH6jeowFDPveGpmkiSA0DAbOg4f/GEP7n/BE/nm7xr+iBBDuEd75xvhgk4jUktLrIII0mODentkjbTWK2p+53xZOI8UyQdyzrkVj7gaNYjWPoYDBsAp/eMVTROYZ2/j4LCEE0EwURzpxxyX+KNNu8djfnw9hBV+nN4PMs4Snv0ooqj7YrSRavrmR+nFNMYNQ2wEeR7gmrLkgrH1dkWy2lCN1QWFzTzewUXNybkLuKx4hzzecJAw/J8SL4P/dQzJSd1xvXZCFUIXOD1ZEnYcFJn3J32CaegOqao6Uls7FDSUeYBce6jP6qBhFHFPZk3jbxbDggWkvggRx3NkU2fSLfsBHMCYbwtwrjsHhAOqxLuSSe8PLzNu/X9yAaCZYuTgmIHXnG/Z1r/6s47iWXLY/k+J0d9+se+pd9kITbqojeWXXTGTENkKfYsTkj00ocHBzPFzSd3uNHZhMhSEhSenbGRAyeQEmjPAlutOf3Gm3kK01EpDkQrOaz7XG+2OiNP/yMTSYT1ui8FjNuMw6qHqrow7yRa2U9IacltyLyNfQBuqlAbKW0MjVFcbyNmNmbZGl4KvCgxH2u26ZPiBTNFP/dzP8eb3vQmkiTh4Ycfpqr8v+jz+Zwf/MEffNEHuMYaa6yxxhp/5LGO+XhJ8IKZou///u/nbW97G3/lr/wV/v2///erz7/kS76E7/3e731RB/eZRNOHpqeQDcQHkmu9HQ43vDhACoe1wuctlAqVS/TCVxr1EJq+w3VMkSgl4VSgcrCRf8cfKsONYoMnTrZQtyJC/8qfNpUUWwLTa1nWEe8+vMyd6YDydkZc+Kr39N04Ak4WKe+e3cdIFz6QMgG3t4XTnrV6tPIdF6+PDjixgjZzK82QCQWPV/t8eXJjdcxpXNNu9+EJUKXj+mLE2BY8FN1CXMyZ35OuuqTCieS3xpd5RXyTi+EJlzbHPD6N0Xc1qvAVSdPvtt3L+fzNm4TC8KuTVyCeTkgOSmykKXbgc7KbqzG8t2oQBxGyWOCGfaptywOB1yM80XpTSX8RJGwMaUaW3WDG2JY8vdggnDmE9QGp/YHvUNuLZnyEfVTpjR0RgsvZMa8NQ6x7CgSkB55VkrXl8CDx9v3A/7n/MD9+4QoJPoYlKBxhx6490D/kQ6NLXmeQ58QHBbZKuBie8JrNG/z6znl+twd8kFuUsGzoJYGyyBZE1UDHFLWJ17TsJQuKWuMaiWp9F5iODO2z5AuyZhUKGsUN23HOreXAM5MTP0dc6I/j8mjMy/t3mdaxj0GZ+OlrIsfO1pxXbd3mxnIEwHE7QC+k1ysNfCccjSBYKvQCTBeGWmYSKR1COPIyxI4jdC5oh4bhXs653oynAs+emetDkiOLcLC8ILk8OOGrhh/gPfoB3uVeTnqroH3Md/UF588hXtPHDVvCrKYZd/dd3iC1xAahN7IE2sz646wlk0VKYz0TZGIfoCucNzoEuJv3SIOKqg7QDkRr0fOGaKy5nfdRG55Suicb86HhBdydCD2H/G7CzWzIud6M7a05h61EHfk5Gd8OEK3vjGoTaIYOsV3RtIprt7aJroVE4077EwiaoaOnax6v9njX+H7cQYRsoO5JmsFZ+PGN5ZCTox7JTHQxHo7GKG4sh1SHKb0p3lgWfHdar0EHBlsrdO6jSEwIvUHJ5fgYgMOyT7AEdXeKG08Q9jxbcc7L9CEPRzPPwLQdrRb4DrtX9W7yeWHNpl4iDKi8wYZeN/XG7Y8B8MdiSeEcszZGjjXh3B9rsRdjYkEbC4Jlt9txQDsyuEFLnkjUUhHMBeEU4kO1YsKd9M/LJvOaNoTFKYFrvMbTBe7sH3nrw7ZNLLzRaCpAOI7rjI8V+9xd9s+6FROJ016z1tYBV5c73Ol+3vQUTsUrvZoQcFAPGNcpCChHEqv83KtMwMfqPRoXULRnbPunDetFzUuGF8wUPfbYY3zpl37px30+GAyYTCYvxpg+DteuXeMbvuEbuHLlCkmScP/99/Pd3/3d1M9qdwZ45pln+Mqv/EqyLGN7e5tv+ZZv+bht1lhjjTXWWGONNT4RXjBTdO7cOZ544gkuX778nM9/4zd+49MWAPvoo49ireUnf/IneeCBB/jwhz/MN37jN7JcLvmRH/kRAIwx/Nk/+2fZ2dnhN37jNzg+Pubrvu7rcM7x4z/+4y/4bzYDRzUQRDPnAx1dSLHTBWT2DEI6qBRqLtFzgao7b6CBw/Tb1ao+mAerKqkeQLhbcM9gQtkGTI979O8IwkXX9ZNJqk18V46VHB5t4O4kXWeO78axz9IFVdOI3z68wEaS07YKelBc6CNbhzDwvsVlAP5y/yY324HXaNx3D+rqM5gQbtSbwBlTNIwL6o0BcRgSTRqeurvBB+8bkMmKYb+gTTL61z2j0n8q5Lcv3MP/yB7ivuSQUVjijCA+hPTQ0UaCac9X6PsbMz4/e4baKR4+uMjwKoTXT7AbPZq+YyeYr8bwC9PX0HtGwO1DxM4WTjkWriYSml9ZvIpo/KxrtJ1hNxp21IK5g+NFRr90OCloMtjveQpuW88xVqIKz4ABnAu9PmxTVYhSEj195Hc6nZHceZATE3F/AH86fYL/+x6eYVssaVLB5wy99uTLhx/ml/ceouknBIA8mqIWfQyS/WhK0/8EE0sJRknBK+NbXBhOudHbwPRi2vQ0fBV6ukUKR20UohaIFhAOpSw2OKOKfBQFmNixkZYMw4KnZxueuVz6Klv0/PV6zeg6V6JD3isvESwFybGh7klM7HjF5l0+t3eTSd3FqRQ+9NNJqEcOkbbYUiFb/7npNHDV1llN1RQB0YkkWPpqfK8353Wb17CdF9aTYkhyVKOKlsn9PQJhuRyUPKpyglwQXL3Jab1tDo5o4yuc2x9zeXDCuxb3Uw01aRbS9jXVBjRb3dahRcwCgpmmLRSLXUiTmvl2RVnG6BkESz/O64ebVCagKrR/8AmBWtZE45Q7kwHTfX/8W3pJ1KuBiPgYEJKTQY9zvRn3jU7I65Cq66ZK74Be+EDexSWHOp+zNVhyPMsIn4rZ/h1DfOQLs/m9MTa0hNLwRL7Lh26fI7kl0UtLNZLY0NJaP9bb0wHqKETPfWcZgUMKx7RMfCjrwp4FA2cQDmrSsObYCD/PG4fVsJXlK++fD6kLvgN1vsAVBU7CTrzg/iDiYniC1eB019GlJSa1vCy6Q0/GRLL1+z2aI7MY4VL29PQ5U/tWPiQ6FoRLi4kF1dB3zomWFRsuDRRO0Zw3JJsFdRZgTExyIOjdMgSFfxY2PcVyX3ZBsJ4ZOk3TcBLfVdidAOe8VrPuC0woqUZAbFk0IU/nW8yKaHWuqoH0US0BlMuQx8a7jOcpAig3FTjPggEoK7i23OLOsu81nX2BCRUmhqoNuFrtEcmGsn1psj7XPkUvDV7wouiv//W/zrd+67fy0z/90wghuHXrFu9617v49m//dr7ru77r0zFG3vzmN/PmN7959f/33Xcfjz32GP/yX/7L1aLol3/5l3nkkUe4fv0658/710b/+B//Y97ylrfwAz/wAwwGg0+47zXWWGONNdb4rMd6QfOS4AUvit761rcynU554xvfSFmWfOmXfilRFPHt3/7tfPM3f/OnY4yfENPplM3NzdX/v+td7+JzPudzVgsigDe96U1UVcX73/9+3vjGN37C/VRVtRKLA8xmvgPGbtaUeUJQQjTvHJKFr+JK4XUWshEEufe+Ec5rCmxiUHGLyX0lqQrvxGtiqHcbXn/+Jq8dPs17JlcQ84B47FbsRbsLzU7DPaM5rVG085D0WHTVN9RD5zsxAJxAFIrxSUYzUAjpKLcd80uacO5DIX/nxJ+LXx4NuVZv40JLeS4jzfewWnBUP1fxcj6b8cTmBeIgQB8tEbc2edfyZbwue4IsrJkqCI+9TmejaCn2Ut5/4R4unJ8wDAuEg+TIMXgip94Imd3vz8H9gyO+KH6aj9T7TE4yrjxdY2/cgo0HvY9KMKNyvtr64OQi2V2LORkTbG4gjOCROuOLo4b/dvAQyckpBRdQbYYMRnNGsuHYRpRFyLABGymaHmzHnqKLReP9YGo6LxxFKv01L50kWEjsM54xs3VNevdBPlbv8UXRCZeCPvWWgYvnCPKCYg++fOMRAN6c1Py7/Zs8ufUQPcDNFwRzwbjN6KlypXt5Nuq+5BX9I74kPuS3N5/i3+zdS7UT4eRpKjCUTcBJlVCUIbLTwwgJQjicEahTSsV5FqHteS+aTFVUrUIvvXaqHggGXWjma9OnGMkc4yThDKLjGhtEuMhyJT3iYnhMbR7yp3YuiSaegXCRJetV5ETgNDr3Pj3g53wW1vTDCuf8PNULr+HZjHI+L32GG6UPWX0S0Mc54mRGOOvROklPBMSyQZWC9vBodY6E9AGv/5fzj/Ca9BrXZpssRnvUQ02xqSh2HdGWn4d1oQknkvQ2NJlkHkeMtqZspjnX7A6qDIk8UUIpEm6XPnTVBWAihZq2JMeWk6OEO9UQgPuSQzZ7OeOgTzyxBJWg3AmxlwWv6N8mbzUfiTwNGM68Hs0pTZtZXrV3wGaUc3DSZ3AdBh86gqYLcb50HjFouJiOmbcx1TSiN4GgdBTan2vbURrFMiKaCYIS2hRkr2EzzrnT9pGN1wydUicmgTSp6Id+TkvjneWR3sV6pPx9kKjGaxIDhQhDrIZMVWgRoEXnz6O6zkItsdrRFyV0Xj7RFMwzN5GDHuF0s2OaAY74cC156nCL3gGEU0O5FVBu+LFFY4iOulDaY3BI6h3BRi/HpJKDSUhQKtJbJcHEz9d6t0c1TLw/Vmj92Iw4c+SuBa4TWJ7qhZqe98Cqhw4VGpZNSNUGNE2A656b5YZAWs+wurnmwA6gUmjhXdZtAM2wc1ZvFU9NNpkvYmTjXcVtCDZ0FJXm6WKTnXBB1fwBYorW+KT4lHyKfuAHfoCjoyN+67d+i3e/+90cHh7yfd/3fS/22H5PXL16lR//8R/nb/yNv7H67M6dO+zt7T1nu42NDcIw5M6dO7/nvv7hP/yHDIfD1dc999zzaRv3GmusscYaa3xKeDG6z9YLq0+KT9m8MU1TvvALv5Av/uIvptf73T02zw/f8z3fgxDif/v1vvc91+jl1q1bvPnNb+Yv/IW/wF/7a3/tOT8TQvC74Zz7hJ+f4u/9vb/HdDpdfV2/fh2A4WZOte3fU1vlfU2c7L5i7wDstPPeHYX3fHESiCwysF4LUnsWKVz4nKFko+T/2Pwob0gfpxdUqEIQzizSOKRxND0Y7ix45eguWVghGuFdgJ3XI7X7NepcgTpXYIeN15QsNWWlicMG9koWlyDf9Zf1zsmAOycDfmnyOXxkcQEE1CNFu9XDBviuimfhZdkB5aZAZilitiQ+ElzNd5A47ulNqPuAcWAc+u6c+NDnlO3pKa/u3UBmDapxBAdTwmmDDRw2cLy2/zQP6YzL+hhaiZ7V2LrGRgFyWPMyPSMSmkho2s6ERCYJNotxEq412/xGGfP08SaqtKjSQj+j2FZsZb4Kvt5s0OYB0jja2DtdZ0FNFtSUzp8jVePzuiTEnb333Ibez6auVzll4cJyozljIUW/obowoL68Q3m+4auzO3x15hfaf2rjo+S7EqEUQnhfm7mJyWRFM7DIJEEmyWpf5YbkgfSALZnxhuxx2t2GYkvRdl06sob5LOHObEBTBjjhK1MCzyLYKkCVoEo63ysgazmXzNDSUlQheuGz65yC7WzJdrbkQX3ESJUs65Bo4tAnOap2COXYCJYoLCdlykmZEk68nxOAyFoubYxJexVIkI1Dtv7LKtjP5lzpHRMmPsNK1X5coWzZUTMGumSgS+9CPFtixxPf0akaejJmR81WvjOnkDvb1Bdr/vLoffzZtORSf+JdtQNBmwhM3zBISgZJiTOS9A5sfaRg82Mt+iSgrytes3WD4eYCHGR3HNkdx+BJCG+G3g05g3roifLopCE8Vpw0KSdNysXwmIc27tL0/XEmhy3hWNBayauSG3zRxtPYvsH2DcI69Kz2Wp3M8AUb1/m8wXWEdEQTi7t9F+oa6ppyJHjgwgH/x+ARLsZj7/3UOKzyGjjdr0l0Q6IbXOs1cFjPMm+NFrxqeJvdbEFnYI+wbtWBpqQjEBahHDbwLtA4qI2itJrSaqSwXp806CMGfVwASxNxYBbcqDdRFV6g4zoWysHcxVSu4cnFFsmRwbUN5mRMdAIfnp/nw/PzPNos+ZXFq2hvpfRut+h5g1XQ9qDpOZzw7FE4NaR3K+KxQzSSzTjnyvAEei1OglqUMJ3DdI7KPbtmQweR9ZlwwmslVSnQc4meKP81VajSs0ierbdIZcnrkFkVY62gTR1t6qi2oRp5piiYKdRhSDDxXkrVCKpth00sNrG0lWJynGGOI1TZuazH/vlRlZpb+ZBZGzNvI9b4w4Pn9frsz/25P/e8d/j2t7/9eW/7zd/8zfylv/SX/rfbPFvQfevWLd74xjfyhje8gX/1r/7Vc7bb39/nPe95z3M+G4/HNE3zcQzSsxFFEVG0ntRrrLHGGmt8FmPN8rwkeF6LouFwuPreOcfP//zPMxwO+cIv/EIA3v/+9zOZTF7Q4glge3ub7e3t57XtzZs3eeMb38hrX/tafuZnfgYpn1tevuENb+AHfuAHuH37NufOnQO8+DqKIl772te+oHEBjOKcWa+lTTVt4Su5euRnZbxVkCUVx60ClK/2urwmFRmkdKguzT0a+4qx3FSkSckro5vcEyxpnSRYCMKZwWrPZLUp3D8a82B2h7tlH9l0XWfap6Bf2B+vsoGePNqiXgTIQvrOn35OsjXnTqPA+nTpduIXew8fXSTVNVhBnUnavvY+R2XynGO+Eh365OtBH8qKoIDSaF6mJ/ypjY/ymxdeTr3r2aXoRos0DqUMXxQ/TSwsP7f3Gpa9TtNlz/RPr469XuflgYWgEwAISdPXDAZzLqizNq17sgnv27qX4X33UJzPIDUsbcT1ZgvTKNrUn9fq3IBiW3BPVHLHJPxOcQk1DxDGYGLv8Cu7p8i4zajLgH7rcNrnVvWlP48Khw1Ahr6tz9Y1Rgvss+iLKGkodrxAqLc9JxFni+g/kT7JD+2BungelK84rRN+/xs1PHTFb/iw1yHVAxgpr5vYD+ZE/Yq6F6IqP9YgBzcJWQDOSogthJYwabBGIha+Awy8FqXaEIRZw2a4pHWKOtf0lqBqi5OSzchrb7aV5JaBZRGxNXeIRelZBuVQWCYmY7L08yFcdo7EkWBjY8lDg7ssm5C7cuhZtY6pQFsupSfcHx/wvt4l5pFnjIURtFZhnKTpuqmEAYxFSImJ4GI8AeBSMMVEPsfOGe8MbPc3Ge0suD/w+6ut8nqleYvcUQjlCLqcNkpJdtsQfOgp9M4W4av2iIOWV6U3+Z3sPLebTbLbngG0SlAPQuptR7VpyXcU2TOaYF6jpxF56+fAg/qAcvRRfm335bSJJjpuCGeaotVc1scMZMH/a+iffU71kEWDqhxCWe6NjhiqnEAbpHE4axF9P3eKPXjT3iN8RZozMXcRysGpv84AtodLNmM/N26LDVTTdZEFgv3enNdmT1HZgEeSexEOgtyfLz0LWOQRdaYQ2tKk0Cb+vE/LhCeqff99k3gt1WaGDLwe5+nFBv+juMAHppfOPMAAG/q8vTvNiA+rBdenI7anZ348uvA+ZgDvLe/lfZN7iY4k4bhElganoE0dNrI4pVC1v17BtETnEQg4l864GI/56GiXNo28v1rH6jstaWMwiSXo5r6Vymf/VZ6ZF6dG0u7M18jEDoTDtJJl6a+nswIyP/ZaKu+WnQv00uvfXOAZprZvIWv9dQFcoxBL70Mn2s4nLsDf441iXKTsxgtq89Jkn70Yf+UlSmn7A43ntSj6mZ/5mdX3f/fv/l3+4l/8i7ztbW9DKX9jGWP4pm/6pk9bh9etW7f4si/7Mi5dusSP/MiPcHh4uPrZ/r6/4f/Mn/kzvPKVr+Rrv/Zr+eEf/mFOTk749m//dr7xG79x3Xm2xhprrLHGH2ysmaKXBC+4++ynf/qn+Y3f+I3VgghAKcW3fdu38SVf8iX88A//8Is6QPCMzxNPPMETTzzBxYsXn/Mz59xqDP/lv/wXvumbvok/9sf+GEmS8DVf8zWrlv0XisYq32XTdSq0CdiR16Fc2JgQKsPJcQ/Zgmz9u2YbO5KkxhgJnetvPDFEkwbZKJR0ZLKmQXAn7xONITzMabZ9hW61Yy+Zs6mW1FahlpJw7nVNLrJc6o/ZCH05d2s2oK0Fei4otabdllzoTym2AmazEdGJRM38Nbp7PCDLKhBet1T3FU506d92yZb0leymWtD0HXaYIpvGH5uwXAr6fGXvKX7i3jGLC1sA6KlnSwJluTcISETEazZv8Csb53FpBFKsypKRLICEnoxR2mK1RIUhVgtC9dzcoCvJEe/cheLyiOWuQkYluQ3JCVGBodjqumNUSLXldRSPVBd4//gSeiZACJpMYiNL07E9d6oBpggQBkzoWaTTjpy+rL325757AZDHY/JdwaXwrBsqSyrqgfcqicPndpqcV5p6y9Bc2kbWBqvBIkllxcbGktmDvvtq8EiMPLdHm8LEeLZtbkPCwGAicF3Xj6pBzyVNGEBkUP2GOKnRgWE2S9AzSdi5igelwylBEtX0VcmdaoirFLpwiNb71AxDzxSlQtM4Q9OcVe02EMjAeP8bk1KVnUtz3c35DC70p1yOj3hU7/m8sNJig7PMqZ6q2NNTNpKcSegrdmFh0Uac2B5L4+eJsEAQIPo92pSVd44UrLrZTmFSzSBerP7/mdmI7K4lvD0j3N7mObbeRqAXBjOZoJxDVXvEquG8HjMIK+4Y0F2el5MSYUPUsCYIW/KjPm0vRJ/khAsojX8cXgkEe+oZfmJvSpPuIEtDOHPMy4hYtNynJ4wyf16N6iGqBr30btLGSWLRrCpyoRS250MA65Hl8+JnkKdSzlKhKn/OTGrZy+YM9Gn2mGcNw7lD1YJAWi4EY+6PD7CJRViBPvJjyA5C5kcJs0FMmDTUGzFV7pmeyTTlvZPLANxa+uKwHobortvx5mTIf+u9iidOthAtNAN/vcqtABcZTkzGh8qLzKcJe8XZvdpGglPC8LDtc1hk3sm+dZ7lSQQ2bSG02ECt8udE3SJbz+Zs6iWXwmN2egtu9TYwvQi58PdGm2naBEgsYdjStoq6Y3BE6zV1p27uwnRdY8KzlFiBbST1KaXpQHQMtcv8UFypUAUEpe/gNLHv/guSduV/1NYSVXudH3iWyITeXRwLVavITUjz0kSfrfES4QUvitq25aMf/Sgvf/nLn/P5Rz/6Uay1L9rAno23vOUtvOUtb/mk2126dIlf/MVf/LSMYY011lhjjTU+U1i35L80eMGLoq//+q/nr/7Vv8oTTzzB61//egDe/e5380M/9EN8/dd//Ys+wM8UThYpwTggmuL1HkIgI18S9HRNaQJs5bUOQemohgKbGkZpwbyMqLrqQRUWWRpf+SmDwnFiIg7mfbJjixzPkP3u3beCfuArxUmZ+DygE4OTCqwgC2p6ynuRtEah54L4yFfAy3Mh8ahlO1sySftwLAlnXUZVHLEEhHLUAyg3FDaAqgj5YDXgTyV+sKXTmMinW8tJgGxg0fjKcUtm3Dc84WP9Mw1YOHMcTHo83bY8pCO29JI2Axv745F1V42aIa+mpnAVzrLyV1GVZbJMuGMW7CuvHzFO0maOcqQwscA2ikeX50hk472YPFFFmwraUUtpAt43v8wTR9vezykUVEMBabvSBd0tB6ilQpqu0ossuhMkKByuZygued1csJ2Rn3e8KroF+Aq/H1acxL7LcLZIGFvP1m3IlENTQ2IodkKCwmIDWLQhjVPsZAtuXvQD7r/6ZdRpgFPwZLHDo70Pc625iJSWKmWVzI0DVUFTS0TakmUlm2lO6yRTkxLkoJddxey8b0ovqolkQ2E1spTI1uECgY1gpD2bEAlN48AZgZMCl0Q0mSTo5nRuQ2x7pqNqI9+xsxnlZLLyPk/laUp60F1fyayNKa32/jqi68B0nnWZmJRlp9NBAHEIgcJEYDq25NF627tnm2eV285hOi3SgVkwmWbce9TAyYSg3AQHUWfW5CKLjTrdUhCs7qEtuSQNuhL/ND1dC89+7YzZSxa8925KM9CEBxa9dMxrP9dTGdIj5kJ/ypPRLrJqiKaWk2XM3IaMgoI48IzhUgBFiZ43yGXM3WZILBvaViIbh2tb6IpFYWFiUyp3wm/n9xIeKeKTxmduSRjokkT5/bpWEM4t8WFFdJJwWHg2dyeYIyIDTiHHXlyW3YiIDhOWF0IGScnhXoKs/TWyk5APx15iUNcBAb7rzoYSJyGfxXzkZJ/FIiGMYXHRsyvFtiAeLWmc4mPlPm6uAf/sCS6cp9yGi53+SdFdLwEmCTCRpB54byUhOw3a6dQy1jNFraBxilg29HTt0wCyAJX6a2Aj7yWFfJaT9en8knSZdv5z2TpAPEdjhJE46/wvSbdiioSyuI7plB3jBJ5tEsqhtVm9pTKFP4fC795rirTDaofQPsPSOrHylvq0Y+1o/ZLgBS+KfuRHfoT9/X1+9Ed/lNu3bwM++uOtb30rf/tv/+0XfYBrrLHGGmus8Uce6wXNS4IXvCiSUvLWt76Vt771rSv35z+MQuZymjC8C+mBAQH53pmGqraKk/yUSXKoylcfIm3ZjHPKNqCTbSCNA+lTzneSJZuq5ckmIc8jNmcWlsVqv1Y70u4F9rIKCecQThuans/rCcRZNV3XAckU0gOv0VmUAWlQE6qWp9JthNXoLlLMBpIq0hBZ6pFDVV3HRa14uLjM/fqDANxqLoF0mFihhUDnjuuzEc+0c3ZUSOvkyj1WTQuyGxKeyvh/v+KL+cuj3+K4ybpkdgXOESx9BfW+5X28OXmURxqBbRVgwFmCRUN9kPCfFy/jS9KrACsHZKd8TllwoHnPxr0M04K2UbiBH0DbF8hew6IJeWSyT36SMKih7nk35KRfrSq4g7yHWkqEsZhQQOBY2ggouWN6INzKs6bpB9iNhvPqrNMm0zXH0nv/mFspP37iuxn/b5vv41fz+3Gt8F1xwvtZ3S6G3Mo2iFVLueP3Mb8/815XAp5abPHu3hWO2j6hMiyGjirvXKKN/5KNwFqBDgyJblg2Ic5IZH1Go5tI0MaQ6hrrJNM6QTQCcLSxpO1ZdvXsbE47jbPew8alIU3i9w9QrlrKfGVvnMB13kgnbY9ZFaMqnywv2o6pqgV3yiFP6V1OihR5espOM7mcWrF1VoFNNKKRCAfPVFuM7eP86uwLiM/6Jvyvt466VTSu5cQKTCMRnXeOUwK0ZSvptHWDinwnI71wHjfq0WbQC2q0MATC4gL/dwHanqYeOh4aHnAlPeT9o3tokwiMZ4rGS69nGduCLZkRdgck6ha9NLRLzaEZsK8KRHcRnASsQ9YGVQqOm4y+KmmrAFVabFEQzPw9rqcj3r+8wkjmPHxygfgEwnGNCyKElQTSEEjTzQOBXlr04ZLkOOZw1mNiU/qqIMpqTJhB4WmO8GBBfJxQVJpzgxn5Xkhe9Qkn3q29OOis1S0Ezntlqcw/kygVx7MMU0uaPszv7djlXcP9GxMaG3B1sUMw92xWsLlBc98e5Y7jXOKzz6SwOCe8rqevaHqKeghZr8JYQauTM8d255CVRRWaO+WAw7hPa6WfH5HERWfPWVkDhaKM/bz1WX9nPkzqd7vsPYtJQjj/O0Z0WWmnzvDeN0k4z9zJ1uFa78mEcOjArK5trQ1OdWxR63drI89OplnFdubZyOaUkVzjDwVe8KLo2fjDuBhaY4011lhjjc82rDVFLw1e8KLoypUr/1uH6CeffPL3NaDPFsiFIjl2RCf1ytdHSD8ri0YzWaSEU0E4Nwjn082jpCENGloj6aK1EK3DRL5yenn/LhdUn0NTYo1ANF0XUFcdudiyoZcoYWlaha59Ze4EEFpGulg5MVsjfXfKzBBs+vf5l5IT+qrko8M9cpUQzvx4ZSswiaLdsZhBS2kDz1o4wcfyPd4b+o6+69WWd4VNFS7WqNIyOe7xK/kDvCy8y7hMzt7bFyVBWdF/JuO/3nglqaq4UWxgA6gHGlVZuqHy0cU+jw/fx+P1PWChTQN0v48zlnCs+J+TB1EdBTWuU5zyzIIuHMltyTIcMh+lYIX37QGILGlSU7aa8SJFzfxUroeCetOxlxWrhPZZEXvX8dZ3ESIch+2AhZ3wgeIhxDxAdLoTp7w2JndnT6BBWGK1Z4rSm5L/zxOvAWB6OeHacgu5VL7S1d4/5cZ8yOPZHtYJ2kGn2dlTvvIVcHfR50P5RbQwDOKSw62GqvLaG73s5l8lMLWkbgLKNqBsNK7xpbGJ/HHVPYHJLGnQMDcxR2WKqnwVbRIwvZbtYL46jmOT4TrdkA3Vym8otyGVDVYVstWsqPpJnXC93CQvQwLhr13T66p5CZM65vHlLpNZStzpM6x2xKr1bE3HfHjGJkSKBtHA44td/ke2wwdPLnTZgmewsSJQFotDC4eOW6pRjN7aoO5LZFSvujBHvYLlTo/23l3aNKBN/cCXNqS2/hjbvj/Quq8wqWUn9B2eQXjmEaZqS7H01+DJJkTrYuVbdOruLFrBzMQsnUKuzpWAJMbEgfe7+kT/cuXF6to+tdzm8WifWRmvNDHPlqQoTuehAyERdYNeWupcs7QRF4IxG1lBPehB0D2+Fzl67pjXis0oJ9w0fCQPMWWMKgSy8dfLdh471UbnJZWAqCT1PMIZQZtZ2pG/FtnekovZlHGbcnWyRTgBYRxia5N8L6IdtSv907RNWVYhwuL1RH1B2zcM04K6DTiJHKbTfSEEqrYES8HN5ZDryZbv+pOeAVrpDUtDOA/QE0WjQk9xWc/6OMVzXNCF7bobT0+9dGeGPFb4b1cn2Xe+nf6+NOAa5zMGnSDULXHgL0zVBNSTENEK9KL7u0pglGOzl3Old0wk25cs+2ytKXpp8IIXRX/zb/7N5/x/0zQ8/PDDvOMd7+Dv/J2/82KNa4011lhjjTXW6PBiMEVr88ZPjhe8KPrWb/3WT/j5T/zET3xcTtkfZKiFJJz7Tok2EjR9SJOzd8dNGRDnPn+oSf37+FHqS+XFMmbgX7cT5A31KKIZWb4487qZUUehCAcEijbt0p7Tlp1g7hOr3VladZNKwn7NlehMfKEC49+J1xYsRHHDF2dXuRSMeXjzHt4XbRF2+VXR1NLGikVPoYY1JnC4RhIox+18wO+EPgT3btnHaUuxGRBuZb4KXig+sLgXk0laJ2lO5QlbA2ReE+SOo+Mej2yeJ281bc+yPB94/U1n/LxoIq62m0xMiowM+W5MfGGXth+ChaMyY268V9NGmGM3a8qtCHkA4RzsLUFVhrR9Az3PPCT9kmFaYqykyjW6OMs+Mv2WVNeUpuukKTVR7SvlNhagvC/Ph5uAD8wuEU4k4axzPdYCMQv4UL3H5c7idyPMaTPPdoQzGF/3Dtz/XT1I1QSoXGIDsMYzRdN5wrX+FnmrIfXjrTZ8p6ITMF/GPJNvshfPGIQVyaCkyE8Tvz2jJBsQpaKsNAsdUTbau+8qqLOOKRqAy7zP0GHd42jRQ5W+im4yQZA1ZB1lWbiKW81FKHwXHsJrNJpWcdT0mbXx6olpQjozFzgqMmLVYp2g6cHynKYedOnsmaE2ihvLIe089Oyo8B06sWrQwqx0OSaCphegu3l/N+/xWHXOa5X0cx/V5VZIHDQ0rrvWcU25mRLt9ah7AhnYlVt5qmsmfSh2I6810TBrYq63WyyaCKegyfy5bTIJyjBrE+7KIaaVXQq79+2yHaNytdlFi9ssmtBf1yzCJBKnHJXT5FavGKE29g7R9UaIzQzbeuEdraMWk0RopSD089AJr78ZqZzdbMHVjR2qnch3n3XdUStNUWipewG2l2AD4bVgTjKSFed6M54Y7ELWZRfmBTp32CoglIYL6YRn+iPmYewZnk622Ca+W7EanSXLq0Lias/A2NAhe/7ZtNNbEMmWG/kGJ4d9No9BVi22F1GNPFtXdPfXpNliPkkYFn7OGO11N8OwpFQBh7FbOWy7KADrUCVM8oRJ03m0RY42ESvtkawM0cxSTSUmVtjUeIYncDghugw0fw300j9r2lR4XVvnVYQVZyGo3fUSyiECt+qSlI1DWIGsfORbFtbsJJ6ubYziQKeoEuIT13WgCWrgXDrnlektchtRhmf6wzX+4ONTDoT93fiKr/gKfu7nfu7F2t0aa6yxxhprrHGK3yv1/oV8rfFJ8fsSWj8bP/uzP8vm5uYn3/APCIKl9xiyWlJuKurtlnv6Xp8RSAutRBrP5FQjSb1l2EkXlCbAjCPSu50PzskSRhEuM7wsPAR8deca6VkewHSVchAaYtFgkFgnEM7hlKRNYJgW3BceUDpfnQWB9z6Srd9HGte8NjpiX/X4ExuP8+7s5ajK/yw+qDBxSrmjcJuOLCtoWoUQjkmV8LGFD8ydNRFCW4odgapj6r4AaRjXKfMkZidZcuu8v7OmrxgSzgz1sGMtbEAvqBFbFfNLCUEuqEen1a/luO1RWU2c1OS7CfG9feqexMRef7KnPbXWHxQ8fWmDx2b3IKxEz0HnXa5RKggSX8nuDeZsxAUHeQ/XypV+yWrvXmudYNb5zrRlQAS0iaDuQ5j6je+0Q27lA+81dZrKHQjCieZdiwf4yvR3ANjSS6pNS7khcQJU7muJ2ST1/lP4Ktwpz+SYWjGtvMeR1H4eNJnXRAgHTaG5s+yvWJQkaig6rygbSmQjVt0xppVUbUDVBGBElynlj7XpgYxaaqO4mY9YzGPSkhVjFkUNuhOuHJqaG/UmspKIzhNIWN+BeFJnFEavNHM26rrgrGBZhUzCGCkc1cixbL3XD4Ds1xgnmZUxaqlQTeclI8A62fkXdRqmyFEPApzybE5rFNM2RUtLviXYeuC+VTdVsSnRTvBEC3fMJk2rUJHwnYGh19ONa38SylZjNdR9udKJ3C37PFHuMa3jjjV7lharFTyTb3DSpJgi8G7S/cRv0wnmJibl0PS8JiyGaiumGipE0DA3CQemT9W5X1vtHaKroYSkpqdKYtkQhi3VICXb28VuemaxTWE3mvOy8C6fP7rBR85dYnHHeyv5+y9BdxSODCx1X1DvpCt2rO427AUVJgWXeM2TWOYEhYVcURrNZrgkDRtm0iFrsXJ+drLLI4ud98PKJXrh9WtOe60RnWt0ohsaJ7m1HKCONfHYIhqD6UW0qR/fuPYT4XbeR56ERBOHLizSSIR0xIHX59jMUPf9+TK9GKckwkDd+M8GYYXpGeq+XukrVdGiF5ag8LljLvBeQ6ddaLqAeNxlvy0NbaJoUu+tJhqBExLR+m5QF7LKM9NRSyu87k1Ygc4tONAbAVjBRlTwst4BpziIhgSVIj0yYB11z+tLzycT7osOuFbvoNRLwxS9KELr9cLok+IFL4pe85rXPEdo7Zzjzp07HB4e8i/+xb94UQe3xhprrLHGGmuwXtC8RHjBi6Kv/uqvfs6iSErJzs4OX/ZlX8ZDDz30og7uM4n4BMJZg0kU1RDCrZL91DNFB0UPCukT7Lt39OF2wbl0xvXlCD1WpHe8HsUdnyAubyBCy5b0VeDNNkPMA4LZDFed6ZSEdBgkcxPTlIFPg+6YoEBZRqogt12VL7wHksobdBFTGsmW9OzE65OruH6LNL5CDg6mZJFidm9MLRw7vQWtk8zLiFkRU7Z+GrRGrrpTQGBiIDHUNqCymp1ogTjvBQqTWUo4Dag2QGpLbRWhNPT6JbPdkKaUMOg65ZzgdrPBSZshBLQ9KDYVJhK40BJIy5by5/ZlYc7hTp9b9wwp5yNkDaph1bmVJl4jc09vQhZUTKrYV4/tszpQrKBowrOLaWTHJgiaIfTTkkg2lC7EWOnZnaQr1613lP7obJ9rm7/JpgyIZYMY1RQ7MbL12gt/cb0nkI0cTV9gGp+hJKSjdRIpHMEpUxQ5XNFpHErJeJmsXJFbI32SdwcnO/fc0DvsgmeMvBao0/wAJnEobSlNQN6EuIX2KfbKjyOLmpVz9InVHNU9ZNPtX3tmxbaSaZN4ZrJjikzYkSbCUTcBRauR0mEzQ2WVTyIHtLYUtWaZR8jSH9spWzOpY27Umyxaz9Y55aiGEhP5eWWsYNlGBMpQjaC8skmw7PRHMRzMe/zC7DXcqQbk44Sk9Syek177c7fwDujLKvTMWCw6MYBjXCU8U26yrEOvKUo7fV7ou65uLwaEQQulwoSCesMzPSr091plNTObIIXDpFBtBH4fDp6pNjEIFlW0ulZt6veDE9yuR96fyfr8L7c9ohkl3XE5tLTEomU3nCEHNfUgQdUgK8kz0xGzpHN0brzzdz1QNJnXy01NyqHJVlo5Jzsnb2MICosqFbMmYj8WSOEQzt87QacpMqGfPza2CCMQC9AL0HN/brymx1/bXue9s6hCgoVAL1vvNJ4GNCkE2njNHHC8yAgngnjcEswbZB3grCCULbFqCNKWpqe7ORvgAoE00DhBIhsuJhMe3dilGmra7j5UiwZVWc8SaQj7NVq35CTgFHrhiI/8GGVRw2aCNAoQCCsQlWfAcAIjLLJjinpJRR0YFjpCGoGetcjaoLcUwsJOvOBz0+t+DFgeDi8iG+8nhXOoRqNCw+X4mB214BF7gdK+aCqUNT4L8IIXRd/zPd/zaRjGGmusscYaa6zxe2LNFL0keMGLIqUUt2/fZnd39zmfHx8fs7u7i3l2htEfYPRuNgSHOebiiLbnNT1B977/OM8ITxTR1L+PbjLYHc45F015erFBkIMad0zRYokTXi+kO4btsfoc4VgiT+bYPF+9KxbC0TjFicmwRUC4sKhFRVAkFI0mt+FKV2CtQFUOOc2JxymH84SZq9gSAfcFDp01ONm1f03n6CREL2LfOZHNCITlSbfFwaTPfOIrWayA2qfIV5sCGzlkaFg0IdfLDaZNsmIu6qHPFbLaZwQ9Pd3wOoRWQWyw0iG7jpppFfORxXlOqpR8HpGc2no4X80dFhl32hEAfVnSlyVZVJN37/1V6VCJr9QT7dmE7WhBKmtCZbxW59QJugVqybIKkfLM/8Z3P0GbOUJlfNaXE/6c9yDf6/QZxneyjKuE91fn2VVzxm2GjlqagUM0Aht1OUrS+so7sjQ9hWx92vnpcQPIrvJ2gTvz/2kkVaUZF14Xkxchojqt+jtdUuoQWUMcNUjpcEZ4t2rru+DAV/daWRqrWJQRsvSO4zb0bEyim5Wm59hkzJu4OxeSph+sugPzVq/Ohd+vw3ROwNYJ6jbAdW7CTp11LjVlwFQmNEWA7nLYHF6LdJRnPBbvcdwdo1OOuu91PTbwDM+15SazIsYpqEaB96nB7z8/yPiF8NUsiojojiaoHCb0v4uDou68h1qFU442FV7PpBxFrTkse5S1ximHSTqmqDtvyyqkahUY7+pcjRRN5js6AeYm5qT1miKrPQvlJJArHp3tcRJnLAp/8rQ4840Ss4D3n9zDKCwpFyGpANOLMF13qWwFVxfbvCe5wmP5vnd3F/54g4Xg8GjANPH3opgGPv099GNwVnCj3kQLw92ih2jwLt8AziFah2wEZRtgnfTX0glkA6ru/MqMZ5yEtqAECN/pqHNLg2dMT5nYi+kYLYxnpJsuX0xK2lR51/C4XnXg1XVAvPDu+2pREVQxwggC0XmrJTVtlHTzQCBr61n2RhGplgvhmPOjPZ4eDlZ+RsIYVOk7bG1s2Rsu6IUV15oAYUPCuVk9Y4W12J2UJhM0mcMGDlUI9NxriiolkMpP2u10SW0UsyQDKwlmJXJeEp6LwQkuxmNeG3mmyDhBEBnPVs9LXCAxGoaDnFfGN9iSFXfqEVX90vgUrTVFLw1e8KLIuU98VquqIgzDT/izNdZYY4011ljj94H1guYlwfNeFP3Yj/0YAEIIfuqnfoper7f6mTGG//k//+cfKk1RcnOOO57CxRFtDIO4pO2q7sk0pX8Ayd2Gpq9wgWQrztnWc6RwvgOiqx6cUphYEkcNqfCn+0a9iV4AeYGzblUhK+nT2xsbIBqBKi1yUaFzy7wIOTYZ6jRzyfkqiLwgPKmwJwmPNxFbEQxkQppUmLCrztoWMc9RpWcu7k298/VJlXKrGiGP/WJWlZ1jrHaYxGITSyDgcNljUXv9UTH2bEO0EJ4RKwEXclKNIPEdca6VIFnpZE7ylLwJmeYx4jhCLyConK+Ql4I74wHv2bjPb5v0eCzf42SeomeCaOrQucVEyusguuPXwvvztFb6z03HYFjACO8Ifjq7lcXEDtGFHk3zmIdnl0hUw6yKMaljue/H6oSg3rAoYXmi2uMpdnlstktTBkhOnYZZXQNOE7S1851VgUMJfGq4tGcZWaHFRLLzpvJVfNUEGCNpC42sO12C80yNTQ1x2pCGDUUTYGuFrkXnGuw3tdqipKUxiqoOkKeh8KHXG2X6TK82tzGlCTrfHoEN5LN8pEKfXdVp0FAd66MdUjic88cjakmQC05PQIOmNp1uI3bUfbGqZufLmCfVltf84H+l7YErfcWbTxIea3epZhFZASYUiFO/LgvBOODEjZClJJ147U41kNRDUHFL0FX+Ujic7pgi5Rm5qg04LlOqyncUWXV2Xpz0LGuLAuEwp0yQgrbzKbpVDbEIahP4nDjl2RI9VTx1tMVyGGI6Z3CRQt3z+iw9lTxxcxcdt4ipBgn1UNPGfltVwEdu77NoQg4WPeRYI4wfk7DAIqDO/aSNJtJrgVzX0WcFJ3WGwjLJE9SzyQmtfeq98ixoIM2K1fb5Xt0lMH5fp11cTvl7QjjPPraZ5dJwAsCr0xvkNkRLQ206PzTnMKGkzRwbSc5Al6shyAbUskYuKlTlJ0EWVOyGM7KoZnFqgl4bgmlFNIkY5wESy8XwmCv9E57MLnhHeUAW/gBlm+C0ZT+bMwpzboxHiBrCaYuYd/bvvZRqI6DYA7PbeAZ6HhJO/bhMKDjlbnfjBYE0PJ1ugdDIRQXjKUG+BUJwTk+4X3t286YZAxCUDjEvYJBiYnhgdMLnhRO0UNwt+9TP0oV+OiF+D0LiBe3jRRjHH3Y870XRj/7ojwKeKXrb296GUmfBfWEYcvnyZd72tre9+CNcY4011lhjjTXWeAnwvBdFTz31FABvfOMbefvb387GxsanbVCfDRCHY9yywkSStm/YT+er6ssUAfHYER7nOOW9OmLVEouufOucqgFkL6PuK4ZpQSJ8ab4wse/ukRKZpbSd5iGJvANxqioIHC4QIL1La1sr5jZhpPx79FC3XssQKF99LSVX611eH50A0I8rmm6/KAlNi2wdUjouRcdc0GOeSrd5hHOEM7+dnnqPmmokcJlFJi0qMCyKiMkkxc5CoiN/XPGJ71oBCEqoSkXT93okQgvRmbamaRVVE1BOYuKZ6Nilswq5LjRX59sATJuEq5Nt6rspo2OIT7pxj7xexnSdHpUNqGzAso4QjVjpXOiIDNElXgMEcUubaGQjkIUkv9PjXcUVVGBpFiGq9R2E4DVHardgFJUc1AMOqj5Xj7dgHBIsO51NpyGxjfRRTaZjSJzX05hWUhtFyJmmSIQWm3aDTAzqtKvMSJwRK2rcBc53d8WGKGywTlDWGnLl/WaEZ3H8fiyhNhgraaoAXfv9WO11Tmlw1n1W2sQzRZ0Gxirhu5EcLKqIxips3c1Z58dBaAl1i5I+cVw2nh08zezCSWqtIG2xo4YqCJC172Cq85BjccYWusBrt1xnBxQcasyJJsoFKvedT6ddYk3m54VaeGZKWKgHgmoI1X7D3nBJ2rFgU+G9iEzEKiG9bgJOTEozD0mKMw2UvxDPqra7HC3h8F17c69Tenq5iXWSxni9kpOCoHSEE8FiHDMNvQ8RQLFlUJVC5b5rsT2MqCNNUAqaDJbnnqWVclAfJDye70OuCBdipXVr+g6UQ5Zdx+jSMxT+3HlfIItgYSLqJiB0YEP/+FZZSpN5z6+BruipCq1Md6zP4gYE/m+cMkWnjKfwLtQ2NVzO/PPjoegW15stLIKghGBRI+rWz//Yspss2Aw9UyOkZ8dlXkNe+OR56djSS+4Nj9lIchYdCRksauSdI9LdFLUIsEguBGMeTO/yK9krga7Yni+RpSYohggBozBnpAucE4Q56OMlbr7w2270KbYl9cWac/tjThYp7mbnm5Q7mkzSRVFyIZkwDHLe37sHGyRQVdj5HFVZnFTs6ymyu2cyUdPWimhmcOMJIg4xMdyfHbKr/JuSWRPTNC9B99mLZb74aXwFNx6P+ZZv+RZ+4Rd+AYCv+qqv4sd//McZjUafcPumafj7f//v81//63/lySefZDgc8qf/9J/mh37ohzh//vynb6CfBC/4av7ar/3aH/oF0RprrLHGGmt8NkG43//XpxNf8zVfwwc/+EHe8Y538I53vIMPfvCDfO3Xfu3vuX2e53zgAx/gO7/zO/nABz7A29/+dj72sY/xVV/1VZ/egX4SPC+m6Nu+7dv4vu/7PrIs49u+7dv+t9v+k3/yT16UgX2m4coSlKIeKtRWyef0b7JovZ5GBA5pHDTGp6t3k+3UiRoBrqviRJbRJoKRfu57Z6uBfg8Rhd5jBYiUQWI94xT57KO4F2O1wDnB0kZsKl8d9eOKxUhgt4e0mQbhmNtktf9hWHK7Y4pEFIG1yNYPdUstuE8fcSk+QQZupUXRSzDGZ2qRtAyGOaEyLKuQuglRuaSLA0NVIGzHgrTeNde0AqMsIm1JehW9uPMREY5ZEa2yiKz2OoymD/XIEWX1ioWb1TGTZUKwkASF67qpJCYW2NBraAAKEzJvI6Z5jKy8psh1SfVOW6KwZRB5zYOxgmmmcbn2nisLBbcS72TbNUueujSbQcv2wOsllm3EzcWQfJoQziSq6Lxu2u68Gl9tS+u/FxZsK7CNom4CtLREXbdckzY0HWsUhAYdmFX3jhAdMwMYBTax6KjFOcGiDKnmEcHSu3ZbDW2v209WEwctRRPg8oAg9xqKNgYXWdKgpum6FScmZVFHKw0LAb4kMpJ5EdO2EorTLqlufgaWWLckukapmPb/z96fx9qW5vV98OcZ1rSnc86dauqq6gbM0MZ5Idg0jaPXxrJpS9iRnEkIp2Q7UduWhduR7URBiQSWIJ2kIbGN/zBCcuII/kCWFUuBQECiozc23W1CY4MNNLi7q2u6U90z7WENz/T+8XvW2udWdXVVN9W3u/H+SqfuvfusvfYanrVrPd/1HZISJ06edo+MVTl31KVjNytxmxLVybqGVKKy9kcVET+PqCjHsTq9ki2loLt+NalbOq60248Xt4DuVuDo1oanlhcMQbbVB4Nyar/NAYZOcnLMpaVYM43ZaIXJG8ck+XxolxPsL2WddzdLjsuW0npiLa63YpsoN7LO4Zrl+lJYkjOd2No55asW3UOxVoTBkHSivQn9iZrImlAmtNNwms+lhe5mIhx5isWASoqYk9DNIK6xaCWdvJkNHBctOqtjkoJYjxqsGrfQxCYwswNGRXzU0/U2MkJRS4ZVaSPBiUZPzmdCB1BadEAAtfJ0qWC9q1ldJPSDNYxt8FXk8fqSk3xgVdZRstmRNltUSKgi8a76Pl9f3uZWveGFvA162+Pv3qO6ex2zPUET+Srb8aB+GTsfSCrrILey7mL3OClCoSJGJZwzLC8S6u4D/IWk4Bv1JMMKbt264A9cu82vhqe49Evqs0B54WhvNGTSjSfKc54szjietVzoE3CeOAySB6c1N80l4/8WtUrE3lCeDYSLC+zRkqThVnnJiC5Y/KNyXH8ZC61/8zd/k5/7uZ/jox/9KO95z3sA+PEf/3He+9738olPfIKv+7qve917jo6O+IVf+IWHXvvRH/1RvvVbv5UXXniBZ5555pFs+2vxlm6KfvVXfxWXL4iPf/zjD4U3HnDAAQcccMABXxnw3nN5efnQa1VVUVXVF7zOj3zkIxwdHU03RADf9m3fxtHREb/0S7/0WW+KPhsuLi5QSr3hI7dHgbd0U/ThD394+vv//X//31+sbTnggAMOOOCAAz4L3q6col/4hV/gb/yNv/HQy9///d//uwpmvnPnzuuyCwFu3brFnTt33tI6uq7jv/6v/2u+53u+h9Vq9QVvy+8Wn3dO0X/2n/1n/J2/83dYLpcPvb7dbvmrf/Wv8g/+wT942zbuS4qU0E3DsNDcPN7w/2le4IEXcV216HGzgtQUxELo8SEadrHEBfPw47NaqgZ6bzmLO070jJBEYBmPZqidnaoRdkPBXX/EOtZoGxiWJcNJLY9DouJVt2SpJbO/NJ5hCd1jM3wjIkvDXlFamrAX5BYWuh7jEt4ZApqlClyzm0nwC2BcIhaKWCSaZc9XnZwyswOvbFe85CxuY/FZDIvKj5Gy8DfUYull4Tk62fHU8oJrlVDgQ7R8hhN2RSPW30Z+uhvAUy1ff+seX7V4FYBz1/CZ4gRnE6FW9CcGXyvaG5CO3CSwXfuK29sV7bqi2onQORoR3Oo6sKo7Tmo5Vkol2kWJW1uKtaI6g3ItIkxSYlhqtk/IfvVJUVpPoQN9tKyHCjqTay/kkcdU81EFFJBctjfnaIDkFD5IgN6sHKZt2OlyEor7oElJRNmoRKzzYyYbMVWgKALOG7pdibq0mFYe1fkZxCNhbY8XHdYEum2DuTQUmxzUpxSqiDTGEfLgOvNzNn0pj6SQR2hJAV7hBksYDHoMkPQKSqkQmZc9q7LntPB0Wp7F5N5UefRlEoum5/psy7ltuN9b9MagWkUcFGmRa2mKQJp7giuwWyVFpLkWpbsG/c2AOZFjZYvAsC3g1VLE5TmGQB05njq64Ljc8cJGdI3DpqS+lPX5GvSgiYMheU21Vdh2L1gOTS4IzUGV43WnQ6JoyXEDsOvkwjmpWl5aOXxToU6h2CTKS4Vzhuu1jO0nZmt+x97gPB1R3TOTicCtwJ84dB32oZiDga2cS6IizCLqRs87blywqjpur1dc3MuPz3rQTizwoYbrs5brxZqNr8cUCHnuigiuQ6FQRuplLnzDpq/Qg9o/LiU/7izHGAdL1UJ1EanOvBTidprLLBF4EObcdUdyfM8j6fwCVVhioTCN56nqbDKWKGTcpfWGuJUwWlMGfl95l28oDE815/zyaFbe5mvy9BIznLAwPbfMgm+q7rNadMQiPz7re9IwyHhOikp7NJEwSGiuv//q9L2FC4Qanlhc8mzzgH9tH8f0UJ0OmIsdtq2nRa+ZDU/ZMxrruEyQdnl7XETpxHXdAfI9XysPTmPWAxEJ4h3jDUb03uL9V9bjsz/xJ/4EP/VTP/XQa2/EEv3AD/wAf+tv/a3Pub5f/uVfBvisT5BSSm/pyZJzju/+7u8mxvgl71D9vG+K/uE//If89//9f/+6m6K2bfnf/rf/7ffOTdEBBxxwwAEHfJng7WCKFGCtfctMzPd+7/fy3d/93Z9zmXe+85382q/9Gnfv3n3d7+7fv89jjz32Od/vnOM/+U/+Ez796U/zi7/4i19Slgg+j5uiy8tLUkqklFiv19T1/u47hMD/+X/+n5+VPvtKRYoRtCJZqK3jut5OFu9V09Evl/hlRaw0JKlKOHNzfNJEC2Em9l7lAirAg+2cj/dLvro459xlxmRZYlMWKSKhkP/v+p34ZEhR4WcwHFkpTnWa39neYpfpn01fEUvorll8o4jzfZpbnxw+F50CUBTQD+ghEXrLfb9kncxk155mIJMtHJZNzzvnDziyUm9y2dc86CxDDqB04eG7/6RF3GvLwLwcuFFveayS59aXvuZls5rqOEiZWVoGnrp2yTcfv8i7qvsAfLq/yW/Xt7hsIsPSEI3Gz6G/GVketdRGpmqXQ8299QJ1WYjwV+V1LiJV4zgqO45Lmc1bFdkuKu4dlfithLrZNlE/GNBDxO4KfD5f3U6z6SsuhgafNIOzIla14DX4VUQdCaMxW/bEqGhRxEHEsyoolNeEqDE6TgGKVkVC1OzakqEtwIsVX+X6DF3LfpUzR1M5tEpsuzLXvWixjBfglpHmSATk12dbXDAMbUG1VpTrJGJ6DaaINNoRs8p3E2r6oZgC/JLZs0UxKJK7wgAl+Y82MYcBRswYLZCuWNxzAa9RUuobkib1huJCYzqx2Q9ZQE4ZJDTQJLRX2Fa21c0kLPP4mQvedSx28J0v+J3hFnarqB/IZ/gFmCKwKnoq7dnlwl91aYX5u0iolWLoFSHs2cyH0uoSEBUJiUpQJpEsJK0eCjkMSTG3A0vb82+WN/CzChKU60h5bmg3UhED8Hh9yW5ZcD6bA0YCTfsce3A9cnKyxWZzwPmmYWgN2us8phKLec+T80usDrwUjrHZu15dJIptwM80sUjU1mFIYsnfFcxbYTfknEigaIpw3jcMwXKxbUR479P0PRAqoApYE0lBTBPVhac4bSmPLLqTcmCA07DgnltBazBdFAfGfMYwVyyXLU8Xp3RJrpmYJLIgXK5lI4Ci9Dxt11RqyTW73Z+DVsZu2mwhwlEWaz9llhzVLdviWh5biZQFzMpGVrYVcXySUNurUM6TFCyKnoXpRPg9gNn0qE2Ldvu7ibnuhQFCmMq42eS/B9AFR1f82Dd1hCJOHu3U9egBzpy4MtrUs3Mlwb1NFM6XIW7cuMGNGzfedLn3vve9XFxc8M//+T/nW7/1WwH42Mc+xsXFBd/+7d/+hu8bb4h+53d+hw9/+MNcv379bdv2LxRv+abo+PgYpRRKKb72a7/2db9XSr0pzXbAAQcccMABB3wB+DK+9/qGb/gG/uSf/JO8//3v58d+7McA+It/8S/yp/7Un3pIZP31X//1fPCDH+TP/Jk/g/ee/+g/+o/4+Mc/zk//9E8TQpj0R9euXfuS1Ya95ZuiD3/4w6SU+GN/7I/xj//xP+batWvT78qy5Nlnn/2SBi697fCBNDhMlzjvGu6Eo+lXRku5Z6i0WLI9nLUzzpbiKQ4N9CeZKQoJFRLr84b/3+brud+8wmk/F1v6yqJ8xIwzjdOSj99/msIE4mAIJQxLKYTUO8Nvnd7ilVqoxQfnC0ovFQXDQizPu1jRpp5P+cB6qPbhbE2J8h6UIg2al/sTPlXe4OX+BN8byrEGIO4p2tEuHpLGJz1pYVLW0yQdUSbHEQwa1Wv0TuMpOS1nnNYzGjPqf2ou2xp9aalOobxMuKWiz9UWlXb74EtypUTY65XcHNLS05R75uOsnbFb19itRnkJn/MLWW4165hZN1WiWB2YFQPVoqe/pukGi+k1trcUFw4dEnaXl73UXJzPeNEeo1SiH+QSCaXMuOMysFxlpma+pQ8W7w1ubUlKrOHKiVYoJUWpM/1i5Zi6zqLOC+xG58JPYcx0ZvpO5i0nzY7OW3ZdiRrUpKuJFpgFjueig1iVPffbOWkwmFZmvkkLo2RLj9Vh0hTtgpS+pqy7igVSfWLHOogrAZI6hyxmdmgIhrYv0IPC9Ew1DmZQqEGzG0rOdGK9rbHnhupUbPDDCvxcPj8uFEonVEKs69tpoJFWnq+7dp9vWN4G4DfXTxA7S3MXVs87klUMS4uPmmXRsbLdND71oCjWieoyEq0Ra7lNKBPwS42b68mGHy3CqIwXhomECnwl437U3iiVsCqwsANN5dhaucbLC099qtmeW047udafnp9RW4/SSXQsF3JNRKvwx5Z+ZVGlnNvgRbdlt/J5odb0g+W0bwhRsz6bscxSmfqBx24c6roFrYhJcernvLC7RroohRXMVRipytb8oDjvGy6GmmEt9SkqMkV+hAaKxlMWks2hPVK6Onh0SJ/98YyCWCjUakm6fkR/DM8sL3ncXvCyP8n7pTF9nFiiaBV15bim9/97GWM/4loSX9Nuhw5S1zNiUQysR3bbaJQxRCv6uJMiB0WayBTwyH7ZZKExblqfigi75fykIwOJTXHJ0HuLdns2Ci/bPlYxAdwyC8rFgF9WaEAZKX2+PyyJRF7yjm1fEoZHc7fy5V4I+5M/+ZN84AMf4Du/8zsBCW/8e3/v7z20zCc+8QkucpTCSy+9NAU9ftM3fdNDy334wx/mj/7RP/rF29jPgbd8U/RH/sgfASTZ+umnn0brR5DiecABBxxwwAEHwNvQffbFxLVr1/iJn/iJz7nM1UL5d77znW9YMP+lxOcttH722WcBSaN84YUXGIaHQwn/nX/n33l7tuxLDaVIw0C5Sbx6PuNf7p6R+g2gdXZaRgeZFV/sai5cQ2Mdw3Fg+/h+mWQUrAv+37NnuPQ1F31NqBPtdQOU0wy1WGvuP1hSVB7lNL6RegNfiSPowdmCMysz1HhWinungjCTGoBX3YJ/NWh+e3iC866Z1uuPG3RdMixktnS7O+Jf2XfwO5tbxE1BJnT2WpEEnbfc6YSV+jdnNzh/sECfS8Em5ALUKqKCwmw1xaWwCL7RtG7O8yZOBbqdt6wvG+oHivmdSH3q6Y8s/ZHm1fWcF7trmDyF+fTuBvfPF5TnmjEjzS2BqPBRixsMJAxyZzGDzPBDDcNxoDnqOGl2aBW5GLI+om9YD5VITOae/qYCZYiFpc5BeuOxsh0MFwX3zRJjA8OugLAvG1VFmLRlRkdM2pe+qgA6gO4VoTcM3kzaE60SISpib6guNdWZzNR9I+GUYx3IUd1yq96w8RWv2gVdUhCvMBlmH2AJwqqlsGdCxD0IRiX6aDkNon/Y+gqlEr5JuJUS3VsjAYYpKrhaNWKkZNVoCQFsfUG3LanWimKTJjeXbxR6UPS9JSUY1iWzC0V9ljB9IhZ6crvFXFOgnKJoobwIYBQqaJSJXK823LDrvOyT6LVhcTvQfOqUuKgonj6mVYnHykueqs74zfpxGcs2V4IMCTOIAxCdqGaOLmj6XblnTEdtjdeEoFE6CVM324d/gjg921BKeF8agzoTpg+Um4jdGtadjMM2FNO5UF4camaIxMIyHBm2TUOXHwOE9aj9kmMRKkV3WfGKOcJ7g3lQCNMEmFbo21DI2HPRcLs74qXLI4pLjd3tGZZY2anmZPDCgrAz07gOWf4ZmsS8cpS5AiQpiFaTZqXUhMwiN0rR2BybLY0eoIy4hSXeOma4MWM4llLVWrlJ3xh6gx7ZEqXxtWJeDhRKLqp7biXltkDM/7+Iw4AKTOGiI5LOx7sopv3XVgJttZKKklAXD70nLBtCkzguWpZaNJBJI+48lc9tvkYuwoxz3dIH+zDz8gZz/ONFS3fjGouyRC3mqAh3uyWfdDte8Ec4b6Zy4AN+b+Dzvim6f/8+f+Ev/AV+9md/9rP+PjyqdM8DDjjggAMO+LcEX+yajgMEn/dN0X/xX/wXnJ2d8dGPfpTv+I7v4H//3/937t69yw/+4A/yIz/yI1+MbfySQC8XqGRQIZG2lk+317me3UzOG1TWXeghYrewvaw4vTETLcv1nu2TubNAiTbIdIrPnMoz+J0rifNAe8sSC5nlAeJI2VmGPKvxM0QDYeTP0FpCnrnaToOWZdxcsl3O/Ixf79/Bb7ePs2tLiqxTa29VqAjddYUqAxtf8dvbx/jMxQlmYyb326g3STaREpz2My66hvv3V9jbJeV6z6j4mSJ4mYUVF4r6VBxdbqaIpWF3UtHOszsFRQoK3UN5GShPO6CmWJds2oKzYUaVrT8vbI4JpxWLV2F2L0qtRaPpOk3v7OTk8d5Avv+OpVRf6OOB68stq6KnCwW3N8J0na5nwvgkYRFYeHqb8I1hWGqKDXuXUgKz04SiIBQGnH6oUDR5PeXYGBUZgsH1Fu1FT6QdmFYRWsumq1hUwi6WJmB0Qmn5DO3EpSRjSBEzA2dVZG57YlLCSNk0zWJVyJ8/yOdf2orBG9CJ0Ij+LNmcRxM0t9sjfMw1H0MjzMc8MGg9uQVVVDBodKfRfsy9SVCHyQXXDgVpU1BeQnUZ0V6+nfvjnGuUdTrKS22Edmlyco31JboYtUtgukSxcaAUNldyFCpQ54GoVUI5hd16OL9AxyXaHWNs5JnqAV9f3eZ3lmLz/bXF04SqgChMkR4UJEVZeOJcMawM2o2aG2FzQmvZASmIs8s3Mo5j/jaMQfNqN2djK9q+EE2KUUSrJiZj1KgYlaiNw5aSC5aMsIWmT9idwm3MpOkxrc75Q3koOlCdpm8LojcUvWKk60Jj8fOsKawCKSle7eZc7Jo9O7qSL47uesmwAlXJBeF81lYh+p6QvwdiEdE6yrYnKTf2c0OyNd2JRi07Tgr5jtNklkwlfA3+qKa7ZgnzSKU957HhM312Je0sxskJNydHku1W9oTsinu5PaK4YkDbX0xMbBOAT3qv66orlLVS3QJ0qcCkhFKSX2YWC0KuAhmu14SF58RuqbWjMEGYXWNQSqFDIvZycu+6I2Z6kIywUmGWS8J6TawKiHAaHQu9d1Yvq46LY83q1k1ocoZTN+OT/hr3/UpY1viIGh6+zDVFv1fwefN+v/iLv8j//D//z/yhP/SH0Frz7LPP8p/+p/8p/+P/+D/ywQ9+8IuxjQ+h73u+6Zu+CaUU/+Jf/IuHfvfCCy/wp//0n2Y+n3Pjxg0+8IEPvO7x3gEHHHDAAQd8pUHF3/3PAW+Oz5sp2m63Ux7RtWvXuH//Pl/7tV/LH/gDf4CPf/zjb/sGvhb/1X/1X/Hkk0/yL//lv3zo9RAC3/Vd38XNmzf5p//0n/LgwQP+3J/7c6SU+NEf/dHP+3PSrWuoVODmmmQ8MempjLGpHJs5+JmhWHtsC2ptebCb88TikuPVjgc3ZRannZHZ86DYXTS8bESDomae9jFDqPdajlgAXpGM6B3CLBJLBVpmeSoq8PtZSahEk+KOAsvSs3Y1v9U+ySc3N4S9yAzU7pYhWmhvSg7OxpWc9zXn5zOKrZo0F26u6I8hHTtOmpZSByne7Ay2BdMxzdxIkHLCMWM6MuRtTdTNwBPzfb/O3cWSMKvwjRYNRK0JDZSN40a5ZTG2jALaSQFnsfbESqOC3LsXNlAXwiZYWzKYXPKpIVSJuvacVC2l8Zy3Cx5cip7G320o1hqUpG6nlUfPHaGMtJUlnOup5DRp0F4Rey0TQIWwNSMGTbeV2a3PDrM0mIf0WNqDzgzAtpGTYOuWWTmwWfa4I4MZhKGKRr6sgpN93LqSra+IKNF+lJFQCpunkrgQLzf7mawPGmUjbpXTpnPG0LAp+TcPbnCvkXReFwxKJczSEWrJyVFBw85gN5KvMxWXNlDMHDfnG1ZFz2k7m1xTpo0km508JYQmcjTvKE2grStiaaeU91DJ7wHms4EYFX0h266HkHU6NQSNVokjIzP/k3JLrJJkgFkLKUkWDzDTPU/aDe+sxaZVLAd8U5CMZOUUW2i3hmFhMSZCE/GNHFvbigYqri3e66nY1zdybMek8hQUD9o5SiWGXUGVHVzuqKBfKfwscZQdZXPTY1WgqQd2izn9kbAdvhFtF1dcfGPiussMcMjFvSazaGGW6I+zBs1booHhGKgk4+piqMUtCriFBpV1Tdc1wxEUOesqBC06uOzeTFe+5buhkOytVsZsqDShFAerLQNdvsBfdNd5vr0+lQT7xggLXETaUPDJ4TF+eyNsnV1rlE+YxQJ17QS3hFXR0xPYhA13dstJhzZCN03WSuXcs5S3fWTNV0sIQdi5oLg3COsbvZb07mvH2CN5bX3NYJqeKjONYyk3VoNWaJdQW9mPT7c3puXcHNTjt9Ah4BoLTvPrw02eseIu3cSOEEUjlU6WJCvXzcWu4RPdk+xiKXrCw3Ot31P4vJmir/u6r+MTn/gEIDa6H/uxH+Pll1/m7//9v88TTzzxtm/gVfzsz/4sP//zP88P//APv+53P//zP89v/MZv8BM/8RN88zd/M3/8j/9xfuRHfoQf//Eff1353QEHHHDAAQd8RSG9TT8HfE58QZqi27clT+T7v//7ed/73sdP/uRPUpYl/+v/+r++3ds34e7du7z//e/nn/yTf8JsNnvd7z/ykY/wjd/4jQ9lJb3vfe+j73t+5Vd+he/4ju/4rOvt+56+37MU4w1U/9iCqCq6E4WZea6VW56qzgB4x/KCXzu5Rnei0U6jfaJYa863Dcuqk9ySZZ6NLA3lZU65vbBc6hnlzGGKgFt5emNEBwFMfWLorCVKJCPP5dHIs+v8/Fp6sJLMbnOGTxcKXtydcHuzIg1mYnX6Y5n9++PAzAY2Q8XFriZelOhhP5N0DfQ3AjdvXPK1R/exWvKOTuslvmGa/QO4k4BaOJn924KkNH6n8HMINx3vPDnlG5evyLLJ8OLqmFdWC7oTgw4V7XVNdyvxDTde5VuXn2Su5Rw8P7/Op6snxBVT6Kn7iYXnscWa41JmcYO37MoZKDNRwwnRo2gSPmp8L7PD4lJTnQIJBqfprYHjgG0cHnCxIK3zDD0nbpMkSVcVEWpIzoDLWoy8Xh8ySxYhZW2K0fk8OvCtZd3KAZsVA0dlhz2J3NGJtmpw53bSFcVOTsK99YLCBGbWYU3AzBx+YcSllUB3Cn8h67xIClsETBXwR55kLLqTMaLPC9b9kvVMHHhl46hKz9FK2JhdV9Jd1Ni1oX5VxqcXYo1oEzeWO756+SqV9ry0OUIFcXhpn/BV7m+bgT4eeNfxKVZFLnY1flbhK4XRSc7bTHQux7OWmBS3ZzNCbYUN9V4SuIPCqMSxlm17uj4jHTn6o5L5rIGUxBW4LbntTthVL7PUMg5mzYBv5pLi3UXKC01xbugWJeXMoYpAzDk+aRDdl91o4pDZhKSIVWZxMqullfQQOm9IrRVGpYT+yDAcKcJsz1iOKGwgNJFhpYmFxs0R9m7usZWwIF6D8wUpd0G5ZUTXgbpyeKvZLSz9cb5o057FAlh3FUZHohfWt18pfJP7+o5k2y2wG0pcZ9HZTReLvQ5QO01/WZGiojw3ZEKEUGtSIa68T25uAnC3X/Kv7j9OcW6kg63S+JkilZEuFHyqu8WnLySrrlgrVIio+YxwfcGwgpkdWMfI/VBz1s5o/GuYopPjPSsEbNKAVXHaX39jgR6CJIN7w8vdMTEp4iD7n44WjN1vbq5RJrELFff9is7LMUxWi0PYJcxWDsJnNics8467BQxPHlECYWZQneafbb6W31/+MwD+9XBTXLwWwrLed1S2JZ/YCUsWoxJd0SPA21XzccDnxud9U/Rn/+yfnf7+zd/8zTz//PP81m/9Fs8888xbigP/QpBS4s//+T/PX/7Lf5k/+Af/IM8///zrlrlz587rOlZOTk4oy/JztvR+8IMfPCRxH3DAAQcc8OWNtyXT50AVvRk+75ui12I2m/Hv/rv/7hf03rfawPtLv/RLXF5e8n3f932fc9kvpKX3+77v+/jrf/2vT/++vLzk6aeflt6tssAtoKw8R7blZs5ReWZ2xq9fe5LupKHYGVSSrKLdZcVZM8OonPZMzvNRCtNBcaEZVMEQFbrIXVClnmYaegDjNUnnviIjWSJJZ+dMRPJkyE4kK5qEovYYHdn4ks5bzrcNDPvus9CAnyeoAiFqzjYzunWFvZRW772jDNTK8Y7VBc82DwhJc7dZ8cp8YFgZwkwR88y/Oek4nreEqDgtFvSqws8UsU7Ui54b9ZZZjrG9CHn6l9OWh4WmXyniycDXru7x+6tXppyix+o1NCFrGDTDQjGsYHUszMWoPTrtG+4gDh67Q2bnnWWIhsp4VmWPzW6cWIjeRgc5xsqLjsvYSCwC0eao43xcR+eUspHZoqewgcEZurYktHbSouA02IQqEsl6fKmJnTi5VFTonaEtcq5S5TipW241D7jZbHlxfszd+YpwWmI6hdnIydrqGS9GzfXllkIHlouOC6dxlNitxgyKlJf1qoSFw5YevUo4k0jaSo5Nq0iXBr+QkztcV8yagaeWF5Qm8Mpmxe3LSvqvzoUFikXerzLyxOKSd89ewSXLv7BPQQTjJK8n2r07crVqedf8AZrIp+prnBZJqJbpopQ/auuwOnK7CfjGEmorzeQhoQbFLhSYLMy6YdfU84FhUZHKAnV+SXPfYW+XfOz8XTxbvjr1bs2rgQcz0cbYnadcJ8pzhTu2xMpjq4BbZqYmFtitQjvRrSWdHZdlksymhSxXVB4fNH1XoHdm361XCGOEFqYS4F6/ZOdLSR9PMr49wrrFWaBsHEUh4zBFTagMcdB7x1ISXVhK0nI/mrFiKU457UFtDFvTSJpzJ9e1n0lgM4g2SSVwuwLfG9JO3JDJyDZPTFGnIBXoXuXU8fwdZYWYip3ld85kYpsSXNxeMT+X7x23EN2Smckxut2tOFsLY19vZVywmDMcV/hZotCBB7Hit4fH2O6qkTCckI6WxAL6aOmT4yJKx97IVvY3KkwnieMExb12gY8anBZH3bKW/DfkmEeneak7YROqKUMqVAZTV8I05pykO5crVmVP5y2xgu56gR4WhFJhN5qP3n/n1Md2b1ix2VY0BvprcmKigdBbPr2Rji7f2cnZ9sXGl3ui9e8VvKWzefWm4c3wP/1P/9NbXvatNvD+4A/+IB/96Eepquqh3/3BP/gH+bN/9s/yD//hP+Txxx/nYx/72EO/Pzs7wzn3OVt6q6p63XoPOOCAAw444IB/+/CWbop+9Vd/9S2t7HMxMp8Nb7WB9+/+3b/LD/7gD07/fuWVV3jf+97HT/3UT/Ge97wHkJbeH/qhH+L27duT4Pvnf/7nqaqKb/mWb/m8tgskWTUWSPdPVFz4ZnJmVMZT1h6/AF8Lu2A6mdFdzmuqyu/vyKfn+WC3kIxm0JY4UzmmmKmdXPcqsxQq6wEUMefUSMbKvskcpLsKZFbng6Q974aSobcQ9jNE6boStsR1lugM+qyQtvjuSpJvdsrEpFiHmj5adr4QJiuzVjqzL3XlqK2jDxZtIkEnSY+NMHSWz6xPpkTr037GK/eOKU8V5SYnDyNsTR8t61gz5I14MMxIYwpyoQi1IswSq6bj+pWwEx819Bq7gWIr+zB0lpgU14otc9Pz4ERmsi9eVJjOYtrsxikStoiUNhCsJqo0ucdMKzN0Uyt8UszKgWuzHb233FcLtk7DMAbaiAPPVEFYqTkMu5J0YbFbTXGp8Xnqf2bmrKqOdzTnvKM+56Tc8esqcdudwK6kvMjnqi3ovOJUJR4/uuSxxRqjI6csCLHCrhV2O2rQDKGIlJWjbnpanRichktxtonWKjvFlpqmcLxzfsoqT5tvm2O0h6JNuUk8r7eKPNFc8HR5ygO/yONXYfqICnFyGkYL83LgerHGRSs5TFE0HLZLmFZBl7vXXMmsGGSsFJLijcmsTa+53y15ELJTLhmMiSQDKkbi6TnVKyvmr9zgN+4+xidWT3DNSvLyjWbLnaNIv9KUF1C0kXKj6Vr53OW8o8/lflud8KmkvBDmNilhUUMDLDz1QpjNWT3QO0scDOVGUWwlgytN26s42wr7qdQ1dkNBe1FTbrQwkeO1n5Q4wUZXn9PSH9cpYYGCxqmS1udltnZyQeoBzDB+N2gGXxBLGacpa/tGRhNAtxqwk3tSErNBFfv8Je2lr860cs3oIKnabq6EofKKy0vZr9gb7Jkkxvta4RbQ3UysVi21cZwPDW6X2brRuTmvhWGvEiEpXnQnfLJ/DLcthElCXGexbYlzmYjeH5b8G+84DUuGYCadUX9kMJUmlKI5u+gaeXoUZVuH1T7VOhrZ3s9sTzgrZnRDgTXglwWma0iFnrrXNpc1L5bHtH1BtDCsNLYtiVZhd/DCvWv8opECUxcMvisIDbQ3jLgKF3Ld398u8EHD1kL7aJiiA8vzaPCWzuaHP/zhL/Z2fE4888wzD/17sZAvz6/+6q/mHe94BwDf+Z3fybvf/W6ee+45PvShD3F6esrf/Jt/k/e///2sVqtHvs0HHHDAAQcc8HZAcXD+Pyo8olvcLz6MMfzMz/wMf+Wv/BX+8B/+wzRNw/d8z/d8Vvv+W4H2aUod3m1KPrW5MaUu3+2WkoWhhc0wMeWkXoXvLcbGaXYYrWg1Rl2QHsD0imC0dGldsUmqnHRMupotInkjetQXjEnBGpKVVOkYNL23RBS9s9Lzo/a5K7BPqY69RW0NxVpR7LIrLusYVJDfj0nQO1/w0tkx7ryaNC9ByQxtbRv6ITfEn1cUFyYzYYoh1Dzvb/JSfQyA7wqKV0pmd6A6D6gEptOwsfzO5U0+XH4Du7wRv/bqkxSnlmKD9CmNLpxgOHcz+jztPd3NpHNtB7ZLuMwu1cbzRKZd7i2WANxZrfCXRmbuJaQiUpbi2AtR4e2+Idw4+YmVwncGFw1aJSrrsSYACpU/S3kl0pAZNNWANZGNTvSdRl1qijXYnSzbxYrbzYqnFhc8Xl3wZH3O7WbFHXuEdkxMkcQMWdqmIq2UaLOsw3nD5bZAXRr2kU6KoTaEhaayAaN7TuuCZMQxZXphMPOJozKex6sLbtg1D9wcW3mSrnIH1j6DypTSEF8oT5cKtkMl6xr2adbjGBx72CIKF3VmI3Jq9Q50zoc53zb4WhO9md4LoEPCtpq77YKXBtFprEM9JXwTIrHvsKeX1GfXuVhXbELF19R3Afia5X3+9Y0nGFYNsdSYLkr/WKuIwM35hlILu/lKueJVf0RaF+hemBKVxIWky8DxXBi0phg4SzMYJJupukhU50F0S0uD7rQkpAPnqmEYLGojTOR4bkwvWVWhtYSsL2RnMVthN20vx1w7jesLUpGEKXbjcSGng+/PtZ9lVlenKQtqhBlARflOSUqud6/Vw98v4/dPJ38PpTBF/Qm4ZYIiEt1osZJxlpR0D3bXIF3veWyxpjKejSthJ+dSO9H0pVXFsFKkOuCj4UV3nU9ub8LWonMLvSpLlPOkUhrnX94d8S+6d7CODRdDLYnzgGvkey8Zuc62/T75OlQwHJk9U6ZAdYa7myVtXRC8RlXQnRgINb7W+4T1TcFZNcMPBq0Tw0JhOyMda4N0Sj5vZRxqE0le4eawe0zY+/4koYpIN1j6rsRsNap7BN1nKb09QuvDjdWb4ivypuiN2nWfeeYZfvqnf/pLsEUHHHDAAQcccMBXOr4ib4oeBVRMqChskdpYXrw8Rmc64XKo8L3BppxIbEYnieTYKCQdFqBvAqFRaJf1QqOGaExANmlidELWAkjXUp695zTliOh1xjM2utIAUlS4PAOPMbtYqkgcZ6g5lVnpRHI660My63Tl3lJFYNBc7GqGYOj6gva8pjg3omNRoPyY0VOyqyzKa8xaNCxmTEVOChcLQikba3pFeSEOp6QhWGlpVxHubRb8inlGZonAg7sr5qeKYhfRQRg45eGyrfjU5jq7nEFyeTGj3OXOqkIRZmDnjsfqNUvTsg4Nl3mdblMyO5N2ct9IJokPmtJ6Vk2inVf4Wra1MJnpaEWnsWtL1lWFVkmSgHuN6bJb0Cm80kSvMToxLwdC1PRFjYriijNuPLaK7WzGZ1YnPFFf0ught5ULK5ANL2ifiKVi2Fn6YJmbgbkZuN/MuSwXgNmzPxF8qwnuCptVeUJVEo3CjOc0LxsztVCoQGMc1kbpjavFmTc6n5SO9MFy36+4PRyzbivRZCTp0oplzsqykgnlosXFPQMUbdanZfYUoNuWoq9pTc7QkY68pGXMd67gNFuP+mhJScZIakp0WYIxJCWat5Niy9eXkpXm5oZ/dvJVXC4bkga781QXGru19FFzXHY82ZwD0j93fjkj6QLbiU6IJCnXSSeWlRzYVdmzHSqICtvlvr4Lh59b6VFL+5TqwgZC0MIGZZmgipnl6RSxNqSx9y1cqVwIQoroHkyh8LlLcWRtfSXnTGXSWXlQQTSGqYCk0qS9u6ozFJaIfO0LA6r7MSU7a6JyhpGrFcMS+muJeOTRZZiYPJ31i8nKNvlVpJ4PzKxj60vO2hkm67Z0SMTKEEvNsFJQBSKSQv3KboVp1TQOVV2hjcYVGhXg3nbBr++eFm1hV03McLrCXCqn6LoCnY95qCR9/2pno3aK7a6aDkKoE/1KoZ0RLVhmiuxaMxSlnCsLbgXtRFtKP92Qc8BUEVFBEeaRrlLEMpFWjmYmAqUwGMpOQXfIKfq9hMNN0QEHHHDAAQd8uePw6OuR4HBT9AbYt2IjM9nBctaJM2Pnyr02wuSfUQmnEoUN0omDdAb5mZlma4BklCQFOkKRJkYnmUQs9TTzS4apZVylRCrUnmHKmqFUJhQQogYvvT/aRGj2DjilZfYfg5Zm+8i0nmT2DEEsINk4zSZS/o/sGw855VTI6dpKtsHNZWZPyg6vK4/Zk5VclfaGYlhJ83V3A9KRx5rIeqg42+aU8p2BCKGU4z/qKJyz3Nku2eaE6LQupPG8kp/uRuSJkzU3yzXr0PD/Xj7Lv/70UwAc/4uCG7/WUpzucNfnnL675kzP2dUDJ82Ok5MtD7pRH1FQrLOWwSmGtuCyqtE64ZwBr6acoik7KoFSicY6XGG4KAJJFZKePGbBGIW9MLx6ueDucil5TIA2aWJV5PNFj6IGxRCMdKBpT2W8UAtXzoHppM9rGAwuirusKAJtKWxT3Ae1o71i01fcG5YUKrD11XTOfQM6qIda4u/1S/5N8Rif2t2g7wqaJFlAalkwzLM7sIySsowioClNwM+j9H8pPaUTA8TBSD5Xp1FR2D03twxLmdWX1k85RTpfQ6EGf9xQ3LpJvHlEf6RoFj1fVd7nq/J1sY33OGl2XBgkufiypTKKYmPZDZpSe26VklLfhoKiCKQoLFF1EQFN1ys8MLNCPayKlrqYT+fDtgHdDuhSes1iE1kshVV66uiCrSt5aTC4dSPsYM/E+ILkXQEwS7gg8fSxlWVCnZPpmwg6EXJKdaw0YafQo7PL7q9DSbrf6w7VmMKeeweTTWCSXJ9OybVK1pj1ok2MJvcmLiEuAjqnbtNn9qeVPkAVJgKcmBRnXUNkxuVlQ5FdkComfKNxC4NbIAnr0XB3WAmjNKaHA8xneXm53jZdxYvtCT4a+qGY6JBYqMk5qZ0idFYcrl7GaajUnilXwqT53tCZIifM5++GUqF9mrR9xaUiFpY4C8Q60l3X+EaYpKRFvzTqJ5PVst9FIi0CduZZLFqawrMbCgjqkRatHnKKHg0egULsgAMOOOCAAw444MsfB6boDRCNItZKmqzLRFkECiNTdO2FEZpYIpPdYEoYA62j6EWArgwMRZSup6wlMANEpwiNzCJ1Oc6ONKE0qF7nDq78fF1LHg5l2s+4lPSiKZtIUeF7g1dG6oBUwhYBa2UbivxnNxTETpxJ2ucZjtrnmIQmYeeeG6sNR2XHti65A7TUJGtFvzM2iS89dibMREwK11tcb0h+fD6fxmoiYlDESjHkBvA4C1RHPU8dbbhW7/BJo7OLKZUJt4Qd4u4bjiAsPVYn6evKDfW6lePpZzAcJ4pbLe9cnVJpzyd2j/GRT76L6/9Mlr35j/414eKCgMwCHv83T0J6J6eLJdef3fL06nxi9h7oI8IDK4nHBvA6554EUtSiAavG8wWhjtjaMy8HFsVATApTBmKZj2s+BqObyA2Wja+4FrdYFTFFyC6gfFrF4IbKOrE+WErtsTqicnbPuE6Vsi6sl20sdJT9KCKh0ph2P57VoFhva57fXqePlgfDnIScz1Arot+vNzrDy9sVMSnut3Oikx69/kjh5oZcWE6qIjFJhldMisIE4izQX9Oi86r240V5BT4zpgl8I+3j3YnCH3lOqnZKQHdRcopcDcNRgbl5xHB9Ju3rTc+x2VKprFdTER81ygujo9Y7jDEUu5rkNBFFnS2bjXFoHYkRbJ+wO+nW0l6hVGJRCC1zvdxxpxhkDEckeduFrKmCWEduLiQn6WuX97j0NZddzcVpRcyZOBOLqBM2t9dbG3F1oJ9Z/NagnBLtTC3MrrZxSrd3pSWWouUbHac6QPKAUjn1fmSY5dwlnSC704jikjQ70fsBFJusXUsQm9FxmEg6Eb0mOY29FJakvGDKuooW9KAYdgX39AIfDPGi3Gvb8vkcFgrfgDGRjSvZ+YLNrkJ5phT0eDQDpXALI4nb3nDaz/BRE8I+hd9neVEy+ZroDMkkjBdHXTRMrIcwrYrkDM4JI57lR+gAxS6hYnZJFppQKYZawdyTFonBGWg1ppMcqZFVSkp0RGGeMLVnuWw5aXZolYQpcgozAA/X4H3xEA80z6PA4abogAMOOOCAA77ccbgneiQ43BS9AYxLeJ1n8I1nVXdTQ/vIBkgmyPhcXXQbIWhi1ESTHSeZgdBeNCBj3lDSilhpqILkGiGOlpAUDAqVXWKgiIV0IqUqQjlGL4uWiKhIgyZ6m3UFCaqInjnqnOS7qHppmI6aLrtRbAvFNutZZnlmZKBpBp5enPNUc8EuFFTW8xmu0ela+tSyk6acO66vttycbZhZRxcsZ33D2XbGblcRegODzscmJ2LXEV17jpcttxYbrlUtVgdO+xkx5mVtxK+i9KyVibTyNIuesvB0fQE7GbJ2KzqAUIKfR64vWm6UW/po+VdnT1D+dsOtX3gRAH9x8dC59S+/wmP/bMX2yWusH6/56uWrHJdCq/ymStyzK8JlIYHjQVg4StFl0QT8FVefaTxHy1aYDjPQaYs2CV9IloyvcqJ0Mc7o83hQiZntmdUDF7OIm41PshWhkOVSUlMqeG2kxyvUiVCOWovsTuq1uHNUwgcjrIHNWrGRVQoK10oGVUyKjStJUcaWn4mTZ9KB9ZoH6zmDt7RZOxEqYYpUEh2KjJfEpq94YXeNmBTtUKCKhJ8nklYP6V5wGu0lSVpFSYIPpWY4BrtwrMoOl2mCSy8ZWGp0qdUFodHCbCTFg7DkdjgD4EX3Ds67JrspI4QorEBiYlp1Fn2YK6IMFfZOsaSlB29uhKlamI7aeGFekjDDygW0i5N+ZGSCK+2ptHQPkoQNLLbSDxcaGAY9MaazeiBWjo2ucKnC7LToUgZFUkZcfVdYwPyffT6ZEsYmZr1MGhnm3JOIzkxyEJbIbiUrqxD5GsU2iZ7Iktmm/FlOOsXsTlOeywaUl/n7wYCuRUcXe0OnS0nEb/VD7q9QyRhJBoIz3N8tCEkxbEoaxzRm/aomWYWfSQ6RHwynu5no0rwWpgtJGU8GYpXHZZAxrKeU7/3Ylo2QazVlraMKwhKZLlJceklXB2JRMKwUA1DNBxZNj/OGzbomnFWYVk1OUADfyHm0ZeC4brlWt2xcyeAsupVsNnVFu/fFxEFT9Ghw0BQdcMABBxxwwAEHcGCK3hDlhYOldDkpnZgXA0eZTRiiwdhIyM405cnN25CcxnnRRACktJ+5mF5cL2bIDdaNJsw0qbgaNCIpt3ar9s//cz+Rt2lKfB31B9Fp9M5gtzJzixb8IuJtxCxkG5ZZK7Ebyil7pbpI1A98dtnJMOhahQ8arRIL02FVYGYdSiVSUJhentsDOGsZ5obSBE7KLT4Zhmh4Nc4J64LigZ20DGN6rlslwjUYakvrC05B/tzM2F3kLqm1zcxEgqVjftSxajqGYNhsasxW7uOLNdJ8nZjcNS5pzvyM082M5j74z7z4huc3/PpvMfv/fjsXu5pCRa7XwjzsViWbrmTbG/ROo1tNDCVDE9BFwJQBnTUixkSWTce12Y6ZHfBJs3UlwZl91lR29oVKuurKIlAbNzEMTeE4ayJ+PrJqe/deTPtcoUXRM5/1nC8rfGbLTN5/PSj8tmAblWhSkmhFQn1lKq0TyWu2fcmpmRGTjOtUR/xcofu9+wynplyh4A0pnw+3VNk5ls/roDm9nNN7yRXatSVp0Hm/JVl5dDmaXk2zcJ01Jj47r2zpGYLl5f4YgE9vrtNe1Cw3oPs4zW51gE1X8tvd4xRZaPNru6dZ72oqD8lomDeERYVvFKqIaBIxUyIuShu9OIoUsRR9SbRgdcTq/XUYk7i2pHMwgPPo3mO7hG4ND3biTrtdHXHpai43DcWlprpINA+COFetwS01bikHts+5XdFrdKcpLkT3peK4LQ+n0GsnzJrd7VlBcV7JmA+jpqYWRkdK0fL7dpLGXWyl33A8fkkLq+ObzMLYBPHKd852PF/CTASrpr5Apa98nyUm/U8olfSPZf1P2Fke6DkpKNTa5sTrfI0uLckocYUFSJuCB1pqm8LOkr82ibmzLZb5mGhxgyovGqvR9TliZFFSUvvXM8tnOo/J7l8/N+hBsqaqwnNct7ho6IYCl2S/r1QsTrrAqvRcb3asipadLxh6S3GpaB4kwvCI6Je3I9H6QBW9KQ43RQcccMABBxzwZY5DeOOjweGm6A1Q3N+iFnNMq8V1BNj8MLvUAa0SuWIMHRIpp8Uqr0Tac0U7MrE72XmmQ5IU4V7hnSZV48N9cZLpQWaHo/vDu5wnk4QhAnnGHbwmthbTaopL0SzJLF7jVpKyDLAqO6yKXAw1D3RCOSg2keqBTCGTkYyg7pphe1nxyvGKuRnoo2hQ2vOG6q6luGS6qobjitPslOkWMoxur1fs7s2ZvWBZvCQzZgDlE8PSsH1Cs3MFLXAvaJRO9NsSdV5QnedjvJPZmbjOFIUV198QDNEZqpyNUmXNgxsUbqVZb2vOhjnLosPohK+lkRsgtldsWFfP8Tax7gvaWLCinc5XSgrVa+ylnjQYfqEJC42ZO4pKxBSLemBZdZQ6sPMlF33NnYsV4byk2madzujoyjPesvDY1wab6LTPXMlORpJMDGPSFDpyVLRcn225XDa43DmlouRWmU6RNoYYxJWkYs5yqfcfEUtQCpw3dN6iSTI2qyBMkd23uZPUlCtEEnYoTQzFfgzoQRPOKy5zDxhOoXsNcb/f2u31T3YnrIXKjEUss/YpaO63c85zAvlLZ8eY04JyA8bFcZNQAdq25He2t+gyXfXJzU2GbUEF+IVFX5vT36ikz6yQZOWLIOPg0teEoFHkc1qJ5mvUPY3ZTQ9IXPQ1atCiJwoJQkC5gO0Sdqs5W8s182l7jd1QMlxULNZQXiaKdci6GU2xUbiNfEBrhTaMlyXVmaa5B9V5wgyiE3Nz+YF87hQoJ/utxz/HDi8DaXR0lZBiZlOynkg6Fvc5QyDJ5aGSrje3FEY5VVHyjHJi+eRALCCWCjeDYQVhGTAzh7ERlyAWhjDq5arc0aZyztbGErK2x+a051Fbpxda9GZKmM7ygcHvalBg/X68jDlsoRY2M6nMFOVjcIXUm24WVM4LSxrQozNYMYm6YJ8rNLKPKhGT6Jl0L0zZyJalnLqfisSq6XisvmRmHPfaJbE3lOfQ3HN4/4jsZwei6JHgoCk64IADDjjggAMO4MAUvSHUxRq7u4ZxBckrfNzfP+qcRTRmE6UrM5Hx96M7JZSOrqqIpehqbE6/Hp0ve5eJzHKmVaUrsxrys+0m0szFITOvBtqhYN2J68z0UOxyds4MXFSUVqaVt6o1C9OzCyWv1MekQpxVqg8o7ykuZQZbrg27teXBdj45yh5czjGnluY+1KdpmnWaXpFMwXk5Q6mEUYn1usGeW+r7sHhxoLyzno6JubXALSq6G4oUkUySQcFlQfWqpnlVlrNtkhmoUrQryS7RSMcWuQdtXK66CJheMyw164uKV6/POCpanjy64LfftaL7o98o+/Wzv/y682sWC9GTBMXF0Mj6gfOhpm8L7EZTnYluKVpwO0XvDcEkYk7/HdnALlg2QyWOrVcbqvuG6jy/t7hy/oo4ZUb10bL2NbuhyIxEHjtXknWds3RBLtGF6blWtdyZDWzrzDhspQdN92DR+OwmQ0mqcdD7sTV26AWvafsCm8UbpoyEWZDfh5HeQVyNTga4Cio3s4PSamI+VZD8o+QNqDQlEKMz6XBl/E4Oquz2EiZCsnWC15zuZpLKDrQXNdVGkohDoUnLArcwhFIcRnd2S4Z8XF5cH0MnGhFfazgu6VdmYlouh5pXzDEAd9oVrrNUcdSrZJYowTBY7rRiqzs3DQ+2c3Q/smQaypJY2omxGjr5/HVXMTgrx0jJOkOlSVZchClnTgGSgh9Bd6L3KS8T9alHu0SsNCqZSXszfl9I7nygIJEAAH9ISURBVBATCwNMvYcTu6jTtIy8cEVjY/aMYSzAzcEtE2ERYSYWvOQ09HLNjePVJ2FK3BL8MqJmnqpymHy+Qpn2erkrLkftEKdXEhckUTRJk2PR5sR+vddKlUbt07rz/5F8nRP26whVdv0pPZYGPNT3xhX2JyUF5PFfKHyt8DMrbB8QirGlQHLAdq5kO5SE1lLtxJVre1nWZ4eeKiPHVcutcj19T+A0toXyvEf7R2M/U2+LpuiAN8PhpuiAAw444IADvtzxdtSJHO6r3hSHm6LPgbHzR+mE1ZEqT+drIxlAuzISKjPlc6ScJqt1wmamqAE2VcA3oiMyOdE3viYFG/Kjb52kHbzYpxz7hczWqqOOJ48kc2dV9px2jTh+bAGoKTGbCOQuLoDrxZYbxZpdLPmd5Q3aRcOw0NSzAr3Lz90zVBQH2hANIerJ8DAei/2Csr/aRublQGU826Zk11SERuMXBnMkWo5kFe3Nkt1jiu4Jz/UnLjlpdlx2NfedIZ2W+9UG9u4SxOHVFLIfD6owzWSFTUnYNlJuNGZtuexqqiPPu4/ucPm1NS/vHgPgKf7Q69ii8I1fTb+SY3/pqqlB/qJriL2l7IR5K9dpSsyNlSLMNXH5MDPYB8tlWzOsS+y52acBhzTN/JMFCmHUfNKcu4Z77YLNVhx1o47B7uQY2J1iaC0Xfc1uVjAzLo87x7bK6bzWCJGQGQSj94xOKhOJtP8S1EkYut7QRTVlY6ESqhDWc+rDyw420SzlH8YxnqaH7tLBlSSDSkPKrewpZheUF1ZQzpc4LidXUSUMRrLynt5ZfHY2knvofKPor1mShu6awi8SyiTWfc3OyZh5cDnHbMzeWVWLiwslydz3d4uJbbu/XZDanH+kRHeVlLBY/a7g9qVEdVsT2axril40Wn5RQJrhVuJqS2Z/zY7LUweGI8OuV7imIBnojyRtPS2yW7HyRK9z7tjIYhi0kwTyYa5wYmoTHU+dtYiDkt6ynPE0uhqndHmbpo5EApJBlNmkeCUBPVRy3GOVSEVE5WJDlfv8HurxUvvvJxCGznuDV+Keu6obSxZSGFmxvRs3Wtk23+wzkUKZdZUOjMsas5zUHAvRMI3bmoxkrpkyEL2aErxlbO7Htg459dtpSdRP++3ytcLPzfQZvtlryELQbIeSti+gM+jhStI/4xgHZfYNBS4ZGU9u1JDGiYX6YuPAFD0aHG6KDjjggAMOOODLHYd7okeCg9D6gAMOOOCAAw44gANT9MaYz/BzKzZkGyl1oMilpZX2VNaT6khoDKFnoptJ+fGTl0MbxlJXK5R5qIG4DwVTMdPRgMpWbBT7KH8jFtq08lxb7HhydimbZ6W643YRGEaK/Io4O0W1D//TnrnuObE7Vk3Heh4ZVprhuMSWBj+XxxWhhlhEmspxrWrRKtIHy+2uoHUloVYTZT4cQ3ys52tuPeDdR3dojONGveVXwzvYDAuSslTXZb3RKnaPwe5djq96513ec+Mz3CjWvNhd42P6ndzpr6FdDrYrFFGLIJRGovVvVFs6W/BgPme7ENWom4ugVfuEHhJ2p1i3NX20PF2f8m23nufDv1+etb0Sr3H9+Ns4+q1L9MWOeDzn8p0Nfi7CzNYXk2g6xPwIyuTHPPmJzvS0RDMFczaFlMDufJFrHtRe8KnksWG4Et6oioDRkSFadr7kwW6OX5c0a0WZgy7tLqG9kqLb1nLZ11y4hmKMgzAB8qOvZKVOY6T8J9rfJBgF1/nRlwoK5TV4TRgS0SQwEWUSSieUDtOyBAVBy6MYLyF7RCUCap1IRX5sU0YJSLQRlcXXKaipXDSiJ/G2HisbbH7MVYklnDqitNjyoxufy+VxP8/jwUhEg58lNLBuK7zPIaJnFfWlmoIsk1YknQP8es35tqHNY2u7q1C9iHWThZBF3yoAW8va5gBRk0jbXIBcKIalJRQaPze4WRazZ6Sk0Dpiao87lmfow0rW65aJeOypViLErUsn4t6gGfpCqjMKjXaaWMKwlP2EfGxKCa5MVsuXg8pi9SxUH8MT0Yj4PSFfBFe+B64+Chofa5lOAUZKqoPCdAq7VRKImoMeVZRqGvmHxqWCoTcS+eAkfPKq2Hl6tJ4/Wx65ylgJ5orhoFDEMZDSgxkS2uVHWwlUo6b1pSKhi4AtPUFrvLXySE7LeR4fiakoj+RMpwg6x1UMWSSfgyLHZ4hjWCcqEXPpcsiPA0dJQJi2Nb8WFOd9zSvdMX20nLUzdK9RMZGsJj2q9J+34/HZ4RHcm+JwU3TAAQcccMABX+Y4hDc+Ghxuit4A4ajBzUVErXTCR02fBZsuSRWGsolQXgm1S1K22m9KzkcbblSEzqB9/rfOgupRlDhoQrc/DarT6EFNIXnRSmWDziGGI3w0DMFIGJ0nh5qJmFYPEj64GXIYnVsy0wO77KFNNslMvRFR4ljWKMWSUOjIsuhY2i6XjGruqxVuZfdTwqXj5rU1zy7OeGf9gEo7YlK8fHTEC9crur6caiaSgf56ojrqeXy25onynGtmg6sMj83X3F8t6U9MXlZEmX4ZKWeOeTHQGEdEURaedS7EDZXBN2KhVVGKOPu24H6/4Mn6nCPb8uyRVHf8y6fmXGwrUEfUD+ZZ0KnyLFDTDgWVETGsNTLr9yvL0InPWYW9RZgyMqslFuFGveOk3NFHi4+ativxC4Pr90GIbpHHUxPRuUx340q2rmS9rTEbQ7ERhggkagDyORwU3SCsUmvk3BUmTAGesUwkq0h5rIxi+GQTykYRA4dR4ar2rA/CvlCqzPYEYYzG4D5EOEuU5ZVTk8A3aYSJAlQRKWqPtQGlEjFqgtbEkK38UU1MRVJjLMFYQZKITUTnipvg9VQho7ycm1CN4z/bynUiDobW6UmMXZxairUwDiBC3lDuWZQQNP0gU/+RkY2FnE+jswU95aLVNrOVOkkIZcr1NAst5b61iKy1U1PVysbUaBOF5dKJMMtCdwtxJpUwZY5hsCYKs1QEQmPwC9lI7ZjKT6dC2Ahp0DK2ewljnKo+1N6CPp4wlcMStVeYYR/eaPr9ctrl4EOnCK1cZ1KaKvERdgu2G9kXKbU1gwiK9aAJtZ5YMu3UQwGKV5nqMVYCDVEJ85qy4SCQw0UH9oW0e83/vqHDQCoitgxUhccpg68CoTaERuEdGLf/X7zyYk5QOdbBtLk8NmbjilbTuR/HRooS+ZGSgsxm+YYpYmVkedNgeHWzICVFHyxnZ3OKrURGxNIQteGR4MDyPBIcNEUHHHDAAQcccMABHJiiN0SsrYTVRYi95UE7n2yZPmq6rBkSW7KanmunjcZTMOz2h1b3Os9i2M/os5ZB92qauqio0J2wHzoXMk4hbFHRDgWn/Wxa753tErcpHwodi0ZhnHzmxU70Ny/uTghJcTrM2fTV3n6bpHJkfKZvOzBbzdm24e5sCY0UY1aFp2wcg9cwzs6SYtNVfPLyOltfYlXkTrvkzvkKtbZS6XClXSNpRWdn/ApPc2e35FrdsnElr1wcEdorRZB2b+UlwdpV3O2WbFzJelejR91JRKzHeZKmPcTOcG+34DPlNQoV2bi91T8W4CvRFIzhb6YHWsNuKFlUWfdhHfNZz+WyEKYoynKxzEyaTlOAW20cx8VO1p8UrSu52xuGVBILmeX7Jmtt6ogxER+EwVt3FW5XULR5Jp5n3SomVMrbGBUhaoZgcHlabVTEZnZlsFIEGl87Uc11ByimAZRUJiFyYeZY8jsG3qmriX8oUhJLvVRGyPbEKNKWSXuUMhOaZ+fBGUJvoDWYTmM6NYVtqpQt4pklSpXokeR9mjRIsTGA3WoJpXT798q1oomZfTK5PsJu9xUTfiZsjluAn2c7t4mTBkyZRCzF/u6brE3JejwVQPV5bOm0D2O0+4oKVA5JvYDR1+13EuiprhyvcR0ERXSGrhemavBGtFODETZsugaBUe+Tr5lkdY6CeDimYqqAMUzHVmsl5atBSndNK9ee6YRBG09rDKDG8+/330HG7ZcdGTfRI6Wss1H74xT319xD1TTjdgZhbWU4yT6mrJ+U9V55gHOVWRqZpqvjWElAamED1kS8N7i5wfU5VqG/sp4w1prI/sn+jMdqX3Yci732M3pFMFrGsxLW39d7Mnz6buk0m8uafpDYiHReiiYqQDKalB4BtzBqtd6G9RzwuXG4KTrggAMOOOCAL3ccHp89Ehxuit4AyYirx7agLy33myVDkKmDUZFtWwlbofNMyI/PtUEFPc1MxlnoOOuNZdZXjBUAXmFGh44Xhsh0++fyU7lhUgzBcNoJU+SC4WLdoNcGuwXTp1xAmrLTSKoLQKorrF5yOdS0fYHOOgEzJEzrUV4utqZWuLlmW835beD+fEFMistdzbCu0BcWu9uzBK4seL5Z8KlapryqMxSXmsWrUglSrmVqo4OEqPX3Nd0rC148WvD8LP/OKcrMlkxQomMZ2oJ7eskDM6frCsJpRX2WHXU7JoZr0iZ4zbqruNOu0CRe3eYkvFbqMIyT96gorJrppJTXOYPLdEuhZVaqikAsLGQnkx6ESfMby8VCXEqvzufMbc/CSnjlsuq4mNfsBpPrINQ+VM9K0WznCnpv2bWlBMZ5smtqHB/iWBMdxOjK0cS8gFZpcnoxhn+OLqMBUqdk9qoRl9o4Q7dRXI9KtD5JS+giY3hoUvugzsw6qKxVUSGzNaOWJbNayWsCEAYjmqXOoFthRU2/ZzKAqVB2YgGLNGm66DWmNdh1PrfbHFQY8mw9gdGAknGtsnYP8jIW3Cxr0WbijAyLgK0dZeGnoEVjDN4mYpmI1RVOQuWgyZHVGh1pebtjkVmWMGpuhI0FCGslAZ17AlXYuyjnIWpw4wxfZ41XqzE7Pel4il2a9EJX2ZeYGZqR0YoFkysyXWUHw6j7yYxxLt41Lk0MHYjzawxwDCW5QJZJ3wjqIZ1PMsKs+lo0XWEMfsznJE21I/kaiXKtP6R3QljUab0jmzQ54RKmH0VFGj+TA2kG0VvGqNAkrA2EpmftNM5pVNTTOk1PZg/lch2ZxdF95q+430LJxMAlZ3BRnJYq67fSlWWvljNLQbIwmvbK91UsNFE9IhXK23FPdLivelMcNEUHHHDAAQcccMABHJiiN0S0epp9FJeKvi65yL+zpZdsCyUaiVioKQNEeTARdD6yI9sjFQSvfw3Yl4G6/d/HKgQ/T4R5oJo5quzyAcR5NhhhfUa9QX7+H3OJ5OQmSmr6Ua/5fBUSxsuHlhea+lTjZ5rezLi3siiNuOcuLeW5opSYJJnJJ0W0Sko7c7GmcXmm2ie0H51UidIrzJAothp3KhlD+8yRSaIh2p3xdafpNqXM5DaG6kxTncpyxTZNNRoju5KMsDGtK/BJ0/aiKVL9lUwVraacEzkZihgVPrOAWiVCVKSoMF4YomK31z6AptPCFH1KXad1BSd1K5oiL1NMZXOWj2KqJkhJtDO9ylqU3or+JOtDRqdLtKKLiXl/VD5/whbJOUyj6CHuWUg9yI9oKgwhKmIDaszUMQlqYYum9+skzqAkDraUGcvktWhecnNxsoqYXW2xSPupVNovq3qNaYX9MG3WlXAln6bMTEeZt8PG6f2619iNopiymvZ6kHE8kGCSPaU9MxMLCEmyZZKB0ECYScaPzvs2aZ6C3leWXHGACsM6vsikEZS/Z3dpuqKPivv9I+3dY2lkcfL43QsC9+xqirmWIu4ZE9ODbaNcL/milXEgtRTiFBUWLNTZdWj2U37l1Z4l2ghLpCc3nqwHwM9lHX4m4zMpYWpNJy48a5kco6MWKFT5PfNEaCKpFPZReUUaNVjxCtN7lYkYWTN7Zcwg504lYbJsFynWHhUTejDEQgaMbxTDSuN6S5hpGuNYVAk3M+y8wbsCnfVbepDvnekaH3fhStbYVF7bkLWiirQzqGRQTmFbNTH0IyZ9oxnZ2TwA8/eVryA0muAeDbdwqPl4NDjcFB1wwAEHHHDAlzvelpuiw43Vm+FwU/QGCJWwH9PzaaemGYGxCm1SzhvR+JwRAlcKBUdNQmZCJLskTaWxJDWtd5zhjFlH0wxtkQgnnvnJjieOLrlWtVNxaUqKS9PstQz5M0KRZ+RFosium1IHauPw1jCrB7pZxC0Mw9Kg+2KvzbF7ncZYDqpNJJUQayMZIdkdY3pQDkx+du+RWayfQX8Mu6glQXk8Jp4xyuTKDHLc1n35ZayT5LuUAW3EIZV60f7YNjMIyHkZs2NcMyZGSzaPT5IoHsNeN5KMuIiGhTB8w1xSo2MRsVdm3SFqYhRGQQWVZ/IpO3OEXkg5l6RXM17ymrNZg9GJ3lnRcWUHzENIktrsXT4I4zKjwynP0FXK2o0CyLoRHzVDsEQUIe0LLyf3zrBPItZhPMhadEM5I0cXEZ3HQ0rChKWQ//RadEQ5S0t52XcYs5mEmUhFkpTlMaeIJOM+STKydpktvZKxFZq8D/MkKc1zj6kCWieC04TsxBrfe3UfJh3N1SJTQ/6fQ97WmF1xWY+TVD62g8Z1Vtih8dz2D7u+RqaGzPBObGVmWpl0NVnDM2mD9o6/kSEa2c5oyZqlRGwCugqYUs6BUpLHFLVcL9rrvN+i80JdKU6tFMNCMSzBrcCtInEu14UySYpPc1aT2hjMICXExSbrntI+j8ktZZ3DEfhlgCbIOYyK0MrOKq+I7jX7WI4MVRL2rQnyfRAVKRomaZvf/6h83lLO/PGLSKrixGypXgRSdiPn2PQRu+5Rg8fsionBHeYFdqsYnCZERaEDlfG42tD3BaGwU56QDtltl9mxaOX4hVw6LOxaPrdlmnRCppWCbtNndnNk6Yurx0CckqaSfQ/aEGqNnxncXDF0Gv+ImKLp3PxucLgnelMcNEUHHHDAAQcccMABHJiiN4Sba8jP82MBqUjTjK8qPVpHelXQBU0cFLEwMtPNj55HjAxOrCUjBZNZIsc0QzY5b0Nf1VGU4qBpjlvede2Ur1o8YGVbNkFSqne+4J5djgRVzrWRWZMOsu5xljxEQ0ya0niawsHM45aG7kRBshP74maKYSGdTWrlODnZcq2RHJ7Tdsb50ZztkUy5hgtxdKk4JsEmwjKi5o5q5ihLt9c0RUXvLK63xMHAoMFnpsQg+o9apml17WgqR2U9IWq2fckOiJ2W2V/WR7icV+NrRZhlrUpO394NpXQaub1FJxbCYiWtpz45twBmkphrcwaVVgmto6Qn20QopDtp1GxN+UZIppOzFWuv0TZKQu6QWRcQpmYkqzJNlqKa/hz1XaO7adrWUUcz9ollTdGEcZ0SuC1xRKPrB2ExJGVdTUPR2EhReIyWY+S9wUcjmqBeo72aNBpXe6CSlZkyVcSUAWPD5H6LQeN7Q3I5wVvl/Sn3f7pFXnYR0AtHVTsKG/BBE0P5kFNo3NikIZXCeobZXgcTc5+bsFh7pmhimca8oaTwWVcV6jAdx+liuaLnUzHrAPv9a2P206QTKoVtSIbJXXaVoZUVpT1bVEqnm6k9VR7PAFZHfNTsqpLOlAwUjPPSZDRmSNP6fK1wS+hPwJ947FHP0bynth4XNetdTZ8ZCu0UdgvlZaK8TBgn3X3OyFgfr5nQRMgsLEDss54m956JozPvl4IQxvEpuj1x00mHnmk1RXYL2s3+vUkLQxTKzBIdecrZgM7nYOgtnpKwNZK1FBOqd6htj3KBYiY0TdFazJDzlxTUxlNbj4+ai6Im6DQx7KaDchOxreikQq3EuTcTptItErHKF0dm/PSg5bjt9m496brjoRymZBOqjBSVn/oRXWUIlSHU4GZyzT8KvB2aIvXmi/xbj68opuhnfuZneM973kPTNNy4cYP/4D/4Dx76/QsvvMCf/tN/mvl8zo0bN/jABz7AMAxvsLYDDjjggAMO+ApBSr/7nwPeFF8xTNE//sf/mPe///38d//df8cf+2N/jJQSv/7rvz79PoTAd33Xd3Hz5k3+6T/9pzx48IA/9+f+HCklfvRHf/Tz/rxYKmKdMzqaBE2gyjO+ppQ/fTDiBotZezJccd3k9ajsIoqFODeUhhRADfI8u9hKVgnkRGwNPopTJNnErB64UW95vLpgpgdCvo/VJGKQnjTTixvL7gKh0oTS4JaK9kJYpbu1iAqsjrhgUDoRqoRvJJcolNmpUitxZ9SJcuZ4fL7mqxYPmNueS1/z8vKYzyxPALg4n+E2BWrIbq46UCwHTpY7Hl+suVFvWGQKKqBYu5pX+zmvbues25qhs9JFpcAUkTIf20Xds6j6aVaoVcJ5Q98bXH9F62LEQTLqklQCekO7qehtKfqvnCpu+pzIXOyZGbcUl5IugyTmZppFqST9Z2UkzCJuaUTnkzU/Y7eWLJyZMm/E0TU5o9KkB5q0FGafL5TiXoOG4iGNCjBl+aQr0zqtJEm7Mp6qEFZtqKLMWKs9W5IyezRtX9YRWRuoS8nsUUo681LQqE5m/aZTDztvjOi8YgEUEVN5ytJT2DC51/rRCRfVpENLiis9UtJvBqBmwppUpXxI8pIojBOGatScwRUdXu4VDFWSbKOcND2Oech9XVfcbqYEFyBpyQ9KlZqOgbKRqBNB2Yd0UCa3tU/ZRFrcX/LZe8dSqBKpYMqPAhmDowtQRSSZWglTEa04BkfHaGGkvzAmhfca3xlCqSd24rXByJJ8n8AmiiJQW09pPdEVwjRmhsJ0ku1UrhPFJqBDktTu12pQMlsZvQYvjs7yTFOfQnWWKDdxcoxGK98NonUC0AQ/ur3ke2t0ohbrRNGm3BEojlSQMWxrx3LeUWjZmLWp2HaWWBhhc5QcP7wHrVA51EmFxOgyLHRgZh21cXTWYvQ+/wxE81dsI3YnL7ho8JVCJZWZvkSq96nmyWmSz8nxWVc2nfushYP9E4KJGU2K6DXK6b12dE9afvHxdtzUHG6M3hRfETdF3nv+2l/7a3zoQx/iP//P//Pp9a/7uq+b/v7zP//z/MZv/AYvvvgiTz75JAA/8iM/wp//83+eH/qhH2K1Wj3y7T7ggAMOOOCAA75y8BVxU/Txj3+cl19+Ga013/zN38ydO3f4pm/6Jn74h3+Y3//7fz8AH/nIR/jGb/zG6YYI4H3vex993/Mrv/IrfMd3fMdnXXff9/R9P/378lKmP2PqdMwzVV0IowAya3dR45whdpZip2XGur3C9uT1hYQ8pLQpZ8YkCNlx08t7qgu5e7edNDqrqPEzcWoMztKFgi5bIi5z6MjFUBNaS7mTGWJ54SnWA7E0qFQSSkMo5fRe2jnOG8rC0w0FsTeYUdOT9loU7ZI4MraaflNxr1kws46TcofLOTkTkjjnTKtzTosmrC335xUP5guqZs8KAPSDpe8KwrbA7DS609jceRTLRDsT+qWd11zMBurKSd9RkG4iZcTRE5r9NkzMxtiFlQyx0xI0HtWUemw6pq6naMZzmvUCCpw37PS+J60bClJOK4+laFqm2WO5d7JMadVXdWQqoSx7h9YVzclkv4vi9BqdUHBVm7LXsigj+iaVWSKrg2grCmHVtrWXtvWcw6TtlXGb3Y46b4c1EasjWiW8kmbw5BXGaUyrRFMxZs1ooETyiWKamKGUlOiRcqaTa62khW9yinV28Iysh7oyKU1jj5szxKgZektqbWapcoLxa3rSrjbGTwnbg2TK2JxpVGzB7hIms2QOharzcSwTpvHMZnJ9l4WXc12XOFOhosH0CtqcFdSN51Pyr3yjcCPbUOz3ReVzCEys1ZhRBqLBCbXGLzR9dvgBuMqhdWJwWe/mdM4ogmIjbMd4LYZaoYMGreispTUVKSmq0uG8wfeSUQb7Y6fCvudsyv9SDzNQKSgIkitlt1oca2tJny+2QfrOgFCKhk9dzVTKuVqmzzqczHCXa8kbkgwpjW9UPh5KdHZRT32BMSq5tq5CI5HlxkwO2JTzxJSY8mQxldAqYa5q9djrKUeWSTstLFLWqam9WfHKCdzrw6YEa52Z4OyYDFXKGlBED5nZZ3thKC7z2OsSanhE7Mvb4T474E3xFaEp+tSnPgXAD/zAD/Df/rf/LT/90z/NyckJf+SP/BFOTyXN786dOzz22GMPve/k5ISyLLlz584brvuDH/wgR0dH08/TTz/9xduRAw444IADDvgCoFL6Xf8cLPlvji8pU/QDP/AD/K2/9bc+5zK//Mu/TIxyi/zf/Df/Df/hf/gfAvC//C//C+94xzv4R//oH/GX/tJfAkCp1z/cTSl91tdHfN/3fR9//a//9enfl5eXPP3001PeRjQIy6P3M+bOW7q+YNiVmI2hWEO5HlOWJUVWXUmvjkWa3DsAISpQRhKz3X6GarsoWgg79nJpur7gfKi5PyyotOdBvwBg3VXSodSBbRN269DbXvrHrKZaaNwi62BmBa2GofJTHs3Yl6VDwraZ1chJwtor+q7k1cvr3D9aUTZCIbjOktYyrSrPDNWp6AqkuynlZGaDryyhaghX+t/KAPWQt7VLmCGIvsEq/EzRrzL7sDIMq5LLRYAmu/UiMOiHepySRZq5Y97mIH1Yyag9wzA1zzOxPpIjk88JEAfDJtZsleivotfQG/TOUK7FnTJ2K409Y3uXkiJpyZ0BRPNiXmM/fGgwIl1fw6gFUw/pGcbxMjJFGJkVjzNkrRJWR2zWyBgbcaW0e+sqv3/URLxmNj1iTMSO2QU3ZvZMf5KP65XdSFmH4vKBD0MWQG0NdiMuJOnfk/dFS874UcRCDk40hgHw1pCCErYya5lkzO01InBlm64wFCRZ1rT7XCbTp9wfl7KOaMzLSjDzLBYtN+ZCadTGM0TDAzPnzBni1kw9WGYQtgNA+ZxSHzXRKEIBugRjFDHJIBxdWnL95d4tJ9sdMruovWbAMlxxYWqTJKuoM9hWUrzLy0RzGiguhqmHMFYG04nYKGlFZwo6JEFZzomaprSj7mlYapIW/ZyvFW6WNYJZM5jsOD7Juq9EqBRuLvs6pVkj7x+WimEFbpXkeBYRgiK1ojWakvi9CONUzBo0Nbr6FKEzbE016XJca9E7I+yaH7fLosqSVBfEQsZWMnkMeEXnLJeuwifNxomzdLxWgL1DtJbXY6lFc8ieZUyjQyzr0lRm72LOhAsFVxK88zkok2i6vCb2Ct1Kt2N5DuUFVOuI6dPEUH3RcdADPRJ8SW+Kvvd7v5fv/u7v/pzLvPOd72S9XgPw7ne/e3q9qiq+6qu+ihdeeAGAxx9/nI997GMPvffs7Azn3OsYpKuoqoqqqr7QXTjggAMOOOCALz4OidaPBF/Sm6IbN25w48aNN13uW77lW6iqik984hP8e//evweAc47nn3+eZ599FoD3vve9/NAP/RC3b9/miSeeAER8XVUV3/It3/J5b1sY28qrRCr2PUoAg9O4wcLOYHc5abm/4mCwe4dSqCE2kaJxVJUnJehiSSyNODCsaBAAolNT1ousSGaXQzC0oSQmzZBtSjHTE1POTWnQpZUH8FfeLwvLH8ZEMDA0ondwvZZE1+zcsW2k2CTJ72g15YXGLSpCVZE0lF60BADFWrRQ1UWgWHtM50VAldmBWFzRB2RDlnYR5SN6CKiQhEmoLG5uMZl96HzWx3iD92rftRVkRRNLM2pOxpwbL/qdKWH4iptHmJOcPWNT7qZKoum5tKgg/U8A1Y5p9l6uo3RSuZS1TyongWf31Urhlgq/lJ4x6ohSEW3jQxlNIEzL2AivO41uRU/y2drkRQ+SM3lUIibFEA0+aXa+YMianuA1ZNfTyOyotM+pUk4Rc1ZT72x2nklOEeTjZxLRquyS3B/bOI79zJIqlUhR3DfjrNsMmenp2O9LStIrZSAOTLqXWEjCdszOO+Wv9JDp7Li7Klkz++1h7J27mmk0Hl+rGBOuQ6UkI6eGWEds5alswOr9TN5HjfOSzzQ69rQTpnNyPiXJOvqsyPlYE0uSHafCdqXMJu73K2mmnCRtEkZHohozlsT9ZBzoPqK7gHJ7usz0Bu3EJaeSrMfagDWSTt7nbXTRCqulFaFWU96Om42JzvmLoA6YWpKZYx0ItaGtLW6p6bqcU5V3O5SSQj7mS9WVn/Kl+ragWxT4uZygYSlZR9oDOneCZaacQeNUsf8uag12p9ETq6iIswKsJpaSFg2juxRUp9lsau6oRGkCnSsYOit6pTw+Qi0s2ZgnJnlmuQMyjc7EccwnyA7Gqz2TY8ZUqEW7CMCoGXRjP5+WTKatsOOmTw/rCQ/4PYGvCKH1arXiL//lv8z3f//38/TTT/Pss8/yoQ99CID/+D/+jwH4zu/8Tt797nfz3HPP8aEPfYjT01P+5t/8m7z//e8/OM8OOOCAAw74ysbbYsn/3a/i9zq+Im6KAD70oQ9hreW5556jbVve85738Iu/+IucnEhujjGGn/mZn+Gv/JW/wh/+w3+Ypmn4nu/5Hn74h3/4C/q8YQl+CX4e0VXA2v0MLkYtGStBTdks0uStSFZmaH4uy/p5xMwcTe2oC4eLBldEYmYsQsnUYi19VeBHLUAVqXM+SaEDVgfKLLyoC8e6ifi5YVhq7EkxMTNuYfGNIuangrESpupo3tKUjm5RcDGvaWc1flZM2qNybbBtysxDwvSSiKxddjOp/ezdz8Sd5OYW7Qza5w/LxyIa9RDzMDlEQnbJxHHZ3AI+Nnkv5Jm+n0mSsipyX5eXpvZRwKO9zATNqBvKM7bE3lES8owvlZJOjb3iAHPCktmtEn3AmSw7ezVQ320x9y5JZ+fEzYYUE7os0deOSTeO6R8XXdfusYKdF3vMYLXMxAtJjlaZwPBZ/xC9JnnRiemrbfKOKdl6PH7Ckux1bC4aNq4kJsV2qNi0Wf/UWXSfGadun0asUnbZFYpg82xeSbaNMVF0RVGhdE6JbtJrmuFTZopy31UZMDb3ysHUKZeMzmnHEDx5R+QaGDv4pkyf0X2nAJ1INsr7oliMYvkaxuy1rN+o5zJM65+ux0JNrrtQj9cihMFwuavp/T4Eqh8Kuk2JurTYXXZJZf3TyFKkzLgMcy3dY8vsQKwkK4lwxRJ1ZcyPuTi+kbR0fxTQRwOLhQigZqVDqcS2L1kPhlhZQq1wjaKYi2t0ZHVDremuW/pjxXCciMee1VHLtdmOwgR2ruRB/vjWK9yQ2Y94Ja8K9u6rPOyNDVMiv28Mw8ziOovL6dZTfpZJpFJSucvKU1eOQgdiobAm0hURV+VG+7mRcT2orMVMU/+iDD4tx4wxSTrvY6lwSwOmmnRcbiEbHirRkeleES5LLpyWjKGgxfHY749/KIWt0s2VcZBdZEkDUZy+chDUvqdt1POpK069qwRhQhjN3FE59foh59vN5Pv6USVaH9xnjwZfMTdFRVHwwz/8w5/zJueZZ57hp3/6px/hVh1wwAEHHHDAFx9vR83HgSl6c3zF3BQ9avTXIRxHWHiK2k+OH2A/084ZRGMbtcpt2m6+dzCkKkrGThJtkPMGP0hGCVfYEgBfi77DNzLbTHWkKh218TTa5Zyafaq2rjy+sbi5zLBUsqiYCKV6OCFXSdv9ouq51WyxOrBbltxbLrh/vGBzQ5gHc2EpNgo97Gfl46wr1pLKzTj7sznDQyW0kX00JmKt5DmVJkieyJVj5qOmc1Z6ybwWp1cat0+WNTZQmMjMBtGxJMXgLG6wBGPIMSqEIFqLlHUMU5qy3m/3qA1IVZR2dy0flgaNCWC3ivoBzG9H5i+1slvP38XfvsMV0kK2v++It++gzy+oEB2bb1b0R/kSKiK29sxnvfTLAUMw7EbdBzLr1L1o0CZXW56pjhq0KVdGMyUh+2Bo85/rrmJoM00yurf67N4ac4aUaFxip0jZ/RWswYGcQ5DsHCXnMca07wcbtyE7JnURsEXAGGGKUODHczBT+ARJaUwpn3m13f6qPiOVCWXTlC6NFu1byIyWdmrvwrua9q3SpEkjqT0rO0XG749hzJ1k4kTURFXQOUNn9hlUyWtUa9BXUs6HlTggR93JeD37uehqwixCHabsKaIi9rKs73VO5M7smU2EOsI8UC4GjmYtq1qYotIEOm/pvRXWw4j7y8+hCxo3L6dr1s0U/TF0NxPh5sDx9S1PLC9ZFT0+afpgp9wwNejJyVZd7N2kvlH0vUJNHYgFfVSEucYWuf8s6Cm3yLR7bZ1ouAzogmhhU2Q3lk0Pd/qNx7VIhPzdkHSaevlkoOyPz5TlVAqbFq2mX2lUShNrLNue+/sSkpofrHxVjInmnXpIwzkyzdO1n52m0lOX9rlSfp/+rvzeTaqR05/cXpOZEpNGTIXxupBti4UwWdFC6F9zMA74isZXRE7RAQcccMABB/xbjbel++yLRxWdnZ3x3HPPTZl/zz33HOfn52/5/X/pL/0llFL87b/9t79o2/hWcGCK3gBuEdFzj84za+fN5CRyvSUNBh3UfmacJ6PjLGXU06go2oZ2dCENBjaWYq0ptg+71iCvK3dfjdkePmraWGCTpstiisFbUlQywR+dRyFheknFjVZSaWWbDF1Zc89IovGNesfC9th5pDSe02oGwGbW0G0tupXEbSYmLJLqiGk8dSNWtVXTc1S33Ki3XCt2XC83nNgtx2bHUrcUV3bKJcM2VlyEGad+wQM359zN2PhqclOF+PD9eUQSkF0Y3XaKoPX+Nv4KCwb7XBvCqFtiP3vXV9xWQWE6ydapTmF2V1gi+/xdOda33zjoE0AZQ8xaCjfXuAW4VcQcDVxb7bg+21LqIG3eQ03by7IpqH0ac27mnpiV3N82bqPMtNOUhh1TPhZR586yvXtJ9u+KBueKPiIfSFnWK7BKnE8qM0Xj2FGJpNRDCdSSqSRuM68gJdEgTQwToKzovgKiL4ulmpi/UZc0dr9N64y5C2z8XJPAZtJ0dGWNycy5V01f1aPF11wvCrjSXj8yLWNOTjJ7BmjKkZoFfKUIC9EFqswITG6jMqIrYYiXlaMpHEUWr7lgaF1Bl8+rG6xoSkZHn0loG7BVoC4dSsHOyZfDute0Q8F2WxEvS+xOTx1uoRK368iUuAX0Jwl/4pktpQ9Qk7h0Feddw6sXC/xdiV6e3dbMbyfmtz3lgw697eW6bSqGaxXtTdnW9oZiOC5wc4srZGzYnaJeQ30Ks/uB+r5skD3dwuUG+kFYvbKExYxw1OCOKvojy7DK34dzhR+dbjkDLFn2TNGVc6bzNRlLcJlVl/EiGsHpe7SUsTGlxkclrspBYbJzTF3R2CS7/+68muieNNN3I8j4G6+XURam8vfGXpOXt9GqSROnQmY2q71mjVG/1PHFR4KJJv/drueLhO/5nu/hpZde4ud+7ucA+It/8S/y3HPP8X/8H//Hm773n/yTf8LHPvaxhxopvlQ43BQdcMABBxxwwJc1RqbnyxO/+Zu/yc/93M/x0Y9+lPe85z0A/PiP/zjvfe97+cQnPvFQT+lr8fLLL/O93/u9/F//1//Fd33Xdz2qTX5DHG6K3ggm57IMhsHJ1DuNz8V7je3kGbwe9rOgKZeE/SxGDdIzFcd8jF5jt/L8327FNWRcmt6/Z30UOE3bl7zazvF5xZe9PDw/3cxImwK7UxQ7KDeR8sJhtsLkFJclxU6mXbY12Lag3az45EnNK8ueWT1gVGIIhm6QmWT0kh+jvJJ9G5+5K0OyhlBZdrVMZXezGfebJS81A6umY1V1rIqe2oj26Wqm0s6XXA4Vm75i01X0XSGM2ehKybMuQJxJRvQnr+0Lw+mJ/SHx0IxvdCcpx5RrMzpUxuRpUn69lQTy+iwyuztgX90QT8/ffEgsl6Tf9wybd4m1cPOUpn0iYh5refzaJU/M1iyKjpg0l64WdsflS6wz2K2eWKJiJ0nMSYPXe03CXheVUDqic1/ZCKX2qcSpSMQyTUnEeuxnsxCrzD6NTI3ez5Qnl1hUWS8x/uTPSIBTpAFSp4k2EewV3VEcGR3JQlKZdUp7EgmSQvmEzixNimnSa6SRmonCHKigUH7PIkyMUJRzOeUwXU3aHg+JGvOn9jqmUCdiE9GNp2oc81quiVk50FjR6JUmUGqPVRGrA5X2NFmvN9MDlfbU2qFVJCZNFws2oeLczTgbZpz2wtKs+5p2KBi8IQZNzExYDIpdW7LdVaKdA9JgJNtsq6k2YDeSzD0yFCPDAdlFV8l1kJKSa6evaPuC/qLG3itY3ZZlly8G5p/ZoF+6h793n5FI001Dc+sG5cUJANVlTXdi8NmlZbtEfeqZvbRF/fZnCJvNNM5eq6m7Cpt/5uO/v/pdDE8d092s6I41fq7wFVPm1uuQWb1Q7vOwYiW6LZ1T/7WNojNMELwhDIbYGnRSJPeaMfDaP0FYyJwRJddUZn+0JJ+PjrOpIy2/X4UrJHSApK4O6ivf8eO4K5J8t38FwXs/dXyO+N2GGH/kIx/h6OhouiEC+LZv+zaOjo74pV/6pTe8KYox8txzz/Ff/pf/5dRj+qXGQVN0wAEHHHDAAV/ueJs0Rb/wC7/wUN/n0dERH/zgB39Xm3bnzh1u3br1utdv3br1ObtH/4f/4X/AWssHPvCB39Xnv504MEVvAOUUeitMh0pMKaiQ02uvOhhGTcJVE8LIFEXACZWhgjS3j3kXY3tznPJ89onNKggjNWwLHjBn01XiYBvklA2XJcVaY3NTs+kiuvXo3QAhogaP8jmhN1RobzCdot9UdKuCto6i54jiPAEwraLYKIp1TnXepinRWYUEWk3bGkphjkJV05VH7Aq4PcbBjIxM1kvYLmF3kVkbWe0Cug9o55C+Kk0qDX4u++UWhn4lqdF+LvkwvkmkMj3c9l0kIZmMQhc5Wdjlz3XAcEVzkDUp2o8dV4liEykuHcVZC7t2mkl+NpjjY3jiFt3TKzbvKNg+Kcu2jwfKWy23jtc8MVtzVIqDbecLzrqG822D2whbZ9ZmYgeLXcp6ojTNRB/qdLPCEGiTckv4wzPR8d/RpL0eKe11bKJJy7PYq1lRrx2jXPl3usJujuydfNg+Yfu1U6i4d+ZMzM64ujw7T5kFkbwhtb9ORiIwMDFF4/vHPrirTNG03uzMGxmVWF5xR84Ceu6YzQduLjY8Mb/k6eaMZypJ9Hm6POVxc8FN03GkDQtVUqg3/grsk2OTBk5D4l6YcScccdcdcXs45m4pgbAPyjnnfc12qOi9YXAW7w3BaUkT7wy6kwNnd2pqly/afW/bmK0TrZpciJLxJH93g8U5YUvYWMoHhtldWL4krMrs+TXqM6/gXyNqjW2L3rXorWgGi0vZ17hWmCFRnvbYF+7jX37lDY/BW4H/5KfRn9KsvuZd1E8e0Z8UuLkW/Y3J7OCojxt1PxWkmYz12EhqdjMfWNbypTEve6yO+KjZDhXrrqK1JVEVqGCEVRw1QONYuTJuVBQmMhXA6EBjHIMylpUX9+qkUxtZ+kyTjQz0mK91NU3/alL5I8Pb9PjsT/yJP8FP/dRPPfTaG7FEb7WfFPi8u0d/5Vd+hb/zd/4OH//4xz9nP+mjxuGm6IADDjjggAO+3PE2Ca2ttW+55eGt9pP+2q/9Gnfv3n3d7+7fv/+G3aP/z//z/3Dv3j2eeeaZ6bUQAn/jb/wN/vbf/ts8//zzb2kb324cboreAGMehorkHJL9s/+JJbqSlTI6X5LNM/VxJpvbzlGQQgKl8Xn2HTPDocI+l2WaRWl5PXWGISmcsaS0b3vWOyPMVcrJsAsD1JiZzamy6gr7ogmVmvqEtFNExMmlA/uZ7FZa76tzae0uzwbsRYdat9C2JDcG4YBSGqyBooCyAD2KexI4B4MjbaSdPGy2kB6OY31tOGs5k9ls/cRj1E8c0T5Ws7ulp4TgWCZoAsqOdEYiBI13GtVpTKcxYw9dC7YXhgpkRm67hBkSphOmyrQe1TtUO4BS6NVSjutyIftRlaS5uG3a6xW7G4buuqK7Ae66TCXLk45ryx3LUma3F0PDzhecdjNONzP6ixp9LueguFSZ1dtr0IQZUNLqLhIVmV2Xkuczaol80ETUxEKMfWYqj0t1lVkh68Bey7KMv7uqSTKKZCOp1CSnJKU9j31pEudhncZrHL2TvmecRb9We5FdaHJgXz+7TrnLTumE0uohbd7IPE0p2+M1Zsg6qrwPdUTNPLNFz83FhqcX5/y++T2+rr7N15d3+JpC06irs+Ai/7w5KlVQqYKCFtgR0cRMFxQ5WX5ueo7LmkvXsHElm6FiO5S0fcGQ1N75mI/XxA7brFeBqal9zEUCScJnHtCFUMopN73bNuvSWmGHAVSMqMIi5X/ymq5q9I1rxBvHuBsyuIaVxTcaUsqp8onUtm/pWLwpUoQQUCGiQ0L7JNfVqGUbpYA5l8qnUVckDkMUWBOY52vpuOqojSMmxcY66YyLitYbYq9FFzQe18CkfzQK4iDHVFcQSzUxp/CwxmlifPI50eM185p7j2m5q3180y95+Br5PYa32k/63ve+l4uLC/75P//nfOu3fisAH/vYx7i4uODbv/3bP+t7nnvuOf74H//jD732vve9j+eee46/8Bf+wu9+479AHG6KDjjggAMOOODLHem1U8kvaCVvwzpej2/4hm/gT/7JP8n73/9+fuzHfgwQS/6f+lN/6iGR9dd//dfzwQ9+kD/zZ/4M169f5/r16w+tpygKHn/88c/pVvti43BT9AZINkmqr1fEuO/YmnBFnzHOYscE1VTkri3Y93eNOpCoCF7jByUN2O6K6yaP+bHNHcjJ14qkDJMrjcwiGZldJiNskPIalYqJhRrZBz8Dv4jEWcA0HlsGCp1IgB8svsut62tLLLU0VxcWX2uKRYHdNZg+QEgyFQNioYmFtFqHOjNRVk0zLx1AD7IPtovYNmB2Ht25vd5JKVJpCfOS7kjEFP2JoTvR9NckpyWeOMrlwLVZy6LqKfOJiEnR+oJ1V7HdVbh1SVIWHTJbNCSKjXx+sQkUWy+aq14+Hx+E1VIKmpp0JF6aVFpiU+IWFre09EeKfqUYjsGtEmHlKRbiZqorYc62rmQ9VPTOsu1Lul1J3BSYjaFYy/Gyu32zuqSES9+XzwyBW+RzNc99Y4UkSIcg2UTOG8nEaS0qa93M7jUdamNCuhG2USXFaNYLVlhFbRNF6SkLSWkf9UkpKUJ2lflgCEFPye0xyp/jzzTtjzL4U/5zf20IM6qu6pBUEpbqahpyks+NMbMFY+7SxFJdcSbqBDahikBR+8lRdm224/HZmmdnp3xNfZffV97l64oNt8wCaPhC0SfH3dBxGgsehAXnccY6NHSpwCVLlWnj68WWle3oyw1tKNmEko2rOR9qLrqG9ayiyy7Qfm5xrXSEabfft5hdhLGJ6DqzkLWnKAJGR0LUDIMlDmlKbPa1YljJONB+jq0KzK1roqMpLWFZ0h6X9MeGPucJSRKzfHcUW02oZizSO9D/qifudl/wsbKP3cJ/9ZNcPFnTnWjpRRxz2jKLM459MvuoPegebAGp0HhbsDVxyg4KUdMUDk1iiJJjlsYxdkWXBjLcria6m16+i80w5rUx9UKOWV6w1xKNP6MT7aq65aHv9sx+xqzXS1acbTE8Iqroy7zm4yd/8if5wAc+wHd+53cC8O//+/8+f+/v/b2HlvnEJz7BxcXFF28j3gYcbooOOOCAAw444Msdb4em6IuIa9eu8RM/8ROfc5n0Jjd2Xyod0VUcboreAOnIEStLcho1SNfR2AtkBkg9V3J85D0PzTxeq+Uw4iYarWoxKGKQ5vQpe2fMbBlzeSLZ8aZel8+iojh5QiWZJknt2a1Yif6mnMlsejnrOWl23Kh3HBUtjRnQKtFHy9rVvNoLS/JgN+diV7PZlGy2NjdfF6iY2ac8mwVQC8dyteOJ1SXvWjzga2b3eLZ8lafsGce6p1AJlw/MNhXcDwvuuGNeGq5xZ1jxoF9wPtS0vsCFYTruVkeuG8/MOhZFz9wOU+9bTIo223POhhk+zx7DYFCdkfynSygvEvVZpDqXqaNdD5Ly2w2idxoZoqKAyhJnJWEu6/XzgmEp7je3VJJYvRAGJ84DpvZTT5sPmnVXkVKFDwbfG2JvYWcwraRXj+3cY5ecr5lcfKGSJm/f5H4tgFlupTeRlJT0xAUt6+4sZqcx26xr2QpLZPrMFOXspsnBZB/WvakiUjcDJ/Md1+sd16otx0U75fIUep9OE5PGJYOLhj4V9MHSR/kZ86eGaBmCYYhm6rYDYX+USuj8A0x/1+xfi0kRkff5qAlZ8BGifijh3OhIoQOV9ayKnqOy5UYpmTpPlOc8XTzg6eKMp82QGaLF667nN8KdsOFFX/GCv8YrTvJ87g0rHrg5a1/ThWLaL60SZe4fbIyM2cY4Ku2nn7ntOS5aTsqKi6rhvKm5nEu22Kar6AeLdwaXe/9UTtkuioC1gTJ3kpUmoJV0JnbOTr1zSUubvG+gOxkT60vMkUXFmZz/WuNmimEBbrXXKYU6Z4AF6Q4bjjXdyZLlzW+k+dQ58bc/SQqvpcRfD/vUkwxf8zjrZ0WrtX1c0d1IhFWA2uXkcw29RrcauxEdFEgum845Q8YBW8QB6yyh05wvRO+1rhuK/397Zx5lRXWu/WfvGs7QEz1AD4zOojiB0eAQMFGJAcQk16gZxO8as4wXcUzUpYmoMRqjRq+JcYghmpioK5FMKoJxirMSckXlCsioNHPP3efUsN/vj71rOn2abhDobu7+rdWLc6rqVO1dVeew91PP+762p74HCL9f5EYZyAM1KvCaUSyKLPht5ob0bYZeoIJoy4RCJJLbBIq7bwEIMmbbgEgL+RtrC8AQIDvyWmoGP3pQpNFoNBrNQGeXPD4b2GrTQEAPijQajUajGejoAc0eQQ+KeqB8SKcsWuiacHMmhGkALEjmKEOh4UaJ5oDIkOfnWFh6wU8z+GkuC2emBJhKX89NARgEYbDIBOhxaax2pETMXRYmJOz2WC4IhQ6SoZmAHxTEtAWMlBcagUtTeZRaDmzuhWULBKnHH8KEUI+5OCPYpg+R8eCbQppsOcG0fZRkHAwva8HYCpmL4tjSFZic2YBqHiT7DwiKABTiAJlNADYVPd9rvTYAwHJ3CNa4NVjvVGKDU44mJ4t1+SFoyWXQ2pVCrks+G/I7IiNzaYtKJdAikGr2YLU6MFq6gHal2XflQI4TPjZjtg2kbMA0ILI2vLIU3HJVaLeMwynjscdmBD9DEGl57cAAoczuji/TJAiPy2uX52B5Dp5nMPIsTAIHxEz4PJLhfVs+0hApWXAXkI9ZZWYDBt+XJmTfMUAOB8/xMPkngEQCUJI+fHkv2MFjOWXcBsDKXJRXdKKurA2jS5qwT3YzRttbMdxsQp3RjgoOZFUiQ0vd5wICLgnkyEeOCG1koFNYaBXycVAnpdAhUugUNnLCUiZkA64wZUHfIjUegnvNB4dHBnxi8IQBl6Jwd/lZ9aiaEWz1aKrUyKPMyKHKbEeVIR+fDTXaUG10oYoTKnjxBHStQoadbxY+1nulWO3WYFV+KNZ0VeHjjiHY3FEqzfpdKlQ/J7+HYToADlksNuWDp3zYKQ8lGflctMzOo8zOI2u66vslH3k5wkSnZ4WPeAHIki2cYJjSUBwPJvJ9uZ2nCiB3AjLdhs/l9c8b8lFUhywiGzyOBeQj2aD4s29FKR6CEH9fPfJGWj3uAeBmOfyMAbeEI19pIjWiBulxVbBb5E1rtXvgefnaz5hwyyzkqk101TB0DQWcoR6y1fI7W1fRioaSVlRZneBMoMu3sdUpwYaOMmxuLUW+JQWvRd1bbbLEkeHIVBKmJ1+bnYDfzuG3qO93hpC3pR2AlO2ACWk1YCTN6cFvbFAyJJ4UN0gnEbwOngxHj8xI/a5SVFxW/T6EpVYsBo9kSD+YDOsXaQE/K0vIWGkPKcuDr9II7Hb0oGiPoAdFGo1Go9EMdMQuCMnXA6te0YOiHihN5eHbJjoA+B6HUCHxgJzhGDnACpKoOXLGAciEeL4tQ2YBwMswWSAxy+FnhZxpxBUjg2TaeahoVQLgGeBCGgTNrujPUAkIATXTEhSF9QaJAG0GP23BT1nwUzIh4ia7EhvNmNlQqJD5vOyHmZOLrU5CWSehMi9kOD2RTAKZseGWlmBdZRVWVO0DAPjjsM8gW9uOQ4dtxKSqDzGpZBkOtbJ9OrcueVjkAK91HoBFLaPx4bZh2LZFmmP5Nht2E0OqBbBbCXYbwezwUdLpobzTA++SCSFZzgW6ckDegejqAuXzoUmUULygJTMt8JKsVInKSuCXZeBV2HDKTDjlcqbtlDK4JWqWnSWINIVpFZhKRCf8IN+/eq2K98LlKumhcmryKGkcuIo4j4f4mlHIepjAk0uFRajkdKRC1QNjfVDSQ95rUhEIFY1AqVQFUVHiIVsmL25NWQdGljZj3+wW7J/eiH2tTRhpdqDeyMBiPRuTMwyI575tFV1oo2YAQLMw0CZstIk0WkUGnSIlFSNuIS+UaqRuOlfI1wIcrpAm7kAh8oQBL6YUBXAmYDIRqkYW82ExCx0iBR6LLc6RhWaeh8UEDOTgg6NT2GgVaWz2ytHoDgEAfJIfgk86h6CxvRzN7RnkW1Mw2g2Y7RxWJ5BW34OE+suj5Ip+2pAKRprQlZHh/tvSHsyUNEkHKQ6C9Aaeb8BzDAhXGdBdDubysIhuWFpCkfgvj2QwBfelmsJd9X11I2M99+SHg2CP0HAcT6QpEAZykMtAxMOwdzIJfolA3pBh9LkqDu5IpYYptz6ZMpDDLQG8ch+8wsGQIZ0YXtaCkSVNAIDhqWZUmh2wmQeHTDR5JeBMIOeZaE/ZcCwrSjHC5H3MfFUuSfVBGFKh8ZXY56eYTPORAnybQJY0mcvrQYAhC8kCCMswBSVjeKCqB+fNjZQiw4mlCXBJllrxKaYKUhg5IwyWUGKD1Aks5cNWhYYzlgtP7CGlSLNH0IMijUaj0WgGOlrl2SPoQVEPuJ4Jl5syaVreAMtxmB1qxtoO2O2A3UawOoQsxqqKrwqDQaQ43BKlPLg8DCEVJgMsmdLesHxYlg/OKbzXg7BTHwD5BtDFwB15vHSTQGqbC6tZ+iN4UweotRWitR3k7d6QUBXhjYoi65oB/AXV+Asm7uTem1CNJlT3viEIQO8Bw91hhiGLulaUQZRl4ZWnZHLGUgNOKYOXZYlEl35aqS22ANkkk29ylXgw9rskExkilpNBKj8yPJhBqMh/IPI4IPaeu0zN5HmscCoHGYGPQu2akUxemBKyDEigFKl1zJDruSVgpTyUpFyUp3OoTndiaEp6bxrSzRhhb0OD1YQ6oxVDDRdVfPsFUQGgi/JoEy7aCGgWNppVIkMAaPFlQsM2P41OYaPDSyEvTHT5lvKrGXCUR8YjDseXIf6+4PB8DlcY0jMluCrirRQNFdLPGME0BExDwDZ82KaHjOnKdA2mnJ1nVHh8inuwlLzjkhEmUmx2smjOSw9UU1dWeoc6LaDdhNXJYHYymdbAiZXx8aJrFaQ14B5ALsLyEkylJRAOg2uacDjCdBvMZ4DHwD35/TVVIelQtVCFpHkshDxMuRHcs8FrlfeVKTWDie7bBn6XsKB0cI/5gOFEqQjJN8KyKwyICvEGZWdiRWgBhGWLfBtSeVRqT941sS2XDf1hTU4WNvfBmYAjTLQ6aWzLZdHUkUFXewpoM2GqNBJGXp1rRyZYlX4epQC56juBKOGj7wMQDIIIfhqAQapgsi9VHURfP6hUJuSzUJHjjvT3BakxAmWcOIOpzhW5TKruUL/ftvK9pQK/ljoHNkCWgGEKGFyqgoJYeB52Ozr6bI+gB0UajUaj0Qx0Bnjyxr0FPSjqgbacDd9Nh2UVChOQGTn1PNoR0k8koIpeMhkBEsw2YpEgfpkAL3NQUppHeSaHUjsPWyUlBICcb6I1l0aLnUEeKfA8A3EG7hLsVg/2hjbQ6nUAAG9XFXLcC2GGAWP0SHjDpLaVq0khX2HALWVwMzIyy0/JmbGwYhEugPxXKTXMIDAOAFK1IFW4MvT0kDIJMTnTZQaDgIoe4zJxXFSWBVGBU4q99wA4LPR7CYNJpchUbTFJfkstGTlkWAKmrUpBmD7SlouM7aLMyqPczqHC6sIQqwtVZgeqzHZUGPKmHcI7Uc5zyHIXaSbgErDZdyDgwCWGDjLRIaQm2EZptPkZNPtZtPhZbPNK0Oql0eam0enb6PRkeE6XK5M6Or4hi9YqBShZHkT5aYTyXxEDfKYS7QXlPaR/plgJAlmIU14TeS4EuClgqiSHhiFgKT+PyaMiur5gUpXyORxPqVWOKSO5XA4GVS4jq5IhxiM7Y8cOowVN5WtRSkVQ2JaKKERBMWlZzkOqI4BSR1z5r1RCKHlPFPQ/FCBCxVB5nNTvTDx5YRCBKu9ppfoYqiB1sBvluQn9SkFUq4dElKvcqfpXeapEO4ewOXzbRFcqjQ67FB/bSnUKlNTgOyIY4ESRmGaXVOMA9dvpyOivsI9K4Qr6GB6fYueFGBjJshrMIOnJVMoVNyK/XxCxF0SE+g6HUO0AVIHYFGCkAM9lMBwWfhdlW1SyRqgozuD3OyujRJklFeMwsarg8L1dUZNMM1DQgyKNRqPRaAYyBNCuKAirH5/1ih4U9YCTswDDAHKqgKMXm8lxWdDTzQK+bUSFOE0GL8XgZWW0BiDT7LvlPli5i/KKLlSXdKAu24YauwMlZh4W85EX8jI0u1k0muXwiavcSHK54QJmhwe2tQm+Voh6hB1zGFoOLEXbCIZcLUFUqlIMZZ0oy+RRYScLyrq+IctXeCbyrjzXns9ltKHHI2WDGMiL+QYKLQQMYCYBhh8WTWVC5jOKF/CNik+yyGMU844AMhhNBHIUk4oKMalYGbaPVMpFSUr2qzSVx5BUDtWqXEe11YYqowNlRg5lvAslPI80k0YZQx2oTdjYTDKnUKAGbfNL0OSWoNmVXqEmJ4tmJ412J4WOvI28a0qVxZWRdhTrE3pQeIoSzPiFElrUeQqUongOrrhqQkohAacwwspVyoBjELoMhMoewoKzBaab4ByTVPZgC6moUKz9oTITKH9KoWIk1QiDYChFpFhRW+FxkM8hXAYyOchiEE6Uh4zbgHDkv8wDuLoPiilFoTIU9l0qROBBwegomjQsVmoqRcuAUq27X5gw6i04poiKqcYLt4Y50eKKkRGoUgzCNMLIyiAHV6hoIcoPFCpR8ZxdllS6wjxbsWscKaZRv2S7ISPMXIAg86xR4APirHuh4aC4MANgUvTkKYzURRSlJmJtMGJtsAA/JSPOKCXAbAFuJUvwEDH4+Z1xOu4E+vHZHkEPijQajUajGeholWePoAdFPSA8DkY8zDkjVL4OQNkiLMAtYWBgcgIcZBJOyefPvsokjBIPmdI8qko7MSzbjqGpdgyxOlFq5GFxD64w0U6qsKJvo81JoSNngzpN2O1MRrm1+jCaOuFt2twPZ2Jg4580ARuPSaHjkDyO2ncdvlrzD0zOLscBVs+5d7ooj5Wej+XOUKzI12FlVw3WdchioJs7S9HamYbjxfIP+SxKIqMUCyCmThiRksADJQFSQQh+x0hwiEBl8bmMkPGUnybIURSHRZ4iZgowQ2VDVn+ALJ5rqmkuhwiLuOaEBQMCOZL/AjKDtEsmOoWNNj+DFj+DJjeLbU4Jmp0MmvIZtOXkfdiVt+HmTJBjyCzdrmyrEahchd6XQJUIPTgUKjtBHiZwUioCycCuQCVTSlPgdQGUvyiuoAR5n5SaJDOFR5JE3G+DwJcSLC88p8oWhkDtCRSoQBlSbWVcXVMeeVY4I3AuwojCACFkBBIZAr5nqCz1BN9jYLZUjoAo2ot7Kuor5i0rqrYFyktwXuO5iAyKeYpi5zuIWoyrRBREzCG871gYpcaiY/FwU3CeVFGCUwalLDGKcgkyP96uSN0JPFmwoqhRFlOouqmlhX1Xn5eRmvI+EI703IHzqP/q3iq83oyiv2AlMQAWwTcBn5LHCtS1MKeSGfnYDFOAGyq3XLygsc+jvGWavQI9KNJoNBqNZkATG4V+qt1otak39KCoJ/xY5leVzTRYEOQuAaKZnLBIehRsWcfKSKsIobSHTMqFwQVyvomtTglaXJkUxxEG2l0bLTn5vrkjA6c1BaPJRHYrQ2YTULrBQ2ZdG7B+4x7t/kCl8yvHAgAaj+c4YPxaXDnqEZySKcxf3bNKBAAZlsKhFlDCNqBDpPBJfgg8Nb3tcizkuyxQhymjZ5zIFwRGUSZqAEjJ3C3clPmB0raLjOUhbbpImR5MFkVDAVA1sYzQy+T4BlxP/vlqtun7PPIlAaF/Rc5ShfRCqYiuTldGiznCQJdvodnIImOUIaVqhRmxab6vVKQu30KHn0KHZ6PdTUll0rHRkbfhOMpXlTdBDgdzuFQVvChbcFHfS+D1MSmsE0YqQihQ1RhXKloQrRXbCSkPSOgDURFMFHiyAjUtUI0Ekv4jpTaF4ggBbDu5Y7pFdQUqVkzhCNQjwQl+7H2gMBWqRRRESgXRVzGfVOgrE2GgGmAgVB/JCNpcpJ0s9jpUwpIbBgoOMchjK9tUN+9b0GeliAkmVRfhI7rGgfpT4HUKzlmkqMQUoZhyFZ67mCcqbCNi/Yz7yQJvVcxjFK4jAF7s2gIgxhL7RvA+fv3iyldw7RBbHlfU4p40g8B4VIeQK4WWcUoGxhGD8JVS5O0hpUgPaPYIelCk0Wg0Gs0Ah7RStEfQg6KecORUiAeRGojNRFhs9sRisyRDeSgIEK584J0nBtc10NaRDjMiB5EqwjWAnAHeKXdstTOUtgF2C5DZJpDe6sDa0gG2aRu8lpad7grPZMCrq0BV5XCHpOGVWXAzHH5K5gcJZmdGjmC1+0g15WE0boO39uOdPuauwjv5aDROtMGPasF5B76JK6se2CX73eS3443cKLzVth+WNNVjfXMFACDfnILRbsLqkNmIg9krcUBYDMwCwtJn6kYwbR8laQcV6S5UpbtQaXeizMyh1Mgjq5LUBNFfPhhcIb09gWrT5qbD3D+dnoWcZ8HxjDDPjoh5kwDAVXl3SEXQdRo2Wp2UzPrMfdiGD5MJmNxP1AgTYGGdsZwnM04HCplpCAgz+NH14HMDZBKEx8A8DviRIlOMhIeIU3JqH9+OAKakDMaUv0gpL6EPJogeMpQcIOSsnAm13I8i1RhB5TyC/J4KFvqV4qpHsN9EpFeoXhTzdEVem8Qmhe/jHylUQyj2Gsn38Tb1GL1XGIEWqhwsEakFxqKcRLy4YhMQV3yIE5gRHJ+SfSggoa7Fr3NsGYspaQlZBYipgOo+8qPrGEanMRYVLVTeryg6sYj3qkBFi+eVCtQ3MhF6sYDgt5oiNTPwBHJZh5JxqQwBCHMfMXXYIFIxUHOFJwsaBr/1mr2DQeMQW7ZsGWbMmIGamhqUl5fj+OOPxwsvvJDYZu3atZg+fTpKSkpQU1OD2bNnw3GcfmqxRqPRaDS7CFkL59P9aXpl0ChFU6dOxYEHHojnn38emUwGd911F6ZNm4aPPvoIdXV18H0fU6dOxdChQ/HKK69g69atmDlzJogI99xzzw4fj+c5jDCnB0vMLAOVKJhBBHmKgqkL86IaQ8QMOSmC2lg9Q+cug+UwWQtIpR4yuwCzE7A7BIy8kDOdlAVWWQEznQJyeZATFMmSHieWsoFMBlSWgTckg3yVja5qjq5qhtxQpU4MdVE9rBWHVK3HsRUrcWx2JSbYQUWzvtEkOvFargovtY0FALy1ZRTWrq+G2ZhCyXqg9GMfJZ90wVi3Gd76xj7t0xgyBBhVj87RZWgdJW/F9hGAGNWFQ0c04rRh7+ErpXdjmLF9j9CO8Infhn92jcKbbRPwblMD1jdXINechtEqj59qZzBzCFUiIFCJAGYEs3Z1bQ2CYcmMylnbQbmdR6XdiRq7HVVmByqMTmRV0SWbydpQAJATFvIkq723+2m0WBm0ejK0sc1Lo91NodOz0OVZyLtmqBj5QipGgVLk+RwGJ+S5AYNbMLmAZfiwuA/L8BPRafFszwCkmsQFbO7DMaXPyVXpjx3PCP1Onm+EeZvikXMAwtwxoZfGi+SEYnaWQmEmrOsmP5KkMJIo/ibmEQm9PGZwAAo9K4koJyCKXosrD4XvEVsWfF+DvsaVn9hvwfaUIRb/j6iIbyhxfhIeophvpkAFEXE1BNFrbgQZ0WPrg4zg8f0HSg8riNqKNy52whP+qZ62ifUxrEEWeIeC6wGlvAZ+omKV7WPXgMfrwsU8Q/HzAsTUoeD8BP42lRVevlaqj0FAkHMqpgzFPUNxApVWCOkfIl9maScvymCOrj2kFO2KPEV6XNQrg0Ip2rJlC1asWIGrr74ahx9+OA444ADceuut6OzsxPvvvw8AWLBgAT744AP87ne/w1FHHYWTTz4Zd9xxBx588EG0trb2cw80Go1Go/kUkPj0f3pU1CuDQimqrq7G2LFj8cgjj2D8+PFIpVK4//77UVtbiwkTJgAAXn/9dYwbNw4NDQ3h56ZMmYJ8Po9FixbhpJNOKrrvfD6PfD4fvg8GUMwFGItl2QXC6ZAIn++rXCGGmnEZUSRDPOqm8Bk7CQZP5QvxVHQPEFTQZuAuB3c5mGuCe2kwKo+i3dQwVhix2jxZgl8qwMsdVA5pwr4V23BkxTock/0IAHBCOocUs2Id2TGVCAAqeRZTszlMzS6WC2oXA4du/zObfFmhfb1vYrNfima/BDmy4BOHxTyU8BUo4zkMM9pRqzJNd1eFdl4lahVSglvipPBBfjg+6GzAirahaGwvR0trFl67BaPDgN3JovpUqoI5IKMMwaNaUn6a4KcJlFa5gdJeGHVmcam8AEBeeYYAIEfyvCfzBRno9FNhZfl230a7K5Wids9Glyt9RTnPhOPK+krC5xAiPq2XxGe6BpeqlW3IWmApw0PKjCLz+uI1AgDHN+AIQ2b6jmX8dj0DvmvAd1Q9M4+DEQvzGCVy8Aj0GM2U7ECkYFDBzB8sNvNXfj2pCES16qS3Rahsz6ouVYH/J3HMuIKhPEhRBFRMzQii7fxkX1iBohF4zhKqU8y7RFQQsRdvT0IxKzgHwevCTNYFf8H5EoEqEvwe8fg5C86VrMtXmPU7oQSFbWXR++CcEcAED5dF2dhZpKwRS3qAYuocUPBv+Jmk+paAqe8hi+6LwszTZEaezkAVSihCZuQT4oZQ+aYooZwCKu+QiKrek2DSP6SizCBkZnvm8VhmeiZzmWn2GgbFoIgxhoULF2LGjBkoKysD5xy1tbWYP38+hgwZAgDYsGEDamtrE5+rrKyEbdvYsGFDj/u+5ZZbcMMNN+zO5ms0Go1G86mgXfD4TNuKeqdfB0Vz5szpdUDy9ttvY8KECbjoooswbNgw/POf/0Qmk8GvfvUrTJs2DW+//Tbq6+sByMFTIURUdHnANddcg8svvzx839raipEjR8qZiSmjY+J5SwDEqpeTzHZqyardlukjZcnZedqU3p+s6SJtekgbLmyVP8ZiAlzlsDEKZit+kbAWgxFM5sNifhjNVMZzKDNyGGq2YqjRjjojj+FGWQ+9tHpYvnsJVJ9hBiDDSqIIOpc8tJODPAk4ROhUp+Ejr73H/bnE4KsZbI5M5IQZVnRvE2ls80qxzSvBNqcETU4W2/Iy/1NbPi1reOVNeCpTM3MYDJWbhUyCZ8RmxsrrEuTeEQZklXpbgFkCli1VLcvykLY9pE0PnBFynokmZNHmprGJlxVVYxwh/To53wyjzPKeCSeoveZx+K4B8mO+BaVmdKvRFdYDo7ByeF5VkLdNH3nTRMqXSlHadJEmD2lD5c/iHkzuw2AEDoIwWHjveYYBR5hwTNnOLtdCzrDQ5ZrIM2WugrITEVROLzlrDiKJuKOUT+XLkrW+ChQCRTelKKixFdS/soJ6W6pulhUlGKegTpkpZBRRLPuwwQUMLrNQA1IRKcwbRUrN8YVS4gD4QkUX+bEs5IJJZUwZBKPcQ1EtsTDfTkGEW+IrHn8dU8kARBm5gVDpCfMBha+LqNHqNYv9xWu0BRnWC4UzUtFUQiifTBDdB/VvmAE7qYwwL1LRgKSKFkTrJnxacQ9WvAGxr1w8g3VwDxSqY6EaFvMKAYh+iw0BbgZ+IakOcXUPhOeAUZR/ruDaC2KhOgQg8tEFObOC8xBXGZXvbI+wKwrC6sdnvdKvg6JZs2bh7LPP3u42Y8aMwfPPP4+///3vaGpqQnl5OQDg3nvvxcKFC/Hwww/j6quvRl1dHd58883EZ5uamuC6bjcFKU4qlUIqlfr0ndFoNBqNZjexK5QiPSbqnX4dFNXU1KCmpqbX7To7OwEAnCef3XLOIVRCq4kTJ+Lmm29GY2NjqBwtWLAAqVQq9B3tCMIiUErOQMgUYBaBm0ohsH2kbA8Z20WJLSuVD7E7UW13YpjVihqzDUNN6U0aZrRhqJFDDbdQytM73I6+YWNnfEK7iy7K42PPxSe+VK42eEOw0a3AFrcUW92SbhFWnm+EWZo9n0MInpjFU0w9K/xOh+soeh18DrH3ob/DILCMB2SCGar0oIRpaWIencB7YHAB0xAwmFC1xwLlIfIluEJGbzXnMxDE4PlcZpFWkWJB1mrf4xAul6qDyxN+HEB6ciyvyEw76K/ylwSvwxm0SRAWwTcJni2QtwQMW8Cw5D2bsjzYllS10qaLtOGFeY0KPUYAYAYSDwCO4BxIv1LOlMpj3jThmQaEZcB3CMLk4DYDdxi4FXjk1HkNFCSlJCQii4Bu+XSCddyXE/L4N1+Ahe+jdD8cDALEGATjMgcSk/GhwbU1uJDKmMqR1F01YrHXMgu4LxiE4PK+DGpdxbNv+yzyegmmvKyxaFVi3W/aeLRXGEkl77mwYyyp/HBViy1+TwY+GYMLcNXPoG/FkKoIg4BUR4KIRl9w+B5AxKPvk1CesTCjuVKIPCZrn/kqtxCUUhT3kVH3e7eoMhhEkPFILUKBWhgpRAj9QsJAmGcIQJg5nRkUqU/EIAgQvgG/YDDRk0JGggM+CwWZUKX1GXjcMxVc25gXbI+glaI9wqBwiE2cOBGVlZWYOXMm/ud//gfLli3D9773PaxatQpTp04FAJx66qk45JBD8K1vfQuLFy/GP/7xD1x55ZW44IILQnVJo9FoNJrBBkFA7IJBkQ+/943+jzMojNY1NTWYP38+rr32Wnz+85+H67o49NBD8Ze//AVHHHEEAMAwDDz11FO46KKLcPzxxyOTyeDrX/86br/99p06pvQpEGALcMuHmfJh23JqVJJyUJbKoSrVhepUO+pSrai3mtFgNWG42YwGw4tFUVnoL0/PrqaL8ljvy6n/Bi+L9V4l1ruV2OiWY2O+DNvyJWjJp9GaT6MzZ8NVtbR8x5C1tEJVRM42E5EpBV4LIOYx4BRFngQ5V4rU2OKm9BRwg2Bw6fECZLbmIIePwUUYKSYjseRfoJRwRmE+Ic4ojETxhKF8QRyeUrWK1TFzXDPyBbk8ikxxuIwsdBhMN1JRmFfgvSn0ZShnJMXqOwVRNzIfi/LeWEz9AcI2IGyCbxF8W/bFCe5j24dp+rAtqfrYpgcrlgUb6J7TiDNC2vDkOeTSNwcAjmfCScfqtykVzPMCJSyKrIwUhu4RXb1FH4U1rJhSj7zI+8I8FkVdcQ7igG/E65WpTMtAMuoq5rUJiCuSkdEFoeKTUIFEzBAT20bZ0YpCBQoROAvb0heImKq7RUpBlQfyBQcxAgMpI220Q4HuCpgQkQImBEvk4EHMU1S0in3g/SIVFQapsjIejzjrwU8VPw8xpYhif8VzD1HCb8QIIB9RfTvfADjJphfmvQquCyXfh9nPw2hBqQYl/G7x7OgFimZYU82IIup2FwceeCAyKMEnWImR2H+n99NOLWjG5lBI0BRnUAyKAODoo4/Gs88+u91tRo0ahb///e97qEUajUaj0exeTNPEH/76KL56+n+gnkbDZDs3yV6OJRiOfbHffvvt4hbuXQyaQdGexuxigMkhPAayZWXyIDpFCBmpI0g+nxfEpaeE5F+OWpCjNgBAvZGBxQbXaW4XOWwUHjZ4WWzwK6QfyCvDJqcMTU4WANDsZNCaT6M9byPnWHDzJoSrFCGHqXw18nyZYZX1yG9QNAon9jpReTvuI1D1uZhFYIaMtDJNlZ/Hkj6ZID9PFGnlwza8HqP/OARE7EmyTzJSzCUOj6QSJBgPo8a6VJ0yxzPR5crIMdc1InXI4WB5DkMpQ0CkDIVRWV7sX4+iSB4BcJ8Qr90FQEYdMYA4g4hlMhaGUodMJKKzfJuBTAbfVjN/m0OYBvI2wbEEukzpNzJMAdv0YRgCtsoVZQSqmjpHwR+AUFkDAIv7yBKDRxy+8t24woAQ0lPl+QaEitISPofvMxlV56uounj9qyDCDnHFIZ7/BuGMPVCZAACuvGlYXCHpKdoLSCoGSO47sU1cIaCCz8W3RXcovrLIvQ2OoipJd6UkUkh9Hos+K4iGDf1Ioccl5ivqSYWKefDiPhmKK2AMUQ42QYDJwAQl8hEVP18seX4LDx1vU0zd6eYrKzh3wUYsFv0XthXx48dex+8hIFSCCvNKQXS/Fwrb3j27uMwe7ud2v6lo2rRpKEE5VuND7I9xO/z5bbQRLdiKD7e8txtat3cxKDxFGo1Go9H8X4UxhgVvPY21WI4cde7QZ4kIy7EEY3AQqqurd1ML9x4Gl4SxB7G3MvAcgzAZyOQqq7FUCHI2ocsibLEFVts+DFv6jTIpFyW2gzIrj3I7BwCosLowxOpCldmBKrMdVUY7hhidqOadqOAeyriBChWVxnfzGFVAoF3k0UYe2gRHs0ihWWTR5st8Ps1+Fi1+Fi1eBq2erMfV7qXQ7tro8ix0ORbynrxlAu+MUH/wORDk1SEmZ1VmzP9TxF+QzOQbzWyDXCzxHDwIom+UUiR9QzIqzDL9hGcoiA4LvD+y7wyOb6KzSBZbAGE2Z0HSNxT4hVz1r+PL6DFHeWcAqL4bIJeFkWTcYyorufIHqeirQBUKonaizMhUxLPBAIopAYwlcvkkMj/HctswqBmwOq4AYAR+EsHATILwCeTKe9ozDXiGgBvzYgGAqTJiB1FOBlPRTkWitjiUkqTOvU2+zPtCUk311TUQIop4klFcBbWkVE4cAKGKFOT9idfIikc4yW2T/qTwX4q9LsyiLOR5T9RBI3UtoO7V4BhESbWoIPtdwmsSLmRJ74kKf0uqQiz53mAJv1iwLKxzxmM1zWJ+G3URpHrIC/IaFX63gntF5XYKvU1BE1XEW3gzFTF59WT9CleGr6MT0i1hICW3SfjJYtGkCa9WXJWK+51QoComsmkn74lg28LIzmK5pbr1J672Ja4b4OexR/jMZz6DoWjAR3gfh+Izff7cBqyFgzze7XxrN7Zu70ErRRqNRqPRDAJeX/kSNmId2qi5T9v75OMjvI8HH7kfmUxm9zZuL0ErRT2QbgJ4F6KZgZqtAdGsThgGyLDCXBrtHGg1gfXKBwPE/DAqA2s8UiqeeRUADEPmgjE4weQiVD1MJsIZejBL56x47Z7g3+APkPlWhJq1+4KHM/jA+yFEpJIINXOX/6qprsrdIX0fasoUzM4Cn0fcS1As6iTwKARve8rvoSJBCKRmfwzw5MzWZxyh+MOUtwKRnyLK4ItEA3qMMiKWyGEEKE9F6JlQ/Y7lKwn9L5AzUEOtD6p8BypDGEEW8woF5yCo38QMec6LR16xxMuiSlHc4xBXEAoqhgNSLQgn74IhiMwlivLvcENOp31uwDVELFdTlBU4XjMqOK+FOY6AKOop2JYYQrXJFzKXkDBIZo4WQuWJUddAqY1Cnfd4FmlGCJUjeQ2Kn/sgy3RwHQCE0UXcD+7lAtUoUC6EvDZSJWKhmiDv64KbNi6DBIpQgaoQr3FGnHVXG+KqUXzbIt8PFhMWQ5WqYHlS1aBo6hv4kOI5kZT6F36HeHRtWeI7FVWRL/w+FcuLFOUMY2Ebw/fq+xbmIVPfORIs6XMKMmwHfrPw+wjZ9piviBX8vgTLot8mtSymIBXLvB2P+CxUjorlWgIA3+lRO9vl7LPPPhiB/bAcSzAeJ/a6/TqsgAUb3/jGN/ZA6/YOtFKk0Wg0Gs0gYfHWN9CKbdhKPdf0BACH8liN/8W85/7YLfGxpme0UtQDhtu9LlmcwgiKZIRJIFcEr2PbFPk3MZNkMqDGLbYtkJwNxT5XuKznhhfpq1pmbG+7nZkMFbalsL2F5wzx97Ft4p8r0r/tnZvtQsVfsyLLi3kNus0ii62PqTqUOMEF9KSiFahEPUYzhRFNMV9JEK0UbFsYucRjHhI1Uw/e+MTBOEEwAucMXkwtKKwjVagc9YZUnQQ4KZUkzL8TXOiYkiC4+leqCTIClMWLn0UqpvKbIMgnFM9CDEQRRrHlrDADtTp+YTRbYdRar2znni16PYPrE3wuUJg4dV/PY8uBguizpOrDY3W/eExRDfxhwfXjXCD+FQz9YwiubbR8e4QV5tVmgWIYXx5kqQ+q0gevpVKk+p/INK1OUpAxPFCxlQdM1iJTynJYX491q8MGAEK9FoU12gI1sEAxTKqEwb+UVJH2nFAEAKiqqsI+GIvlWIIqqu2xtucqLEUFqvGFL3xhzzZwkKOHjxqNRqPRDCKW5N6CBxeNWFN0fSe14xOsxAvvLtjDLRv8aKWoB/LlDIZdkNG08NlyD0pBMJNIbFvwOvz8dujjxFvuqi/KSLjjHdhPt1lu4YP7Hj7bw+tCVaeoylNs+XZUsW5eil6Oub3jbld9204bEx6QQiWnpzYVqmDxz6hZfyJCr+Az4frgc4lcNUA8uohClUAuZ7FtCquph9sFbSUGmS1ZRlVFh5evRJgXh3VTFIr5T6QCsWNQwY1Z+F7E3sdtPtv7XLevY0/rqPu23ejhO9Wt/7FNWcE5KlRqCrfZ3rntSdEpPH5c6emrsldIT+e+2/IClajwM0k7VnCvBh0QAHh0D5OsZccMJv2ZgTIIKAWJyQsfqoYkhSS1XTICkRUoQ4h+42M5jbopRXFfWez/BD+/Iz++u4ZUKoVf//5X+H9fPx+1NBIGS8rQH+E91GEUDjvssD3etsGOVoo0Go1GoxlknHXWWUghjbVYnljeQluxGY146+NX+qllgxutFPVAVy1gpNSbgufGhZ6Tbn6D2MyocF33bZPHLeZnKbZdt23j7Kln3DuiOBXbvsg2fVGbEtvtjPrT077i63r4TPFtKVrXmxJWTOUpaCvF9xv/XMHxtrd99wi8+PHjilC0TTDTD2toKW8cxY4ZKELxfRZmT47vM3G6iqgXxdSRwu2LvS9UV+Lz5J58L9tTRopF0BXfR5826zcC9cUvcrOLght/e2pbfF/xbeN11IptG/iFgNhPXHxbiu8r7iOLIkETx6Tu7QSDzF0WbMsh68CR2g9kbilS77v5ftTywqjPRARtrANx71D0+x2pRSKHfoFzjr+88CROPukUDKd9YLNUmKhxNA7A8OHD+6dhgxytFGk0Go1GMwiZPHkyKjEUq7AUALAZjehAG/6nVSdq3Fn0oEij0Wg0mkHKS+8/h0+wEh3UihVYgrt+cSfKysr6u1mDFv34rAecYS54Znsx1BrNwCV8dFCUns3GGs2gJfbIOPZQuMfNd9W9L7rcXbSnneOQQw5BPUZjEV6GCRMXXHBBv7ZnsKMHRQWQejguuvrpQbFGo9FoBg3B/xXUrcjbnuOdxtewf/1B+MNffwdL1ejU7ByM+vNKDkA+/vhjjBw5sr+bodFoNJpBxLp16zBixIj+bobmU6IHRQUIIbB+/XqUlZX1mCl0d9Pa2oqRI0di3bp1KC8v75c27E725v7pvg1OdN8GJwOhb0SEtrY2NDQ06HIaewH68VkBnPMBM9ovLy/f637E4uzN/dN9G5zovg1O+rtvFRUV/XZsza5FD2s1Go1Go9FooAdFGo1Go9FoNAD0oGhAkkqlcP311yOVSvW+8SBkb+6f7tvgRPdtcLI3903TP2ijtUaj0Wg0Gg20UqTRaDQajUYDQA+KNBqNRqPRaADoQZFGo9FoNBoNAD0o0mg0Go1GowGgB0X9zs0334zjjjsO2WwWQ4YMKboNY6zb33333ZfYZsmSJZg0aRIymQyGDx+OG2+8sV9r8QB969vatWsxffp0lJSUoKamBrNnz4bjOIltBmLfChkzZky3a3T11VcntulLXwcq9957L/bZZx+k02lMmDAB//znP/u7STvMnDlzul2jurq6cD0RYc6cOWhoaEAmk8HkyZPx/vvv92OLe+bll1/G9OnT0dDQAMYY/vznPyfW96Uv+XweF198MWpqalBSUoLTTz8dH3/88R7sRXF669t5553X7Tp+9rOfTWwzUPumGfjoQVE/4zgOzjzzTHz3u9/d7nZz585FY2Nj+Ddz5sxwXWtrK0455RQ0NDTg7bffxj333IPbb78dd9555+5u/nbprW++72Pq1Kno6OjAK6+8gsceewx/+tOfcMUVV4TbDNS+FePGG29MXKPrrrsuXNeXvg5UHn/8cVx66aW49tprsXjxYpx44ok47bTTsHbt2v5u2g5z6KGHJq7RkiVLwnW33XYb7rzzTvz85z/H22+/jbq6Opxyyiloa2vrxxYXp6OjA0cccQR+/vOfF13fl75ceumlmDdvHh577DG88soraG9vx7Rp0+D7/p7qRlF66xsAfPGLX0xcx6effjqxfqD2TTMIIM2AYO7cuVRRUVF0HQCaN29ej5+99957qaKignK5XLjslltuoYaGBhJC7OKW7jg99e3pp58mzjl98skn4bI//OEPlEqlqKWlhYgGft8CRo8eTT/72c96XN+Xvg5UjjnmGLrwwgsTyw4++GC6+uqr+6lFO8f1119PRxxxRNF1Qgiqq6ujW2+9NVyWy+WooqKC7rvvvj3Uwp2j8PehL31pbm4my7LoscceC7f55JNPiHNO8+fP32Nt741iv30zZ86kGTNm9PiZwdI3zcBEK0WDhFmzZqGmpgaf+cxncN9990EIEa57/fXXMWnSpEQCsylTpmD9+vVYvXp1P7S2b7z++usYN24cGhoawmVTpkxBPp/HokWLwm0GS99+8pOfoLq6GkceeSRuvvnmxKOxvvR1IOI4DhYtWoRTTz01sfzUU0/Fa6+91k+t2nmWL1+OhoYG7LPPPjj77LOxcuVKAMCqVauwYcOGRD9TqRQmTZo06PrZl74sWrQIrusmtmloaMC4ceMGRX9ffPFFDBs2DAceeCAuuOACbNq0KVw32Pum6V90QdhBwE033YQvfOELyGQy+Mc//oErrrgCW7ZsCR/PbNiwAWPGjEl8pra2Nly3zz777Okm94kNGzaE7QyorKyEbdvYsGFDuM1g6Nsll1yC8ePHo7KyEm+99RauueYarFq1Cr/61a8A9K2vA5EtW7bA9/1uba+trR3Q7S7Gsccei0ceeQQHHnggNm7ciB/96Ec47rjj8P7774d9KdbPNWvW9Edzd5q+9GXDhg2wbRuVlZXdthno1/W0007DmWeeidGjR2PVqlX4wQ9+gM9//vNYtGgRUqnUoO6bpv/RStFuoJihs/DvnXfe6fP+rrvuOkycOBFHHnkkrrjiCtx444346U9/mtiGMZZ4T8qIXLj807Kr+1asfUSUWL6n+lbIjvT1sssuw6RJk3D44Yfj29/+Nu677z489NBD2Lp1a4/9CPqyu/uxKyh2DQZDu+Ocdtpp+OpXv4rDDjsMJ598Mp566ikAwMMPPxxuszf0M2Bn+jIY+nvWWWdh6tSpGDduHKZPn45nnnkGy5YtC69nTwyGvmn6H60U7QZmzZqFs88+e7vbFKofO8JnP/tZtLa2YuPGjaitrUVdXV23GVAgJxfOFj8tu7JvdXV1ePPNNxPLmpqa4Lpu2O492bdCPk1fg2iYFStWoLq6uk99HYjU1NTAMIyi12Agt7svlJSU4LDDDsPy5ctxxhlnAJAKSn19fbjNYOxnEFG3vb7U1dXBcRw0NTUlFJVNmzbhuOOO27MN/pTU19dj9OjRWL58OYC9q2+aPY9WinYDNTU1OPjgg7f7l06nd3r/ixcvRjqdDsPcJ06ciJdffjnhYVmwYAEaGho+1eCrGLuybxMnTsR7772HxsbGRLtTqRQmTJiwx/tWyKfp6+LFiwEg/E+pL30diNi2jQkTJmDhwoWJ5QsXLhz0/8Hk83ksXboU9fX12GeffVBXV5fop+M4eOmllwZdP/vSlwkTJsCyrMQ2jY2NeO+99wZdf7du3Yp169aF37W9qW+afqDfLN4aIiJas2YNLV68mG644QYqLS2lxYsX0+LFi6mtrY2IiP7617/SAw88QEuWLKEVK1bQgw8+SOXl5TR79uxwH83NzVRbW0vnnHMOLVmyhJ588kkqLy+n22+/vb+6RUS9983zPBo3bhx94QtfoH/961/03HPP0YgRI2jWrFnhPgZq3+K89tprdOedd9LixYtp5cqV9Pjjj1NDQwOdfvrp4TZ96etA5bHHHiPLsuihhx6iDz74gC699FIqKSmh1atX93fTdogrrriCXnzxRVq5ciW98cYbNG3aNCorKwv7ceutt1JFRQU9+eSTtGTJEjrnnHOovr6eWltb+7nl3Wlrawu/TwDC+2/NmjVE1Le+XHjhhTRixAh67rnn6F//+hd9/vOfpyOOOII8z+uvbhHR9vvW1tZGV1xxBb322mu0atUqeuGFF2jixIk0fPjwQdE3zcBHD4r6mZkzZxKAbn8vvPACERE988wzdOSRR1JpaSlls1kaN24c3XXXXeS6bmI/7777Lp144omUSqWorq6O5syZ0+8h6731jUgOnKZOnUqZTIaqqqpo1qxZifB7ooHZtziLFi2iY489lioqKiidTtNBBx1E119/PXV0dCS260tfByq/+MUvaPTo0WTbNo0fP55eeuml/m7SDnPWWWdRfX09WZZFDQ0N9JWvfIXef//9cL0Qgq6//nqqq6ujVCpFn/vc52jJkiX92OKeeeGFF4p+t2bOnElEfetLV1cXzZo1i6qqqiiTydC0adNo7dq1/dCbJNvrW2dnJ5166qk0dOhQsiyLRo0aRTNnzuzW7oHaN83AhxENsNTAGo1Go9FoNP2A9hRpNBqNRqPRQA+KNBqNRqPRaADoQZFGo9FoNBoNAD0o0mg0Go1GowGgB0UajUaj0Wg0APSgSKPRaDQajQaAHhRpNBqNRqPRANCDIs1eyOTJk3HppZfuVcc977zzwvpcO8uYMWPCQrbNzc09bveb3/wmLCGj2fWcd9554XX485//3N/N0Wg0MfSgSKPZRTz55JO46aabwvdjxozBXXfd1X8NKsKNN96IxsZGVFRU9HdT9npefPHFogPQu+++O1EDT6PRDBzM/m6ARrO3UFVV1d9N6JWysrKwinp/47ouLMvq72bscSoqKvSgVKMZoGilSLPX09TUhHPPPReVlZXIZrM47bTTsHz58nB98Ljo2WefxdixY1FaWoovfvGLidm853mYPXs2hgwZgurqalx11VWYOXNm4pFW/PHZ5MmTsWbNGlx22WXhoxIAmDNnDo488shE++666y6MGTMmfO/7Pi6//PLwWN///vdRWI2HiHDbbbdh3333RSaTwRFHHIE//vGPO3V+fvOb32DUqFHIZrP48pe/jK1bt3bb5m9/+xsmTJiAdDqNfffdFzfccAM8zwvX/+///i9OOOEEpNNpHHLIIXjuuecSj4dWr14NxhieeOIJTJ48Gel0Gr/73e8AAHPnzsXYsWORTqdx8MEH4957700c+5NPPsFZZ52FyspKVFdXY8aMGVi9enW4/sUXX8QxxxyDkpISDBkyBMcffzzWrFnTp7731q8777wThx12GEpKSjBy5EhcdNFFaG9vD9evWbMG06dPR2VlJUpKSnDooYfi6aefxurVq3HSSScBACorK8EYw3nnndenNmk0mv5DD4o0ez3nnXce3nnnHfz1r3/F66+/DiLCl770JbiuG27T2dmJ22+/Hb/97W/x8ssvY+3atbjyyivD9T/5yU/w6KOPYu7cuXj11VfR2tq6XT/Ik08+iREjRoSPq3bkcckdd9yBX//613jooYfwyiuvYNu2bZg3b15im+uuuw5z587FL3/5S7z//vu47LLL8M1vfhMvvfRS308MgDfffBP/+Z//iYsuugj//ve/cdJJJ+FHP/pRYptnn30W3/zmNzF79mx88MEHuP/++/Gb3/wGN998MwBACIEzzjgD2WwWb775Jh544AFce+21RY931VVXYfbs2Vi6dCmmTJmCBx98ENdeey1uvvlmLF26FD/+8Y/xgx/8AA8//DAAeV1OOukklJaW4uWXX8Yrr7wSDlodx4HneTjjjDMwadIkvPvuu3j99dfxne98JxyEbo/e+gUAnHP893//N9577z08/PDDeP755/H9738/XP9f//VfyOfzePnll7FkyRL85Cc/QWlpKUaOHIk//elPAIAPP/wQjY2NuPvuu3fo2mg0mn6gX8vRajS7gUmTJtEll1xCRETLli0jAPTqq6+G67ds2UKZTIaeeOIJIiKaO3cuAaAVK1aE2/ziF7+g2tra8H1tbS399Kc/Dd97nkejRo2iGTNmFD0uEdHo0aPpZz/7WaJt119/PR1xxBGJZT/72c9o9OjR4fv6+nq69dZbw/eu69KIESPCY7W3t1M6nabXXnstsZ/zzz+fzjnnnB7PS7H2nHPOOfTFL34xseyss86iioqK8P2JJ55IP/7xjxPb/Pa3v6X6+noiInrmmWfINE1qbGwM1y9cuJAA0Lx584iIaNWqVQSA7rrrrsR+Ro4cSb///e8Ty2666SaaOHEiERE99NBDdNBBB5EQIlyfz+cpk8nQs88+S1u3biUA9OKLL/bY757orV/FeOKJJ6i6ujp8f9hhh9GcOXOKbhtUe29qaiq6Pn5+NBrNwEB7ijR7NUuXLoVpmjj22GPDZdXV1TjooIOwdOnScFk2m8V+++0Xvq+vr8emTZsAAC0tLdi4cSOOOeaYcL1hGJgwYQKEELu0vS0tLWhsbMTEiRPDZaZp4uijjw4foX3wwQfI5XI45ZRTEp91HAdHHXXUDh1v6dKl+PKXv5xYNnHiRMyfPz98v2jRIrz99tsJBcX3feRyOXR2duLDDz/EyJEjE16l+LmKc/TRR4evN2/ejHXr1uH888/HBRdcEC73PC/03CxatAgrVqxAWVlZYj+5XA4fffQRTj31VJx33nmYMmUKTjnlFJx88sn42te+hvr6+l773lu/stksXnjhBfz4xz/GBx98gNbWVnieh1wuh46ODpSUlGD27Nn47ne/iwULFuDkk0/GV7/6VRx++OG9Hluj0QxM9KBIs1dDBV6c+PL4I5ZCwy9jrNtnCx/J9LTv7cE57/a5+GO8vhAMxJ566ikMHz48sS6VSu3QvvrSByEEbrjhBnzlK1/pti6dTnc7l9ujpKQksV8AePDBBxODVkAOOoNtJkyYgEcffbTbvoYOHQpAepJmz56N+fPn4/HHH8d1112HhQsX4rOf/eyn6teaNWvwpS99CRdeeCFuuukmVFVV4ZVXXsH5558fXrNvf/vbmDJlCp566iksWLAAt9xyC+644w5cfPHFfTofGo1mYKEHRZq9mkMOOQSe5+HNN9/EcccdBwDYunUrli1bhrFjx/ZpHxUVFaitrcVbb72FE088EYBUFBYvXtzNNB3Htm34vp9YNnToUGzYsCExkPj3v/+dOFZ9fT3eeOMNfO5znwMglZNFixZh/PjxYZ9SqRTWrl2LSZMm9akPPXHIIYfgjTfeSCwrfD9+/Hh8+OGH2H///Yvu4+CDD8batWuxceNG1NbWAgDefvvtXo9dW1uL4cOHY+XKlfjGN75RdJvx48fj8ccfx7Bhw1BeXt7jvo466igcddRRuOaaazBx4kT8/ve/73VQ1Fu/3nnnHXiehzvuuAOcS/vlE0880W27kSNH4sILL8SFF16Ia665Bg8++CAuvvhi2LYNAN3uAY1GM3DRgyLNXs0BBxyAGTNm4IILLsD999+PsrIyXH311Rg+fDhmzJjR5/1cfPHFuOWWW7D//vvj4IMPxj333IOmpqbtKiRjxozByy+/jLPPPhupVAo1NTWYPHkyNm/ejNtuuw3/8R//gfnz5+OZZ55J/Id/ySWX4NZbb8UBBxyAsWPH4s4770zkuikrK8OVV16Jyy67DEIInHDCCWhtbcVrr72G0tJSzJw5s8/9mj17No477jjcdtttOOOMM7BgwYLEozMA+OEPf4hp06Zh5MiROPPMM8E5x7vvvoslS5bgRz/6EU455RTst99+mDlzJm677Ta0tbWFRuveFKQ5c+Zg9uzZKC8vx2mnnYZ8Po933nkHTU1NuPzyy/GNb3wDP/3pTzFjxgzceOONGDFiBNauXYsnn3wS3/ve9+C6Lh544AGcfvrpaGhowIcffohly5bh3HPP7bXvvfVrv/32g+d5uOeeezB9+nS8+uqruO+++xL7uPTSS3HaaafhwAMPRFNTE55//vlwsD169GgwxvD3v/8dX/rSl5DJZFBaWtrna6PRaPqBfnMzaTS7iULD87Zt2+hb3/oWVVRUUCaToSlTptCyZcvC9XPnzk0Yi4mI5s2bR/Gvh+u6NGvWLCovL6fKykq66qqr6Mwzz6Szzz67x+O+/vrrdPjhh1MqlUrs65e//CWNHDmSSkpK6Nxzz6Wbb745YbR2XZcuueQSKi8vpyFDhtDll19O5557bsLULYSgu+++mw466CCyLIuGDh1KU6ZMoZdeeqnH81LMaE0kzcwjRoygTCZD06dPp9tvv73b+Zg/fz4dd9xxlMlkqLy8nI455hh64IEHwvVLly6l448/nmzbpoMPPpj+9re/EQCaP38+EUVG68WLF3c7/qOPPkpHHnkk2bZNlZWV9LnPfY6efPLJcH1jYyOde+65VFNTQ6lUivbdd1+64IILqKWlhTZs2EBnnHEG1dfXk23bNHr0aPrhD39Ivu/3eB52pF933nkn1dfXh/fNI488kjBPz5o1i/bbbz9KpVI0dOhQ+ta3vkVbtmwJP3/jjTdSXV0dMcZo5syZiWNDG601mgEHI9oJY4RG838cIQTGjh2Lr33ta4ks1gOZMWPG4NJLL90jJVBeffVVnHDCCVixYkXCwK6JYIxh3rx5n7p8i0aj2XXoPEUaTR9Ys2YNHnzwQSxbtgxLlizBd7/7XaxatQpf//rX+7tpO8RVV12F0tJStLS07NL9zps3DwsXLsTq1avx3HPP4Tvf+Q6OP/54PSAqwoUXXqgfo2k0AxStFGk0fWDdunU4++yz8d5774GIMG7cONx6662hGXowsGbNmjBqat999w3Nw7uCRx55BDfddBPWrVuHmpoanHzyybjjjjtQXV29y46xoxx66KE9Zra+//77ezR37242bdqE1tZWADL1QzwiT6PR9C96UKTRaPZK4oPAQmpra7vlPtJoNBo9KNJoNBqNRqOB9hRpNBqNRqPRANCDIo1Go9FoNBoAelCk0Wg0Go1GA0APijQajUaj0WgA6EGRRqPRaDQaDQA9KNJoNBqNRqMBoAdFGo1Go9FoNAD0oEij0Wg0Go0GAPD/AX54GLtaX0gsAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAHFCAYAAAD8Jo2EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9ebglWV3mi3/WEMMez5hzZmXWXNQASFEMog0FloDIRSZFm0nEoVFp2qtcsO+VghZleNoHB+jWnwoqtKKM3QpSFIONQCGgLUNRUNSUWTmdPPOeYlpr/f5YsffZ5+Q5OVRlZVVhvM+z8+wde+2IFRErIuP7rvf7foVzzlGhQoUKFSpUqPBvHPLB7kCFChUqVKhQocJDAdVDUYUKFSpUqFChAtVDUYUKFSpUqFChAlA9FFWoUKFChQoVKgDVQ1GFChUqVKhQoQJQPRRVqFChQoUKFSoA1UNRhQoVKlSoUKECUD0UVahQoUKFChUqANVDUYUKFSpUqFChAlA9FD2s8YUvfIEbb7yR5eXlk757ylOewlOe8pTz3qfzge985zv86q/+Ktdeey2Tk5NMT0/zpCc9iQ984AObtp+bm+PlL385s7Oz1Ot1nvjEJ/KpT31qXZvV1VXe/OY385SnPIWdO3fSbDa55ppreOtb30qSJCetM89z3vjGN3LgwAGiKOKKK67g93//989qP86kXwB/+7d/y0tf+lKuueYagiBACHFW2wF4xzvewfOe9zwuvPBChBCnHRsf/ehHefKTn0y73abRaHDVVVfxR3/0RwDceOONCCFO+xpu45vf/CavetWreOITn0ij0UAIwWc/+9lNt/vnf/7nvOhFL+Lyyy9HSsmBAwfOaj+36lscxye17XQ6vPrVr2bPnj1EUcRll13G2972NowxD7ltbXWM3/KWt5zU9kzHFcDNN9/ME5/4ROr1OrOzs7z85S9nbm7upHZnM97vvPNOnve85zE5OUmz2eSGG27gn//5nzdt+1d/9Vc8+tGPJo5jdu/ezWte8xq63e4ZHZMKFR4QuAoPW7z97W93gLvrrrtO+u6b3/ym++Y3v3n+O3Ue8Pu///vuiiuucG9+85vdTTfd5D72sY+5l73sZQ5wb3zjG9e1TZLEXX311W7v3r3uve99r7vpppvcc57zHKe1dp/97GdH7b7+9a+72dlZ95/+039yH/3oR92nPvUpd+ONN7o4jt3TnvY0Z61dt95XvvKVLooi97a3vc195jOfca973eucEMK9+c1vPqN9ONN+OefcK17xCnfppZe6H//xH3fXXnutuy+X7eWXX+4e85jHuFe84hVu27Zt7slPfvKWbX/7t3/bSSndq171Kvfxj3/c3Xzzze4P/uAP3O///u8755w7dOiQ++IXvzh6fehDH3KA++Vf/uV1y4fj7z3veY/btWuX+5Ef+RH37Gc/2wHuM5/5zKbb/qEf+iF39dVXuxe/+MXukksucfv37z+r/XzDG97gAPf3f//36/rypS99aV27PM/d4x//eDc1NeX+4A/+wN10003uV37lV5wQwv3yL//yQ25bgHvBC16wbjtf/OIX3eHDh9e1O5tx9dnPftZprd1znvMcd9NNN7n3vve9bs+ePe7qq692SZKsa3um431ubs7t3r3bXXXVVe6DH/yg+7u/+zv3Az/wA67VarnbbrttXdv3vve9DnCvfOUr3ac//Wn33//7f3cTExPuhhtuOKNjUqHCA4HqoehhjFM9FH0v48SJEyc9pDjn3LOe9SxXr9fX3dDf+c53OsB94QtfGC3L89xdeeWV7nGPe9xoWbfbdd1u96R1Do/x5z73udGyb3zjG04I4X7rt35rXduf/dmfdbVazS0sLJx2H860X845Z4wZvf/FX/zF+/RQNL6Oq666asuHoq985StOSune+ta3nvG677rrLge4t7/97afd9t/8zd+c8qFovO2znvWs+/xQdOLEiVO2+8u//EsHuA9+8IPrlv/cz/2ck1Ke9B/4g70twP3iL/7iadudzbi67rrr3JVXXunyPB8t+/znP+8A9653vWu07GzG+6/92q+5IAjc3XffPVq2srLiZmdn3Y//+I+PlhVF4Xbt2uV++Id/eN063/e+9znAfexjHzvtvlao8ECgmj57mOLGG2/k137t1wBGUyLj0xIbp8/uvvtuhBC8/e1v561vfSsHDhygVqvxlKc8he985zvkec7rXvc6du/ezcTEBM997nM3pdHf//73j6ZBms0mT3/60/mXf/mX87HLI8zOzm46hfS4xz2Ofr/P4uLiaNmHP/xhLr/8cp74xCeOlmmtefGLX8w//dM/cfjwYQAajQaNRmPTdQIcOnRotOwjH/kIzjl++qd/el3bn/7pn2YwGPD3f//3p92HM+0XgJT3/zI903X8wR/8AVEU8cu//Mv3e5tnu+2zbXt/8PnPfx4hBM985jPXLf/RH/1RrLV8+MMfflhu60zH1eHDh/nyl7/MS17yErTWo7bf//3fz2WXXbauT2cz3j/84Q/z1Kc+lf3794+Wtdttnve85/G//tf/oigKAG655RaOHj160jpf+MIX0mw2z+kxqVDhbFA9FD1M8cpXvnL0H9eHPvQhvvjFL/LFL36RxzzmMaf83Tvf+U4+//nP8853vpM//uM/5rbbbuPZz342P/MzP8OJEyf40z/9U972trdx880388pXvnLdb3/rt36Ln/zJn+TKK6/kr//6r/mLv/gLOp0OP/iDP8itt9562j4XRXFGL+fcfTomn/nMZ9i2bRvbt28fLfvGN77BIx/5yJPaDpd985vfPOU6P/3pTwNw1VVXrVvntm3b2Llz56br/MY3vnHavt7ffj1Q+N//+3/ziEc8gg9+8INcfvnlKKXYu3cvr3vd68iy7EHp01Y4lTbqmmuuQSnFjh07eOlLX8rBgwfXfZ9lGVJKgiBYtzyKIgC+9rWvPWjb2gr/43/8D2q1GlEUce211/Lud7/7pDZnOq6GY3SrtuNj+EzH+2Aw4I477thynYPBgDvvvPOU2w+CgCuuuOKMrqEKFR4I6NM3qfBQxN69e7ngggsA+L7v+74zFqROTk7ykY98ZBSRz8/P85rXvIYrrriCj370o6N2t912G+94xztYXV2l3W5z6NAh3vCGN/BLv/RL/N7v/d6o3Q033MCll17KG9/4Rt7//vdvud27776bCy+88Iz6+JnPfOasReJ//Md/zGc/+1l+93d/F6XUaPnCwgLT09MntR8uW1hY2HKdX/va13jb297Gc5/73HU3763W2Wg0CMPwlOs8F/16IHH48GFOnDjBq1/9av7Lf/kvXHnllXzqU5/iLW95C4cOHeJ973vfg9KvzaCUWneuAS6++GLe/OY3833f933Eccw//dM/8ba3vY2bbrqJr371q+zZsweAK6+8EmMMt9xyCz/wAz8w+v0//uM/Aicf//O5rc3wUz/1UzzrWc9i3759zM3N8Sd/8ie84hWv4M477+S//Jf/Mmp3puNq+HertuN9OtPxvrS0hHPunGz/7rvv3uQoVKjwwKN6KPo3hh/5kR9ZN0XxiEc8AoBnPetZ69oNlx88eJCrr76aT3ziExRFwUtf+tIRBQ4QxzFPfvKT+cxnPnPK7e7evZsvf/nLZ9THyy+//IzaDfHxj3+cX/zFX+QFL3jBptM+p8rW2uq7u+++mx/90R9l3759/PEf//F9Wqdz7qTsovGpivvSr1Nh/LyA/4/8bNdjraXT6fCXf/mXvOhFLwLg+uuvp9fr8Y53vIM3vvGNXHLJJWfdtwcCG/cX4CUvecm6z9dffz3XX389T3ziE3nb297G7/7u7wLw7//9v+dNb3oTP/dzP8e73/1uLr/8cj7+8Y+PHvg3TuOdz21tho0Po89//vN59rOfzVve8hZe/epXs23bttF3ZzOutmp7pu0eqLb3ZfxXqHAuUE2f/RvDxsgsDMNTLh+mox8/fhyA6667jiAI1r3e//73Mz8/f8rthmHIox/96DN6NZvNM96fT3ziEzzvec/jhhtu4H3ve99JN9OZmZlNI/Gh7mizSPWee+7h+uuvR2vNpz71qZPabLXOXq9HlmWj9n/2Z3920rG6P/06HTZu68/+7M/Oeh0zMzMAPP3pT1+3fKiH2Sq1+qGMxz3ucVx22WXccssto2Wzs7MjLcwTnvAEpqam+OVf/mV+53d+B2DE8jyUt/XiF7+Yoij4yle+Mlp2puNqeJ63ajs+/s50vE9NTSGEOOfbr1DhfKJiiiqcEWZnZwH4wAc+sE5EeaZ4IKbPPvGJT/BjP/ZjPPnJT+aDH/zg6EFuHNdccw1f//rXT1o+XHb11VevW37PPffwlKc8Beccn/3sZ9m7d++m6/yrv/orjh07tk5nsXGdz372s7dkx862X2eCjds60+M9jkc+8pEcO3bspOVDndf5EkKfazjnTur7ddddx6233srdd99Nr9fj0ksv5atf/SoA/+7f/buH/LY2OydnOq6Gf7/+9a/zIz/yIye1HR9/Zzrea7Ual1xyyZbbr9VqXHTRRaN1DpdfeeWVo3ZFUXDbbbfxkz/5k2d0DCpUONd4eN7hKgBrQs3BYPCAb+vpT386WmvuuOMOHvvYx276OhWG02dn8rr22mtP25+bbrqJH/uxH+MHfuAH+MhHPjI6Fhvx3Oc+l9tuu40vfelLo2VFUfDe976Xxz/+8ezevXu0/ODBgzzlKU/BGMOnP/3pLR/+nvOc5yCEOImJec973kOtVuMZz3gG4KPhrY7R2fTrTLFxW8No/Gzw/Oc/H/BTkuP42Mc+hpSS66677qzX+WDjlltu4fbbb+cJT3jCpt8fOHCAq666iiAI+K//9b+ye/duXvjCFz7kt/UXf/EXBEGw7no503G1Z88eHve4x/He97533RTvLbfcwre//W2e97znjZad6Xgfbv/Tn/70umzNTqfDhz70If6v/+v/Gk0fP/7xj2fXrl285z3vWbfOD3zgA3S73XXbr1DhfKJiih7GGEZbv/u7v8vLXvYygiDg8ssvp9VqnfNtHThwgDe96U385//8n7nzzjt5xjOewdTUFMePH+ef/umfaDQavPGNb9zy92EYnvbB6Uzxj//4j/zYj/0YO3fu5Nd//df5P//n/6z7/sorr6TdbgPwile8gne+85288IUv5C1veQvbt2/nXe96F9/+9re5+eabR7+Zm5vj+uuv5+jRo/zJn/wJc3Nz6ywJ9u7dO2KNrrrqKn7mZ36GN7zhDSiluO6667jpppv4oz/6I37zN3/zjKj/M+0XePZqyALdcccdACP37gMHDpzRcf3KV74yEq+urq7inBut47rrrhs9AP70T/80f/iHf8irXvUq5ufnufLKK7n55pt55zvfyate9ar7xBL2+30+9rGPAYymlf7hH/6B+fl5Go3GulT1W2+9dZTJeOzYMfr9/qifV1555TpWQWvNk5/85HVuzY961KN48YtfzCMe8YiR+Pntb387O3fu5LWvfe26fv3n//yfueaaa9i1axcHDx7kT//0T/nSl77E3/3d31Gr1da1PV/b+od/+Aee9rSn8Ru/8Rv8xm/8BgBvf/vbufXWW3na057G3r17R0Lrm266iRtvvHHE4sLZjau3vvWt3HDDDbzwhS/kVa96FXNzc7zuda/j6quvXpcqfzbj/Vd/9Vf5i7/4C571rGfxpje9iSiKeMtb3kKSJNx4442jdkop3va2t/GSl7yEn//5n+cnf/Inuf3223nta1/LDTfcsO5Bq0KF84oHyR+pwjnC61//erd7924npVxnivfkJz95nUHfVgZ7n/nMZxzg/uZv/mbd8ne/+90OcF/+8pfXLf/IRz7irr/+etdut10URW7//v3uBS94gbv55psfkP3bDEPTvK1eG40Bjx075l760pe66elpF8exe8ITnuA++clPrmszPA5bvd7whjesa59lmXvDG97gLrjgAheGobvsssvc7/3e753VfpxJv5xbOxebvV72sped0baGjt+bvd797neva7uwsOB+/ud/3u3YscMFQeAuu+wy9/a3v32dseI4TmfeOPx+s9dGc8ZTnduN5wA4yYTyRS96kbvkkktco9FwQRC4/fv3u1/4hV9wR44cOalf/+E//IfR+ZudnXXPf/7z3de+9rVN9+F8bWs4Dsf39X/+z//pfuAHfsBt27bNaa1dq9VyP/iDP+j+8i//ctO+num4cs65m266yT3hCU9wcRy76elp99KXvtQdP378pHZnM96/+93vuh/7sR9z7Xbb1et197SnPc199atf3bTt//gf/8M98pGPdGEYup07d7pXv/rVrtPpbNq2QoXzAeHcfTSFqVChQoUKFSpU+B5CpSmqUKFChQoVKlSgeiiqUKFChQoVKlQAqoeiChUqVKhQoUIFoHooqlChQoUKFSpUAKqHogoVKlSoUKFCBaB6KKpQoUKFChUqVAAq88aTYK3lyJEjtFqtqihhhQoVKlQ4JZxzdDoddu/e/aCVwXHOcdNf7+UJz7iViYmJB6UP3yuoHoo24MiRI+zbt+/B7kaFChUqVHgY4dChQ5vWSjwf+PjHP86zXnSE//TzB/id/770oPThewWVeeMGrKysMDk5yUWv+Q1kFD/Y3alQoUKFCg9h2DThzne8ieXl5QeFpTHG8Kir6nz/dTF/8YEOt956x30qBl3Bo2KKNmA0ZdaKEXHsCwxshk2WizN9vNzQbtPfbVx2Jts7mz6dyTbPZD1n+PszRvWI/tDGmc4ob9HOner3m323ybJN13Em7U73+Ux/dwqc9f6dxfenXPeZ4EFQA9zvPp8hzvjeeyqc4TpO2lZSLn+Q5BZ/+ru7SVLH7715O3kBr/+VR/JXH+48KH35XkAltK5QoUKFChUehuj1erzhbQu8+ddnCEPBG39tmv/1id6ogHSFs0fFFG0BU3MQbQgJtmBmRpHDeFg01la4zdqO/d2CtVnXVmxYtun2t1i+yXdbfr8B9zUC2zJC3LB8XTux4XuxSbstvt+qzWlZhfvCaJwGZ8zOnYoxPN15OpPzeIbn+oyYyvuCTc6POMV3Jy0XG74rl4ktfuO2GD8nLd9knZtub4vPa79bO0j3mV3a2O5sjvvZXLObDej7ywyfATZbz5neGzZbwVbXs9vw+Yy2d6rtboVN9seeq4N1H/Bf33gB+/cGvOBHmwDs3R3wH392kl999ZP57Bd6VbLQfUDFFFWoUKFChQoPMxw/fpy3v2uJt/3G7LqHn9f+0hTfuj3jb//2bx/E3j18UTFFW8AG65mi0+l3/PfOhyWbMTZjy/xnMXrvNkb046/x32zYrICTtrW2/k36sNnnTfbljHCaSH9ddL7FsuHn0XJxivVs2t6dcr0ntdnQ/7VtuXXLT7Wfm+JUTEu5kZPYvPFNDztSnjex4fyvYyLHvh9vt/F8rtvext+wyXdjn0/b31PtNxu+Hzt+wm1BWGxkYsTJ53TUbuMY2dD2tN+VY2IzVumkbW41djb2aXwHzwYbVnxaNm8jE73x/rLuXIqTv9+qLWx93s9mPJwGm7FzWzGEa8vFWruN42OT9yed260YwVPcF7bs8xaw5sFhit7w2sv5oX9X50mPq61b3m4pfuP/nua1v/J8nvnMPlpX/82fDSqmqEKFChUqVHgY4bbbbuPP/nqV3/r12U2//9kXT2As/P9+Z8957tnDH9Uj5FZQzr9KuNE/YxiLyhzDKGyzSXTWRW7OgXDOE0vl9yMmaBMGafR+Q3Tnhu1G2zj5d6NtjvV33W827stmOFWEN1y2WfR2BsudZH2EJ8fWv0lk74ZR3mZR/YbvR4zysP1J++M2fC4/bhH+uo1h40nN1jM+wx1x687RGHPkhufbrf+dE+vZvrH2mzKCJ0X9p2EJNvR/Kxb0rLVKZ4BTRuYbGZ3NfnMmDND4ejcyh2xot+m2N4yLTVmHzcfO2WnR3LpVrbsmN7CHbovxIEZjaK0tFsQ4TTfsql37zeiv3TBGNrbZ8Hnd+tjw+QzGwklM8PD96e4fcm3Z6J4BG+4L4KRAjH7jz7PYbL3jfRn/bvR5q3vGJp/1+WeK/p/XPJafflGbyy8JN/0+CAS/9euz/NLr53jxf+jQarXOcw8fvqiYogoVKlSoUOFhgs997nN85vMDfuP/nj5lu+f+SINLDgS8/cYD56dj3yOomKKtYAQYcUZeQEOc3HYjBVH+fmNU4sZX69aYnPHtbRq9r4Vb43P+m2lETv7tKfp9CmyViXPmOo+T5/y31gC49b8f7dtm4bjYrFsnt9rs+JXrHv97qoyvjTqgUx37LbVcp/v+NNiUKYHNj71cY+WGEfS6321kU06lpRliOJZPgy2P92jZ6dex5fbvK9wm1/W61W6x8nU/EpuzTWKTtpuxmmOb2TQTbpMDI8ZYaFeOQTf8MGJ2xlhCu7aqEeNjAev337/fgimy/uVk+Xe4bKxbzm3Y3Q1jeTOI8X0cHpcxUmu0vGSDnAAhwVnP+Iz6I9eajh+/rXRrJ8EJBG79vWX8a9aO4/ob8vp1AFDcn8F4dnDO8av/8QZe+4tTbJ899X/fQgje+huzPP0nDvMffvUou3btOk+9fHijYooqVKhQoUKFhwH++q//mnuPFrzm5ybPqP0TH1vj6dc3+I1fu+KB7dj3ECqmaAuoVCDFWNR1OhZoHJtF2qdiRuRYBCg2BCWnDEJOjmA2y2ZaW86YPmBzpmPDLpwRNo90N1lXyfKIsW2dMoOqjHqHUesosh2+xqNbu76df7n1vx2t17Nxwrix4+E2ZHW5df0b9c26DcfMbWCKXBl9D6N3N+rHmrho+P1YW9bW5xsI3FAMIcvPUuDU8K/EaYFVAhcIrPZtrRaYUGADMIH/awOwmrX3Qdk2AKcdTjusArTDaYtQDqRDKIdUow4jpfN6K8E63ZUbH2/lZ+fAWTnSwjgrSu1LOcCtWNvdcjz6YzR2AYx9t24sbRynY5qazbPuxHptzAbGY/jdSXqbsX0qW8KGjydnRK6xGFCyc+XLf+c8cyc5SfPipFtjT8r34xmSJ2XMjXdu7NgPj8toWI2OeXks3NgYHrvGhusRVqxnljYeFzt+7Le4hs+ANdrynrjx2Eo2P9Zj7U7SJm7Rdq3jm9zCN7n/rWOmN47N8nuRnR+mKE1TXv/aF/PG185Qr585n/Fbvz7Do592kNe8/ptcddVVD2APvzdQMUUVKlSoUKHCQxzvfMtemg3Jy368fVa/u/SikFf++zavfc3jHqCefW+hYoq2gEwEaqP24BRMynqtjTg5mhnXcwx1HnLDbxlGPGtttspyWb/xtZW4ESMh1qI/WBcRupItOYkt2iQKOhNs2bUN612nVzDly4Is38sCROHbysKhcpC5Q+YOlTtkZsuXQWYGkfnGIisgLyDNIM9xWY7LMv+3yM9sJ84zthhWp8VJZMEmUM0motWEZgPbiilaEXlLkzckeUOQN/waihoUdYGJBa5mcdIhAocKDTosCLUhDPwxDqRFK4MW9iSWqHASYyWF8QM6twpjJHmhsFZgClWOS4ErBKLU6wEII9ZYvzGGYh2judl1t3GMbsJUbMowmjWWUZhyHePL7fDaWM9GrjtJ48TBiAES/hpXjP4C2OGy0UustZFr7wGcciWDxIjxEEN2SYiTmJRTYuOgGn4WzutlRloed1L7NfZuPQs0Ot5noqfbrA9bYSOTM7aJjVlpmzJmJ7VZ29dxbEXub6XTHP7djGVfx6AlDzxTtLS0xG++Y5H3vnMnSp399v7f10xz2fffw2c+8xmuv/76B6CH3zuomKIKFSpUqFDhIYzf+n8v5jHXRDz9+vp9+v22Wc3/80tT/Nprnom19vQ/+DeMiinaAqNochO9wajNeHS1IbIRckP04vDsEAIh3Vo0NtITjK201BuszYm7zSPDYdQy/DBig9b+DqNh7FhUPh5Bb9QNjNa78YCs37/x5ZtFYOPHbhSRjzFCsgCVOWQOOnGozKEGBpX4xqpfIAcpopdCv4/tdLGDwWj91WW9NUy3C93u6LME6s0mYsc2zGyLdDYGIJlSpBOCrA25lRQCXOm5oqQlDApqgWfaIlWgpUWWg6SwktwoUqNJC02SafLc306KVGEzhUgkMpOoRKBzUCnIrDz/JYEniyFL49autSFKlsTJcoTLDS/FyVqTDRgf20NGaMhMitKJeMRUGoco1voy1J75jbOOIfIarzWGyGqHU8Jrt5TAlXdWoUsZmvV/R9eWWnsvhkyREWMePGLsghzf8Fh/2MDEng1Dsxkrs8WmTvboWWOvz5bxPBOfqlP1a8vPG/t2dl9tskG2ZInWfS5ZyAcSc3Nz/MGfLvOP/3Pv/apl9h9/dpL/9mcrfPSjH+W5z33uOezh9xYqpqhChQoVKlR4iGJ+fh6t4Puuie/Xemo1ybWPjDh06NA56tn3JiqmaAu4MmNnXebSeCS7GZsC6+e7t3io38wTZoStRCObzHuPohgrSs1EOddtRBkJC+QGlmbdazyLazNNwDCzYxiJD/UPY5oJJ06O2IfrGK5XljohUZRP4eU2ZeFZoqBv0d0C3UmRqyUbtLKKWVp5yGqChpC1GrLlK1RTr+NqES7WuEAxSisyDpEbZJJBz++f63QxKyvnrZ9D9kgerVPftxsAvauNzENwsmQ7BCaQ2EBQGEVhDJnwt4hhVpOxkswo0lyTppoiCaCvUD2J7vk2jQ4EPQg7jrBjCFcLdCdDdhPoDXD9Pi5J/Xo36L6EUggdIOIIEYVQi/0LsPUQUw8wNY2JJUUsKeIy2y4sM+yG43KDtmdcY2RHjJHvry08S+QKgVC+jSxg5GfkvKZnnPm12rNEVvttWC1GWX5O+cw+KD/rtb5Yhc86G3NlHmF4HdohoyvWrtOx6xbGWNfNMjJPx/SO+VYNtY2j5hvYuHXZX6MsMLFunevuZ2OfT9b+rDFMJ/2WLdpuxCZszvr3Y/fGLX6yVTbaSK+0YZUj2ZUTDDNI11h24fVy5wG24sfPC6qHogoVKlSoUOEhDnMOnr7cWaV1/NtE9VC0BUzd4kI3itSwYh1rJGwZmGwRka1zFR73JZGclGEyyjgb+/1odePZHkOMGB0xYq9GLNFYlCk3RJbD7K7xKHO0f26T6EqUka1aiyzd0O+mHDne98Z73TjlvFZi6L8yZLHKPshCIFOBSgRqAEHkI22cROQS1ZM+jAdckj5kWSIZhsh9e8h3T9LZETGY9bPQ6TSkkw7TsohGTlAriIICKS3OCbK8Rpb6GkSmtwe9ooiWBPE8NI4V1A91EXcefkAZJNvvI5dXAVATNXQSIPOhtsePJ2cFzgryQo0YokEWUBhJUSjygYa+RnUltVVBuALxoqM2X+qP5nrIY4sUR4+tbZczk144Y3DGQJqc/KWQBDu3o2cmyKfrOBFQxAoblpl0NTBRub3Q66PWMTJDNqUQIy0TeH2TzNeWjRjWsWti/Hq2Y9lkIw+oIVMVuJJlLn+4wftp3ONp5NtUMlbOCEQhELlA5v6vMiXDmuGzMbO1PqvMlfo8n6E57s110nEdeV2VmqcyE264L7bMaBpn2EaMkWCNQSrfrzsmY+zTOKM02i7D5WLtvifXfrsuq4y19ifvhG930j1xjJVe81taEzyNWo4xQyezX8PPG9gsAW7jjXGMoRfWVQzO9xiqh6IKFSpUqFDhIQ57Dlieiic6PaqHoi1gQweB8xqDQpSZKuvDF2FPWrQ+qhpGVJu42K7zI9osQjrJ2prNR/QoInM4UWa2KR/xOj3GFBU+OhR6jTFyBqQcY4s2BDzjUdTIETkEEzts5DtjIwexQUWGICwIg4JIF6jS/dg5QW79gchyTZIGpAMNPY3uSoJVQV4XmCgAIYhKpkimGXR7nLcJ+7OAzTLE/CJiWxsTC5JZv7x/QcH2PUs8Ycc9XD9xK98fH2e7ap5yXbfnXT43uJhPLT6Cfz6yl/yeK2ndJZi6Paf2zSMAFPcePmd9l2EIk978rWiFZE1J0YCiDjZ2uNCitC0zJD1bBF5LVGQKM9DIniJYkUTLniGqHy+Ij/SQ9x73611YeOBi5yiimKyRbIvob5OkU5BNQNEy0DDo2LNVYVgQaIOSDusEtmS+ikJRZP5F6selzDyDKTNRskZjGp4xpsiN6ZWGWiET+nuFC/yxI7SIwKIDf+FpbX0/lEVJixqxRGCc93YaHuNh31wuMalCpoJhapqw/nodv1f4jDrPFnm/r/Us0bqM2NIN3WuexEh/NVo28krawA5tpQ8qtz9ky4WXXfl2brjNNeZmM5dvf090o/viKO2nvC9uJMiHbJCzokzlW2PI3bpMW7FeX7VuJaUmSuKZ7fFjpByUDu5OuZLdG+7g2DqGTJUVWCPOG1N0LrZTTZ+dHtVDUYUKFSpUqPAQh3HVA835QPVQtBXEWCRixjQHY5lo6/QGG7I1rHYjr5KRU22pK1jnSTTKcBmuV6zNV2+R4TbEKMISft2eLVr/A2GHQggBRakzGukWWHuNu0mPZ9ltYLHc2P4BEBt0LadRT5moJUxFA9pBQitIiGSBEm7EFPVMxEpW48SgwWK/TmelhqmF2FDilAA0wtQAiLICnaQUCwunOEkPHszKCtzyr7RvgeldOwHoPGE/84/cxieuqqEvMVwRzrFdnXo9lwZNLg2O84r2cfL9Be+7ejd/eeQ6vnPHLpqP3A/A9Lf30PzGHMWdd9+vPutdO7G7Z+nt8gZw/W2KZFp4pqVtMQ2DjA06NCjpnattee6cFdhC+rFTjqOh35DMHaIocGl6v/q3Zb93bAeguGgXyxfU6O2SDLZDNlsQTw/Y2e6yq95hW9yhrb0WqV6Kb3Kn6JqI5bzGYtpgIamz0q/R60WYUhjncgXWX9/jXkpbMUVWgSx1RJ4lEVgHFjnK1rTlD02pIRLC+VqKwnmvJwEKgxIWWepYtLJkylJohZEOoyVWO2yZEWjDNc2USsHUSu1ReV8Sdk0P44Q4idmyqtQEDjPixvVD44zJMLlsXKczrts5VQbuBp3OqA8lM+MU5b1qjZlZz8r4DQu5dpxEmfSF8zoszxT5TtpSh0XplO71Yo6h3vIk7yvK9UmwpReUk8LfN5WfHQAQyiJ1+RreY8t9tlZgjfTXgxAI/dBjsyvcd1QPRRUqVKhQocJDHOdGU1SxTadD9VBUoUKFChUqPIThAFMJrc8LHjYPRQcOHOCee+45afmrXvUq3vnOd/Lyl7+cP/uzP1v33eMf/3huueWW+7ZB66lplQifDpuByMeMCIe0Oqyl5gbggpImDsCGZXp54BCBRSgvYB2W/XBO4IwAI6EYTnP51PXhNMV4yrzf8Ljg02ED4bcXAtIitENqg1AOWYqdwW/LWr89UyhcJhGpRGZlinwGcjj7MTZ9gAMl/JSaHYlP1wSgRoJRljxUWCeQwtHQKVO6z4QeEMm1tPrUBqyENSbCNoeDCY4Ix4oT5CZEZgI9EBQNv3NBI0I1aoiV4CGbmj/EMPW89uFj7PuwN3T80o9ex0efdB3XPOYufn3f33FdFJx2PYHQvLw9x4z+DO8JnsS/BBcAYMMQE+2k3azhvn0XdrN09S2gZ2Zwu2bJtjXpzQQkU5KsLLKdt6CoO0zN4WLjx6h0WLuWdz1MybdlsVenHDZ05A0AgVVeJJ83p4in/LRccGwVe+QYtt8/435uhKzXERftY7B/goW9/jbV2wXpzoL69g6XTS/yiInjXBof40B4gp2qQ10aVHmh9Jxi2cQcMxPck82SWk1hJd00oteNsCshwaofa+GqN5vUPQgGDpVYn+Zu8IJeuZbKDmCD0jAyABMKL7YOBDYUmFCOEhIATOAoAscgcLjAIsopGaEcqrwfjGauhH+vdDl1qSU2UJjIYjNJUXgxOJTT+UNB+MgqRIxEzMMpM9/f8n4UWD89pB0o3wch1/83ObRjwAjccLo0H05NlfemoS2J4SQMpQQjk8p1ZpobbDvKaTMhy+myUuQspEUqP30mhBtNL4KfRrNWYodmooXE5hJXSFwucZkEIbyqYGirMFb4178p76HOT6EN0/Cd9NNmACq0o6LISq2VtzHWG5vmuaJwYM1p5sfPIarss/ODh81D0Ze//GWMWbsKv/GNb3DDDTfwwhe+cLTsGc94Bu9+97tHn8MwPK99rFChQoUKFSo8fPGweSjatm3bus9vectbuPjii3nyk588WhZFETt37jw3GzQCab3JoO6DToYCzKEAG7zdv48UjcVHSGHJGsUWav4hLohzgsAQaDOKeqwVZLkmzxUmFZCXEWAhkAOJSkElJUNlWJfaOhRq22GUGgmKmsPGZcc0KGUJAoNWZYHVsdTk0XZDjU0kyLJOR7kNX+JgzOzRenbLKoFKwKQ+UgV8xGQEfStGrIIsxaT+ZQnKUC0QhkgW1GROXefUgoJeVFCEGhsqTARFXEaAsUbVYmSzgVlePuPTJpRCRBEiCMBaXJafFbNyLmAHAxp/cwsX/w0MHv9IXvrMV7PjSUe48eL/yVPi08dq+/Qie2vLfKu5A4C8FZJMS6IdDeLBHrj3yLriuONQk5OI2WmKbS3S2YiVsuhr3izNDWue6QHWxP+AKCTkcs1kcWioNxS/SocQeEFso8DUBcWkINku6GUSNVDovmeKdLdO2NlJvGwJVwrCpQS53IPVDrbbO6nvo1IpUxPk25o+3X67YrANku0Wtb3nj8vsEldPHuNRzYNcE93LRUHGjGyUa/EC/WHa8lHT44RRHM8n+G5/O99e2c7hxUmyhRrhgiJahGjZ73u0bAk7Bt3Nkf0cURSjYrFOCNASF2ps4FkBG0psqEp2SK6V+FDry35AySAFfrmJ1EgsbWNLFjqILCIsr9HAoLRP3dfK4QKBdQWmkJi8TNXP/Amx2VD0jmdxhsy1BKddyQ6VCyOLjArCyBAFBXGQewZEWiQOiyAr/H8FmVEM0oAs05i0dHbMt042oRwrI4ZKl0kmQckMDRMy1Frq/ZAtF8NxVqbZj1bnpF+5YmRhoJUZ2XzAGoM5tDTIc4XJFFYqLKq0MBCj4tN+jK/dt50EEZSMvxDe6FM4ZCmaDsKCepxRDzMiVRAqg3WCzCiSIqAnQ/pWYLPzxxSdi+wzV2WwnRYPy4KwWZbx3ve+l1e84hXrqgZ/9rOfZfv27Vx22WX87M/+LHNzcw9iLytUqFChQoVzA3sOXhVOj4cNUzSOj3zkIywvL/Pyl798tOyZz3wmL3zhC9m/fz933XUX/9//9//x1Kc+la9+9atEUbTlutI0JR1LJV5d9SUQEL7Eh0pBDyDsOvTA2+mXX+MkmEiQ17wxmnFl6mvkyzzEDZ8WPFFPaEUJsSrQ0lJYSb8I6KQxnUFEkktcWclSZAI9gKDjt6sHbmTnjxvql8ooKRKY2DMAMhcUhaQoI65CsJbWCgjh58WdACktSgmstFgpSwO1Yeg2lp47NIcza++9nmitzbBcgNGaVFtWVA0tfAQKPiV6mB4NkFqNQSBxaGXQ2pJHlqImKeqCrOWf0335iSYa0GGAXV7BZmvrGYeMPKNEq4lrxthGRBFrbFCa8+UW1fO6JLXYwdxzyJeSOA9wX/oaB/5PzNxPP4b/8EP/nl+/5u8BeElrfsvftGRBTWWoUt+QK39+rBK4SK8VoDUGUashJlrYGS8USrY3GGzTDGYF6STkbYetFxBbRFluZFhWglQhMoEqmclhKjrDaFqvpYCb2GuPbN2gagVRnFOLckLlGQdjJUnJNgzSgG4/wPU1qhuguyFBt43u7yrHszcahDJzWgt/HTW8zimbcBSTObWphIumlrm0fQKAqxuHuTw6yqXBMrtUjUAMWaJyd1zOwcJfy9/Jt/G1wQV8bXUvty/NsniihToR0DghqM07aguGaNGPJ72SIHoJJCkUhc/Z1hqiEGohNgqwNU1RK5miSGJKBmhYPgPnkMbv28b6P549Eeuu16IhyRsO48CV51lGrmRyCoKS4R0e1yQNyITGlKnoIvPMh0rHtEXlPWmkear59VolcKHX+4VBQSPMqAU5YVktOrNrbEdmFMZ680h62hf6HXjGXKWUOis27JsfJybyLJGNHC4ujSzLfRPKjeojO1tq1KzA5QIxfD9mf2BLlkloiwwsOvQsVxgUozE3hLGStNCe4dIBRoJ1yqfqs6YpUvkaW+RtRWB4G7CBv6mJkjmNo5ypWp/paMBEOKBWaiMHNmAlqzGvPSvayRUiPz+PG5XQ+vzgYflQ9Cd/8ic885nPZPfu3aNlP/ETPzF6f/XVV/PYxz6W/fv383d/93c873nP23Jdv/3bv80b3/jGB7S/FSpUqFChQoWHPh52D0X33HMPN998Mx/60IdO2W7Xrl3s37+f22+//ZTtXv/61/Mrv/Iro8+rq6vs27cPFzrcUFuTe8Ym6FtkWkY+zmeH4LymoBhGH6GDmiFuZGxrd31f6h2mwh5NnSGxDEzIcl5jTloyo0iTYBQlyUJ4diqBoOcIehadOkSpZXLaR4EAwnqXtGH2mwz8HLrNJFYpcvxcPTDKcrFOjDI2bOaZAjGWUeI7UWaPhIwYsGFx2GFpg9JjkaLmy0MQ+qyaIbthEWRWMzDBKFNECkfh1rLUIlUQRzl5Q2GMIEGNtBhFrEjbNaLZkHC1jeruRPVSRJpBlsP43LiSEIa4OMBFQalPkphYYiJvfOdEVB6zBvqRO7zWZa6Du/3uLRmocwWbJsx+rc93r2zw3Uu9TohTMEUX6yZ7oiXi0EeniaBkLS1ikOEGCS4vvH4qjnATTdLtnjXp7tb0dwiSbQ47lRO2MmpRhpKOvFAMkoC86xMQVF8SrgiiZQhXHUHXoTKLsCWzURNkzbJEy4QgnRLk2iEajlYtZUejw2zcpa0TpHCkZbrTSl5jMa0z12uy2q2RdELyrkL15CjTUQyLoI4xUiaGomGhVVBvJcy0emyvdUeGjFI4Ehdw3MSkLqEuh2wkLNuAY6bNnemFANw+2MF3O9s4uDxFZ6GBPhEQz0O84KjPG8KlDL3stU2in0KaecanXsfVImwrIm9HZBOatC3IW4LckwOYGqPSGMKVjE3m9XYq8deuSn3fVOb898b5MF14fZEoS3a4wBHWvOhlojFgut5nMkyIVY51gr4JWUxqLLo6WaIRZWkS3ZWEKxB0QfcdOvVMrlVeZzjOuuZtSV4IUiDQBhtmaGFHTFExls2V5pqsHyBWA4IVv42w4+9FeuCQxVrh1uEYyZvC17WNfdkf1yoIGjm1OCMO/L6pYVHkUrOUJgFmoBGJQg2EZ7yK4QXD6B5kI4eJHWnDYBoSIRyxLmiFnhGMVeHvK1aymkWspjEdHZMRYY3ApWv3NpmVbFd5L7WBoCiZIhP6kh1DzVItyJmN++yrL7EzXGZS9ZE4+jZkvmhxTzDtr4tcY9z5yY4154DmqZii0+Nh91D07ne/m+3bt/OsZz3rlO0WFhY4dOgQu3btOmW7KIpOOb1WoUKFChUqPNg4F5N01UPR6fGweiiy1vLud7+bl73sZWi91vVut8uNN97I85//fHbt2sXdd9/Nr//6rzM7O8tzn/vc+7QtGRe43HuUCAfCOGRmUWkZWjiHMA5XskRQ6mu0Q4bGR9I1zxTtri2zPVylJRMMkq6JkcLSNyFLyqzzChF2vfdIWQmkLGDodQxFrYwAa4KiAXm91CnUnPdGCr1+BMCU/jIYn41hjYRCQuY9ikavfCzDTZRZdCFrZUuCoV7KR24uLhvHhrDmo8JmlNGOEtpBSl2nhNJHcXlpVmKtIHeK1GqsE4TK0AgzXAMGypLFAYMJ3zYdSHoDiR5o1ECjkxjdbxEMHLpv0X2D7pdR6KBAJBkiyRHdBDlvCZSCMMDWQ4pmSN72PkFZW9HfLlk9oDBBBMyiMohWHM17c+Kv3UMxd+I+jZlTQS/2kFmNWJ5ZVNmSyahQqO4J4kVLdHSV4s57GBbJdUWOncvQjTqy8EyRkwIbga1ZgkbORH1ALcy9TqQs1SF7pT/PsqB2Aupzhng+Q6+kyMSzZi4KyCdj9IxnlZxSFHXIy2g6UMZnEKqcQFqM88wgwGoWs9BvsNKpUaxE6FVF0BWo/lo25RBOl6UwHGP1I/y47Wchc4MmRal5Wcwb3Blsp6kSIpkTCO9LlDtFYgNWTY2FzNM580mTE/0mgyTwmZ1DvY0WFJFE1TTCxADIUIOr45TCNAKyCU0y7UugJDOQzxQEUylTLe+7tK3epRlkSGFJTMBCUmeh26C7EiNWAsIlz8ABBF2BTkpd3lgpDas9q6zq+Wi9+9tLXNiYZ3u4Sixycqc5nre5S8zSTSOskai+v56jRajPOWonCsKlDNVLwVpQCtOMSKdDBrP+uPWNwAYS0xAoZZkIE3bVVmkHnoFbzeOR9rCbRp4dzwRBF6IlPLO2nKO7GRTWG5cBphGSTQQ4qShqZZHZuqE+kbBzYpWd9Q5Tod+3QBgGJmQha3C83+SEa2L6GpUIwhVB2AFVJiWqbIzJqXsmKp0UFA7SwNCu+XsMwPaoQ0P7970iYi5tcThoMycgKwR2oEfMljSgE4dOnGfVtCizaMsSKnWBK8vaKGlpBQk7w2UujY6zTa0Si4LEaY4VE9RlhnWSQR5S8MCUt9kIs7Ei731A9VB0ejysHopuvvlmDh48yCte8Yp1y5VSfP3rX+fP//zPWV5eZteuXVx//fW8//3vp9VqPUi9rVChQoUKFe4/HN5HtMIDj4fVQ9EP//APb+qzUKvV+MQnPnFOt6WjApv4aGItw4SRfwnWV0YUhWeMxLCQK97sOVCGWHlWoKlSWjKhpRKMk1gniWThs7TE5iN9WHjVhMIXLCzfmwjyeqm7aUDegKLpfKZJrUBFBh2sZWcMC3oaIymKkiVKJTKVyKG+o/TyGOmK3JjnSOA1RLZmR95LYT2nWfPRUTtKmIgS2kFCQ6eeORAGKbwv0pAZAhiYgH4R0S8CEqNJjcZY6bNJ6ikmXtP2OCcwVnp2yUoGmcKmCvoK3VGEK4p40bMY9ROG2jGFPrKIOXzsJAdsCQwnSBu7d5FfvJOVi2I6+wWDvQUTOzpMt1ep65zltMah+Uchb/fMy44vF8T/85/OevxsRHHb7Uzcvo2PP/JKAH5h6v8wJeubtv1qlvG+w4+j/60p34d/NbQ/fxfF8U0sJpyluPNuwrrfw2g6IEnkKMNMCJA4DFAYhc0VOhmyGBCtWOKFnOBED7HS8doaJRGtJqoWnOykHtiRl07hJCt5jYW0yXIWc7zrA5CV5ToshoRLkvqSZ+GCrvV6JeezoYpa6XPVkLim16M4iXdbLq+JvFAsJzV6md+3I7KNEA4tvOOzll4Xo6VFj3nuDNEIU0xL0JGOVEfYUGMigYklRT0g6JZM3KDUUQWCvCFJJyXJDAx2WPTOAY/YcYLHTB7i2sZdAFwRzjEtHUoIFo3jjmKar/Qu4qvLF3Db3HZSVUeU7JbKgARkNsaChWv6GRVYpmolU9RY5IraUfYFCzRkSs9GtNQsvSLiXj0BVqD7fv/CFagfL4gPryKOL2BXuzhjkI06emYKJyfJWvHo5NnIUWulXDy1wGMmDnJJdJxp5ZnsY8UE34nWZAb9JKRYDhBGEAwc4UpOMNdFrHYhyyDwrKtsN4EmeUOCE7jAoRsFuydXuHryKJfXj7FTL/v9FI5lU+eudBta7KKTRCTEninqQG3eES35g6L7BpzDhoq8pRhM+4K9LtAUDY0UjonA00r74kV2BCsEwtC3IUfCKUJZUBjF8YHGRArkWhaaSh26Z7w2SglkIUHIkpWSFKXvUFZojBPEIqclB2xTCQ0BmcsJhCVxIfNRk2Nxi8KcH6aowvnBw+qhqEKFChUqVPi3iHMzfXb/1/G9juqhaAsEgSWJLDaUpQdH6Uw75n0DeH+S0vlZ5iAKgcm9t0jfeCZjYENyp0faGoPA4jM+rCtrDdm12mdrtYzKTZSeGjbwjs9FmfmVN6BoOUyzQDcK4pp3YB261Vq35lSb5JpEBGR2zT1bOL8dmY/VOhtuU5VdCgDpfDZaZAnrXqcy2/Auw9vjLtuiLm01oKUSAlFgkKQ2oGNi0kLTK3ykv5zVWM0iellEWijyQuGc16hoZYmDgkaZVdIOUybDAZNBn6ZKR9qkxazB4f4EB5enWJjzfj39ezXtVp1JYxHHTpyyVlpx5CjiyFFm/qVJ40mP4LgJGEyEXLbnBC+Y/jKPCgcEQvKvj/fn6k+f/u+4+Ucex76PC+KPfunsBtEGzPzhF+ifeDwA1z79P3L9o2/lRbNf4tJgiQUb8Q+9y/ngoe9j7uvb2f4Vx6Wf/o7v84l5ilOtGOCQr78W7WqhByEy9/qxcWLVOcpifevPP84hnPO00jCTrxZSNAPPAlCOtUaZWRnmBNKQGUW/CFga1FlYbZAveGYiOqGozUF9zhIv5uiVDJnmIASmHpJNhuQNPVpvOg3ZjEFOZky0BrTilEj5Pc6tIsk9M9FPIp/tYzyDKKWvHxZHOe04YSJMmAw9g7At8mMms5qViRpHJ1ucWG0yaNUwNc8YRWGprep43Y/z8hJ/rKSv8xaGBdvjLlfUjnBd7I/xHrU2JT8jYVYtk9hD3JtMcaeeIbM+E82v21GbL9C9AuGgqClk4T208pa/Vwwzv2oyY0Z32ak7tIShIzM6NqahU8/8Wu9gDaU2ppcjVnvYldVRBqXLc4SUmFiPss+yKZDbEq7ccZynzXyLH6zfzmU6JBD+HMyZg0wqz1Z1TcSxbosTYc1n1xmHTAyi08MuLmGTFFmWT5LOoeohKg299lHhj1ety6W141wTHWKP9veJQMCi0QTCsJTXORhOslxmVeo+REsF8Zw/d3J14A2EwgA9WUfYGBMpiqYgyxS5UcjyBtlUCdv0Kg2RkTi/P0tFnWNRi/mwgVXOu5JD6dLvUKlF5qZk/9Uoi04PoOj7MdEZRCxndeaLFsumzqQcoEo9oMISiIK6yqjrnFyf9uo8J6g0RecH1UNRhQoVKlSo8BDH8OH5/qB6KDo9qoeiLRCHOUlsyJuq9FYRXidQzk/L1I70RcI4dOrQA0HQFaSRZiWqcayMIMJSQDAT+EgptQFmwwAfSouG2WcqcwR9H9WIwme5mdS7v4rhbwVlBW+F0Y5cKzKl0MoS4Hxto7L+0bDiNAIyhumdqhQvjbEGwz4MNUbOb8hJMFpRBIo01GRldWjrBFoYWiphQvVH2VV9GyKFJXeK1TI9r7DS1w1KQ19bKZeeJRO+7pNzgnB0zAw7olUuqx3jonCOParDRJlIt2Lhtnw7X+xeAsDn9l/M4V3bSKZbbKtdifrHfz2tY7Xpdgk+8WX2H7yM44uz/K/uo1i8ss6Pb/syj4mOs7M0+f3Bie9w20Xbmb9mFwe+foDizrtPO3ZOhfqHPNt06Yfg6MQE//XSF2GaAWpQoO6dp3n4Dprc4Y/XWazX9nykL4Y+MtIhlfVjQRmEcISBYaAtthwTJhSeeaxrVDNGARQGFweYdo28qcmbpX6tDia26Kgg0qb0nJJ0soiVfkzWCQmX/EGLFzxLVJvLCBb7iIHXKdlmTD4R0t+p6e7x6x3sNjR2d7lm2xxXNI9xQbRASyUkNmC+aHF3MsM9Xe8Jc7gzQZ5pzEBDLjBAHlqKuvQ6kzChVWZU7YsX2aY7BMLQMTEHGzPcXtvOd9Q2eraBzDSBJzEQFlRikZnF9QQy1zjpK9T3mjUOtiY52JjlWDRkitYf+0VrOZJPcbg/QWe5RrwgqR/3x7h5KCOc6yA6/vzoVh2ZtyiikKwtGCSaQeGZsKH2TuF8gld5Tyicd5l2YwzysGYXWiNqNaSQiDhCzEyR75qgtyugX1pi5TszLt6+wOMn7+JJte9yVbBeyzYhIxrSM7TDOoUMWeQCZFZAlmGTFJwd1RIUgwSRFcjCu/8Pc8a1sNRlxqRKmJZ+nyKhUaRsU6u0dUKkCu+dNmRvMovol5rCbg+XpogoQilB0NAEfe9xRSIZ5MGIfe6amJ6NQEJiAxIbkFpNbpTPJHNrdeHEyAxu6GrtXchl7lCpQ/UFqudvMoNOxL3xxEgX2rE1tulVAgyJC+iYGrlVhNIg5Plxx69wflA9FFWoUKFChQoPcVSaovOD6qFoCzSDlLSVMrCChMA7O4eSIiqzP7rSszjGu7wGvWFFcT9PndkaR4tyTr9QJCagXwuY0n0CaVDCEaucepARRAVp6KNFp0rNUgE6sQSrOXJQIKzFaa8VKEo9RtZWpG1J1pbkbe/Fs9yI6dRzgrggCgoC7aMYX2vMEoe511pojQ0tNlDYRGL73kkb1tfAWrPV8WZJRgT0lCMqGZ1mkDEdBhBAQ6ZMqh6xKDAIejZiWvVolQKLmsrRZVbcKjGJDXDWa6pMrkilo6t8BLgaZHRNROY0scjZpTRN6TUr2xVcGvR5dv1rANw29UX+ds8j+fCFj+LOC7cxfcnj2XbLPOab3znteTbf+g47jhynde/l/POdV/L5Sy5h2/YVmpE/GIv9OisHJ5g94nAnFs5uEJ1u2ysr8JWvI/GkwP1RJqid2wHoTQfkTZ8tOKyhpUt9mZIWqR0mLJmimiBvCM+G5qGPoHODUwobSD+e1zGYXqdUWEluvDO5G2c8x/Q4NhCYWCFbMTQiTE2TTgd0d0l6e4EDnqa5bu9hnjn7dZ5av4ML9Hr7jDuKO/lCcGDkU7QwaLBqgUQiE+kz2QJJ4QR9bUnqGlV2uCUTdugV2jKhp8ORT85cvUkvruHG2B6ZO3S/QPW8q7XMQ5wMKSJJ3go40pzg1sYudgQrAITczd6y+vtx4/hycoAvr17IHfOzqBMhtTloHPNnMzq6ipubx/YGiDBACIGcqjMkF4RglIEqhcM4QeIUWFg2MSeKNgtZnW4aIjI50v05ASZSqFYdKSVCCGw9It1Wp78zoLdbkGz311prus/exgqzuuOdx11OJPz9ZtUOuDUP+OfBAQC+3dnB4mrDu4+npXbSOVAKGWhsliG0/60IA5yUY+Oj9JcyIR0b07EhiUxGxzkrmZpAlNmx0o28o6wSoEsqWEqEUoyKpZXrljmITNJPQuYSrye8O5gZ1VdMnOZYOsHh/iRLgxomVaixi8pqgYmFz8IsvZZcIHHKs+Uq955gADYMOCHapIVmMa1zV22WHdEqTZUSyILUBiM2XI4LQB9AmHNQv72aPjs9qoeiChUqVKhQ4SGOc6Ep4lys43sc1UPRFpiuDYj0CgthQSeuMaiH5A1FMfQIWhFEq4KgZ0s9QoFOJEFXEvQkSU+S9n2a2IlUk+QB2aTCNgTbQp+tpWtmFCUeLp2ns1wiM4lOvCeJVgJhLWKQI61FdiS6409b0AkJVwKyCUXWkmQtQd7SFA1FWnekjQIZ+dAyiAq08v4yYVAgpaUIFHmgKSLl64WV/jUqFZ4tMnjPonENhRU4I8jHKmsH0lKXKdv0Kvt0h2kpiYXCuAFdN8+JUn90sDbFPfVZ7ki2c2QwyfF+k04WkWQB1vostOHxyIxiJa9xNJtkRnWZkYe5dItA6YqgwRXTd/Azk1/nowcO8P5HPpbbHreH9q3fz7Z/TdD/dBu239/yXJuVFeKPfZX991xG78I2ve3bWChlF7KA3XOW9rcWMZ3OGY6e8wu9ayf9R+0BoLNXkrcdaEdhFKtJzCALfBZXGmDytYNola85ljcEKlOIIkAxdG836J4kKplRX0NOkgYhq8r7BDXCDCUttSgna2jyyZI1MAonBHktQCca4bz7ejINg50OfUGPx++9B4AXbPsKz673gZNNVi/WTQ4FC7SDfcBa/SxhvBPxUPNmUkmeK7pZxGrh2cSOjenbCCUsudMYJIZhbSvnsyvLu58NBCZSCBN47VykMJHAaTzx6wSJCThR+D4eLKbouS6509ydz/KVzoV8e2k7g8Ua9WVB2HGoQUlRGIsIAkRbQaOB2d5msD2iPyvIZiy1yQF7Gp6Bmg06xDIncZqOjTmYT3N7spO7O9N0Vmsj9gYoWTJBMRkj2hE2lGRtzWBGMdgGyQ6LmvGNZxo9aipjxdS5LdvBscJfC8u2zpH8Ar7d38m3VzzTeGhxCrMQEXe9y71TAtMIEZNtZKCReQGqvPabdUwzwkSyzFQTFJliMalxOJ1ip54hEN4dflJm9K2m7yIs3s1eBhYTu7J+mkJP+HOnnUOkBU4rbDPG1BU2YMRcFplise8v0FBOsZLX0KW7+GJaY6HfoNutQSpL/ynf3bwOCEkRC2Shylp0ZWavFj4TrjccfZIiC1ntaTorNQ42ppioJ0zEg1FtukAaXz9OVJqi7yXcfz6uQoUKFSpUqPCAweE1Rff3dV+mz971rndx4YUXEscx1157LZ/73OfO6Hef//zn0Vrz6Ec/+j5s9cFDxRRtge1RB1nP2V7rMt9oMNdsstqoM6h5jw4TSpz0UasaOIJOjsgtkRLECwHxdEC/6585+0lAp2hySDjqOmcm6DEbdmjIlL3hIrviFb4d+1SR70azrEZNbKQpaoq8IYlWNLpvkZmPSIa6o2El+OGcuCx8lW7vvyEwVmNLZiDNJUVoUcEaO4UAqS0uFFixtl4blTWBhlPlEmzg652JekGjmTJT9yHVtrjLznCZfeECB/QqB8Z1IQKaMMrkuiZMmItu457aXdzR3M492QzH0gnmsyb9IiQzatS3WBWEsiC1vtbQbTLHcIKLdTTyV9mIKVnn5e05Xt7+GJ/fb/no467l5nsvY+XOR9K60+/b5B0F9TuW4dARTLc7+q0zBvftu2iemKTZbuLCchvOITp9zL1Hzm4AnQeoyUnyR17IwoGYwaxndLK2/06uavKuYlnWYVhbz/loXmZrFLotK6rnmURmCpkZRJqjsgKZFqjSTVoUIcJKQJHKiK62hMrQjhJqOqcW5CyGPnofxDFFIyDrlA7MFmwEWdthp3NmWj321JYB2KlW8GZYW+wjjkh4YVusc3RoyCOLtYAROO1wpb6nMJLV3LMNx9IJAOoyI3eK+bzFUlYnKzRCOUzNkU2siaCyZoAsAqz2zFk2Cck2i9yesGdqmd3xCq1SH5M7xQnTZqFocttgF9/tzjK/0kB1lb/+HJjYD/pipomYqGNjRTYZ0t+u6O0SDPYY2ntWuWb7Ub6vfRCAy6OjtERC7jSHiyluG+zmWys7OLw4iVuIiJfFKGNO5mXdxabGBIK8KUkmBek0pDMWMZMyOeEbt8IU6yRHswnm8yYGSa+ImM8azCcNTvSadDqe1TadADWQfh8iSCYlVsUEzQA9aK75s0HpHaTI6wKryjqNmWIlqXE4mWQ2mB3pbWZUF+MkqyYmt8prHENDHjuKuiBrS69rw9+HZG69f1BDk0wq8qbwrufKZ6ylpf/aYlKnk3n2Kcl9ZmsyCMsMRYlTjHzdbABF018DwpxcYxIHZRk1VO7r1plYUdQUSTNk0Kyx0GzQbg6YrvWZjga0ggR3nrLPjDsXmqKzmz57//vfz2te8xre9a538aQnPYk//MM/5JnPfCa33norF1xwwZa/W1lZ4aUvfSlPe9rTOH78+P3t9nlFxRRVqFChQoUKD3FY5P1+nS1T9Du/8zv8zM/8DK985St5xCMewTve8Q727dvHf/tv/+2Uv/v5n/95fuqnfoonPvGJ932HHyRUTNEWaOmEqXhA7hTbow7T0QQHw0nmAs+EpCJGWIlKvYZIGIta6UOaorQmWK4TdH39LJkHIDSrYYPj9QEXNuaZVH326QXC0HBRNMeucBmAmajHN+OdHKtNUDRD0klJ0NWj6uJO+JpkMKy0XdYmC0o2JwCrvabEaYsoo2ghHc4yqu3jSm0QRkIhEMWYq7YAEzlQDhdYRGDRcUG9ltGuJWyr9dhV8zqIA/FC6SO0wqzcOuIfYrtqMqssO9RBDgQnOBZNsGia3vfDqXVpp4EwxCInljk9G3FHPsOC6TOjemxTMCMbW27nSbHkSfG/cPfM/+Zzl13IZ5cvB+Crx/Zx8PAUtSOz1I9C81hBNJ+glvvQG/jaTvNLo0r0WIfNstP6Hp0vyFqN4nGPYPmSmMF2X//OybUsQZVAtCTQw4r0Za0xE3kndFPz4wUozzNkTRBWeqYx18gkR/RzRD8lyEptjHU4FfkMzIYib2lkyzEZJkwEA/K6ZLHmz8fRWpuFWoO0HpL3lGempMPGDqEsxkqWcx++353Psl8fZrtqnrSvXZtgqNHUnqHZXuvSnwhZUpYs0VgjvRt6YImiHCGgW7INRwaTrBYxgbDkTtIvIhbTGsYJz1C0C5JSG5NNlONf+Mr1tl6g2jmzE10umFjm4sYJLogWmC4FJ4kLWS7q3J3M8u3ODg4uTVGsRIRdX9PMasjapWN3U2FDQdaUXlO1w8GOAQd2LPKo6cM8pnkPFwW+pl1bpmQojhST3JPN8J3uDu5emiabrxEtScIVCHr+elapKzPQhvXaSpZo2sJ0RnvCsxngM2lzJ1nMG6RG0y0iVrOI1SSml4akSYhJSzrX+WNQNPFMVF2QTgh0ItEDjcrcWEbq8L5T5qbmwEDS7UccidtMBDMjpijRAaEwdKy/zmWpH3TaYSK8rqgxjNE1onC+Fl1TkU4IshbkTQc1iw5NqQ2D3CiyQpEZRZIF5InGZgqykvUO3ciXC7GmMx5mU8pUoBNQA/zfoWarHPZOQxFD0ZNkA0meC1acr+VW1zlTocE+zDRFRVGwurq6blkURURRtG5ZlmV89atf5XWve9265T/8wz/MF77whS3X/+53v5s77riD9773vfzmb/7muev4eULFFFWoUKFChQoPcZwrTdEnP/lJJiYm1r1++7d/+6Ttzc/PY4xhx44d65bv2LGDY8eObdrH22+/nde97nW8733vQ+uHJ+fy8Oz1eUAgDLE01EVKLPOR1mXoyzJnBamJkZlAJ4qgE6BWBCQpLusiBwlx6eTsdJuipslbAQuTDRYnGr4CsyyYlJl33dU+cj4cTNEMU4KoIIsCTOyj/WEVcRuCiYc+MxbqBhUZgrCgVvoSBdKuy+QCMFaW0ZQmTQNfcX6gUAOJTNeqdoOPdE3ssDWHjAy1Zsp0s8+Oepcd8Srbww6z2mdibdMdJlWfQFhSvIbodDDOogQ0RM6M6nk33cB7KcVD/YgsiMtwzTpB4jQ9F7JomxwqZkjsGisViIKGTJlRPaZVnxlpmZABkQjYo2r8aOMgj4m9buO26R18df+F/MvSXu44PsvSsRq1o03qxxvUjxdEiylquY/o+TpMZBlCKUQcgbG4LMMOBmcxku4/9AV76Vy7h6XLFL19Bj2bUK8tgZHk3QgxHxEt+HHZOmxpHkzQx1dgtcyWazUx29r0d9Xo71AkM36x9zNymFjgAnBSIoxGZhEiKxADg0j9OVD9Aj0IkHnplSOgHmRsjzrsjpdQOOZDf/brOkMKx7xokKsQN/CZPk47hPDO5islU3Qkn+J2vUQsBrRlbd1+pxgaImN/6P2hbEsyEQxYaDZZzSMGReCdi4e13ISjXzJFgyJAirXRaEpvJWMlYVggJyy26WPCYdk3qSyNMKcVp2yr9dgRr7IzWmVW+6ywjvF6pUXT4FAyzR2dWQ4tTdKbbxAsaoKuZ+ecZOQEbgJJ3vD1x9JZQ7h9wIWzCzxq8jDX1A9xcTjHZOkmbRD0TciJosWhZJojvTb9ToTqSXTPs4CyWLumnRKYWFLUBUUd8obDNgy1Wk4j9HW5hiis8tlfRUAni+hlIUkeYKwE4ZDBUK9ocbEkbwiKTCIzgepLdN97+AR9gUpKtipnVPtRJT5zy0SKrBaxEDU4Gk1QV8N6YY5I5vRtSGo1hSuncoZyNwGurBZglUBI77ae1/y+FQ2wDYOq59TijHq4tm+Z8XUU87RkiVIFBhAOFzgI/X1YBJYgNAjpRllseT/AdhShEyM2HnxtOWmc74sROAEqApNJbCExZd3K8wdxzjRFN9xwA+9///vXLd/IEq3bsli/n865k5YBGGP4qZ/6Kd74xjdy2WWX3e++PlioHooqVKhQoUKFhzjsOXKj1lrTbrdP2252dhal1Ems0Nzc3EnsEUCn0+ErX/kK//Iv/8Iv/dIv+T5bi3MOrTU33XQTT33qU8/JPjyQqB6KtkBqNR0ToITFOIkSjlaQsKPho29jBfNWMHARwgqEDRG2RWAsYmUVshzR8YxCsBITrSiSjmDQCzmRNDnemGBGd+nYnGPFJP/cOwDAF+cOcPjeGaJ7A6aPQG3eEnQNwjrvRdKSpGURsHRSkU4qikmDa0MYFLSjhO21HjNRlyndJyopIIuga2IODyY41J3k+FKbfKBQA0GwCnqwVlfJBj7SzSYlpiYJtGEm7rO3tsS+eJHpIbuDZ2kSF3DMNEncgI7sMCuDkfv0RnRtwlFTcMy0WDANX7cIaKuEbWqVncofs10qJhLrazSlLuNg0eE7+SzH8wnuLimPubRFN48onPR1l3TOVNhjZ7TK9mCVbXqVtvTrbcsB1zbuYkewyrcau7h1egeHZ6ZIZiKSqYD6nKZ2IiRc9qyF7GeIvFQ6CeG1E1kOnS7Fifn7McI2h5qYIH/URSxdXqO73y/L9qbs3LHAIycW2B758XcsmeD2pVn6gwb144LJO32I27p1geLb313vjn1iHp3tIWzupL9NjXxbiobF1izC+ggfBDJXqCxAZjFSiJGrsAu9y/VQxxaGBZNhwrawww69ihpz9u2aiMW4Ti8NMbnyUjXnI/WoltOOvA4JoC5TQmHIOdkVWCKYlCl79BLgx9qU7rEUN5jPmyznNVbzGqtZRDeLGOQBWe61McbKEYMkhUMpi1YGJR31MEPJNcZFCF8nMJCGWBc0dcZEOKCmcoyTLBZNLIKVMo3pWNLmcG+CY8ttssWYYFETLftq7zL3jMfQAymvQzYB2aRFTmRMN/vMxj2aKkUJR89GIwYgR3GsmOR4PsFKXiMr1Kg2oBvqB0vfKCcBIShirwszoW8jyv0yVtIva6oVtvRAs4pBEZTHSZMXnmVTyq7/n8B5Z2oTKKzy9RFlLkZ+ZUNWWSUWaXwNMWF9Nq6JwNQU/UbIUlJjOfLHrKkS6k6NapNlRnlNWJkJ5u1+Sv3jkD2SpWYpBFNzUDM06ikTNV87bbhvpnzZXEKqEJlAWIFTDqssqvRqazRSmnFKrHOcE3SyiNWgRm5i7EDhBAhbuosb5+s/CocT3rPKBmBjSxwX1IKcWK27yr7nEIYh1157LZ/85Cd57nOfO1r+yU9+kuc85zkntW+323z9619ft+xd73oXn/70p/nABz7AhRde+ID3+VygeiiqUKFChQoVHuI4N2U+zo5t+pVf+RVe8pKX8NjHPpYnPvGJ/NEf/REHDx7kF37hFwB4/etfz+HDh/nzP/9zpJRcffXV636/fft24jg+aflDGdVD0RbomYhBGpM7iR2by20GniHZ3VpFK8t82KQX1HytKBXTlIJQK+j2oZwjl5lBDxxqIEgGmoWkzqFkGoUjcZpvdPbw5XtLz4fbmuz+mmXiSwcpDt57Ur9CTtbt6IsvJLlohtULpjiyb4o79+bs2rPEY7Yd4rHNuwG4NDxGQ2YstBv868QFfLF+MV8XuyiSBuGyIOg5goGPkqwSqEyUbraKwii0tDRVSksmxDIfXaCJrbFoSi2JzNimVkn0KntJNmWLUgzLNuJwMcW92TSLhc9YmtB99ocRsTgKwB518sUbiYBLg4AdaomGTEnKNLz5rMn8oMFSt76WlSQdQeQz5nY0O+xrLAOwK1phNugQyZxL6nNoaYhUwd16xp9HLbA6wEZ+/4JOgMxKbVgZncvMoJRCrqxis2zT8XO20Nu3sfqDF7NwpWSwP2dqxyKPmPAMyba4S0N5r5nlvM6Rfpt7lyYZHG9QP6RoHbQ0DvrMKHf4ZAGkDEPcdJtkKiCdhGyq3J8JXyPPGokFioEutSkSlYRo6ccAQN4KSNuCogm2bmjUUpqBHwtDNnX8OpHCeX1bXGCUQypLLc7Y1uxyafsEj2z6sX1ldJj9OmVGrh/Vq3ZAxxp6LiAbs1QPReFrZwmHdZ4NWR7UWB3EZP3Aa0pgpAMR2mdPBrHX20W68H5Hco2Zsk54tsH5CuyFlSRGs6JqxMrrCQsn6eae1VxI6ix0GmTdENlT6KSsy1W6vzsJZRF3irpnOVxs0YHfZr8IOZG1UMKyrOsjHZ0t6wX2TYjEO4avNHKyVJGVvjw2GN5TfPV3q9dYIvBZpUUhPUtXZpMq6TDWu9BnuaIoFKZQowRLxBrDNMzqcrbMRjUCkfv9UxmoxKEH/oe6bxHW4ZTAlRoglYEoylqGRjMwnq1KbEAgDLlTFE6VTF65eQvriELnvL5IeHbKZ7j5c9iIMibChFB59icpNIM89KygkYhMoBKfZmYjwAmU9itvRBk7Gx0mwz7WSRbTOs4JFvsBVqu1vrCmLbLas195E/IJQziRsq3dZVe9w0Q4KLPoOC84J5qis9RB/cRP/AQLCwu86U1v4ujRo1x99dV87GMfY/9+T2MfPXqUgwcP3u9+PZRQPRRVqFChQoUKD2E4vE/RuVjP2eJVr3oVr3rVqzb97j3vec8pf3vjjTdy44033oetPnioHoq2QKeI6A/adPOw1BRZmkE2Yoqmox7tIGEyHnBvNEknbOKUxomIloBgQSHyNf8KWTgfRWU+Gl0tYo5mExxP23zt+G74to+Ud30+J/z7L59VxfTijrvQd9zFNDAN6L17WHjqBXzsulnuuWYagJfu/iJPrR/h0aHh0dE32B/OE8pr+VJ2gLxbI+wIRMdfMjqzWC1RA4HIBdYKJI5IFiUrIOiXWqAVUx9l5bRUggot21WXugw36yozskGuuxwzKblTLGYNeibkuGzRLWJMGcnE4hBXBJsPz7as8ZTYsVP9KwA79CotfSG3qp0cc22yrsL1NNlqQBpGrNZrnJjwx3f/RIOLm/PsCZeYUH0OxJ4pSI3m3lSRDSJUVtZGwmfFyNxHwzYQvkaShbAdEkuB/fZ3z+JMbY3uEy/ixKMkxUUDds+uMhkPSIzf/28t7WC5X2PQC7G9ANlVBB1BawWiZUfQs9jQ91fv2oFerePSDBEGMDVBtqtNd29Ed49gsMvipj27FddzpLSkSVim//i++GriEicDbDimX5sQZG2HqHtNhRKOxAYsFk1yp5jLvXhzKauTlMyGVgatDLUoZ7be48LmAo9oHOXS0DNa+3SPiZJRtFi6NuWENRwr6pwwsyMPK4COiVk1NVbzmIWswYlBg4Vug34nwnUD5EASjLl1u8Bhal5boqSlEWa0o2SUlTXsYy8P6WUhaaExVo5YrlqQ0wxTYlV4tsgOs9XW/LycciM2AUrPMO39oMAzRUXdQWQR0pFbyXIaI8UEXRPS1i2apTnO8PqSwjEd9sjqPktrDkhlhFN6xBSpgdf2uLJ+ndWl23PJ+Fi3Vp8wt14jlOaaIlPYXOFKXzLhSu+eEVNUHjvjr32ZSFRS1kLM15gU8D5GOIEJPEs09Etzen0/AAqnyMuXcWWdQ+kolCu1Umt6KZAgPNtmSh82F1mCoKAZpjSD1NccK6Gk9dmNRqDy0rHdecZO2DUWrBGmbIu67I6XAagpf39fDuogHMKJkQeTzIePD8I7Ydcdop2zfbLDha1FdsQdtDAMTHDefIrMOch2O9vps3+LqHyKKlSoUKFChQoVqJiiLTEwISfyJiv9GGMkUjoatZTtDV8va089YybuMBt1aeqMbwvHatFGpQo9CJGZRXVLe1TrmSJfb0f4jA/hCMoIIyvUqDpz7XCH+xt3FPceZuLPDzPz99s49FOXAvDm6ydZvuwfeEHrDmZkg2ujI9w7McPds9McW4gIlyVBv4xCU7xFrfDRVqANdZ1RV2mpC/BVvAHm8jbLuXcKngn7TOsugbDIUzxv71RNrgznWCiazOdNOkXEal5bp0kByN1hLgs0kdjcKfuKwOuRLtZHeHR8kC83L+TLExfyraUdnFhpkvUDhPVRY2H8ugsr0cIwrbvs1MskLiQQhpW8xnyzSVYLsXot08YpgZECE3tX4qzp63hhQ6ID25nYN0n4+W8C3Gf/InX15XT2KvIJi9KWlX7M/EqTbNWzbcGiJlwWtDredddn6XjdhVOC/nZfHR1AmjrC+IrnVvu6ZlkLsknIJw2ilRPVfDgspfX6kkQhBxKVlE6+wtfVK0oPHMCzRFNgmj6DLJCG1GiWijqrpkbfBCPvocW0ziD3mhYlfeZXLcip65yaylFYEufP6XET03E51hUs2xrHip0cKyaYy9osFXV6RURS6lIK5722+kXAahKzOohJVyNERxOuytLHh9G+m5p38pbKUo8zpuM+s7Efn8MMKIDUaHppSJZ5PZpUFhMKIl2ghaUdJNRUTl6OTy29K3eeK4pEYmKf7WS1P3Y2KLOlANOwUC8IazlxmCNx5FaxnMYkhaYfRKNMvHaQ0FRep4WGPFI+YywvnZojhU1LTVEBVo55l9W8R1HUzJhoDGhG6Uh3U1hJUgR0ZUjfRthCgpXexdsI5JAtKiFc+So86yKs344pNTo28MdhpLsJvFt63vQvz+qYkl3zx7hfnkPv7+PZOK0NWc2SN6SvtSiH9x9RunV7fyITO0RgCQNDrApilY+yagsniXXuM+ikW3OsdmtZbKrUj9V1zraww95wkUAYAmE4kba4N7A4PBM21EsFXePPpRZII0BCEBVMx3321JbZEax6dtS1sfLkzMkHAudGaF3hdKgeiipUqFChQoWHODYGjfcN1fTZ6VA9FG2BQaFZTSMGnRgSP8ed1ksHWHwV95ZOmNADVMPRLwK+PQhJVxskK5JwVSNLN2DhHDIrNUWmdB7WCRdEC0zoAXOzTW7b6VmP/v420dc379PZopg7wY53nACge+wJ/PYzfoRvXP01fmjym0hiVkxtVH/IBmCGhIwTmNDrJFxkaUQZbZ1QlxkSS89FzOe+BtzhwQSLaR3rBP0ioq0GdKLN9UTj2K0CdgbL3Kun6emIgfE+N33rf3s0nwJgzqx4p2qZM72F/1EgNI8ONY8Oj3Jd7S7+oXEF/9Q6wF0rM3SSCCUt03VfB2pPfZnL4mM8OjrEXu3InaUlBxzNJvhWtIMM79Sr+6W+qm991Borihqk05DNGGgYesDSNZraY78PgOlvG1q33ENxdHML/M2gd+1k5Yop0snSCbkbUhQRalXRnC/1VQsQLxl0We8qb0jStiSbgLwFRc2Nso9ww+rfYuQibUOf/SRqBTo0azqPTFMMAkRXo7sClXoNhglKXVEgyMvyctmk99qhURAFflz3Tch86rVamdWjumODIhhlPg2zmQqj6OYhRwaTpFZzb+a1bnXp9U19G7JaxCxldZazGr08JC+ZnGGkr4V3as+t8tluRnodSeY1LypZYy+wnkEBkNrriSbDAZPBgEAYlvM1D6zCSAqjsIX3NhIa4tCzAvsaS+yOVqirlH4pHAqEZTWLkMqvQ4xlcXmGymGaviOymVNrZNTDjFCb0b7kVp3kiCyFRQuzTtQwdGt2uUSlgtIeDJn5c+2iUo/TNNSnBlwwvcSFzQV2RqtEpUAmt5qFvMGxZIKj/RZLvTr9fuTrnWVypC8a3xdR6o2QvgaZrwsHorF2Dxv5CalS+xODqVvvIC18XbJu4U+CzuoMVF5mDIZYJwi0QcYFpi1IpaKIS6ZouG9l3TEbWYTyDv22ZNmHTBE6IYkCOrWYLA0wmfTMfiFGmYDDMRgqQ11lTKg+schJdEBTp54ZLPVEQa9kipZThHNATNYOUANBUXpgBcJQlymJCzBOnBOtz5ngwUjJ/7eISlNUoUKFChUqVKhAxRRticwoskxDT6G7EqzADiTLZZR0j3CE0hDUDZHI2V7rMNdqcmIqJl1SZEsaPfDUi0wLhHGo1CETQZprlHDsDpa4IjpKfXtK78qyund/N/vSx6I/+ZVzuj/Nv7qF/SvX8bG5a/nsZZews71KN4s4Pt9GdyVyzG7H6jKjJQIZ+4yPhk4JRUHqApaKBkeTCQCO9tos9usYK+nEMaEs2Bvu4aLgrlNWsT9icjqmhio1G+0goSYzJrRndFoyIXeae/JZ7sy2Y5DEImebXuWyYJ5Lg82rrD06jGmIb4zclY/qNhbBtpoXbV1Um+fR8UGuCdfqbLVkwu3xHLG+hI7xzsTRio9Eg6UUpyUuiJCTnjGkZmhP9Ziu91H7LL1LPYMwd22de59+AdHxi6gfg9a9BfV7OnDvMczi0rp+qokJuGAX3Qvb9HdIbOC9Zyg0MhGEqxCWhayDvnedLiJB1pIkU4J01jNWspV59qeM9ItEQ1+j+r5ulSg1IQaJQ5OXta78iRYwUL723VAfEnqWyGlGOhGAomVx7ZyokRHpAucE/SIgM2oUwQ/LEATSQAiq8P44ptQCLfQbLA9qHFSTI8Zk+NvCKHIryQtFYTxjo5UlDAoapTamEWTE2p+XVe2P+XIusX3lM6FY2zVZDBkzcFauY2V8FpQkG2Vnlc7RgFSOMCyYqvXZU1/hkvocO/SKH0vOs5ep1aymMVknRK8owhXP4DgFruHZOeKyz82UmUaPRpChpR1phFKjySkZL4bO2/6YRNK7Pp9IW8z1mnRWasilgGhREJTl7FTmtUtZADZw6GbO3qllHjt1kEc37uFAsDCqHdi3AcfMBHfG27k92s6hcIoTkddLenZF4fLy+BQSitKCHOG9ubTDDsUojpEwRThGYiQnPVvppMNZ71PUS8NR/cXMqJEDdGYVWZlZqUNDXhcU2mFqpVap8PXGvKbRgfa1ytJc+0zBIqRWsmBNnSHFWsX3BZoYFWATOerkkN3vFwF9E5LYYKS3CqTXPhnhEEag0pLh66WIvCAQgqitCTqCtK9ZyWK6JiJxAdb5cXW+aqCdk+yzSlR0WlQPRRUqVKhQocJDHA+WT9G/NVQPRVvAWK9ZkLlADbzewg4keTlHvkiTu6RFS8OueJWmytje6LI8XSddrdPvSVTmmaJwZS2rK+hBvxtxNGnTadQ4ECzy+PqdsMdv94PCcndjN1MXfT8zX+uhvn3wJJbhviL8+JfZZx7LiROT3LljAqcdqicJlyEYrEXZJvLZJEXTEtZz2qHPOktsQN9GHE4nOdL3njQnuk0GvRBnBXmuuEtNMxnsZ1L1+P74ONvVekZnznT5ejbBremVHE6nGJiQSBXsDJfZFyyys4zK6zIjd5JjxQSH8hmOZl6L0lQpy3GdQNzDAd3adD/36oBp1UUL66txO4EuqZBZ3eERgVrXviYirokPMREPmBOlp9TAR7VykOJCjUwDVOZQqUB0NZ2gRl4oalFOVLIXe6aWaW7PiK/2vjb9IuB4r8X84gE4fgW144LavD/IQc9nI5rY137y2YdeBzHUdZT2T6RCkkz5z9mEr7auZxJmWgNiXdDLQlZXylptywHxnD+neuC830tNkE34V9ESEK3PlnESrPIskSszmkwMRcNhmmWF8WZOrZ5Ri3K0slgEgzxASe+ro6VFlx0PA69bynRZaysLSPKANNeYQoITa27GAoS0/q/w/R3WKht6BU2ECQDTUZ+2TpDC0gsjtLQkmabXD3Ad/x/G0GcGAa4PJpZkdc1KvcZ86JlLKRyreUw382xTmvl++TpghigoaAYZk0F/pHlaMd6FHuCO1RkWTrQIjoXEc/6aFrZ0r47BakdY9x2ZafTY1ViloTNSo1nNYzouIi00RZnVOtROgRfThrIgMQHH+02Wu3VYDokWBdEShJ21+mB5TSCanpmKopydtQ4XRAscCBbYo7LRf6ErpPTcgJYa0NYJ7TAhMRrrBD3pSKWmEP6/AidAODnSGI2OpSxZmzEIKxBmLatWOG8OZAEjFZnS9EtGcKgFG7KCSaHJcg0OpHYIWeCGdd2s8C+zpnWikAz6IYuyTqAMsfLHt6FTdoZ+v5o65a4g51jQJuuEkCiEEWQlYz/Xa/LdYDtSOGaDDl0Tjxy3nSzry5WZdUjAOURuUKlFJxLZV6wMYhazBhPaa9NSq8nsA5995tw5crSuNEWnRaUpqlChQoUKFSpUoGKKTglRmvwK41ken51T+raokIWwST3ICGXBZDBge63DylTMvYOAQRIi8zL6kgKVO1TmCDqCZDHkWws72B5dSCAKZlSXbdqLBa6duZfscs3h9jQrl9ZRg0fglGdtmMyoNdNR//orNWrfDdn1hRT1ma+e0T7V7lhgsrWD7mDor8JIT1TUyjpXDZ9lZSdzppt92sEAJSwrps583uToYILFgc+8SQbhqN6UKbxeYi5t8a1kDwbJdtUZbftYMcGd2SXc0d/O0X6bxGjqOmdPfZk4yjkQzHN5mdnUljUslnvVsTIiCziaTZBaTeoCzCkinprwDEDfhHRT/37olzKpepv6Hj0h0uxvLPHteC8mVJiaP3eiqGEammRGk7W9u61MBRyPKLKYbgHdYTDbdLiZlD07l7h25hBX1o8QCMMdu7fzuR0Xc89d26GMyFUK8UpBtOIIugqVStJCeJ8XXTIOo2zAMhOn4SgmC+pTA7a1u9R0TjeL6HRqiCOlq/jdgol7CuJjfUSaYxsRg501OijyhgDlkFGZuSPACu9u7OtXAWpNU2ZqFtHwEXlcz2jGKaE2iFKnkZVaDa18/Tip1rJ8JJ49sk6QiMBrhVKFzRSuWNM1Ce2QgdeWBIEpHbCt9/FSxuuTShROkjuJRIxYB+e8/kQU/piG3XK9Bl8DC7DaM3tHpCWpa0JlGBQB3dSzvnnuM89wYK3XiBRWMjAh83mLJdHgWDrBrSs7ADhyYhJ93LNEtUV/XZtAkDeFZ/daBdsmvJ/Zhe0FdkT+GljMGqWHU0AvCSlyhVJ2pAcLlBk5NWfW1xw0ufTO0hmozCHLSvJOeA8tqz1TFGj/u46NOZRPccLk9ErX+RNFm4PpDEeTCeaTBitZzCAPyHI90m+N5lWs8JqeQnjPJytGzt0owbipkTAg8rLemfUDymookJjQeSf8kl1S0iJxZX05zSAN/XgovE5PaktQjsuh3swYSZ5qXOaz5Ewh6ZQ+b0N90kzYZzbo0JApu8Jl2jpBCcthN0lqIkSicB1/IS3YFnmhWM0jtsddpLCjzNmhhi5rlRmPU3VUP8fGATYo6+gZQZIFLGc1loI6NZVTlLXcHnisafbuD6rps9OjeiiqUKFChQoVHuKops/OD6qHoi0ghEMFhiz0Hj5O+owW5eUN6I4gi0OORy0aQUYgLDWVs6PeZWWyRqenUIPSZbiQRCu+Pk/Qg2heslBv80V1IZ0iZle0Qmr9qTjUnyIpNEJaTN1iaiBaOXt2LvHDO2/jOe1/WZc59c2n9vnd5/wQN3/58ez+jKD5ka/iivyk/QFQzSb5rgnPCA0TTCgdeKM1DUs26TDbcma2dTjQXmRb6KPepaLBsaTNiUGD3sBHobZ0exXSosOCWBfeb8iEnCja9G00iljn8jZ39We5tzfBclKjMJJaUBCrgn7Nt2nLtX2TSC7QLVI3T+KCkQP47mCJC9TJfkXjmFR9JD5aFcKNNAgHggVg899e1TzMJ1tXkLUU/e0+uhTbAgYzgv4uyHfkqHqOSTVqLqB+BNoHC6Klssp5KOnujpi7dBcff0SLxb0NLm6cYLWoMcgCVFcRz/ttte/so48ug7OEsxNAg7yhvOdL7Ly/SrHmXjzU+gxrU+XGVxpf7NYxCxGtI/6LiTtz6t85gZubByFQu3fAjthnkk0Y4pkB7bofxJlRdDo1TE+PxrYoQJQ1rHBiVDcqDLw/UaQKjJUkJiApNHlZI04rQ61k+WKdEyivK+rnIYMsIEs1ZqARiUKWDskALvaZalobGlFGHOSj/UsKTSeJWKDUAklHIM2o6ns3iRisxOhVSbgC8ZIjXi6zhzKLiSXSKKwWDKKAblhDCKgFOZlRpKXmz+QKCl+13QgYpAHLYY0j2tcnK6xiLmlyeGnSn+elkKgj0AngGLFE2SRkswXbZ1d5xNRxAK5oHKUlE1ZMneW8RmI0/SQk6wc4I7HaokuWR+Ko64yJYEBqNYnRLMc1kthiaoq8vvYfmlXeQ6qoA7H3b1rNY27r7eLOwTY6ecxc4vV88/0GnV7stTXlfoqxemc4PHsHiNRnLcq0ZIrcUG8jsMLhxNh/qg6k8WNGDbNXQxARINay+ACmY+/avZjUKEyNrB9ATyNy4b20GmbEYE7UE2pBRm4VK/0a3U6MSwNUInBJSMcKjgRe07ij1iGsFewLFtgXLNCQKQMbsJLUyDoRMhfI0qnfJiErmSRJA+YbDaKg8PXgcoWTjiIWpJPlcXARKgsxgSCZlJjYs2XOClaziOWwTmq9Tux8aIrg3PgUVeaNp0elKapQoUKFChUqVKBiiraEKx1Xs5qhaHiHVDWWoSVzkH3JoBtxLG6hpaUZpBRW+vn92FLUfRRd1AQ6laWrtSPoCopFzfGoTW4ld8XTo4rW850GvfkG0ZwmXPLuykWkOHp8J+9daXFw/zTPm/EeRo8JF9km4TnT/0zn0TG3hBcxues6Zr6REh1chCSFlo+y011tVvaF9LcJ8pbXqIgyypPG60jyZlmvabpgYrrLgYkl9tRWqKuMvgk5nrQ42muz1KuTpaVeygqE8nqARpyVVcV9tJ+Wopihj4fE0dApzSAjKQJ6NiS3ksW0xt3JDLuCHUyrgwBcrNey1urSMSn79HWExLJTrRKIUzNFV4Un2F1b5kjcRgjHntoyAI8Mt3bb3hcsoCODqUEyVeqrmtC/sODyyw7zjO23sjtY4qu9A3z0jmso5ltESzn6/3zXH7dOh5kL9hL09jCnmvyz3kt/W0hSaBZXmsTzgta9/tjoO49SHJ9DhiGiXsPqJkUD8gmHjS0iF+jSO0YPvO7L9gRZrum7GqYcZ2kSIDOBGlb3LsoBGgaIep1sR4vubk1/r6W1t8MlM/PUtQ/rj/VbdHsRMvP+N9Gyrw4+rFZu6gJT1owTAiLlWb1MKPp5SJpp0iTA5hIQrJQXhwosqqx9Za0gTzSur1E9hR74bLuhDKMoBEZAERjvDmyl97xKIvrdCNfTiHRYa8trWqwClKd1dF8QLgmiFc8SRfOeBRNZgY0DnIzJG4psQlJkCmMkRnkdzch6xwrIS28cI8hEwJKsYZ1gOYgxVrKc1Ej7pe9Y7vtjIn9gTOgdv5MdhokdHa6YnuOa5r2jMQWQuIDC+eOWZdrr8MprR5WMTStM2R512BmtYJ0kkgW9PORwPyDv+3uQDUvWQ0HRhLxtUbUCrSzdPKSbT9PLIha7ddJlz77qFY3uCWqZv39ZXdZLix02cDjlK8T78VNqisyYO3iZBOYU2MCOQmmhhtoigcvXfKEAROBo1VL2Nnw26Y64Q24lhZUcdy3oa8JF5cd1AJkD2yjZznjAvoa/Xo+Gbe40Mwy6AXIgkQUUJmSprHt4vNmi14xoiIyWzMgDxXfDHaWXltf/ldZnIKHINZkRLOSKICq8p1KqkdbrBfOGGDUWBkzodX556T9ljKSXRcwlTeo6xzpBXpwf9uVc+CFVPkWnR/VQVKFChQoVKjzEUZX5OD+oHoq2QD8PQYMMDLauyI3ESbHOB0XmAtvXLK/WcU5QC3Jf76cfQSrX10RSQKlNGlagtomm049HtZcA+p0YvayIT0DrXkttLkUOCkxd099V55Z9j+Lm/dcAEO/qMdv2ep+FTgNRSJIZWLgmQl26y0dgfuqdZNZhp3JUbLx2ohcQLHk3XpX4pKghQ1A4UNIRlvWFuibmeNLinu4Ucystkm64pkEQQGhG2pNBETA3aJGYgIWgwWQwoFUKsWKZszNcReHdwI/LJt00YmlQ51a7k14RsWg8Q/To+CD7dAcJnLARHRvTsxEKy7Ktcbo8igO6xZX1I8y1WlgnuST2Gg95ihtL4kLyRBMlaxFvUYfpPSv8xwtu5hk1z7C8sPmvXBzP8dsrz6J/Z8TEGPvkllYIujuRhXd6rqvM1+ySFiwjx1zX9xoLEUUUM3V6OyX93Ra5PSGQjnw5Qi2UdfYWvD+NVZD0BX00WWAJ2oYwKhi0DOmUv5T7OwJkPo2ablG0Qjr7Q7r7QO/uc9nsCS5sLIwqlh9xbYpUE/YEYQeiZYvKHXldYCKJSgTGrN1EY+X9exKj6avQszoDjep4F+6RUbZ25JHDBc7rVnKJGgiCjiDo+iyx4b25qAnSqYAslywbSRTlWCtJuiFyOSBakIRDF+fUZ3KayGcK2cDrrfSgzA7tG2TfnyMxyBCFRTcDZKZGjt1KWUJdII1iSCDgBBQCmUtc4XBOMwCslQwif6wGqdcAgdcb2kCMfImKGuSTFjWZsa3ZZVe8wqTya49lTmIDUhswMN4B3BZyVD8M4fVaAO0wYWe0wv5woaypJTlea3Oi3iSNQ4pYjLRYI2a3URDFGbVSi9XPQ5Z7NdKVCL3kx0S4Igh6nt12otQQ1hhlkVnGNF7SayiFFVj8vcopsKHDRhZqBqH9xeGswAwUCIWwa3XZ/DhwxEHObOTvT/uiBVIbMJ81sVaiepJo0bvHe28nhZnxnWgHKZfVj9NUCXcG21lM6vRVHZV6Py+VCgZBWQFgss3cRJteHNIiQ7LmoC1Sie5D0B3uGzghsKHCaIcz3g+J/pqr+/A4DI+1iTwjZ+oOlMMWktV+TGElofKZmEVvLSP4gcS5KAhbEUWnR6UpqlChQoUKFSpUoGKKKlSoUKFChYc8TuXNdqaops9Oj+qhaAus9GJkaeDnAouNBMZ5+n4cIheYgWbF1ekoi8klthegV9VI4CdKWtaXzxAUsaejhfYlEpR0iFLVGMQFeV1TNNTITFEt91CH+4R3a9rfaZPs9lNM3Z0tlidbJRUOzbRMjXWQTngDxmKXn07Ytm2FvW0verx3dYK5/iTBqqBx2BEvW6yCwayfwuvagKWwweFoAuskhZMc6baZW2phVkLkQK2l84cWB+TS0TGSTi/mSPmd1pZWLWF3yxds3FNfZibo0dYDukHIfFJnkAYk/ZAlGhxbaXPvlC80e/fULFfVD7NNd8ic4ng+4Ut9uIAVU6clv8W1pxBNA1wUznFbvIteERGJzW0KxvHN/h7UiZDGUUfQKw3kYkWaa/aoFWDNLuBnJ47yt5cc4s4LL6J1505/nooCMTNFMqNJZwyP3nac66duo2NjjvZbHG01KBrllEazgSwKxI5t9PbE9PZAvLfL3qllulnE0W44mo6IFy3xfI4NJTbQJLMCFVimGn0iVXBMWXqpL3miEgkiIugFFDVfPLZoWmrap8gv5zVWMr8fK0kNEuWnhMvpwqGWU1i/zI2VewiVoRUkxErRLwKEcIhUEqwIwmVGYm+rBUXdC1RNrSzdUfhSOeEqxEsGnfpBUkSCwYyinyiSIqbfVkhlIfWFmKMVxkqj+HGatSTpZGl0KUvhcAA2GLs2C4PICkTh/BSQBFmWDWkEGT1CX1YEwPipMzUQgJ8ytEAqvJkjwqftu7GpRC86Lt9rPz2uSlPLrolYNt7cVGJJXUDHxGRG++KkY0VVx+czJI5AGAJREAgIyulrZ73J6vA19gNQjjAw1HROKM1IgJ8EFhuViROxn9ocXgKuNOj000mlMWPgRt1xRuC08Kn5eTllJ/y2ZGiIYr8iIRxpGGBEiMg1YT60LREUqSLJg5E4uCFT/ypz92Xqxf3xkvX3xLpgUE7J13XGhdHcyPj169Eujjo/TRotDy1E/L1qZbbGiazFsqkTi5wTps3hwSTLq3WCZUW0AmpQjsuwtB2xfkedFbhCojI/NlXi+z+E1X6acXi/dhIoJEkvJEs0QjmkdNj+A//fqOPcTJ9VOD2qh6IKFSpUqFDhIY6KKTo/qB6KtkDWiVDDUNCKUUQ6Htk57XykZQUmkxgUJBLVVWuCUnx0Z0KBDX2Kd94GU7eIwCKlRQlLVIoXg6ahqw39ekw2EdCfrdE4HlGbL9C9wgu1c982XrY+TVf7YowqA2EcVguYFGTOC8UBZhs9dtVWGJiAu+w0elnTOuiY/tdlOHgUEWga+3cBIPMmS1HE0WiCrNAYK1hcaWLnI8JlicrWouSiITHaYaXCJhr6PsLXpcnlYrPJiVnP/ty7fYKLJhaZCvv0i4huGjHoRsilAJkKsijkzrJ4o7HSR97xMWKZ07cRC3mD40mbu8QM83mTfNKXNnlCtPkwbsh0VLTx3twX8+zaIzTl5un831jdTXxc0L6zh17ql+duinv3t/js5ZdzTXhwXftLWif+/+z9ebB1+UHXjX5+wxr3fMZn6n66OwnppBMgQEiIBnxViFwEFUtTaAkK1lVBvBiGkqIs8lKQ4ESF+4eWWl6QW6/I6/vClcECgkIAUSGBEJLuJD083f1MZz57XtNvuH/81t6nnwwmHTpNEve36tTznH3WWfu313TW77u+Ax8aPEQzCutLhn3cIKfuS+So4AsHz/LG/CnObMLv9q5zs3sJk7azvSRB5jmul1L1JWZouW8w5Uo+5Q79dj+ERVXlkI3FRSIIfLuOYX/JS/qnJNLgvOBGN7A/Jo8xiQgVF96jakE0lSxOcx5z+3SyCtMKhueLFFyopqiGoQxTNoAEG7WGgDosW1ZBJKyFpRNVlEnEYdSj8kH8mp15onk4Ll0kKLckLg7VJy5zOC1RrbU+nlri45ZGlRDNc5AxNpM0XYGIPcQunG8OdNGeG1MTQgQjQd1aqF0cmA9dCmwq8XoVvufAOoTzrbjYoxNLPynpRjW1VaHeAqARyFKsg1mFEzRK4rSioRVWG4lorfjPtayvWChVCewy4nTR4WY8ImkphyqOkMLRtBkEsi29DYMC3yiWZWA8x3XGSdOjJ8NAzpsO52UIOowWkmh+wWQIG1iMddyF8MTK4mjophWNUbQfhzpRNFUotxaNWIvO18SDAPSK3m33YS1bAXUwlAgn8EriEgUtU5QlDZG2zKzAlhK3lERlOB7MVDFeZIybwJhZL+mpkmG0JI4MBaG2JFpYpJGoQq2F7Ik07KkZV/ScIzsNRcN1+PzpucPFgqYXPveijJiZhJnLUNZzo9rlickO7iilewj5oVtvs2ogqHtt2Kz2COXxJuxPVbUxK+2yTl2E2rrM4RMXlrcCUUucDdccKz2ueHHkyy+I0HqjtP6E+Kzh49761rcihLjn69KlS+ufe+9561vfypUrV8iyjD/xJ/4EH/jAB/4IR7zBBhtssMEGG3w24bOKKXrkkUf4lV/5lfX3Sl0U8f3jf/yP+ZEf+RF+/Md/nM/7vM/jB3/wB/nKr/xKPvShD9Hr9Z73e6mFInjygyZB2nuf53vVBp8lDhlbpPY4I/Bt6Ndzlw16hxAA1vTAdEO4o3eCsohpGr2O+s/Tmu3eAtmfU16KGD+UMT1Pic4jolkcylvFxXq9CrNGvRDEU0imHl06EJKmI2jmgXkZlxmLNKG0EUUVEU8EvZsl9n2PXXzmIswtO/uvZH6/pqpD1ULdKMxCk4yDjVbatl4A1vH3Ujt8EyoCknNIz8JMsOkIlsswEz71fSSeZSdiaSKmRYqYRMSnEl0EzVUpw7Jn/Zy5iYmEZaiWlC4iEiGgblJmnBY5hW0LPbd+hzd+nCxHh2RcZ7x/dhWAn4nG/LXeycdYznG46BEtQZ8v8bfuhm2hBL0Hd/i/b7+G/+fgyXvKZMdNFioOinbqPV8iowhdeFyt1uGVUnikcIF5aQs9aRp8HWzjK/1O4xSljUIcRCPW4XleCUyuqbY05Ta4UcPV3oTdZM7cxJQmgrZSRi8gnjvimQ0llh5AIpuIeqYp8wziVcIeEDuaHY/pBU2NXoaQUmmCFiMah/WWacJx3uVyPuVSFDRid/MeU9VHNUEnlJwEatQlChclLPcFfmAYbs1xTjKLu+i5xt0WyEXLYxQliRBEexF4gUosw/6SZRxTzjReSWQTtpme1aACIyScDJUouQsaplTgoufM8YwFIcH7taW8l9YM45JYGqYyuQimrAKzqYp2m7RxG76RodpBeLwJTAsEHaEwLZMXnNp4JbCJYpklnKQdhnEQsuSypqtLFI5YmbWN2zuQlcQbQaFCyOLtZEA3qlA4Imk5rrvM6gQKjV4G+/pzNS+yFngTAjYDi+eo2/oXKR26rc1wyuFSiWkkolSoMjCJqg5aL4PEtpoilTqUdlglQ4XPUl8cD5WkQlNF4bjuphW9tMJ7waTUuIkMzF5JKL6exZxVLVOEZFvNuJqcs5UveTYbBobbhcDRUD4bPlciDT1ZMpSCWFhqp1CVIJp74qkJ9S11+6fLgxYOiaN0EQfVgJNJl/RY0rnjyI7rtQ7UJuF64XTQRknl1tEiK52Xf8611WahhNl2LTJuT8ZGBWaxDtd5BIjyxSiE3XSfvVj4rLop0lrfww6t4L3nHe94B9/3fd/H13/91wPwb//tv2V/f59/9+/+HX/rb/2tF3uoG2ywwQYbbPCCwW1uaF4UfFbdFD3++ONcuXKFJEl43etex9ve9jYeeughbty4wcHBAV/1VV+1XjZJEr7iK76C3/qt3/qf3hRVVUVVXYRvTadhFixqgUjERdhiE5wYK02Rl4EhEYkl7dTEkaExiqUXuFLitKDteMXpwKw0A4/pW0TSBvhVCj+OcI2gap/pL7uWfFRwZTjh8mAGAzjbzjic9VgsUmwt10GJKrYo7WhqTTGOSe8qQJKdWuKpI00V9TAM4nw7Z95NiGWoBDCae8sdAXRYtskkTc8zGC7Z7844WXZYOoEuIJ6DcH7t9HERRL2aUW9JZTQT18VOo4sC3coj67CsNxLrJY4QTGdqHVwoi+AsETa4UgAao4iEY6gWXFITJI7DeMCtaMi4yJhWKU/MdwB4V/wwW+p3eSTK7/k4Co9uZ5o350MAftG/Cnj/R7FFH6grnA/BgK6TIFoWUiwqslPPzbtb/PwDW/zFTnDENN4wrnNUCWoWWA9zeoqcL+jc2UIfxvze+D4eyW7hvOSk7CIrsQ5vpKxwyyVqURIvHHouOZl2sU5yPs+RpVxfAk0mMamg2JGUO55OvyTXDeMm45n5iIPjAclxGG967onnDlVZnJbowhNPwxRYlQLT0TT91pXUM0TdmiQJlQjlMqY6S0iPgn4jnoQCY4CljznNOiyGMQNVMNILjjo9nk13EEaRnNbom+02TROS7g7Ca/J+wWsv3aSjKn47vc7RdI/6liJfHXtlhSgahAOXeAb9JQ8MzjmNc26cZQgniSdBw6IOzgBI5A56JwQGekkIRW3PNWFauqFpQrKoCNojnzqGacEoXgRHpQu1HxDcUmoJugIng05pxVqE831VfdHqd+xF3U940/YfFwqSjZXU7cm/0hJF0pKpBq1sYBdMq/tCYFr2cRLn3E36dHRNR1WUNgr6r1a/JM1zqjd8eF8hPUJ4GqcYV6FAd7FMsJW++AwCEEFDg/QIG5jZFTMmjaBqtVjkEMcGH8HSKBAeVYZz1C3BS0nVDZ9NCNjNFgziMmiYFgq9lMhFqKWhDC5FgFgYdtWcOj7ianfC0519XKwDm2n8Pcy6lpaeNHRFQipqjJPhOrF06MLilVhvcxlb9tMZl/SEBkXjJU2hyeaQTAx6WuKy1qXqPV4LfBJqiaTwmEqvy5a9Bruqn8lDOKbth3NEa4e1ksYFy15gCttx1C/GzYrYMEUvEj5rNEWve93r+Imf+Al+6Zd+iX/9r/81BwcHvOENb+D09JSDgwMA9vf37/md/f399c8+Ht7+9rczGAzWX/fdd9+n7TNssMEGG2ywwQafufisYYq++qu/ev3/V7/61XzZl30ZL3nJS/i3//bf8vrXvx4A8RHMh/f+o177SHzv934vb3nLW9bfT6fTcGPUMkG+LZ4Uos0JWZckCqwXSOXI05phWlBZHSoKljrkgLSzDi/BJWC7lqhfEUWWuoqw07bGYBIcLwBNV1JcUjxrFNVIkyjDrEpZFjFmqUP5YhoGkaUNe70ZWjoOuj0mfkA0V6TnEM8s6VlwAQEURYTEczWbsNyO+f3LHaYPxuzeegnm8SeRcYx9xXUAJg9JogdmvPHyUwyjJe+V1zhRA2QdsmKEh7rfMkWxY2+w4BVbBzgveSza58iMwGlMHpiXaidMq7OtguuDc3aTOcdVl8O4R7O6LffP+WrReIlFIoWnL0v2ownXsh7OC0qr6bbFppXT3DRDrqgxI3nBFkXCshPN6OqaaRVER09Pt/j/2ddwp7nBn+4+yisjT+ktH6ivEinLeAjLqzmdMtxg+5YxcqXmRrUHLVMUCc12ssBm4OOL08hVJcnhnOxoi6fOtnnf4H56qlzPmNdZOkmMiGOQMuiSSkE5Tzh1gnoeEy3leluYFGwsqUYtu6MtJ2XOs7Mhh6d95N2E5Dwsq2owqaTJYmwaykqDOzGwcfjwPYDtCJLEcKk/DceQ7jGZhXyk/NiRnAf9RoBmshNjnGI/mrCrphzlfX47eQBpQZ8tMLdur7dDutVBVj06Sc1rezd4ID4mko7/62BI3U1AhfX6ukbUDfhQLzHKllzLzjEu/DxaeKKDwN6u1q/ThOh6Bl5cOEDVqjekraCoG4TWeBmYIhJLL65IpGFqUuZVKJsFiKaCeB7YDZuCtdwL1zai3sMetee3ABuDTTw+9ijV1ky0Bc+FDbo4i6Rxz3G8EcqYhaPNRwJTKmZ1wsLEZLJZZ5jR5gQ9lyiwMZjco/OGThKqZMZVxnScI8+jcPyslk2DA9Drla4tZPLEs8D6ChdyggCsF3SSmkiFzKN6otf1Riud2SqvKY9qHugEB6SWjj8oI5p5FvRBAnD3lkH3WlfZICqg3W/SeoRrNUXtsrms2ZKSREQMZUGswg4J118Pq30KpFnN1fic+/WEqY/p6nrNpHsp8LFeZ4PVXUnTAZkZksiEzKj1zuCea7bpgO05om5NJ69Q0rMs4+BGdKEEd11s/CI5ujaFsC8OPmuYoo9Ep9Ph1a9+NY8//vhaZ/SRrNDR0dFHsUcfiSRJ6Pf793xtsMEGG2ywwWcSLPIP/bV5fPaJ8VnDFH0kqqriscce441vfCMPPvggly5d4p3vfCevec1rAKjrmne96138o3/0jz6l9TvtQ/lhFLIprFBBB9C6P2QT3B/OSiSeXDekyjBPEgrVOtaeUx5rXGCeksTQSWpmQCFiVBl0IKpN+K0LidOSMk656wR4gT2PSQ8U3dMwW6sGYbfNr0W4+wXXhmMGWcmk28FmKxdSGGg0D8/Tl7UiVoaHsztcisecPphzcHaZeLZLr5/hYsX5KwLLsnjI8Marz/K/DR7FInl6uQ1OoEuIZ65157T30xIGacFL82OiVr8zXmRUVY7JJTZ3RJdDJs0XXL7Da4c36MmSD+rL3MoGHCc5JlPgWifbKiXYCyZNxq16G4VDCU9Plbw8v8uVNNAiuQxM0ZaaE2G5ZQQzOSMVgqX3lD5jqJZcycbMTeuAW3Z4ZjLitMx5tHuFB/JTBnrJ7WpEYxWm61nuaqJFcCwK43E6aEBm9l6L21cMPsg7r76SxX0dALpPDrGTKXiPbKCoNYWLGegl/bjCdB3Fdtg/+eVtZJ5hdno0XYFX4I2gXkawVKjqwsFo41A+avKQr1LVmjv1gGKWoE5i0tOLouJqIFjuCZpeyFjBB1YgmgXNjC5azQzQVBLnBFo64ja8RtShHDY7qokPZ7hOcEaVox6iksTK8EB0zAO65E52QJw0CJfB+eSebaMOztFFDyU9D8THfEE85iC/yc91H8HrBJpwfNrZDJ1ntEHHoXRWVWjpEI0kWnj86dm9J2fT4LQIadkdA0ZiE9nq/1qWwHsQos01Atnm74ybnFuLAccnfZKDcB7lB5Cd2Xb7Bf2WsAJsYEWEa/N9Wu2INBf7ZpVn42OPj0Lxr/WSeRM28pHsMTXhuBnXGU0rWgmaxFab5C80d41R1E7TeInzIrADLUMtLOtprIvBdSw7/SX398YhrbzMYKmJT0MS+IpZqgeCSgtIPSiLrWXr/PKhZLW40PJZoBNXbKUFQnhuzRPMeYybs3Zb0TIxnajm/uSMHT3FecGt4YCzXoIuZPhI4sIx1XhF4wWlD8W4VJJo6dGzcODKOl6zGF1drhnf67piK1nyROQvtD+rzDggiSxbes5AAq4mEQ0ycpgUqqHCxSnlqGXt9sBsGTrdikQbFlUMJjhmhb0oy4XArpFa4jg4Bq0P54qv2wTstjnAvzjGszbR+oUIb9zgE+Gz5qbou77ru/jar/1a7r//fo6OjvjBH/xBptMp3/RN34QQgu/4ju/gbW97Gy972ct42ctextve9jbyPOev/JW/8kc99A022GCDDTbY4LMAnzU3Rbdu3eIbvuEbODk5YXd3l9e//vX89//+37l+Pehgvud7voeiKPjWb/1Wzs/Ped3rXscv//Ivf0oZRUBgQxJLnIeZTKVjrIvWqbyyAb0U1EvNso4xXhJLi5LhuX3Q37Tr8mEGUtcSJR29pMR7KLIMFymcArmKy1h1KiUWKT3NUpMcK0aPO/ofniFnJc2l8Ijv9FUZ57rLSdzQiWtUFFKAhQdZNkTWEc/aqU8RZp5bas6V6JwnRnvcurzN/GqMbDogoBy1M+Fuw1a8IJUNp6bLWZWjFop46oknDU5LZLOy1oUZTOMVpYuY1immbp1B2uNyy3Y/bIhX9O7yyvQ2CseJ6ZHFDT5x2EytdVcuDVNwITzjOuPxYo+ZTdnSc7b0glemt7mk5uwqiNpp89Jbjq3ith3w3qrPwiXr3dh4xShaspfOAVg0MSezDrNFysG4zweyS3ST4D6cLlOQPnQxrRk3i6o8ai55YrFLtdOss4remD3D/pUx0+u7AHQeuoo+6mD6GTYGpRxdVbKvJ1zLxvz+sKbcDsnTy2sdon5CNdKhn6zjETq4xGQTdEYrOB1YNBeHNOSqjHCVQp1FJGcCWYFpa9nqIdS7hnhUopWjXMS4w4RoJogWK5dPq1/rSeoqojARTgkao5CNQNUeWduQ9bNiXmRIcO/pkl1VsqdydvWUJDZtJ9RHCHGKEuFAK8uumrOnuuzqaTg/LDBfrBd152P00iKM/pi2YyHufcpvL41Y7gnMfsX2zoxFkdCcamwsLrRFrfNslVHjjOJw0eNw0ePouE/6VMLww+FY6z1doGYlLo2RTYZNNKYDLpahd8yKNsMprFoVwYHmAZG05+uK7fFhO46LsEMKE4VEZkIOVW1Dt5tNHDYTUK7DpBBGUFYRp0VgSeZNzLKIUcvWDTh3a02acAISx+XulEd6d6ic5qTMGTNAFxDN/Fo71nTAx46sXxJHhmmUU9UpeimQjV872yAwY1J4+lGBywQn3S5NN6KZBXbE6bBpIVjELQKHDJ1t0oVzXq+68wS1CdeJM9vhphlwu9ni2fkIPVUkY4seL/GRQpo8HP/Avp6u9/We6nIpneKS4Hhd7c+V+8+5wOCeOcGpzZiaDO9Ce0A1kFQDSbnVHpKXLdnOklFniXWSpmkT+IuL9oFVvV3Qi7UuTS+pGk1TaUQlg1uxIjBFkkCvvQhwL4jaZfP47BPhs+am6N//+3//P/25EIK3vvWtvPWtb31xBrTBBhtssMEGLxLs5vHZi4LPmpuiFxvChAMwSxqyqGGqHPNa4mctU7QI7hGbSIp+TNGNiJN2tiQCkxQtwyEoGx96pUqJsZJUGVxScZoabBphMrGe1ZVbUF1uuO/aKZfzGc9MR5ychzweOV7g7h4StfaY9GqCLCXeCzLdEMWmbb8WISnZOKJFm2m0lJyUHc5slwHLtkfHh9lum7S86itzs5gPz/bo65dx2nR46nSb5FSQTAxq2eC78cWEQ0BjFc8UW5xVHT50sIe8mZGetO3lsVq7PCQehaP0MTObUjZtz1nig4On45D9er3da6u4WwxYmIRlGrOrZ7wymrGnuvfsqz5Q+xm/sdzjv45fyt1FYNJGacF+OqWr63UXVaabMJtfRFApTlXKWWJRkcPWEmVC9shqJqqXDdmJoHMn5j237+Pndy+yipQIbqlnWm1+vZ2RNJamq3EJRNqSyIZYWLQMmVK2JbGajsRLTTWUNH1wmUWokAr+3LRkaPNT4uD0o+3hYqHRC7FuAG9aQrTab9i5MuFKd8rSRDxd7aCXguzMkx80oaurZbrKHUG9yt5pnU4u8jS5pN5KQAiaXli27gvILJFwlF4ydxWlC2/qIqDXhdPTi50y6GPykGNzqRXi9USJECHB2C+L9aKurlGlQzYiZNIIT6oaSBx1L8JfCUyclgK/t8XZyzvMH3Bcu3LG9d45T0+3uJN0wjm0ypeKNMRRm4MDzBXHsodfavJnNVuPWnrvDcYM8/QzWEB1u2T2fkzax2QSr0LPmrBBd6NbcitahHMaASZbuTAFttP+3wvqVjtUGY1faYMIxJuUHhFbXBxYwVVStp5JajJuWslZnlM3mvosJT8T5EchnXnVDl/3IhaNWDfKK+F5trPFjWwPL0Nn2ZpNiQL7+9D2KVvJkmeyEc+UuzTjKHwW49vMJKDQzKqUMgv7XSlHFXtsKi6yhFq2/HDe4/eT+xhGBc8uR5zNcmTR9ue1bt2iZZQPqgFPqn2erbY5mvWI5m2nnbEQa2wiiLLAyr8kPuK5GOllmyweXJTCeESroSvKmKerXf5Az7jTjPjgdA83i5DNyhV44X7VOyX7/RmdqOa06NCUGr2Q6EVgilYse9hRACIwSkZhrQwsWsuqqZLgRhQgKl4UbDRFLw4+a91nG2ywwQYbbLDBBi8kNkzRx4GeC5pK4X3I45DCU2QxLgqbTJrg+PFasBxGlCZiP58zSAsOU4OL9fq2XFW+bWEOd/qr3A2pWv3Mc1wMJoPO9pI/felDfHF+gw+NLvMTzeuYHo7IDrdJIo3ZCm6nYkviRjVXexN20jlny5zzpNt2ogmE9ci2a0uVktNlhw8WV8hkzZOzbcQkIpl64vMa2TjyNpOmOFR8eLjHookp6ojiqMNgEmZ2XghMrqhXZE3HhnyfOueJ0x38szmDJyE7tdQ9icllcHkAc5swth1ObZebxYjJMkXUEq/BJQ41rBkOwnS8n5RI4ZnWCbVVZKpGCvdRLNFz8Xixz/sOrzA/zcEJbvZq9kY9rnUnxC1b4bwIWTG1RC1CFpBLJCZvU8ZbZ0sbM4NoLPFpQfeWZvlUh5/YewN79/0SL4/m/EZxP4fz3lqPIIwHH5yHuJDKfdr0iITl1nJEM49JW7ZBFw5hw+x35agRHmgkqgrH1trhJMOM16cOHdvAFLnAJgkfxrpioFRu6MVhQKfLDv4ooXsT+k8VRMdzbC9D7gYWwGuIs4ZRUpDrmkUeM+vnlDsxs0YTjRRNy4RUIxDKcVJ3+N3yfu7oMY+VV2mMghTMpSHyMMzwhdZU10eUO54HOqdcavdZR9aolkn9nyESlo6qUXlDOYoo7g9UXDRIKXcTZvcLoksLHuydMYwKbsrh+nd9m8wsshSfxbg4MBx6IXFVQnYiGH3I0nv3rXtylQDsfI565i5ZL6HppqFTLWs1ehVrJjVaevQyaAdNKfBCBneghyiy9NIK0VIORRNRVBprAqMrW+cWgnXKeNwa96QRmERRn+dM+0HfFo0V6VnrBrw9xrfXn053i9lEM28SUtmwreZcTifotMFF8fqYWu3nJGu4mk+4ko6pneZmuoXXUchJatoMK0DNJeeznJt6iPeCur64joX067AMwNlxj98pY6R0lMsYf5qQTASqDPpA4aFumaKjqkemGm4XQ6paowhdh3bYoRkmlCPYGQTd38uiOXBxnjdeIawImUYmnDcrt2VTaG4stgF4ZrHFU4c7xEeaZBzOD5O1WjygmzZ0VtfyRkOpQiJ93Trr9HOyoFbaolXOknTIyOEiH64NPrg5hX8xmaIXgMN4Adimz3Vsboo22GCDDTbY4DMc9gUQSW8en31ibG6KPg7iMfiJphjGyO6cblwRp4ZVObOwIW3XK4FaSqwTDKKCXlRyMOyx6KaYtNUKlGLdlZbGhn5UMhcJzkriApKxW7s/6r6ksYqRXvDq+JhLesoHLl3hV+/vMz5PyIfblKMwY5g94Ll0ecwjg9Do/kG1H9J9pcAlEcJ7bHxxIi3LeD2runU+JJpIooVDlQZhHLoM1EQ0l1STmMOoh2kUaiFRdViv7UaUW5oqrIb+aMGlbEZpI8oyIjkXdI4s8XkNIkF4QaQDCzPQBVI45jblpOxQLyOEEXjpIbd0uwU7eaBSYmlDum8dMxOQ64alS4DZx9xfT5k+T813WJxnRCdhBtxUkmPhg5smCdP8wkQ4J0JKeRNYhFUqrYgcrmOph3qdbRJPEvS8Jppb0uOIR+9c4qc6X8rL8wN+d3qd8XGXrXEYQzStEMsKWeWoChZlxM3liNM65/HzHfRxRH4SLkvJWYOXAjUIs2BhBL5RiFJezF5XTJEGl3p0bkjThqrSa5fMqgPLrxgID4s6ZlqlnN/t039aMnyiJLpxBMbAMKdq08jrbctLRmMe6obOsnmTcNStqbc0CIkqxAWDmYNvFB8+3wVexSheclj2qWuNyqC4nNKpHgxDkJL51RgzNOzFF04ihUcrF9ibfiuCms2QWUadK1wU9tWqL0xph+lAsRW+N0lCuaVoOqBkcCfOTcLJrIMqJMJ7XBpYMDHoYgYpTUfidGBpVQnpGeR3y49iiVawZ+fEh9skWzFNR+HioE0hhaZ1Gcm6zfYpHZETmFRQGgHaM+wU3NcbI1um6HDZpawiTKVDnpL0IDy+VuhCEJ9D9yDs6OTc4iJBsaNY7kmabjgOVO1RRYM/O1+PM9vOSU5zDhc9ZjZjT83IVY1U/p4uttUx4b2g8ZK5TZk2Ca5U6CXo0iMbj6rabV6ERPUj2cM7QT2NiQoZzhMR1qXbBG5OI6qpXrvzgk4oLONiQsaaDdeqcZ2Rqh5zkyCkp+nAYl/jog5VX1DueV7ZDZRZV9z7Z+lWOUQVElVahG3Z9dUPnWBcpTzDFk9NtnBHKd1jyE5ce9zKi7wvJzA+6DqrOkJUcq3dW7l+VzlFXoV4fSE8UjriyKGkZ24FppZEC4FYQNQmob8YeGE0RRum6BNhoynaYIMNNthggw02YMMUfVwkM4+bCsplhNsSDOOSTlZR6aDnEU6gi6AJkUVof9+KFwz0krv9Ph/oDzB5mH3ZIqTqusSHbqf0nMO6Dz7MNDp3atQiPCR3UZeD+3L+4Po1vjB9ltLr0Lgtw2y92FKUwYyG3a25rzemp0oOqgGTZcgeEdbhEoVNFdUg3Pfa3COBszKjNBHVIia1IS256QdBStVvZ+QZ0M7apfRYBTYCm0pcJKh7gqYXpl8P9Gbcn51xXPeCq8aFPiWvJE1HUA8dX7h1DMBr8qe5pKYcmz7GSbwLTfA+8ui0IY9XEeBwXmWcTLuUixghPd7DBzpXeTx9mpdF9+qKHm/m/OLkj/H0+RYs9LqfTjiwjaJoons0HtYocGLdZbeaSarY4SNHtSVZLsJ2U3VMcq4wHYUXYCvNzcUI4xTPzEaImV67DEVtwF0wNq6RnFUZ0yZhOs1Ip20iOKBKg031vZ1WRiCr4ChT1XM0ISporvK0ppPUGCsxqy6+j+DDvReUTcSyiInOFdmpJzoroK6h06HcS1mGVhzy/Tkv6x+zF085bXoYLxHC4xNH0xPYWKzX76VHzBWnR31+r0joZSXWt03zcTguVdGeGx6aXCAkLG1C5UO208JHKOGoUvBbQSckz8fIvV2qgcJHHucFU5NyXueYWhGvmDwueuN0CcVZxofZxXtBdZ6SLcP2qkdBvyY7mrqnqIYSmwW2TbWpxXyCPkR/+4Bkv0exk+E0NIPQgbhKtDYdgdOK7BRUE/QtwXHl6SUl1zsXCdxLE3HHCZhr1FKGjq3II50gWgiSqSe/E0Qp8Z3AlETXhjidYtsMpKYjMJ2YRGvcLOhu9KQkmuVMlilntsMlH4duNSfWuUPer9yvgrrS3FkOOKs63DjZJjqJiFc6QXXBCCLDcVgvInytULOgu0GssrIu2BTRCKKluEjFbtlNF7HuPmvK8CfmZNFB4nEIksgwHVqWl1RIvU/Aduw6o+qG8by6TV1/T13z5HQHvWxdi1LiYhnYOwAVrlOl1SzLNtNp4YnmFq8FspZrJ7F1kspoGqdomtBQsGKKXRSurzZtc7nikNzv3YUONIsapHRMjKSZxcQTiOce0bw4D6VeCE3R5vHZJ8bmpmiDDTbYYIMNPsPxsYJNN3jhsbkp+jjQhUcvwNchN2UUL9nKUk7TYVhAyLavzKHb/KFc1uzrKTvpop1ptNMvH4QfPvJcymd8XnYQmqVjG/KMzgvEaZgldroR6XHK+08v86vpK5iYjN+9c430QJGdeIT1lKt253aG9EyxzYcnuywPuwxOw+zPZIpyR1OEiBdM35Iqx6JO1p0/NoZyS+B0FBKtt1ZaE0cyKNnuLSiaiJNOgk01NhJo6+9hVwASachUjVIOr8BGAjqKciQQOyWvHd4A4HXJGIXgA7JoNRceH4WOuSxtUNJxtgxpvidnPcRRQjoNLNtRpfid5H724ilflD2N9ZLfL+8H4DdOX8ZjB/vUJxmqEsEhknhcxxLHNuTGtMm6jVE4e8ESSQOUApsobOxQkcNnlnrYpmVXoQvLpoKmDyoJjeDQXqTalnQA20lQQmB6ETa96NuqrVo3i9uW7TDdiKarqQYhzdrHDpwIrkYTZsUrPZjTYeYaRyEx3fuQlyIM0Go9fHsmq8iilEPKkEHlFdg8Rm+PaHY6zK9oqt1ApT3Qm5OphtOmx43FNrcnA6p5AnXbYK/9OuJXmtAB5lxEYQTGSHT7+VwScmxcO97gtvTImeLD833e14eXRwW3zV7okIrADEPic3TlEma3RzUQuNRinOSo6nFn0cfNI1TJmvmTJuhroqnARZq6ZaaiMmyzpiNY0uYUOYXJBHU3OPNc4vEq9IAtL6f0r139+Lqi+Zz4zoToWoqLBG6rZjC6SOCenHcweYJXiuzEIW2b81MpGqvuCdmbNzHVNCE7UkTTsD+arlj30nl5wcZRVmAtsuzhRWhqN12Ll4pkEhMfbyFXCeOiZTmcoHIRjdc0XmGNJGnC8eNWjJgHZySTMuPYKsrTjO4JpGOHtFD2JHWbtdX0HMQhL0vNFPE0JKa7qB1Px0HUnvyNRM8lurxgLZ/relOVoGkT9c90F4cgixq0cohOQzOQSBu63dRc8uhhKO/+Pzqv52sHv0dfVvzq/FWczDqIltU23ah1tYb30IkhVeGcFCLoqbwIyeauZcBW4xHtOdtYhTOStu4P37o7bfocpkgHF6mpFaWMiJUl1Q29tKLoxphOhNMhEVy+CEyR5wUKb9y4zz4hNjdFG2ywwQYbbPAZjs3jsxcHm5uijwPZtCyCF+S6YT+ZUtiIx9MwvXBSBz2BDemmjVFE0tCRFVI4hLlIG45nLjjRHHRUzQPRCZGwdPMKk3TbpNZ7D9fGSe6UQ55ZjChvd9m94ek/VWATRTlqQ2kqxXmVUVrNzeMt0rtBQyJrT9NVLHcF1W6Y1elug/eh36taRlBLXOyptgSmTeJdzb5s7ujFDYO4JFGG87yDTTTCQzQ3pOeSeBxO0INpnzu9AYWNMUaStCxHSE4GHVt6slx/rrEz3Gq2OCtysBIfO9JexXZngZKOo0lwJalbKf2nwmy27gmmRNweDPlv6Uv4g9k1bsy2ePZ2sMBFdxKiKUQ+fIamH1gilZnAXnnWCcONCboL6UN/1Uq/g5M0LsKmYd+tJlQ2uZjZm9yTxIZUNWhpiaQN+ptuOI2qnQRVRpQjhcnDZ5fCY5xESI9NWDsHbRJT9wTlDpiBRaUGW4ZMmJXTZ9UE7iIQ2qGkC3qiSiFLGTQcnnXOE0AnbRhlS6TwnPVSqqGi3E+JOppqGFH1W70EUJqIp+Y7QfcyGbA4z5BTjajFRyT7tkyAC+8lnECIkNhtY4nVrbaunTHrRUMykUQTxbOzIR+u90nFbY5NP2x/BU0nfDix06PcTagGINNgwTyrcs7mF+nIq78FNhGhJ9CAnoMwcu0cdBHUfdaOT2loG90vmCabOcpdycRIotll4oOQq+TNhZZtBfPEUyQv3QYf0emXvPbSTXbioOd5cmuX342vsTQ5qhLEc0+0AD1WHEz6PJ1ur9dzdzwgPoro3IL03IbcrksCm3nqAQgriJYpAD2zgywb6u2EagRmryYfFiy7GfN5THrSJ1tdH4YpJocsrdnRM3qywCFxJiSiC3eRteViiFKDVpZFFSMXingGugyZUXVPUG21DMmgQWqHW8TEY0FyHo6xahRYq2i3JI7DfqoqjVEp0qqQm7UixhXgCF1xrVip8THnHkyvCLV0qs1PKyCZeJKxYFEGuupnzBdw9/4BD3cPOKgGRNoyH3iW+0GDVPcENmwypPIYH3K7wrkSugvrnsRpQZNf9CkmcYMS4XrgW8fn6tgI6fse2nNDKA9OYEuNM4rJSlukLVpbmuiiW26Dzy1sboo22GCDDTbY4DMa4gWx5G8KYT8xNjdFHwfCtY3iwpPrmsvxmMpp4rafB5mEDh7vkbXCeIHCEwmD8xJRSZJpmHWkxyVOZ6hC4hAMZYHVgn5SchyDyyJkPziqyu2Yctfx2q1DXtG5y2HZQ1aC9Nyij2eIQY7wLVMUORJlqKzGLDSdKURzC0pQjiTlLrhRGG8cWcoiDr1ASxVaviU0XY9NgoNkNWtSc8VsmnEWN6Q6zBy9CgyQPi/JjWO5H2il8XnO7dEQAFNE9GaQHlfIypCP+sxOU94zewCAoVpys9niF+68itNbQ+RcYQeG3f6cV44OWJiEp4/CLDs/huETFfHpkuJql8XlCNsyPjeKLZ55epf+o0GvMHjaogpHNVLMr4Z8F9Hm9hgjce6iq8070Ypw2k6rMrAKsgLZSGzWus5alk/WFw41aaCuNWdVjnGKRZ2AD848gLonUUlw3bkIvFFMyozaKpxReBl0GQA2FdR9qIcOmZn1zPRi5ioutEqpD/vAC0qjsaUmqlhrIlwEvmWKsrihG9U0TnGWW+qeotiS2Ch07AkHatb2UR0NOMtyrFGYpUYuVJvddHHhfK52zKkwExeZIc8q8rjBWBl6wxrQRRiQWtToKg7dgE7ikNQoKhdhrEQSUsQBTC8wa/UAkrwhVjY4hBoFNrSd1/2L8bgoaLi8avfLKtG7zRNaJR3rRXBERXXQXnklcFtgtxsWkUZVMZfvPBS27/s/xMdCerREFwMA9uMpn5/fDP+PpozrlMdPr5KeKKKlJyo88USwOE95Jh1duB3PU/rH0L3TkJyW1KOUchRhU4/YqShGCpuEHV13OiQzRzmSFJc8W3szHhyecTsbcDTeYXGkkTYwqdVQU27DI8NzXpncZk8tSUTT6tJa52UStlszcFwdTXlJ/5QPu10WInS3ydphU7lmQQFUYrGVIh4rOncgPzbYWGJSGXKYuku28iUAkzLjyEiaJgHazB8XjkvRhIyl1f7wUmEyjckVSWTAh0yk/NjTe7pANo7sJFxTTn2H9yZX2YoXXEomfP7uXX67jpjKLslZYHFdFMbrasXJooMQUFVROB4iaHKJi9vzLQvHZaItqTbtedtq91q2dd0qEK2YIoc34TpOIaiMYOwFeVbhnAxdbOpeDdWnGy+E0Hrz+OwT45O6KfqiL/qi57VSIQQ/+7M/y9WrVz+lQW2wwQYbbLDBBhd4QcIbN3dFnxCf1E3Re9/7Xr7zO7+Tbvfj906t4L3nh3/4h6mqF6kQ5tOEFTMgnEALR08WDHSBUhdTZ2k8wvn1jD2XFUO1JFM1wgmiZTtznhTEeYQqEoqWVlBtZkeY7Xp8HHZFOZQkl2f8hZ338Nr0gKWL+f3uA9hI4GOF7URUw/B+g505rxwcclD2eUbsBi2BB5NKqiHUO4ZOL+h5jFG4s4T0SKKLoL2pRx6XOnwt0EtJMg7rTc4E5TLjrpUMt4LrJmg3PHJRIowhnrXqhkrivAh9bk4QLTz6zhn+bEw/fojZfR1+feclADyzGHFrPKR8vM/gVtCHzDLJfd0xbxq+n1PT5b2dK2G9Jic+WSBOJ8j9DqYD92+f84XDW7x/eoVnS0V+FM7wzlMzhDHAgGK3TbBtQsq4daHyXug2S0i5tt3ar9kiVYX/ew3IQCSt+sxUHVJ/hRNEM0FxnnBDb5PGDfNZipqpdRq5l0F75HQ4dqp5xJHr4RqFPA9OqhVWDd4rl4ut1UXDOEEHYttN7BIftBNWUlYRolDrJnLbpvCumTEnmdQp0yLF1xJk2+C+IheXkB61DEKZYPIosD8y5EVZ5dcJ27IW9zBFXnl86kjy4MKRwmOdRJYSXXhkadfLmkRgOnC5O+WB6IRtGTaodfIiLwgwmaTuC8zAsttd0o3q0Czv5Dqby6y2Q9zqPnxwNq1ZPBnYorAtxfr8jeeeaB40Jl4KmgHE3Ro6NYuyw/KBwAIl7+djQo4XRLMB01nCs8UWl+Px+mfDuISuoekpzDRsJ9mAKBVFFaFXvYYm7NNoblBnC2IhUGWEV56t4YJYWQ7joKWZRhnJeXBWuVHD5e6Ul3SO0cJxMBxQbieoJlw/yqHA7DW8ZniTL0oaNCldXa6ZIjxr3Q3Dmtds3ebl+V1KG3E32kHakBDtxb1ZXbZSiElEfheGjxfEd6fYQU7d67KoQh7bKq1bSYdQvtXxeGQEOBHOGdO6O9shCAcoTyepSaOGicqQNaQnhuipQ/yyoOvvC9vhemDDXpnf4U92Hmfci/mFzhfwC9kjHN0ZBqazPd7tIuLE9YKTbxERFyL8X7cMquKeJ0ah+5A1K7ti1YQhXCdapihKDE2p8ShkI/BO0eiIUgXGFvmcdW+eSH1O4ZN+fPbd3/3d7O3tfVLL/rN/9s8+5QFtsMEGG2ywwQb34gUphN3cwX1CfFI3RTdu3GB3d/eTXumjjz7KlStXPuVBfSZAmpC1IirJ0sY4JPKeaTPIJjQ2CxsOtZ4q2VULtqMFLnJ4ua5avtAoEYr9Fj5mWqbEU1CHk9BLBahmSBo3vDo55Krq8WWdx/n/DN4QWru7KdVWRLkfVvS6/Vt8+eCDvEc/yO/o6+FZfqslaPqQjEr6WZihH531SE4l3dseaWBxSeBShx6VmEWMOJLkh2G98cSyHGvOVcI8MQix0nEIcA5RXzACZJZXDA7JZM37u5cBjT89x87n6GcOyQ8e5ORuENJ8eBmh7qTsvs/Te3pJuROzvKK4Lzvna/I5S3fGL22H9Ov3J1vgHHiPyRX1XsOfvfR+3tT9AD+vPp/f692Pl23PlXMgRGi7TwPjgRPIUqLa3rl1/kj+nLG3cCpoV0x2oa0QbT6PXrJmAfQS9ERRk1GrFDlXJKciuGxo9S1t07Y0oKcKP1dEhSCeBp3L6hjw7SxeWIErNaIR6EXoPVvplFYzfZ+E3KGq0TSFRjatWzAJbeQ2u+DEp/OUyTTHzCOiMx0ay1VgpYQFVXrS9rOpEpqBpB453MCgW72cKSOYaGQh1r1O61lxtHLBKYpGU40TumeQTByyLQdzadAJNTsNr+gf8FA0I0JQek1TarIqaPYAbBw0YLJfs5fP6eqKYzq4Nm3YxqH3DcD2DCJygQE71+hlyNARduUeunDsIQLLF88suhQ0Xc3SCvK0ZpgWPFNqZveFDZwPh9jx+KOOCyKNLkCcJLy7cx8nVTiOu7rmsOgilKfpQjUSyCYwez5xZElDHocNt+glNL0Mkyki75HzkmSaoxeSutH04oo0D8suezGqViERWoak5khYBlFB0q2p+wmqCvuuGkI6KHkku0UmAg2YtztrldK80qTlvYov6D7LK5PbPFtt8z+il4RjYdkgrCdaRug2wd2IqL1OWOInDjB37qL3dskvP8hsrJlM8/VjnKoO+jZcYOlMHFhvZGAZZXORfm1TT9qtuK8/JlUNp/MOVoK0HpoGZEjtBqi24A2XbvGN/WdJRHg68dDWewD4OV7F6cEAMW+72pYSX8QID6rtDZSry7Rb5ZCFz7aoYtKowT7n5mL9RMBeuGUB8qymkJ6yVtAEN6YzImSECY/XDq8ULxr8C9V9tsEnwid1U3T9+vXntdL77rvvUxrMBhtssMEGG2zw0XhhhNYbpugT4VNyn43HY377t3+bo6MjnHP3/Owbv/EbX5CB/VFD1o5o6VGFYFonLFyC83KdCCo8CONatijcgaeiYSgtO9EcckvTCdMkl8fYJCRId1RNRwRWqKwitsYO8/Qz6/ft3r7E8TjnzCa8RENH1EgV8kSCZkVgO2E283mdQx6OD3mi2gcbOn/03FD3Qt/TXm/BVhpojEPXJ55A59DiFCwua6KtkocvHXJ7NmB+Z5t4GtabPTNBl12WeynLq4q0U1OlHqcEWAtCrNOWB6MFb+q/jz0157/vPsBJ3sE34fP52RzVXPRzuVqRn0PvqSXyfY/TuX6N6At3GOgCiaQrU754ELbFe7svx2uNUIqmI+luz3lT9wM8HHU4yJ8i7rwBk4WZpRlm2EQxu6ooLnnc0OCNQC10aHpv9TIAdjVVshcuHRdB3YNqx+H7Bm8FXoZTQ5UC1bSOFxU+i6wFwkiiqSBaBFYRwsy8yQVNJyyrysC0RDPCco1fpz436iKFWtQizHKL1q0jWwboOem6zkpsI6HQyFoEZiQK7kHXfY6WZ5KgZopsItYsl8nB5OHz6qLVUBH0ci4GvwVJr2J/MMN5weF5HzMJLNPKheeS1skjgi7ofJFRjlOyWxHdO57ktAITrgV2mFD3IOrWbOkFjYdjp7mx3MXPosC+rFjTVIS8nU7NMA5vVtQRfqmJWn2IXWXapAadWGrfMgNF0Eit0oiN8mvWrOlJ6o4gmot1xhJAFjXc1x1T7WmO7w9M0dbnP4j89d+75/xXgwHlfUO8guRU0DQ9HjtorYMdG9xJjcTmjmoUsoGankd1GnY7c67kIaFeC8fT55dZ3IlIjjPktCA/rMnvpkz7PaptHfrjCO5HYVu5TKE4K3OmnSCoSuOGWdfTLNtk9BTyuCEWF/u+IyvQrnXiXWT5jLKS+6JTrqiCUbTAq6BjE41FiKABWmnonBboBcQzgzsfh9dmc/TcEk011WnCuGwZkjq4s4QPujcyiweMVMgqaO1WWjaXO7Z7C+7Pz1DC83iyy3kCdU8RX9vDdhNOPj8snL3qnL976T+TiHj92UYy58HkmK1syVncxbehSLIK6e64wEwJD06ClLTsEchFWLZYxMwjExgX5fC6ZUCfc41aaUY7cY0UnjqJcIUKx5D0aGWDkzeOAwvm2dAvn2N43jdFP/dzP8df/at/lcViQa/XQzynXFEI8TlzU7TBBhtssMEGnyl4QXKKNjdwnxDP+6boO7/zO/nmb/5m3va2t5Hn+adjTJ8RUKWBpUOVmsJEOC+QwiHbB9YeQtu2D5oiZyULl9B4iETQPph2puayGJspXOzp6IotJZj6OUncfNRBmtw4RR5c5neKB/ni5FkO7ICm0MQzhxoXRNsJou2mcl7SeMl500FONPmhIT6cUY22cBFc6U7ZjoN77IN6H11CfFrhUoVXmstbE7567/28v3OV/zQaBs0QIGYLdBahmhShPHlaU2iPtB4/myOUQppQtT7ISt6QLslExisHB/yX9H7wq9p5Rd0TiO1gu+pkNSYfIBuLWy5Rdw6Jpjv3PON/MAkpw063+gTvcQryuGa/HZ/1EmsufqfpaIpdzfw+0Pct6GYV40mOn+h1srZbuc902+tUCqI5REsfWshzYKum3y8oq4hmGWaXvs0LchE0A2j6FiKPXIbZI541+2NSqIeBMfDaB1fWPLAzugyfY3VMmC6YrsNlFmHkOt8FLjRAK6ZIKB/0DIVGzSWqCrol0/O4UUOUNZiq7fyaRKSHIjgJRdCelDsemztkJUmPBXnYxKHfrxAIG5rLd7MFpdEc+D56IYlmFzkzdev8kpHFti3h2a2I/lMhZyY6WeB1m9Ydh34z7yRPl9v8RvQgh82APzi7jJ6qwJjp1TYTmNwziGukcMyblMkyQ00vusJMHpb1Tqzzf4RtXU5F6BUUDnzsIW/TlpOWipMaXfigNZPBMbWTzJFDz+H9wfV18vkZl8evwH3gw+GwfemDzF6xzeyawqZBC5aMBb7tMmy6inrkMR2HizxNzwf9TOKR0pMqw7V0DMAwKji/njE72SI/6pAXDdHpkt6zESZTFHUeOuYAXYm1q1AWivNFxlG3R64rEm2ZpA6bXuhYijLmQ+Vlvir7IImIkHjivKHpJQgv1gn1eVQj8SgRXK9C+eBaTDUu0eH4bv8SeB2+bKpI+j1cUSD7PbwWqAbiicQtWy2fCd1/puMgN+S9Eu8Fhc3wWt2T4eOVR0mH84LCRqEPUHmKbYVNByz2BYsvDkzhd33eb/DF8QVLBPCkmfOB5RcwKbOQNSYuOuAQgcVxscCsnYitVsiAbtm1ahmxTOOQbB07bOpxUcswOe7J51LSESuLaDsEwwcOKe6duGaRJniV3MNCfjrh2WiKXiw875ui27dv8/f+3t/7nL4h2mCDDTbYYIPPJLwwN0UbTdEnwvO+KXrTm97Eu9/9bh566KFPx3g+YyBri6/9OmE4bafM6ar3JwIXS4RVQWdhJGe2w7FNmdgc70JLM4CLJF62+hUviJBcVTXX+hPubm/REfKCXZnNiSeCx4t97vYe49RcwteKeGYRR6ek/RQ9DY6Mg2rAcd7lsOoTTwTJwQJ/dIK+PsRHkpd0jrkcB23DbyYPBgfV+QKXxgiTsp0ueW12g6Fa8ovDV2LSVgDQuuacgiRt6Cclp9KjCoc9Ow/b4TxkDxV1tHa/dFWFdODq1rIkBHUPru+fAnB/d8y7jjvUoxQNuMUSXcJ0FcjzHAgLNBaaJriQEEycZSTh3cWD2JN0nRiOILTN7zW8bPsMLR2zRYqlZVRyD72w3+KsoZokRHPIThzx3OGlwktBlBrSyLBYJqjWjRPNg4up6UA9cOidEiGgcSlehR4v055F1QiqHYvoNXgrwUUI287+fXAFrtrIqy2HHFXEkaMpNL6MQ69XO8u1yYUOCuHxRiKXimgW0sdNDi6z9IZLumnF6SzoXWyTkEwhPQ+dcU1XwLWSS6MZ40VGbbrkh2G1ycQCimJPtEnToUfKlBH5DOLpBaNjE/B9Q7dbUdUaPdF0bsPgyQJ95xy8w2+HD2cyGc6JacT/OLzOzcWIeRNzeNInqsBFoZsKoO6G3jYhYN6kHBcd6nlMOg+aKKdZO64aF35HqMDQuChkXQW9HRA7Ov3ASvoeLKMcryLicUgYFx7qdmfdn53xsishD+dDD19DNSN6V0JI7eKyZn5NUA89shZkx5CMPdEiHG91T7JwAhdJXMfivEMYiSokZpxwqz/goe5JeJ/kjC/av8WvPthhcpIQzTrocUF61pCeKZqepBmEi4zNHI2T6+OlKmPOqgwpHHlUQ25w8Up/BNVZyn8+fjnX4jNeFh8ycyl5WjMbebwU684v6yTHtk/flCxdDNLTdAXVboZJBOVI0AzCsi6zVFXEcleRPHAJ3e9hRznllg5anSroeNrDEpOByy2jrQX73RnzOuH2PDAosmbtABeVZLzMeCLaZdYkjM86JGXQ35U7guXLav4fDz8KwJt7jwMXk+5fWKb8n8dfzu8fXWE6zqFU66Arr4PbzQuPlx4jAuNqlzJo6swFkyMqiTGSNAEdG6rEY2OxdnwKe3Hj4XzIOHNGIhuBMGCsQElPHtXEsaHWbDRFn4P4pG6KfvZnf3b9/6/5mq/hu7/7u3n00Ud59atfTRRF9yz7dV/3dS/sCDfYYIMNNtjgf3H8UWmK/vk//+f8k3/yT7h79y6PPPII73jHO3jjG9/4MZf96Z/+af7Fv/gXvPe976WqKh555BHe+ta38qY3vekPOfAXD5/UTdGf//N//qNe+4Ef+IGPek0IgbUfnQPz2Qjh2qZ3CZluGKglkUjQraaojMJz91WKsRBw3nR4utnhdjXENxeaFy8Fwnr0UvDscotDa9lRks/rH/H41QfZe/il2MeCnoFedz27yoViV08RbXOzWy5RkwJdBKaocBGRCG3tOJBljZsvQgZMZnk4u8sDccj96aZfgjcef3yK1JpkMmTexHREwyU9Jk4NNmkFL1GEizU2g0FespMuuaE8+jmJxelRmJHfneXctjOuqh7HdY9ofnHWufkCrwJDBPC6wVP83qWrLPeHDJM05JkYGDcXTNHEhhmitCCMbbdf+NnYRTxtZrx7/ADZoSQ9XeWyeFwEKg+9X9M6oVlGxIvgXnKZoz8MLrw8bjiYx0QLyA9q9LymybqINn+kMgo7TugftLvjpsVpQdWX0DGMeksapxiPE4QJuoWVTqjpetRWRbdTMl+k4CJ0BVHRaqP0hc6DfkO3VyKlZ+YETnm8EuskXpd4SC4au52RyFYHJes2D0l5umnFXj5nUQUNxtIHnU20sJhcY3PPfbtnvGb7Fh+c7vOhWx2iNlcpu7MgmicsLqWUtcYhME5CKYkWQW9Vtb1jpusZbM+50p/yzNkIsRB0Dk1giRYL/M4WZduHV+yErB01V5zeGnKWdxHCY5cRMoZyKzj4AJoeIAPjeFh0mRQpVJLnmKq4+FvgQ1J01lD1NdVCX/zQA0asaww6SY0bSMpGABpZh/ecLFPGTcb9yRmvGd0C4OTBDuNiGxtF6DLosOqRxw0MrpSYhWqzp1rtT+mRRuBV26ruFKoSxBNwU8UpIx7Ng+bugf0TXtt/mqMHejx29gDpWUq/cQjjUFVgdOQwHMdpVlNVEfU8QhiJMIJxkZHrhixqyHoVZetojc8l8YnmQ8llfsy/gdeMbjG3SUgZzzy2FNBqZI7nXX5n/iDjLOeg6iO1ox7AYl9hUkG1DX7QdiSmhqaRLHcVusiJd1KaXFJsS2zaum6f07lnuo7O9pJHdg7YS2Y8Mdvlth8hW0fb2tVVCmbTjCcaTTVPiO7ExJOgGSt3PJevnPPH+48D0G1dZ++tS/6/Z2/gV559ObODbuhspE1Wf26OofCBLYw8JBYnwKUSF6m1nmh1TXFG4lw419Ghv6xdxT03DFo4CgS+kehFSL+2eUjJj6Ul0pZKXvSmvRj4o+g++6mf+im+4zu+g3/+z/85f+yP/TH+5b/8l3z1V381jz76KPfff/9HLf/rv/7rfOVXfiVve9vbGA6H/NiP/Rhf+7Vfy//4H/+D17zmNX/o8b8Y+KRuij7Sdr/BBhtssMEGG7x4eEGYoud5Y/UjP/IjfMu3fAt/82/+TQDe8Y538Eu/9Ev8i3/xL3j729/+Ucu/4x3vuOf7t73tbfzH//gf+bmf+7nPrZui5+InfuInePOb30ySJPe8Xtc1//7f//vPHUt+61ryGrpRTSoaJj4PM+n25zYS2FjRdMIz6qWLudlscVj2Q1LxOs1VgggaiSdOd/iN3Zfw2vRpRnpJvWdYvmRIZxxmlm7YwUXQ1yUjmfOFyTH90YK6PyDR+p5Gv2FU8HA045HOHX61//m4NAYV2CsZG14SH/FQNAOgl5TMLGtNUHbyEo4XXcYuCX1G0l3MvrTCxSFXaZQt2U1nkFpsotZdRmoRZrdm0eWppkdPFByWvdYN1G4i06BKMO2Kt9Wc3e6ck9EIubMFZQUezusL/cC4ZYrw4BON6HZoOoJBXBEJx6lLOFj0gtanMO321bg4ZIxM64Rb50OiOzHZcdA8VInj6iBoq7q65uBoEDJuTheIZYW8vxOcgUmDtRI9lfRutXklz84x/YTZfSlCO5LIUC6jkGZ9DvHsQnfjtaeT1WSRYeYE0UKQjD3JucHFknLEurNJ6pBSDcFVxaqpW4TZs9cedBiDji1NI5E2zL51EZw2opEo6ch1TaLDtlh6gaocemFQ/XAsjNKC+5Mz7kRDRCPITsK+k88cEG8NiR5OKbygqytqG/QaqgqMSDVoj+Hccf9gzH2dc+5M+1BCclrjp1NEllFd7TN+aTjgi32wiUcYgT7TuLnCZQ5ihxkZXKJQxUpsAljBfJZirMSYMHW3WZCUed32nREcRkqGfWAHkqqWCN86/BbgjzRLH7RV1SAKmTOxwyZBG6QXgnKccrTTI+k369b7k90uv7Lbxx7EJBNPMhaYXFAmEh95mk7QrEkbxmaSlabLEWUNjRXIRpGe+VYPpLixvQ3A+XaHP9b5MH98J+PDV/conurQe1qgpxXJOEEaRbcfXFev2buF85LHzvY5PunhasXZpItWjr18zn5/xrPbYRvbZUYyBnkj5vHFVW5eGtHJKmaLNBwnNcjzsI0XcZd3RS/lzmjI0kRI5aj7wT3m4sD2RGk4fqLI0GSWpq9Y7kuqQWCImm7I4RJBhha2QwZs1bx6/4AvH34YJRy3liO8CcnSqgkp4+vrQa0oK0V0EpEdhX3W9EKG0U62oGlpm9+uJI9Wl/nZwy/gAzeuEt+OyZetA7Tjw/GwuhA5gagF0gmcd1gtUJnBK4dtxWarBHicwBlFYxTWBcfnqv9s1ZOWxoExG6VFuG75wMyqEkxXYqxCt840ZGCAP1dbVuu65j3veQ//4B/8g3te/6qv+ip+67d+65Nah3OO2WzG1tbWp2OInxY87zKVv/E3/gaTyeSjXp/NZvyNv/E3XpBBbbDBBhtssMEGF3Be/KG/PGCMYTqd3vP1sQrcT05OsNayv79/z+v7+/scHBx8UmP+Z//sn7FYLPjLf/kvvxCb4EXB82aKvPf3BDaucOvWLQaDwQsyqM8IeA9K4CJPrmscksNmwGQamIzOsnWzdCVNH/pZhfOCg3rIWZnhRauXAJb7OvSjWZiddnjn6SOUo4hzk0PqKEcRnX7QCSGCW2neRsFeVT2uD8+5MxzRz1Jwfs2A7kVTLqkuf7zzYX50509hhilRkoTmawE9WTIQYWaZKsP8OU9Bo7mlqCIWLryPkv4iqyTW+ChkzeS6YTtakHZrit0uUeuUs91kvZmObI9jN6d2as2arN9nATfnQwDu9EdI4TE5+K0+YjJHOM/hskvhKzKRsGw/t9MhqVrmMXUfdrMFPWFpWtbJC7BZGHDdUzRd0NoyLjOqg5ytZyE/tMyvKtCOB7vBAddVFb8bX0PVHjFbgnUhK2doeHB4xnHRoXBD9CLMnOW0QHRCeq1OgphisUjIjgS92xZZOZpu2MY+8mRxg1YWV4ecnezUEo9rml6ENGqt83CNpKiikFRdaHQVdAtrtkgGNgkCA9asdBS+ZQFqEI3A2Hv7l4QLidV6XhMtImSl1xlbxktUIYjOAjNhTk/RSiLcPnlW85L8mESOeJ92yEaiCotcaeOUZxgXjNqiN1WAmizxZQX7u0wfiJl8Xtudt7/EVRpxnBCPBb4SNErgOo6oZzAdRTMN20wtQ2aUnUQURiJadqceOGyyajxvGTUjKauIJDZo7TBdg1lGRDNBeurJTqA6DcdEsa+pt0yQHLVddLIAc6Y5WIQT8+H4LgDjXs5vdB9CmpjezQpZWaJlzlgoyl27Tq1enXghOwlkZsizmrmReBWh6uDoM7nmdByEZudNTioarkVnZGmNNB30s8eY23foHe5RDV/CyfVwTelfKbmajJmbhOOTHvpMw7nmwAr610qu987XupJn5xHpaXAAJmeK4qzH6aiD8JCcS9KTi+TyaK44tyPef7+mn5Vo7Si7FlkH56xv3bMAQobYdpP7wI51LjrlhLs4PiGwhztbM94weoI35E9yYMJ2FZVE1ivnZ7tsxyEiC0uNXgSWSFof9nFm0dLx4SKw5e+ePcjvHN/PwbNbJAc6uBBblsgOLCQOb8IgZKXRRWA2bdtx5nTI0/Kxw8cC33b9CQfeCIxROCcQJlxrpfEIJ/Das5WH4/uBzilaOG5F2xfMW6uDy3VNHtWcvojVZ/ACWfI9vPOd7+Q7v/M773n9+7//+3nrW9/6MX/nI//ef7x7gI/ET/7kT/LWt76V//gf/+MnXSb/mYBP+qboNa95DUIIhBD8qT/1p9D64lettdy4cYM/82f+zKdlkBtssMEGG2zwvzJeGE0RfOVXfiU/9VM/dc9rHymHAdjZ2UEp9VGs0NHR0UexRx+Jn/qpn+JbvuVb+A//4T/wp//0n/7DD/pFxCd9U7RyoL33ve/lTW96E91ud/2zOI554IEH+It/8S++4AP8o4IwoW/MRZCphoVLeGK5izsJB0965pGVw+wqmr5lmBY0XnGwHHC6aHUNo7AuG7eN0TGIheKxkz20tNRWh5mwAlqnlTydkR31ef/4Mu6SQyIZxgW3YsJt/rIIuRqE7B6Al2tH3K2xaULkPapy2FqycDEN5cf8fF4LtHIM23KrTlJTZi2LkcfYqG3NdhIlHMNOwfxSj+EXPow8mzG5EmbCImo4M12OdUosLeW2YKvbxc7nQJitHoxDfs1jg8ssmzikNfdSdFETFZ6Dsz6/WXb4kmQaclQAm3vqUYysPTYFKTxLL5m5NGSIpFBut6zAlqTeNex1l8yrhHis6Nw1pEcV5VaOii0PZcGFl4oGpRyqDtuSJKHuSQa7E750dIMPx/vczvdxSctI5Qn1MKIeQq8TtqWbxuSHnuzusk3ubcVjHcN+Z0btFN4IoiXouQmZVzJet59DYD2qRYxvJHIR3EvCsU4B9mIdF4UQPiTrquBWgtadZwWNkzgvWU/cfJiBi6pBlQ5VQ+3abBv8urPvubAJ7HTnvCq7SSQNIvKoGqJpQzxoLxFtiroUHuckugIxW+LqBt9JWF6CrQeDXu0V24c8Ndnm7mQHVam2LV3ihoI4NijlKNoEbhaBKRJGYZ3Ad01IHe83mKzt1lqxAlNNvVRUqUO2beYrBiM7saQnNU03jHe6jJmiMQMbmFMD8Sw4QceTDo1XvHR19cue5P/ofSkL0yN+9gx395Dh4gHq7oimJ7GZw2Zg2x444WjZWE+kLVFqMLmnyQW6CDoU0bIKZ3WHM9fl0AyYTTKuP1Vjbt8J59bhEcMfP6LuvgGAdw1fyhsu32BcpXAe03s6MCDzZcqd3oCH+4e8ahQecxxs9fGyS35sUKUjHUfMrwT9TzyB/NiRjIM+ph5rXKxYDFL6WUkvKyl7MbYMzKGqBKZY0cThH5c6mr5E2DY92gl0GXKKVo4tL2Gns+DV6U1eqiOWrgyapVKG3rMY6n7bWzesiZOGZanXye0mC1lQeb8glpYnFoFN+ODpLpNbA5LjcOzUfWhGFjWs6WQ13kMxX/0RD85CvWh7+oSkihSu60He61ITttVRObGmu4RlnWjtlWc/D9eth7O7KOH53fg+cIEpEjYkXY/iJUsT86z2L6r7zL8QTBECrTX9fv8TLhvHMV/8xV/MO9/5Tv7CX/gL69ff+c538uf+3J/7uL/3kz/5k3zzN38zP/mTP8nXfM3X/KHH/GLjk74p+v7v/36stVy/fp03velNXL58+dM5rg022GCDDTbY4I8Qb3nLW/hrf+2v8SVf8iV82Zd9Gf/qX/0rnn32Wf723/7bAHzv934vt2/f5id+4ieAcEP0jd/4jfzoj/4or3/969csU5ZlnzXymuelKVJK8bf/9t/mscce+3SNZ4MNNthggw02+Ai8EDlFzxdvfvObOT095Qd+4Ae4e/cur3rVq/hP/+k/cf36dQDu3r3Ls88+u17+X/7Lf4kxhm/7tm/j277t29avf9M3fRM//uM//mIP/1PC8xZav/rVr+app57iwQcf/HSM5zMGojZBVKg9PV1iveCo6BGfBz42OzOoxmEyEP2GYVIyaTKeGG8zPekiS4npBZ7YjDwYgawDtT6bZjyTjehENUI5bCSgCVS3Ozyh9+weT97d5fceMnx+JHFt4aWbTPHOk4wfAOBmGWyODh8esTiPL6tgVa8Sjm2PiQuFsLVT91DJ1UAx6iy5pCqsD5b9eSuKNN0I1z7yO1z0uJWG54DVFkxf3ieedVlcaoWZwvPB4jIWifOCcgfMa16Ges+HkMMBqvbUJyGc8cPDXYomwqZQj2LUuSYeW/ytnP/7oddit9+Dabl523EUW4pk4pA1PDXe4te2Po+5TRkvMgRQtVUR5Q5ku0se7J3xhNuhMBDNLGpZAzlJ0nA9DrULzofwtmjpcZMpcnsLm8Ll/pRXpbeoXIRPHU0e1t2MMpa7inq34XJ3yqKJkUtJeu5Qk4Jmr7eu7tjemfGK/gE3i7C9hCGENiaaeqCo+2CzC3u5ryWyUKE2wbe2YNnamKXHtQJRY1SoDfECZHhk5HRYRuKRz2mkXD164zlCSC0cPVmyncwxHY/tPEc/kCYhAiKu2FUzDtQQCI891awgmsXt9zoItdv3EgYoK7xpECrUNbxyeAbAq3q3mdYpd/1uKN2dh9JW09VUqV5HEazPtfbxRCjflaAdKrbBVu2ideVKPBEhuDJR1EON7Ti89jglkLVHH8/QZ+1j33yL5SWFGbXlvFaQnjn0UlBcSbhbD+nK8Aj4C2N4xeiQ/55dgqrGFQX68JRoMQwW9NWmD9p7VBkeUS2HMUVeo6Sj6lnKLQ1C0uSszRBHZZd3Lx7kg7NL6Jsp2Xs+hOFeXP53YZJ5Y/cV/NfXwLJIyO9Itj9QEp0uSKYj7uz2mF5OuZ6FbdzNK2rXJT2u0MczVDWkyVPKrfA4RzYOPWnDTa1HF+G82svnpMpQNhHzSYReCFQhsEn4uYscMnK4jsFqBU0oDNYLgVpCMgXbPi1e1a/0ZEUiYmrvmNQpehnKY5s4iLEBenkVrlFGIJrwCK4egNmvefXuMdvJnMfGQacyPuqRHilUFR6dmcs1WzszBml4fjkpMyrdPmaPHC5S4XFmWy0iViGe7SPn9b2EE9CeU0pbbBveKFxbfOwEqQrX4UvRhInNkcohG1BtYKdWju1owSJO1oGeq1DPTyf+KAthv/Vbv5Vv/dZv/Zg/+8gbnV/7tV/7FN7hMwvP25L/Qz/0Q3zXd30XP//zP8/du3c/ytq3wQYbbLDBBhu8sPBe/KG/eIHE2p/LeN5M0cph9nVf93X32PJWNr3PlZoPyhJhPD7y7MVTtvW8tTSHH+u5wUuByaDbLxnFS24uhpwe9olvh6lUvRfmhMl2+KVqkiLmClcpiiYKNvNBQTVK8b1A07ibNcl5hTvPeKre5SF9F4kPTEJbtJqMw+zrxnybxhvuWEdTamTtwszdh+VLHzNrffbLJg4zyDhGJAl1T7CbFEQISkBLR+uGp+lqbBSYouPzHu8HzhcZLvYsLknKoVzHDfhC818PHuKJzi4H8x5Nz3H+eRlbzcugaIiWnuQozEJvbw3Js4pmYFnuKtK7EclJSe9Gj3c98BL2k4ubajWsKEc50VIQT+H45oj/M/5ijJcURx36BetbepPDlf6cB/JTTqrO2irrhcBFgk5Ss62CgPLUdrG1IpoaXF0jiiCe1i0DMrdpsBS303mbKqq+IBlU7KQLFk2MKgWqsCAETT+i3Anzry/eOuTh7C7jJkc4EWaQQtB0FeVIUo08vh9WLJTDWxVszi7Ue5g4iD1d7EH5wA4BTSFhqULBJkG4bxNwUVt78VxIHwqIkwiXhADOblRxKRpzX3qO6Vvq7bCjs+EQ4jgcK1az9DGVi4JQ2IGo7cUs2IVtNFAFadRgFGBb1qixCA9xu9HydqCyDuGV2YlBGk3TkZRJgsgvuBIfBYZMuCAcl6XESg0YhAxi2VX4XjKG7NThtGCxL1hek7jcUo8k1ZYmux0hiva9TcsQxA7vAsOU3y2RjaPc7vLY9BLsvW89jjcOPsyv7X4+fnsAt+9AJ8ekApc4vHZIq4jCIUQyDpEFpqsoOglpp0bkhnJX4aKwL1fsxN1pn99yD3LrfBjCRE9P+UisAlW3HnPcudpDCOhOIH7iAHP7DoP5dSYPXOXxl+7S1+F4bYxCF6APJ7jbB+heitMp9chjckE0U8STcB1yWuI0ZL2K1wxv0lUl4zrlQ1GPtud6vY298ESJwUeCWoAXClGEa0G0gPTUhc8HVCPJeZGzdDEOx9LHzKsEVQYm0QvWQY/OC6oyIhorkkkQLTdduHxpzB/begLnJb9nroVz8VwTj1kHSw6351ztTTBecrLosCjji7zE3NIMBaK9Nq/YcKE8Kgqhp75lGlUl1qL9JDbUHYtrGTJVeVQlWJrAQEkcUjiclegCkqmnKELWz5ZeMI8TvPTI+sVhijZ48fC8b4p+9Vd/9dMxjg022GCDDTbY4GNC/JE9PvtfDc/7pugrvuIrPh3j+IyDny8D86LhenzKS/QZ/aha2y+F89hEYjpwrTdjGBU8Vu+jjyPyg9aOOgozlDRu0MpRzZMwI1uGmPn9dEq8Y/ntawOK+4IyPz/exqggYpDCMZApW/ECkwWWx9X1msVYNDGnruTA9nCNAm+ReU7VjxG5oScLFj7MFhd1TNZ4UArR7WDjMHt7xiQc2AGny856dtt0JLadvdvzmIN6CKVEuVCWKdr6BQA9VhzV2xx1BsFKnToWVyXRMqP3jCA+r+ncCpqis50Udb0kubRkdn+P7u2M9NkxgydTZte7vH//Cl8wCCWdV3fG3NnPSc8F8cyT3dLckPsIFZinaEZgxMLeIJKWXFXkugk1GUqE8E0FiXKo9nJQughXKfSyCq8YAy5syyeqS3xgconkVBK3egzZBN1BFFmkcJQmQlXB9u6SiHKocKMw3b4/O6OnChY2RhaSqPAI6/BKYdOgr9Bpsz7GXNWGOfoVQ0RgJiKHUH6tf6CWqHmYsQrbFnFmQOqIlMU4Feo5IFQZRB6bR5hU4mKPFo4Iy0AtUXlD1Q9MUd7tgAi278N5jyfrfc5MiJOwicDlCS5aVZhAR1ds6TnDrOAgBZIwqxZVg6pgWgeNztym1E4ha0G0tESTGi+gHEU0fYXRPnw+wOUWrySyEqGKYyqRhcR0ZbDnr5gzAqMWjwN7ZZKY5RXQg4o6sUznCclZj/Q4sLIuEsGuHzl8LdElRM+e4A5PGG29mscO95k/FFiXrkz5ovRZzH5DcV+PfHqd+tqIcgfc0CClA6J1GGI8syCgmEuqUuPyhig1gbHSOrAR7b6bnnaYTTP8PCJ1oPd2MUfHH/e6o1KDji0mjaBlhs3Tz9C/eZk7x0O20xAuOJ+l7J853K074ZoAlNsgH1xgrWTmcuJ5vD6GTQZb3SWPZLcYyiW/l97Ph4QPGpyVpgYwXiBo9StWIJqwX2QdCoLjqVlfA9PtmLNZzm0zYu7usHA9rJVtyGNgSVd/hatKY85SBnehe8fQdCQuFjw8OuQN+eM83eyuj+FoJogWUGvwiSOLGpYm4u6kz+IsRzQSWrYx7tXY1FKqhOQ0vDeAiiydvGJmJMhwsZI1qEJijSSNGupuRdOJ8Qp05dELyVkVrlVLl+C8xDYysN3jhmiRYK2kp9oQUwmydsiPiLj4dOGFsORv8InxvG+KAMbjMf/m3/wbHnvsMYQQvPKVr+Sbv/mbP2ssdxtssMEGG2zw2YQXJtF6c2P1ifC8b4re/e5386Y3vYksy/jSL/1SvPf8yI/8CD/0Qz/EL//yL/NFX/RFn45xvujwiyWqsggpuaTHXNMRo3h5EVwmwEcSk3v2sjnb0QznBXopSCaepivWsxatXNAFVZJoGnQuyzKmr0uuJBPee+UK82tBpJPe3aUexfjMsqdmSCT3pWc0XZC7O4jJlGoQDuzLcRlmiD4CJ7CpIt7fZXE5Ymv7lEt6ytiGmc98kdBfOLAWIo1XMKlTfqd4kCfLPU7Ou6StHKzuBq2Ui0MNA8s2QE9AMwiOjlXkfTQVJCcCm8ZUOw6GDeUVmC80+ZEiuTVh0D63n98Xk7204RXbh/y38kFmN1PSZyG7PaNzZ4u78z5fuRN0RV+68yz/1+Ud6tsx2akjngiac4VNfRu25tfbVxooTcTSJtQrnY71YD3SgrGSqQssxpntImoJtmUfshSvoXGKp4pdbpxsk55AfBZC8nwcxu49LE3CrExQVVi/TzVNLtZBggCHzYA7iz56KonmBrWocYlCmKCZWV2U1g4sH4IYw+seHzlkYgND0oT3Fo0IVQYrpihuHWra4bxgXKcsi9YlVre1DanCZMGttrQxB2bAmQmBqzZpL4zdoGPThedskvGh5SWcl8jIUvVjmq2Mptt+/pbZiYQl1w02BdLAOInaIqvAtgE0XiFFcH05HY4b4TyqabUrTiDayhQRWVyssEKjCkEyDsxFXUpKrZD9GjMIjGvd0/hIoBYGXQbd1f5oRqobnqwuMz+JUE04KJxqt7PymNYl5I5PcVVJ/sQZzd1dHmu372sT6AlL3KkptjrEl4csrySUu57OoMBaSZMk2Dis06Yy6I3aME4pPDq20INaevxSh/MGEPM4VGkoT7EDx1/zUnZ/3mOOT/hInL9c8mUvuUFPl/zS3S/E729Du1xybrGLiNMy7DO/1CTndq0zdElEuef40w88CcCvLF9Jeaet+Dlza3anIytS0bT7TYZj2V1UWPhGUi0jfKFRUxWCNV04x3yb46jKsO+iuaeaJjxTbzNOgy1bKUcTBd2biy8qWmyj0BNF564juzlHXurgheZ6dsbLo5qxW1BUYbzRDOKFp+kJhPJYJzmY9ilu9siPJTaB+v7AFN23dY4UnifsHv48RS9BlQKpPKOswFhFIcK5Hy3C+bEYRLAF3azirNvBRpJo7tBLmFVhWYskl1UoIa5BT2riWcy40UTCMtBLUB5pXjymaIMXB8/bffb3//7f5+u+7ut4+umn+emf/ml+5md+hhs3bvBn/+yf5Tu+4zs+DUMMePvb385rX/taer0ee3t7/Pk//+f50Ic+dM8yf/2v//V1Fcnq6/Wvf/2nbUwbbLDBBhts8GLA+z/81wafGJ8SU/Sv//W/vqf7TGvN93zP9/AlX/IlL+jgnot3vetdfNu3fRuvfe1rMcbwfd/3fXzVV30Vjz76KJ1OZ73cn/kzf4Yf+7EfW38fx/Gn9H6uMaja4m2MwpOICC0vGAHhPLgQI5+qhlQYZDsd8zJkefg0zCCyqKFoImQhScbgFMxmMVOTshPN6aQ1TduaYoYpTSYRUYPEARJF0Jv47QGi16HYCbO6Bzpn5EKzcAneClwiMHt9FvuCVw7O6IuaD5pQsmgmCdE0zBB9J8cmYKzi0eUVHj2/hBvHF8//B6HM1nQ80oBehrLSuu9xo5q401BNAksQjyOyU4+NBc1A0B0t6F6qud3sMXxSk5xPSFuXUvLIJfKo5mu234fE89tPPML2e2Pk8YTsZMS0SNYusWFnyX/ZeRlld5t0LNbVCj51ND1B0xXoVe2ChXkVc9p0mNUJwoA0DlEbZO1Z1jFnNmzgicnBCXysEErh97aoe5DqhsJF1KWmU7GeLthMtTUjMG0SimVMt6LNFZJ4Ba51id2pBsxtwsm8G3RHdRiDWhjiWYxeSJq6rdxIzVpXEzJSAAQulchuQxwbmtZZZpaB/VJNq+eS4GKP1I7aaIomop61OqG21cVkgc0Az3HR4feX17lb9nG1CrlYgO2nCOOCdmwZcacYMogLdGKpB1BtRYFtIrAJx1WPw2YQMq90qEAB8FqFJohWlBYJSz+qsB1HNVBE8xiThRl+yI0JuVoAKnIICbaWCCdDrtHCI6ygHgnSrIYssCHFrE95oNDz4HZzCu7vnfNQfsLJokM52qJ3s3UaNYFRtIBILCbTiCSBooDJlGiyzwfrkMr/2uSEm6aDqcJ2domiyQW24+hnJbVVnOY51XCV5RMyp6odh85NqPrQFqUcUnhKK1FnYdn0OOyzcldQ3V8zfbjm7Ateyv5/eynDX30SvyyYvelV4Tj4ggnfc/kXGUjDez/vGvOXbpO9n3YbC0Tk6MVtm3lbMbG+XsUSOar4yuEHsEj+6/BBvGqZl7klHkuOJ10ery6xq2eclB1UIWj7fdfORrlQsFAkY0lyHvZ7k4cqmGooiApNcn5xTMil4ma5xXE3wSJJtWGRBmdZ0w2luRDKjaUJY5HjGWqYgtTs6BkDmdJ4TdmyncM56MIF51sUrrnLWUJ2KMmOoNgF0QkDfu12YKieOd0imkN+FKpwGie43JkihOdp3Wu3Q3CE1gNFdUWzlS857VpsErRIsgLbMrnbasZQLcg6FU4nyKohWniaMvzd68kyOBulWFfvfLrxQoQ3bu6LPjGe901Rv9/n2Wef5eGHH77n9Zs3b9Lr9V6wgX0kfvEXf/Ge73/sx36Mvb093vOe9/DlX/7l69eTJOHSpUuftnFssMEGG2ywwYuNjR7oxcHzvil685vfzLd8y7fwT//pP+UNb3gDQgh+8zd/k+/+7u/mG77hGz4dY/yYmEwmAGxtbd3z+q/92q+xt7fHcDjkK77iK/ihH/oh9vb2Pu56qqqiqqr196sAShlphPeIWnBqO5y7IyZNdjGjalxIM21E0JrYlMYqnIKmI6gHEA3Dei/nM+4s+mDDzMwLEDPNzcWISDjmRULeuj+Ea+/ljeSm2ebA3uSxxWVUCT5S2G5CPQyL7MYzKiy36m1kIQFH04toBrCbzpj6mD9Y3gdAdKrR8wUiy2j2ulRbnitJycIknC1zZCWDRgKwvVDA6LVHjFXIZvIhU6Y/WnJ1MOEpsQ2AFxHRIjx39xJeuXPI64dP8ZPutSzfv0fXGPztuwCk5/s4L3htepNox/Abl16O7cSIZ5YkY8txEROJMLPcVUu6SUXRJs4CuNQTj0rqKKZaxDx34lQ3mkmTsWxipAmaH+HDbNpaycwGrcDSxSA8Jtek+3tUl3rUI89OuiSWgb0xOZR7QYtVjhT1yDOMGxZNjF3qUMgrwGsZ/m3LUu8sB8yjFGMlLoamq0hijawN8cwRzRWNCctqbfEZmFiHxOB5YIxsKmEI3bSiafVM4yLCS7XOD1oVFSvtsF4wLxLEvM1bKVhnI9XdkFA8rxI+NN3jeNmFQtF27lKP0uCijAWiFhwXnaCPUZamA3XvOanYC8GN8Rb96CrnRR7GkMeowQCfRTgNUcuk5rJmEBWQG+qeotzS2ASazqrAVaz1UgBCAs9JF46WDhtLRCNIY8NuJ7CHH54nlFsp6Vmbzi49e8mMR/LbvLd/jSfTrbW+Q84dqlRY5eh0SpaXEvyDV+D3xpClCAc3ql0ATjvP8O7iEfxpQjq2qGWDcMl6Wi3x+MRRj8KY6wE0Q4fcqcjbpGbvBak2RNJSLSNkq4/pHDh04XCxJh4t+X89/F/Iv7Dm//3yP8kzD72M/jOeyUNhO3/R5du8Og7H3ZdfeoJfurZHJ8/BGIotxWB7yuu2ngaCW7Dc3qI9ZfGRJEpr7otOaXxIDddF+ADp0RKXdJnczXn3fQ9wf3bG8aIb8raawHbL1i0na4EqBdkRZCcOG4tQ3Dry1KPAjnZabZXTICvB7eWQm82Imc2ItcHmjqaRNH1LrxeoSyE8yygP56z3a51VT5VIJGObYxfh08QLj7Ael0DaqeklJUeuj14G/ZvTgivDcP3/qv4fcGz6/LT/AvIjz+DJEi9Tzozken5GT1fciAMjGFxkIXm8rCN6wwrdqbFJeF9pLm48dtWcXdVweTDlPBuA9+jS4SpF6SK29ByVWGyqsebiWN7gsx/P+6bon/7Tf4oQgm/8xm/EmPAHLIoi/s7f+Tv88A//8As+wI8F7z1vectb+ON//I/zqle9av36V3/1V/OX/tJf4vr169y4cYN/+A//IX/yT/5J3vOe95Akycdc19vf/nb+9//9f39Rxr3BBhtssMEGnwo27rMXB8/7piiOY370R3+Ut7/97Tz55JN473npS19KnuefjvF9TPzdv/t3ed/73sdv/uZv3vP6m9/85vX/X/WqV/ElX/IlXL9+nV/4hV/g67/+6z/mur73e7+Xt7zlLevvp9Mp9913H3LQx2uJNIKn6j121YyjorvOCFqp1mQDR0WHXG8zK5LATKTQ9D2jbnhgfymdMm2StRsn5IIIjpddjJdU5ynDWbu+yiBtDJXkfcv7KF3Ebx/eT3oa8mBsP8GmYdnGKx5vEt49vU5yJlGlCVqSzOO84PF6n987DymxSfv7YthncTXB7DVc64xRwmNaTUxLpmB6DtFtwEqk0eiy7dSSnmFecDWfcCcOhV+NhXhicYkEL3l595C/1HuUydWcf3dpD5Gm68Te/MRyuuyg8NyvzxAdExJl6wa9sLhKMXNhppzKhqKO0AuIp5Ym03gBWdpmt+Qx0exiPxqjKG0UBIUyzGhdEmETQRxd6L2MV4Gp0AL6XaqBxuV23XmklKPuwexaODXKbbC7FZ24ZlHHqIVC1T6kBCchKVg0YfudFzlaOPK05nTLsbikiKc50bRCFw5ZKVZCkGEnCKLulhp/kqDL4IwxHYGxgk5crz/bLE1xOiSSr/JfvPJBw4LHmpDzA8HJ5jTt7B7oGpRwnFdZ6IwzYp1cvtzTSAs2C86400XQ5jkncYnHpCK4vAC9hPOzDk8mOyyqkO3S9BPS0RDTide5VQB2ReG1jJZJBSYPx5fXHhoBLVNkYxn0VbGl6SvqniRaiLa/K6xnKwnnUW9QUPdTTCZxCpDQ1yX36VP2shlPaBCt+0yVBlUnRJHhZdsnvOd6zuThPqPTa7idAV7AUR0e9/9B3eV3p/eTnEni0wI5q1BVB9EIFlWMdbJ1d7bZSrFHbFV0OiXeC4oyRkhP3CnoJhWTLFuzm+mpIT5eUmwPcNry57pPsS07NA+9i+9/5i+QnmpacpRxm5ED8EB6QtMDuTUCaym3BV+8f4tvHP52OO+c4mceeCPDrRH27Dykt1tJ6SOsl1gr10yRPJmQRYr0uMsHz/YoBxHzIllfy5wOmU6rfSZc6HfThcNphcmBvZIkbVgkHVYW3GgBqoJbswGPja6214PAlts46P+y+CKXax75kHsVx9hE4RNHLiscjmPTWzv2dBG0Ok0Hrg2mXOtMuBHttPlH4BJ41TC0r395avlAfYBpFJ27hujDt8mHD3AGvCK7wyJJ+OX8FWE7mIjkrCaeaUorGMYF/W5JmXaCO7KCqgkbIhWWq6rHtc6E4yyw7WppkcuIic3Z1VPSrKbuJ5jmxWGKNkLpFwefUk4RQJ7nvPrVr34hx/JJ4du//dv52Z/9WX7913+da9eu/U+XvXz5MtevX+fxxx//uMskSfJxWaQNNthggw02+EzAhuV5cfC8b4oWiwU//MM/zH/+z/+Zo6MjnLs3o+Gpp556wQb3XHjv+fZv/3Z+5md+hl/7tV/jwQcf/IS/c3p6ys2bN7l8+fLzf7+dIbYb8n9ullv0ZMlZka/V+6YT03RUyPspM274bYppGtw/PkymnttLJYXHx56mNcq52FMZxeG8h5oF9iG8rmg6EpTlbjngpO5yfrfPtVOHMA6bynVmzGnT4beWL+MPji4Hp4gJKdsu9lRO81hxhWdOg+aqOwWEwG33We4Ksn5JX5dMTYpzYZ2uvTf0SetzqCR6EVgCG7ft2+0WqNsZVbSA5KQMmoZ5B+sll1SX13We4Me2vwJ6F87A5KRkfNzlvVUQwnt3cZILF7q+Fu0gpOkyLVL6Y096XGLjDL2U1I3GWokyF63lsobGSIyTIURXgckVkFL3YCsv6Mig71raKKT0Wo9XAhcHh9a4zjircuoiIomgaqVq5Z6jN2jbuWcZ0UQiG4/NJHVPYVLW2pNFFTNIFf2kZLJbUJx1yE41emmQTchMEjocE9e6E3JdMy1S6jhZpwrLOrjZhPCkOnxApR1tjNGagfDKE0eGWFuEYJ2gvHKnNTnUQ0dvWDDMCgoTYVtG0LSERDUMrkIbhWyX2TjDWEnTKHybmi3cc9ZbaKZlinUCm0I90MRbXUyuw3u6MGOemJxJk+FrGRKTfWiyt0lgioQRF7k4xuNiQd4vqSPLssmRTUigljUsyxjTrjePG5YdT5OLdV5YKhv21JIryWTN5ACIyiIMpLHh4e4Bh1e6/P/Z+/No27KDrBv+zWb1uzv9Pbepe6tSlUoqPQlNDCQBDARQIIP3Ew0fNkBoggpGwwBph8JgiEgQFSKKQkACjlcF/ARiEAkJBAIJgXTVd7c79/S7W/2c8/tjrrNPFYmEW6kqAu5njD3GPfvuZu651tp7zWc9zdGFbfrn17GBRDjYKz1TdF91hmv5wOdAnWTOCD83RRliGp+yLTrzqZMOqRx1o6mKADfXEFmapOJcXDBJY2aBdzuqyrutwtmA3AnWpD8eAmFQU8XgkYb4yH+Yj1w9w8O3Tbmk+1jXfcYwAKtpU3hh/zKXOifV31z5HX7m1s/A3n4e+f45AE2hudysEYvGX2o5Obxag5yVhJMeh5OMJGwwjUKKrkcvPmWJTWrBSZqeoCkUTSZo+o71lRnbvQn3OEF95Megau/YOh5nfHi2TaZqqrb7SelyuFrb7XNG+mRsAyjps7IiSyYrjLOM2xRZyu7YbzGhxGSW89mY7XiMVNa7Shu/L12ID/1jkZzXvusxGNe0N3bRswtIZXlWeB2DIDwRbBIgy8Yfi9KxFU+5lgy4GqwhjdccHc+94O7AJNjAkqiabvdDVQaVR1yvh5wPD4nDhnIkMfVNJ9ss8UmMmz4p+pqv+Rre8Y538JVf+ZVsb28/rhT2qcQ3fuM38rM/+7P84i/+Iv1+n50dT58Oh0OSJGE2m/E93/M9fNmXfRnb29s8/PDD/ON//I9ZX1/nNa95zdMyxiWWWGKJJZZ40uGeHKZoeQnu4+OmT4p+5Vd+hf/xP/4HL3vZy56K8fwf8WM/9mMAvPKVr3zc/f/xP/5H/vbf/tsopfjABz7AW97yFo6Pj9ne3uazP/uz+fmf//knFBXQrGe0Qw3SsVMOkcL5xNVuRZWfCaiGkjaztEayN+shxxqd+xW/aASTwj/4SjHiuExAOpqBZzJcr0UIKKoA2QjPOAD5mZjZtiBcKZHCcjUfoicK2VrMIKZc1djEL1nHTcIfNheY7PdYLaDNFMW6hEGFEo6H87VFntCoctg4pFmJ6OqtuFaMOK5jmlp3+o/TlGVXaPTYN4OrymEigRPQOslBlVF2K6ps6lDHcxCC6DDjw9NtdlZ/FxjhMoMZnWrN1HFOsNPjV4+ezyjIoVA4YRFpQpsoROBQPrCHxmnaWqMLhxoXhP0QPVcUswhXKaIuzwa6nq6OKXKuS3SOJDbwLsCNZE7QLfOP6pRgJlCFZ2Gs8h1PV6ZDZkWE2gvRc6+zAbCZz6AZFzHtfkx65NORq4GiXBU0j9m1yjJgGsf0o9L3LvV90zrW+XT0FmSX8LsRTxnokizaogx8tsoJC4TrWJcTzYcRnZ6oY4oek5SeBjVK2ZOHds67TleVGtZ7M84kU3bLnjf9uNPeujbpHDfSZ1HZ44DCClAOQks9UgtGxkRd6zkQBoY8s5Qrkugw9qt+B0XtXTwHTcZhlSALha46Rk+CjS3EFldKxEnis/X5K6u9nCyoeYB1yllGugN6DvNxzOFK0n1eQ5s62lT6bKdWkJuQSDjORUe0PYtJ/IfT4wrV+Db5ni7ZSmfs9qBNNbI2qBJuFJ7Nud6MqIz2+qdhiEw0dV/gtG9JN4UmnMtFP5iNBKZSmFohxgF6Lml7Frch2IimlJnm7tS7M20oQWtMKOhFpy7XjxRnya4Ikg9dI1rz9Ug7u0Pua1a4pFvMSVCWPc0+G6l88fw7gh5r2xPycyP6V/x7MdfcW5xhOzxGCkfTZUyRdvOXQzsNGWcx1ngdkYk8U7hg2bIWE0mKOsBJn0ptU0Ma1KS6Jo4aJt1jnRLIFtq55upsyEpc0LQKpGdhsd4ZCZ7FSsagpw20BqsFMjD0hXenVVYvmF9hvRbNho7V0B+7plYEc0c4MahKnurWgBWZooLHX7HQ2rKhSgwCrU4oPnySvfPawRU9ZxBWXFGeZQ/mFjv132v31Nuc0/czPfliFv44ljXsVn32Yn/gtxmYJyxCuTk8GUJrnoSso7/ouOnNubKy8lE2+KcD7uOc4iZJwtve9ranaTRLLLHEEkss8fThyWB5lkTRx8dNnxT903/6T/mu7/oufuqnfuppdZw93ahGAe1IYpVjv0xpnaSuNapjEOZnJNUKuFGDlI680MjyVHcgG5hP/CrjfrFOWQXQCu8Mix0yMtSNos4DtIF64M/gy1XB/JLhjvVDeqruEpoFTSZx51JmZwXh0K84a6O5UfQQM4UNYH5GM7sAa+tTtDBcLkc+oRa/ym9WIs80KSgnMR9w27StXwmj3eMWEXKuCMc+NdoGXcZManBOcFQm2C7ZVVhAKzCWcOr4yO4mb9+45LVB2lKtx8Qn+4l1RIfw3r3zrKdzRCUxCbi1FeqRQscFsTx1qyC8W8+FGqe6VOtGIku5cGstxoBnscom8GxJlzhtEkdPV4ucosuzEeERqHmN05omE7jAMSsiqp2U/hVBOIWii7by3UuC6TQhOlBEx67bPwTlOrR9t/imaWcBBzKj6Uma9jSFWhYNzqpTJgi/6itMQNUqRLdq96tjAMG0jDi5Mt1WmrBLcHay03a1AusEoTREYUMrT92Q4cxS9xWi9QnDq+GcWRvhnG89P9XG+PfEeW2InkgaqXH9FjJDbQVWe8bCqW57WEGgDS4x1D1JM9DeUelY6EkKE3gtiWMxNzYAm1iCXk0jAph1TFHXKJ/ohlt7B8zqiJ0sRba+B6080Bxt+f1nGBeQtbRRSFQ6gonk/vkm0xXFhp4gh94NBBDtgs4dR9OYy+UqeetZLGEcqmwJZrA/9ZTpwUoPLSxND/KtEGEc5apnc6WyCCM8+3sSaG8EGImzoHPpj5EEIt1yJprQOsWHUr+x675Gr/UoNgQvWrm+2P5XypFPgt/ZRSXx4v6+LAFNLBo/51p5TVADe20fOO1MW0vnHK6t0VvpI5xDTxV3z87QZAopLW3a5QllMbJqiMaW4Egx6yU+kT3sXGKaxbGvQoPOairhsGHg+/okHBUJFrHoJ1ts0y53al6HRLpFKQuJ8Uni6jQB2o1DomPP4NG2OCXQoSHuaMTK6tP5BZ8S3WkyCxtiS018bAkPSsJxwE71+PLxJK5pBhlRmlJHft8qnWTuAtouR0g2rnNv+tykQBi0sD7zCpDGIQv/2HuLM5wNjtgvM/9dkoYLFvKwSnm4XKesAwjAPE3VZ0+K0Hp5VvRxcdMnRf/iX/wLHnjgAba2trh06RJBEDzu/9/3vvc9aYNbYoklllhiiSWWeLpw0ydFX/qlX/oUDOOTD01P0gwEBIZJGTOtYtoygC4NuFqFetUQZTXOgakVis7Z0+WzUPpVx9Sl3onTCmzksIlBWkE+iZHHAar0biGAat2RnZ1xNp0waWP2J75Hq+4JinVFft6y0ffagrwN2B33UYWkTaHYAnOx4PbRAa1TXJ8M0N2K3GrINwOqoW9OV/sB9WHgO74iC1m7uC5vCo0qBXoOOKgGgnLTEQ19eu+kiv0KH5/eXdwyRNUWqwX5ccKvHd5FPyhRgWW2HZHcftG/bqhRFRwe9Hz2i4BypNBn+1QDiZSOY+MnwjrvwGpSQb2RUqxr6oFDxS22lossFPC6CBVYWispq4B4Bjo3ND3ldRFO8GjldRc7hwNWjhyiMdQbPfJtSNdyv3IcK7Jdhyot5Xq3ugwMSjpsqQmPvY6pjQXVCKo1A4FDnLhmJprGCsYObCvRuSCYG2TV+FwWDUL6OR43Ccd1wviwR1x02UKZz4gCx2weY7v0a0rl/z/1q3JhQRaSvAyxfUGkDdNubSINBFNDHAvUXFK2mkD6Ti7bSIJC+ERuTpki4TwLomowtcAAKm4xwtG6Lu23FohSMZvFhJHXw5kE75R0DqzX7wC0VhHrFhd7t6QwXaN8ZEniGtPKRS+XKoFSUrQBUjhC1QXC5g5d+O2Ql35Db/cmBFmDDULCqSPdEfzRzjYf2DhHXxYMhgXlyFO5PaWIxgaxF/GR7S3mtc8Qc0p0bBFMc/+6h02KEA6TWopVCQiqFYdOG9/63jkaTxbqNnS+k6vxuVNOCmzgGEQlK3rOgeyddudFgmo1ptiAlw1Oo0FmTewT8ZOYdsPrU9xaxV1BA2hi2WCVZ3lE24KD+/NNWHkIgAM7xzpB04N2JcUqQTCDe/c3aK2kaTT6ZL2qJezPSXd6JNcTpoMQkTWY1NJmcuF6BDCtJOmVhKuGqUpgqhGNYHzQYxok2EovWsSbrGM2A4txktooQmUI+zUmVkhlF72ArhYEuUPULShFmwiioEVhKZxhbk4TxJ3octGE1xpVFkQlUaVBzUp00We/7vFYDJKSejgkWRnhAkHTKO5rNjg2KXWnf1TNaSuqtT7lvrYKhE+SN4FYuOYmbczleo1ZHWEV1MOQpq+xkWPehDw8X6OYhyQ8PXAsLflPF276pOi7v/u7/1SPe+tb38oXf/EXP66sdYklllhiiSWWuHk8GVe+llfPPj6eMt38133d1/Hpn/7p3HbbbU/VWzylqHuCZgAEjnkVUtcaZqfJpSbxfUjWSOZ5hC21zy5ZEZjIeafNCeYKaXwKMYlFBgbXSNRhQLwr0CV04bq0w5aVLCdvQx4er1Bdzegd+xV9sQ5ysyTrmrJ35z3K/YR47nNGqjMtzzizz2Y05f7ZOpOdPj0f54FTkG8KqlXPSgRT38PWJlCec6ytTxcpylf3VpB14Bu0JVRr4LZL1gZz6lZzPPZdaeB7oI7uDBEG6gFQKD50cIat3pQorpldSAin/vp/MPeN7G4WUKQBNrYUGxrZBtgA6mnEbx/dvpi2ZuaTk6tRQL4hMOs1q6OcIydoe4r6hK3qQRg13nFTavpz0HOf7o2A2mqulCt+fvdjkgMDzpGfCSgv1XzW2cs8MlvhRjsknHhhw0nqc39QsJLkHDJA1aBqR93vXGf9FoxAjv1+oQtBIxUmUTjrnTmytjghaLOQegBJ7DVTkzrmof019I5P5rYRVGsOO/JMiRmHiG6OPStjKdeld4oVEMygmERMhxFx0GATv79Z7ZPNo4lEzzVlp6WxTuAahS5YMEUm9it9J7qMJOMZobYVKG0RwtHm/itCTT3z1bQx5aCFtssq6gufRWSh7vQmuQkJpUGkLU1PL9xwWL/aFV3mEvj3VbnkaJ5ykPUoW+/G1LkhHLcEc+Udcfhk635WUsmM+KAhmEuu3NLndy/dxuePPsDF4RH3rXkTiAsV4bgl3tVcPRqRRDUmdlQjjTCRd8N1ScSHVUrR+C49E3UMWuSItEVKi1MOE7oF+0PWEqYNTemwkdeEEVt6gT9+jpvkNHOnsdhQ0PYs54Kjxb59bT5AtCDWVpld8JqirY19BtJzD9eakd9fR/FiXNeLIb9R+rnYa88yrWKaDMoNz7LoHCZ7Gfc7QZMHJCe/gNZiD48IgP7WLRTbEjeyuLWKykWER3KRG9XmGjsQDNPCs8I2Qx4HiLln94R2PpUcaIY+e01oS1lrhIiROIZpgVYWJS1Hc8/8FrLTTQUKFyQ0mSAOGhqnuGEqDqps4T5z0n9HIRzWSd8OL3watgu7pHnzeNlGFtQc9AT0M5wUmFLzh/ktzEwE+cn3tsOF2mdmGcle3WNcxTgBdV/SpALT88dnICxjk1I0AS6AalV7t3FqKZuAq80QOw0XrtCnA08OU7Rkmz4enrLUqY/nFltiiSWWWGKJJZb4ZMLTlLDw5w9NBvXQIaOWptE00xCdy9PGdun7oupJiCgVuvQujWa1RaRec+G6VbasJU466BnSgU9Hzvcy4j1BtuNbqquRP4PXWUukWq7Mhuw9usrgIUmy56iGgnZg6WflIjl4/7BPtKOJxlCtQLhScsdgD4CH9tdIH9FkN7pVXSooNqHdrqGSBI9qwrFf4Zex5blrO6yGPhl3f5pBmRBNLNVA0gwsZ9YmDKKSh/bWENdiwrEfr4mgWukazo3/rIf7nvYaJBU7t9RMOu1Gds2zJ3oqaVcUKmsoNjWqc+2FVwN+V50klTviqwHB3Pk8lRSCrGElyZmXIW0S04VUYxJHv2OKMAJZO4SxXf+ZJZQtx7VfgYfHiuhg7h1GK5Lz5w747JW7+RXzPHYN6MLQpopm4OftOasHrIVzHlCbnQPJJ+ra2HodU63RhZ8LVULTBx0Zn5ekIpwSuCSgXA8oNy3PHI4X+1hxHDPY9cxPPgK3UdHvl0yPE/SRRvtdhXrosGsN7dCBCNFXBeEY6gPNZD1mezDxXXVAk8U4JRGt87lIwhGJxrtsjNcTdTVvXR+ZwwagZ95hpSoQtXeOaW1PXW0VhBOfZ1QajekZmqGlrCTh2LNF5thv58ujEcO4IIhbmr5DlZ3jba6ZRxG2UejHZDLJRlCWAcd1vOjhAxDGpxiLbgzr0Yy1dM5VtUYwLomuVfTu2OT+6Qb/z0rJi0aX+cCWZ6abfkB4XBEfweE0pJdUNGst0wsBJg59snzHQB3kGdMi8rop691YJ46kk9W5U+C6HC8ZGaKgpW0Utmt7P9GiHLVZ53D0z4vGLVb7BO0D0wOm3N3MuXp1lVvHLS6JKNb8m51L5hzZnNwZfnP/DnQJ1WpA3ZfUI8e4ivnl8Qv9mOuUaRHR9GF6zjOAWAgONTORIiq50EC5QOGKAnu1ILu2ic5TVNyw2Z9yNRjRtBnBrOvOyxVlHbDRm7Ga5sxzH2QUTrqcsh60w84mFhuE8u7LYhZRFiFh1LLSyzmTTYlV47WDQK76nqHJQmwgaVKIlWXX9DmwGXtFtnCfWS0woUAoR5etjwud78VbSWgT0OKjLV82ENiu8Z5Kcq0aUll96g6NJW0/xERgreCg6jGpPBNX97xOMBr4L5Wsc6yWte9crDNJ3fdp/1WrKMoQmfs5ftqkPsvrZ08LlidFSyyxxBJLLPFJjqXQ+unB8qTo/4CmD2bYEkWGtlaI6sRF07kXAs9K6InP8xHWMyYia+n1S/I8wna6Aj0TtH1H3C959uYukzri3v2MYArxkaEadk3UwGjoU1avHQ+Jryv6jxp0bqmGATax9KKaoulWQ4ch6Y53RFUrgmFWcDE54Fq5QnEUs3XZkV31OofJrSHNmuHiuX32Jj3ctQFB7q/TC2V5Vu86W3oCwK/rO2AGyW6D1SEudGymM2qrqPcSVh4QizTp2TlBuW2QSYsdB4SHCtMEjKOE27b2sVtj9o/XAYgPBOHEEh1K5luawcqcyZainoQkNyC7BkHnFHEC0l1HuttiQ4FoJdZIGqt8N5iBj7FY9E8UYGJNNRDIYcW55JhJ4/vWdA5qUkDTYmK4tX/IM8JdLN69o6c1bZJgen7Zelf/OrFsENKhaoeqrHcX+uBen9o8P3lvsJFlczDHWMFR6E0GLlCUI4nemvO8kc+qeWi+hpr53CMnBM3AcW7riCyouecwJT7wYwXfeB/1S0ZZwbVmFXc9IDl0tJlgPo/Rw2OSrOr225i257vInIY0qFkPZlzRKx+ViO10p40LLbby2h9VeLZPSscgLal7Xc6M9s5B2fpMLbNukKOKPIgBPwfxdc9g3ghGlJuaQBvmI0NT+ucGE0kjQ5CcJmXHnq3SyqKFb1Xfzyx1X6JKjdOgOsfeeuDTuR9J8C6i4wnR8QbTJuKCnvN5/Q/ws+deAkC5lhEelQQzB4Ui0i2D9Tnz80OcErQpuG4eJnlMOQ8J88ekigu3cPwI0zFIj1llt0Z6x2nle9ycEd4NWvfZm/WIOkJQT2vaLEQ0mvurLR6OrvEju3+Z9N6Q6PoBSBbHPsCvF1v87ux2PnzfOUYTKFYV83PgNkryJuRdO54JmxQRZR7iVlqmgSKcCJ81lQus1jjt6Iyc1CsxUZJgiwJ9MEMVKWlY89zRDqEy3D2JCGadG7AQNKVGCkcvKrkRttT4/UI4MLGA0E9S1KtxVlBPI8RMgRUU/ZY4agilIVanmWOLhvtQ0aYKE/u5EytmFAABAABJREFUvdyskdtwkf4P0KbSu3ilozKatgvnalJJPQpoM9DSH5+NaylcQ9X6fR7dMWRGUJgQKSyu03dWwwBhAp/kLh15G1B1HY4m9u7PJPbflwrLcZNSlSFx+5hML6CoQup5SFAJzyo+Jl/pqcRSkfL0YNlkt8QSSyyxxBJLLMFTyBRdvHjxo4Id/zyh7VuCnkErQ936ZFcbOmzmlwUibbGVQhWK8Bjv0hpBEPlUV1No0hv+nDOYwTyQjLKCTxk+ytVqxH1qG106ZGVpI02z7ldVz1+/xlqYc/fuJjr3ji0n/EpG9hp6YcWs8myKnkmisUXV4IRgNc25PbpBbiJEJUkODeHeDAB5fhWVNbxg5Rr36g0e0gPCmQUkrlb0ZclGxxQ5J4gnjnBnStsbgYSteMqNso+eKIYPNei5H2/dT8mVI0oaqqOQ6AgQgukwJD3XsD6aszsY+TkzmnS3oY1D5rdJNnoz4qBl/3id+EAQTRz6MRk68aElmDbYUBLMNbNZwEGS0cwD0jkEHUPT5D5pt459bowJBc1AU40E6yszbo9v8EjuXUmiBTGvwBqs8toBg+BG3iM+cKgbx8hRBJ377Hx4SG4jXKMIZg5ZGW/g6Bw4qvAME3S5SYnh4uCIvA04kuvowvhEawWjXs5t8S4AV4shspSEU0vdB9NvuWt0A4C7zVmiI7rtA8WWZJiW3D7cZ3/cAwLCqSU6Vsxyv5KOQ2/dmUdeO+H3GccoLFnVMxJVe12bOO0+M5FPKRfa4ZRDmo6eF45RVvDs1R0eDv28PTTZJjxWyNazpKO1OXeu7vHIcIXdeoPhkaB3xc+JsAGTMGV76xi9bRgzILyhUSW4icJkFtO55UwKpIZhVrAa5aS64fJKTbEeI1vFY01GkWzYjsfUK4Z6LSWeZDgJiW64Rfe5RcOdW35+H129jb6S/hirJUpaVrKc6UqXWyNAdDlQVRFAoXyDe5cx5kLPXrVGep1ac9o6b2pFJUIoFLro0q5rnwk1byPqWhM+JpjdxBIbOmZtzG8VF3nnlWcweMQiDsbYs+uL/jwtLb89vYNffvAuevcFhFNHsSEoL9Vsrk8pG8141+fzqJnGpYZ4rSDabhgfZgRXI892zgXN0FGtdpk7twRs3XIOe8/9MMsJJzArIyLVshnPuC9ucTJYHB+ukTRGocOKQBtqvDNRdLeTedDK0jgFtSSYSM8iCkW14vfJ2mrm3XeVmkt06ek230sItVE8XK4zMxFlHdANgbonFnlvh1VKabR3YgowgddunrjPjmxJ7hyt885MGyqs9mnYkWxJVI2K/bHR9AJk41P0VZeWba14nM7GdhqoozbloOphSrVwVwrrOy3r3O8vwnZMJ08PnpRC2CdhHH/RcdMnRZcvX0YIwfnz5wF4z3vew8/+7M9y11138bVf+7WLx33wgx988ka5xBJLLLHEEv83Y1nz8bTgpk+KXvva1/K1X/u1fOVXfiU7Ozu86lWv4jnPeQ4/8zM/w87ODt/1Xd/1VIzzaYfLDEHgMFb6NGrjHUfhmqcyhmnB4SQDAlTV5b0E/pq0c6CONL3Lfg8MZ5ZqqEiDmmfG1zGu600qfd9Om8Fww9MNLxveD8CvR3dQKb/KbGPf9t7rlQyCij3pV4vCdq3o1jMAo7DkmcEuZRxAasAKRO61Jqp2KG25LdmjsAEPqosEE98BJY9DpjYm6+xcWllU5RCHx+hZHyclF5MDtDR8SEAwqdGHnqbRZQLKEYUNtfUOJdU45hcUqa65PdvjPalPtFaNJrwxI02H0Apu6R2RDBvedtyjupagSr8ShK5vrScJxwphLMHcoaaKPIkQM92xaH5+dS6oqoDa6MVKv40lbQYb6YwtPSbsNAjCAHUNUuI0JKqhdAEH04zN3Ra7s4e6tIHoNC99VTK1MeSKYGaQjfUZRmmLDgw0p/oq4Xxa+Fo0A3rIRhAcFoi9I3Q5QggWc2yd78zShaXuKVTS8sxsh3GbIqwgnFmiYz9m2UhC3bIezQjDFofPP1KVRFSSeRMu0qRx/rvThr7hPNU1wYmtR/j8l5PvxTZ1qKRzSupgkSJsY8szRvu8euWDXOv5fKefzFOKw1WCCdjYcevokP9n8/e4MlrjRycvxz6QMdjpgmbQFLconjna4xnpHr/Vv4173Dniq3rRE8bIUylR2pAlFZvZjH5QkqiG/rCgWI/RhcQpaDrdx8zErAcz9HrJ9EKKqkbUPbHIBwJ49mAHgPuHt2FijbAOWQvqVhMHTdfg3u0HXc6VMxKsd1dZ7Rk/ERnisPFp2rZjGLsyOtdIjHSIWnoWoZteLS2BND7JuWM9mkFEsaER6yW3xntULmA+jlk/8k8qNxLKbT9vt6RH7FZ96qsZo6sO2TqqVcH58wecyya89/J5kkf9CwdTmN0quXX9gE8ZXeZ9gwvcPbmFeF8iWmj7gnbYsYfnA/JbV0h2hrh5TrZjONrJ+MDqNtYJnzp98nvrwBlBYxW1Ud495k6/a6Rh4dqTwnnHJ4/XqgnhkDhKE5AXnikKZyc5ZQ6nPOvWtIob1YC8DXFWLLLB6v6pzuqgyJhXIXouUZVDNb6p/rjyGqQbRiGFI5AGE4KNfA8kAqSwPs29szo6H1bus76UJdUNgTa0+LwsXcB87gexV/aZtSGu7T6/c74Dr5aYSiEbz1iZ0GGfpqCipabo6cFNa4o++MEP8mmf9mkA/Of//J957nOfy2//9m/zsz/7s/zkT/7kkz2+JZZYYoklllhiiacFN80UNU1DFPmz6V/7tV/ji7/4iwF41rOexfXr1/+kp/65gggMzinqIkDNFbIWmJ5jre8ZkvO9MWUTUInUuyo0mF7LZm/GcZGg54Lsul/B6nmDfkZGrFrW1AyLQOa+m0nWljaC8wOv57kt3GWvHSCEz+epe5ImEzR9xzBoFysz8A4eE3aOGedTi1dVy3Oia6Sjgibrg/ErUl1YTCtZ1TNuiQ+xoUPPa9SkJN7bYLceMOr5YJyNbMZRtArWIluLUILboxtsBWN+efBCbKQ4qXC3ShAkDatpzlgPUbUjmFtkLRkGBbfHN8jSLlCIBDGZo/MeSM2zsx3Oh4f84do59oYJVS0WK8SmD/VMIGxIvN8gW1CloDHSr/YfczovGq/zKNuOBjnpquoe0zhF3p70H+HnJIlpM7gU7zOSOcZK9LzFViU4h+ocNiM155F6zXfB5Z02IYPhypxQGY5FjyA/YYrA1dKvvp3P7pFHc+zBIbq8RGUlZUchTJoIlUMwa5GrCh0azgbHi8+kKoeqOnarDTDWvy7g05gDgVVeD5HX4WKFm+QgW4eJBU46rBMcm5RpG4PrEpu7wibTs8RRi7WCRjnPLgVeu3Zbus+nxFe5FPhW9t9cuYP390fouZ/UtWjO5yQ3UMku77lwiT8cPBvZ+HmIJg4n4C+vfIiv6B/yG717eMPsr1Hc8ExT0xPoTuexPRqTap8xdVT7jR/plmnP0qY+F6yZ+W33SLHKs7Md1odzJmcywmmEifDbvcN6J/BqM2h7ys+RFVQdk+ZauUhOPokiFtJitWelnPKaK6k9yyCEp94el1wsnGeDtGedEOACn2jd1yVa2YUWqukrijXB+c0jPjV+mEfbFbAC2TpIYubbmq3zfo5fOriftx/dRTCWxAcNbaZohobnr14jki2/W9zK8Jp/3SC3zG8RvGB0lb+58jsMdcFHovOEE4lqHG1PYEd+wNW6YXY+IN1Yw17bIb2S07+/zz3xWVTawPx0/pz27fZ1q5h1DOTjXJ721LUHEGhDmRianp9XkxmGaUkvKJk0Cab2865KEI3viWtjv58ZKziuE/I28PV5seu2nWc5scK77IqQoBSoxiIriy4UB7l3dh7YlHNqympcsJNBG3eMaSOYtxFSOEyXXK4qzy6rLhV8GBYMkpJcezYxmEHelQgeVgmhMojQYGKNLfyxJhqvK/Lf+c53WdqnK9L66Xmb/9tx00zRc57zHN785jfzzne+k7e//e28+tWvBuDatWusra096QNcYoklllhiif/b4Zz4hG9PX9Lkn1/cNFP0z/7ZP+M1r3kN//yf/3P+1t/6W7zgBS8A4Jd+6ZcWl9X+IkAIR9tKXK4Jpj4Xp8HnvgD0Aq8tkq1fmVstCAc1z+jv8wDrTC0Lh5YsG5yEUVSQiZqjJiU8loQHBcJanyeju0Rip7jcrDKeJkR1x0DFgPQdbNfzPkXXMeU7mUAXDj2HK7Mhh0azoRq2BlOm/QEYv6wLx613xMmKZydXaQfGsz0HR8SHGxw3CRe7a+8vGF3lV1cvQhgiGouzmjN6zCWxj1qpaPoh+siPwcTeVXXHYJ+H+htYHS50Bz1dcynYZzX1gTuzYOQn1wKh5WK4z4XggF5YcUN36dhrXQ7UVkUz16hcE8wVwnTX9AODG1iqFbXoa3IaMIK60V4DYLt07QaOq4T7qzNcmXX9azOHq2pYH1EPLZ+RPMCdQUsUtIguPMcFkjTx2/ecGnOfrBGt8D1m2jeT3zE6QgrHYbi+YEgC45CFZNrGPlsFQCvQvm9JCEduPaNzXCboAu9mcz6LJxZe/3PSEm519xoC6lZx3KQ0jSKU0PSUdy0FjqIKsN0KN5h7jZkJfQJzbTWPVmu+a8uIRS4QgMi8pqKq9aJfywaeJWmc4tiGHFtPK9XGz3cwh3YiOapTVqRndl67+Tu8e/tO2rTrarMOEVg+N30U6PHK2PHstRv8QbtKfORZrLpLrj7RA+3lPa6aIVr6bikXWUwsfW7S2H9N3TfeYC3MSYKa/QE0mUAauDIZcncz51lB5t1QgIkcTSYxocBph3OC1vqsMeha2KPu2Ihbaut1NcJ0DiwjFszcCUPk1GmidZzW5K3ybfANCO0IpUEJh7VikdjtpJ/z7XTKee3YNQ3UEp37z10PBC9e8wz7p8aX+V19G6qCcFxjwwhix6X4wDOMpSI59Oyhqh1OSV7Wu5c7gh4vSR8E9zn0dlrCg4o2zqjWOtYkNRQbivrskHAyheM5/csZbRZQrWiUY5G/ZmKHDA0WwayKfMaUFViJ/7V4LEMrHHHQUmU1VSOwRhD0a1bjnLUwp7Z6kUbunWGCVmiaTGBiRwBM6oiiCbFGLjrVbOBZTtdI6lr7baE9K44SqBpmeXccmZQ7ggnnkyP+sO/fQ1UOlUv2qwyLwHVsVTB3XZ9eSGUkq8GcrXTG1dghrEDPfaI3QGMV63FO0q9o+hG69J9BWLHQn6H9MebaJVP0Fwk3fVL0yle+kv39fSaTCSsrK4v7v/Zrv5Y0Tf+EZy6xxBJLLLHEEkt88uIJ5RQ553jve9/LAw88wGtf+1r6/T5hGP7FOikS+OTkSvo+KOu7zk66fGZNTJ5HpBPPPpQrgjhquC3ZZ95GPBKA61b6Ng5oenApOaAvaw7rjPAY9HGOzbwu4iT9dacd8d7xRcxuQjjtdCoSZCmZH6aUZXB6nV6AibymKDqG6zdGvPfSRV6ZPsB6nHMcC++0AoL9GWq2SiYrnhceMNic0fRTxDwnmljyNlqs/D+rfw+/sPqXIApRsxI5T5i7kDPKu5+sihD2VFjQiypuT3f5rcGtmChCWIeqobGSvixZib1WaRwJ0BrX5YikssI4ybhMCKbejXeyWhwMc4o4pM16COsIcu98CaOWQVpyo1bI9jEhNo2gKANkKT1T5fyKf1LEfGR+hhsHAwDO7xnMeIK6ZRsGDS8MBYFIiIMGYbx2xSpBP/Y6qIsaNvQUpPOf2Sps4NiKp0hhsaHz7j9AlQ49CzisUmLV0qbQnBmgI025JlgJK8ouJGhWRoSlZ1Ws9m4Yg6SygU8OjsSCebGBX7nulxlNpQkUVAPf1URkaBqFmp3qJkwoqQYC0pa8DbhvtsnOeACtoE0dtkvrDiJD0yrq3DfTg9/X2lLz3sMLWCeYtN7lc//+OtGhINnz2VYPHJ1eKv+itOQ7Lx1TdoukaGJxjWQoT7fPMCgIptC/3OBkSH6r/7/aKlor2R9nNLMQEVh01PpE5sinegcTP7adwwEPJOveZSgdwnkX1sF+j3fmt5Nm95J329AFjiYVXnsVWiLduew695kJHTL285DENU2pEa13IDkFVamp2lP3Fe40hVuFhkFS0TQaGwaI1rMHpdFMmpiqDEi6DK1g2qLKkNJocmd4pFknONToq9dxB0cIe5aN0OugzqoAKRw6B304J0g1zkl6qgvvMp4h8juFw/UMnxUfAQl3BBNoJPGVCeLBywx7dzI77+eiTg3VimN6MWaUn0FYi64s4bHEar9PtGn3uv2GJK1xTjCvgwXLYmKwrnPmnTBm0hHqljhsqMMA18gTqSHg+8lOnF82hCbz+3Pd9w5HgFkVMa9CbKNO6uM8Y2cFohbYViIDSzOwFKvSOy4tNIXff/baAbHY5bZkj7ZnsFqgC0sw9bqjnj51JsrWa/h0HpIbyUow53yi+f3U4GSXaVWdfoC1aMZqL+dar4c57hx6J9qyk867k9vTgGVO0dODmz4peuSRR3j1q1/No48+SlVVvOpVr6Lf7/MDP/ADlGXJm9/85qdinEssscQSSyzxfy+WhbBPC276pOibvumbeMlLXsIf/uEfPk5Y/ZrXvIav+ZqveVIH92cJIfzNnjidutXiSUP9pIloZwHRsSM6bik2QmonSGVFohp/DTzqNCqJohlanhHv0peWWRv5VuvW0GYBzdBxJvbus7mNeGi8Rngo0YXDqq5nqwZ1oLEzdboykdDG4JQgmljUjZA/mF3khfGjDMPC60pyz9KIXYeerBOLhnOqz/O3rvHw8FkEdUN0ZDisksVnf164RzuwYB3iYEx0uMaD1SZrco4xkmBmELuHAISTFRqrWNUzBklJoYao0qLnsF/3KJ1eZARZDcgTUYKgdAF7ps/+OGOw6/Oc8i25mP8oaGkkqMIiG4vKFVIbbh0eUjaa2WQEQDAVyELRyAjdOUtM7B0s1kiuzEew17mzrk6xziLq1juMhD8EyiZAjXMMoErTBbLAQCac00fYAERrEa1FVSmNk6wFJS70ejIAnVt07lvXN9IZbWaZ3ZKgNyLyM3B7kjPrmJe8CIlbh4kUTSZIwobGaXabAdQSp8RiZW2iruqrSrCVwim/2m4GDhlY2lITzU8q0aEaScoNiHs1pdFcnozIjxJUK7CJRfY8Kymko5xFyAPfgo4FqUCMA+575AyPHKwuvkTrGynDGYRTv8Lf2evxcDvlkvZxzJ9x5mHePfDp19mOJdwL+P0q4rO6SqvChMTHjvjRY0y0yuHcHxu1URgnaYsAfaSxoaMdeTbCBp6hDab+NaqjmKuDIWWjEa1AVT5PS44DHqo2mKYPEHXWMhdaTKSxyrOPoTYoaRGhxUQOGzqCzgEX6ROdjtedOOVZCvcYTdFjc3hOGBIhne+Lq4FccVCm3u1U6EV2VTiuCeYh+0XGfc2A980ukl6H9pHL3T7DIkcqEX4f1SVweIzuJ4gmRWH9Yx5DFJhIEvYLBtIft+dU32cJHU1op1PiK2PCyYafYydoR4bpRY2TPXR5wqLhGfHIQd/vE+mgJItqaqMoixDKLkk68RpdkzhOKR0wVtK0Clcp1FzRGMH1bMB6PKe2asEc+eww4ffrPhBZrJVMi5gqD/z7dPPtOm2XrCW2VcRxBWsVxSxBl9IzNVN/3D5UbdD07uNscAS9FhsE6ANDOA0o6oBYNejMs0VNGuCUQDUOaySxaDkTjVFJi9OeoZWPiadOVeM1pOK0Z1EstGLeleik8/9+WrAUST8duOmTone961381m/9FmEYPu7+ixcvcvXq1SdtYEssscQSSyyxRIcly/O04KZPiqy1GPPRbS9Xrlyh3+8/KYP6ZIBzPr+EwGFDv3JxgV00dlsnEK1AV95lpsqAplFMbUxhAp803UWQmlDhYsuGnhDg27RlAy7QVKshbJS8MHsU8KvGovGt4k5C0xc0A7/S0oWAQtD0TlwajmYoaA4FOncEc8Fu1Ufh2I7Gvom621Zm/5BgDqo7sl7Qv8K9vWeTtg3RfsGNeW/x2VdlgNUOqgqzu0c4vo3r9YgyDmgbRXBc0d7wHVPp7kWOihiJIw1qCkDPGqJxyNXZ0KdBn0D6iZWNBaNonCZ3irYISA4t4cQ7Q07mPw4aag2ysehJSZDHNE6wGU05HsTck3idkDhShMeCtmtjtxqqoaAeOoZRw7SKCQ886yIv3/AL/skM2wxpnGcLpgcZ7kFfTRMczJk/Rq90Vs+wXW6RnFcEMzisMkZBAYmhyfxjdW5RJRxNPWOAduQbEuEUzVqLFpZHC8+mmHGIbKDtB1QrcD6dUdqAy/kKei4R1tHGHeuVOISAogkQddfxlHpdhnRA7hO+/WT4Dr56s+FsL2dWRxwfZOhD7ed/1JKkfuVcVRp5GJBeF6gK2sQ7+YKJhEmIDYOFU00aQRt7hkKXDrUf8N7qLJe0p3Fe1HuU39KfAkC0M2f4wJCf3HsZn3XhtwCvHZINcDwhmPSRtd8vtLSE4iS5u/u8rc+iOtGFdUQOMpcUdYCxXW6Q6dLcrSCVNWeV76oDILbe1Vf71zVWEqoWqewiw0o8NvPLCp9affLVFjjSsME5QYN3MqrO7WiM9En3ViBr71rSc8m0jMiC+lR30u3Iwnr34IHpcTUfkRw8/tdtM5ws/t1TFaIFO54gi1UwKUpYpPCfh06/5pRcNLovPkPwmNctaz/fHVTWUGwLTKRQlcCpztmaOFxsCVP/4F5cI4WjLAJMrlGl11TZoMvlCdzCUWatoGo1ZR4SHGqiQ2hTzWHY59G4INYtpvHH3ck2tIFnPkVgsE7QFBo3DxCNWLj7bAyyFMhKYHOF60GWlYzXNfVRQHQM4di/7ofG2+yMNCOZE/VqTBQia4Oew6zRrIZzNkZeszVezWh6/ifPNJLGKVJZo0OzSCA/YQONlTRWUhmNrP3xccIYOelAAca71oRdMjh/kXDTOUWvetWr+OEf/uHF30IIZrMZ3/3d380XfuEXPpljW2KJJZZYYoklYCHh+IRuS3xc3DRT9KY3vYnP/uzP5q677qIsS1772tdy3333sb6+zlvf+tanYox/JrCt9IFXymHCbkUQWvqBdyXFuoXYYAIJwueltLXioOlzWKWoElTRaWmUAKsoXUDuHPMmRBoHgaIaSTbXprww8hqDA5uilaVWPoelXINqw/im7iPpM1G61YyNLfVIUI28A811fT9byvDM+DpNH0SXPk5RoCqonQIM28HRIvFZ7h0z6fQHAEr4Di/aFmcMooVItmyoOTowCGMWx1cwa2laRV8V9IKafQEybwhmjkkVUzu9cNY5CRjrs3laTSBaMlkhlO9EkpVZrNSSoGUrm3IwXMPEiuDAoAtH3ioyXbEZz7gnOmEYFEEOOuxSviPfnWTWGwZRyVGREI3967Z7Pj3YzXMoFPe2NYcmJbwWYItOf7V3RF6vL+ZjVUpIDTbUyHGOLuCgTLmtB2FWU656dkuXvmm9OYrYbSSylF0fExAbjuuYw9w7/MI9jaosdV9SrVsuZEdYBFfnA8IxqNJSZ153Y0NDIA1Vq8H4ziUbAMphG4WaSfT8dN9tehAOatKgZmcyQB6GhBPPnIVpvXDWFfOQ8EiQ7PsE6jYRnXbKu7BsI7yGBLBrNfMgQJeSbMcSHQl+c/wsviz7PQDOBOMFOyIuX2c1UPzmA3dAxxSdiSfc3ReQpZ1gzz82Vi2xapGh8eyNEVD7rKmTfrsTzZawPkE5FpbDqNMcOYFNLS9KH2ZFpnxG8pDfFnGDbEOC3KGn0vdnqY6u6DRCpvUHQGt9KZbvshI0Kah+w1Y25QZ95nhN34mZrmlOdG+eBZKNd/01rfKOq8hQ9zt33UpM3Yfz2Zw1NUMKhzCnv07VCF6Z3tP9lXBrtOeZLGP8cS4hEg1TlyAriZ537JAUi0b3E4heg10bwKNgV7JT9kN2CdyZoVZu0V12cqw55RbbwzkojabOfZK/LrzW7MR5J9ypC8o5QdMqbKFJDyHbcbSJoBkETDZjnKuwnXtN56BLh4mET9OPfD6XyzVqJnGBw3SuSCEdTvp8OD2VVGlEtNKis5Y2C4iOIDzy47l/f537trc4o8es9+fMe30QgqBwNKUmkJazPc/E7a5uUg+Uz6hqJIdtxqqed+/XaZlONHStYtLGTMoYlQuC3PmcJAEEXkckWgUtiw69pxSOJyd4cRne+HFx0ydFZ8+e5f3vfz9vfetbed/73oe1lq/+6q/mK77iK0iS5OO/wBJLLLHEEksscVNYFsI+PXhCOUVJkvBVX/VVfNVXfdWTPZ5PHpQKU3mXy2IFLJxniIC1cE6QNdT9kDbrXC5WkJuA0mhk45OsAbQSyDJgrx2wpw8pmgDdAs5hlW/5Hnaumbk7ZVVM5B1GaqXCVAo7j7zTZUHTWGwCTaZRhcBpn3e0ImOeEe7S9C1i0GmFjo8RFkoXAAaLXDgt3GSGLbcXH13SaTp0d/09gtvjGzwryFgbzDG9wcIHYUNJL664FBywFU95UIOwFtk6hHCsqRlbkV+pdREyCOP1EWtqxhk1ozcoabKIcCIXq9vt3oQXDS/zoTNnKNZToj2Nqj0bF8uG7XiMTk9EEyHBzKGUoMl8b1q1ZklHBUnQcPVwxGj8x75RlAQDDzbrPFhtEh2e/perG6rm9NCIhULFhrYfoKYBWKgajRKOUVZwvObnWOedfuJIY3NFMBFd5pBf/e7nGQd7Xgc12AddWvJNBSsVtyX7GCc5nKU+s6mweOECEDi0slTtaW5VZ4KEShLMxaJ/DcBpgdYGYyXFPPTuvMrrhfpZyUriBUi79FGlT0RvMkGbQTM0yEoibMcarXlW6a5zOxxXCTfyLeJDQXwIv33jEpz9vcX7iq5TzBweIcsKcfkF7JgZZ1SPzxl8mP9x/tNpzo5oE3XqarOKWLUobbHKIRuBzCW6EMQHEB9bylGX1xQ5LgyOCaVhr7eKiXxmDWnDp0b7QI9nBb4TK0srcBnBzKDnmrIKyCKfvyMt0PoMHIC2S9d2XXp8m0GvV7CdjJnUEVivKekipnBOkAY1SVwzj+i0cv7+WLdEaUM17FyGm5pyHZ7Z3+U2PWEtmnMlPl2t5+cczwtPF5N3hDtYDUIpXKghNgxUyaP1OsFUEF7zlKcepou+uxMMRjn5LUN6xR3MbulTD07/ry0DKLp5j43vD2x9DpswgrZjdMogoDXSd8Q1nc7KdhpL579jFq484Y9xYQQ6h/jIULdeO6aEQ0nrE+bxSevh1DOjNraMspKi8rliwdSnxOvU70DDQc5RkOHmMeFYYHVAHofosKXpO5z2yeoAs/2Uj5RnudA/4NLgkPetnqFNNap0uEnAjbKP7qh1k5zq9EQl2a97KCzOitMrS90/GqsoTUDdKK8PNXgXXuggMggEogBRS2huWoWyxCcxntDW/Omf/mk+8zM/k7Nnz/LII48A/rLaL/7iLz6pg1tiiSWWWGKJJVhqip4m3PRJ0Y/92I/xhje8gS/4gi/g6Oho4URbWVl5nAD7zztkoWCukKVEld1KsZW01t8i2RKGLSbyjhwn/QpE4YhVi+0SrZ2WiNYiK8F+02di49OU3NaiK8e4TLhm/G3PDCjrE/eadzoobVGhXbgzhBEII/wqzHktxMk1/9pqqs5R5QKHy1JclqJ6PZ951G3yuY0WB4lQ6nHZI4FQEDhIE9RwSJvBBX0AwHoypx4GyChGRjHlSsD5wZg7teV8fISNus+t/Kr5rCo4Fx1xLjryHW5Kek2FgDWZc6sOWcly2kjgTrQmwrewvyR7kIsbh5QrAqe73KZKEcmGZya+LX19OMckXVpt4ZDGr/bdsGGYltRGUU9D4mNLfHyawi3WVnGRZWJirtYrj8snEYPeokCxcBWHtkZpQz3QmEGCUz7XaNaGxEFDM7Q0Q0s98CxOMIfwyLuSnIQ285k4daMRY3+LDx26MNhAEGc1W8EYJSxNo9Gl79M7gdeKucW/ESzcWRjhdWamW812T7NOMK9DbOVZS6TXoI3iglHob1JbkD49u+4L6hWLWqkxg9anHPcsm6tTNlenvGL9Pl62+SDNikE4SPYM+1dH3NfMFvvTY5vkbZ4TjgVdrBGfl8yoz1cUWzE2FOjc365PBtwoel33lf98qhQEY0j3LOHxqYXKDRs+beVhPnX0MLJf+z454xmLdfX4NP31bN5pjjrnqPP9cif6EeC0JNP/teicc8pnF51kHp1ohmTjb0I61uM5m70Zbc94BlR4x5J1AqVs1zHndYFtz3ImGjOSGv2YvCG9sY5dbfjjUDXYusYFCpW0bKgJuQmJD6G9/0Ha+x9EPnwde/z4WJRnru4zvqQYP3eN42co6g1DveFZITHRhPsKPVZQKe+kOtmHaomtFbZW1O1JbLfPcjr5XpE1nU5S4Fp/08p6h17gN7JonGe/I8dGOmM9zhf7RDB3BNPWv1+v5eLwiDSukYUkPvBZYyowqMBw5+ouZzbGmMgRTCG5IWimIVpZ7LCl7p3u7/pYcd98E+Mkd2Y3KDcs9UChakt4qLjveIP9MmW/9PuHDXxvmWgFR3XKpE2wj3GPCetv1gqsk6guAd0GotMHOnTcIjs7nazE41Kwn1KcFLp+QrenZ6h/nnHTJ0X/6l/9K/7dv/t3fPu3fztan15ieMlLXsIHPvCBJ3VwSyyxxBJLLLEEixPMT+S2xMfHTZ8UPfTQQ7zoRS/6qPujKGI+n3+MZyyxxBJLLLHEEkt88uOmhda33nor73//+7l48eLj7v+VX/kV7rrrridtYH/WkJWAqrPAdwJSKsW48gLKSRj7ygsHwjhk63BGoqVhFBU0fUcz8EJI2ViEhdx6ujsLa8pEgJao0rE3Tnl/6ecztyFlGZDUnrJXhaQpNc4KL7t1LELZZOlFkrL2l49kDTt5nw82mrursz4QLfSbWA4HntLvLhfMTLygxlkZIsPT60eN64SYaYToZTgFuQsBXzDqJMiRV3FWI8n55JiejOmr0tuJA4VVEEtDLASZ9GJdp4BA45R43CUh6wS6cgTTGp37OaqMD2TbTGbsBiDLlui4QcwCFI67oqvcueIDJN/Z83ECqvTRCSZxJP2KXlgxLhP0kSaYPD7orry0gu75ao1JE2Me0y1rtldxHaX+vipgx6zTVJo2FrQ9Xwcwm0XcN9lgXMSLyyEmZrG/nFyNbHpgV2vOjCaUTcC8s+/qoosgwNdGBMLQOIVzHcstT23rwkJjunJS4RbhgyewHb0Pp47bttbkKsTZLngvABJDrNrF84TwY66GgmrVX56K4toXDneXkmLtd7ahypmauJtnS3TUEhxEvKe8hTuCQ6YmftyYwM/DvFMnB0IzWMmp+yPSvVNL9XivRzXS2FbgIotTPhBRGoEufb2LifyHGq7M+czsXmqnCOKXIltHODW4acC+ydlUpwGkZ9Ipu6kvITUxBIEh1g06NDTaX77V3T4fnFwKMd0xV0FRB8xNRNn6slzVOJpun5DKsRLmaGG5LzPYQCEM1IVmr8goy4CoOd12wgpmbcw1Y7majwini2ucH7V8/0B1geTg9DJvHDecUQUGSTg5fWx7cICe3vm45376yoO899Id1ANJeb5lcMYHa+ZFCHlEdOiLWU0qoOff2wk/dmu6zyYcvbhCK8sUaESA7iIfZOX9CaJ7bKgMo7jgRtxidQBKYLXAxoYL2RGJahYVGLp0qLLFKS8If8HwCrMmZF5Cdt0gW8W48V9It6X7ZLrmerKOzhXB3FFsaeKzDWp9Rr4+IuhqbfRM8OB4jeONlIvRPnKzpFxJyW60RIdwY29Ab1AutoUNfLaecM5XzCCQ3SUy4fz3KPh4BSkscdBQxF6gbQMfX6C09Zdeecxl66cDS6bnacFNnxS98Y1v5Bu/8RspyxLnHO95z3t461vfyvd///fz7//9v38qxrjEEkssscQS/xdDPEk5RZ/4S/xFx02fFP2dv/N3aNuWb/mWbyHPc1772tdy7tw5/uW//Jf89b/+15+KMf7Z4WQHkqd/541nMg6rlLrUxBXowhDkCgpFYQL6uqTtW6qVbpWc+5VfYQJCYdhMZ9y7As1K4gWaueae/Ix/K+G8RbSLlFcltLn2IuvOjn2yuJS1X1WrpmOrGsHerMe75ndyf76Jnktc0JXSrvRpEzDdh5maGBMKVK+HWeuhtGVifXjhoW3BCmwSoNIEYeD389uQPMAje6tcyO2pXb/TelauYb/pddZVz3JURnPNaG40Q6Cz9gYKE2uQjmMT8yg5e5MeZw5a1N6EcOJX+/tVxtTG1NYLhcXBmNBa9NSXEN8RVDyndw2AdyTPRhhJMDcI4y2/G4MZo7Dk2nhIeCzQebPYpHpjncNbQnrZjP22z42y72tUnnEr7sYes+2EtvaP/x+TF3K1GMGR/6BWCVQJYifmgXYTVyuCzoq/CFUUgPV1BfWqYXNzwl2jHa7mI/aVH7/oGEbRQtMoDltvJVf6RKQrF0wRraBstBeEnrBEDh/CJ3w4ZN2RJKJjmkwtaQKFUM7XwgiQ2jBvQkrTbbtWQuQDBJu+QwVe6M1Moec+EHRv5l/4g/Pz7JQD1FShaoNwXtS+3w6AQ8YmXcQECKVA+PHvmAHgWTohvMhZ1paoYz2C/YBKOWRoUKslSlvqIqDKY5pUokpF2znWN7I5dwQzpha0ssgWwklLeBTzvnqVVyenbGCiGpoeVANJm8EgagiV8ceXdqAcYehpgVB5v7UqIZw5mokgzyPGdeLZuW7HeexPUiAMiWq8iLk7Tt084GCa0c4DUk9OoCqHKgQP5uu8N7nAg4drbO965rQ9PIL57TwW7zy6g/RqFyLqHIOk5BadMdT5gsU4gXw8+ckrsnv4j5deSrEZcufZXS5mno577955JiZDFz5r0ClHkvp4gqJWiPa0uDUKW872J0jhuB4N2At7NCJGNhJVdu/ZnFrye7omjFtseMpeOuUYBQV9VSJ0Zw6xDtFabADbgwkvze7joXydqzVkVwtUHXMw83TtSjBnPZjxa+mzULUkmliCmSLWLbcND/m9rRRzw7PwwQxu7A+4/8IZLoZ7nFmdMF5JSfcFwQw4Csm7MTjpq2xkezpWhUPr05qPkzktak1rFVHQYhKHDbvvZCMwrfT7su5Y2xPG/anG8oTmacFNnRS1bct/+k//ib/6V/8qr3vd69jf38day+bm5lM1viWWWGKJJZZYYomPi8lkwq//+q9z55138uxnP/sJvcZNnRRprfmGb/gGPvKRjwCwvr7+cZ7x5xcucAjlsFLQ0llTk9OLx9M6wpQdi9FaVGVRueJGOWAQlBBZ6r6fXm+hh93KW/LXojnlhmN+LqJNvL1+v1vqD4OCKG5ohskiqA8jEPjwuMeuyE7qCpwAEwtsCHWjuTff4v7xOqoEm3SsQKoxqSO3ETDloMl8qOCZTepRhGlbfq/yY9gzA6glbd+zI8LCe44u8VCxjr2Womc56I6Bkv5z/UEtuH++iTBgIq8pmhcxv1M8g/ePLwBek2CyiHolRIYNh7bHtXaFaj8hPKpgNkc2fjlUNAFzGzFrQl85cXSMdA5deKZlTWan5Z8CwpklPK6RZwNIDc8Y7DPQJR8w24RzELVfZquNddrbz5FvwzBouTff4sHDNV/OujVEjjLKVYnL/bz9xvU7OJylhEcSaTzjF00s2WVJPY5AnmoKnPTb5wRt4hDDhguDY85GY47q7HQ1LQEhkK2jzgOu1KsMdU6ojQ+gTE95CVlJyipAKQuhxQYnWrKTagpHM+g0ISer4ErRauut1Sf1CU5wY9LHdjS8yTUi6CzHkYVaYYqQaF8RHUPTCOaH3sr8e/EtjPOYcOJ1I+VaSNP383Fg51ytRosVszqzBVphA7inPMurk4d5b10zzyOGQmCVWLAeqoLGCOKk5uLqERfSY47qlN8zl8hvhMhGYx/zLWVwSCH8Cj4CqyWyhg8WF3h18sDp8dnEWO3rXmzofERBE1J3gaw2cESBH0TU6axk60t9dakwtcIiCJTBBqdVIwC2FRQmpDDB4yIRZCGpqwDxx2ofROuZ5QeqLeaTGDUpfMOGs8jq8UKsB47XWTuYdYyOYBQXSCS3Rzdosj/58slzA8GnnLlCbTWvWvsQfenpqsv5iLFcR7iOyey1nB2NKduAq/MQhFqkJce6ZTsZM9AlPe0ZrRuNpC0izx4akF1YYW0UWhriqKGMvA5Otg5RS1qnCIRB6K5AW2mc8EW0q1HOHcER5+Mjfg9QBzOSxqCmXqeocFwM9wjTBmlCwqOaYOLpwmf09nhgfY0y9kxRvAfciHn/9ALn1w443xuzu3KGNvY6RZVL7EmdSWKohxJVeDardRIpLEnUMIv9caP8R6adBRzXMVpYXGQX+5meS5oyQIUGF1psJLFPV9T0kin6KPy1v/bXePnLX87f/bt/l6IoeMlLXsLDDz+Mc46f+7mf48u+7Mtu+jVv2n326Z/+6fzBH/zBTb/REkssscQSSyzxBLEMb/wo/OZv/iaf9VmfBcB/+2//Deccx8fH/MiP/Ajf+73f+4Re86Y1Ra9//ev5h//wH3LlyhVe/OIXk2XZ4/7/+c9//hMayCcbnHaenZGONnO42BL1asKu5qMy2utuNLRZgA0kshJcmQwZJd71c+KasaHXKzxwvM4HB+cxTtCutsy3Ty1Ph5VfkWeqZrWXc2UrwUQaF3j9gxN+TCbmtLyxq3toU+8iqlcso7imMAHTOvK6nhX/HiaUmNhyoxny3voa14shNoB2o+8dOrnmbRO/7Y6bBFELivUANdCYGK7PBlyfDQimAhtK7Pqw+2xwPe/zv2d38chkxQcbroc0fUFVad5xeCcf2t0CfChdvRYxO6voDaZMTMzdxVnURCGcg+GAaug/3K3JnFg2WOedIpzcgKiz38Wi06o0gvC4Rh/OUU1KkDQLvZF1PkTxhCliNGR2MaHcsKxKy93Hm0yv91mdQdPTuJWQJhPIwq8Xdm6MYKZIC7Ba+IqBmaVnoJ4Imp6vKAC/DWzgwPp6Dxs5gqhF4piYhMMqWbAIVjtMohaszuViBRsLwqBlmtExiP519VzQlJpoUKLSBlNI9FSh5tLrGoTfB+C0jkCUEiM1IrC+1sGBM5LiOPGFq3hNmtNgOo0NU014JImOQJdeLyZmnv65sTfA5Zqs9I7DaiSQGwVSWD5Q93hwtr5gwcy5NUwS0CZwX7HJe7N7+bXZXbSlv69aUQsmzEkQyjFMS14wusrLevdyaHpcno4YjzZJ9k9Zpf15xoNNnw01Z7s34YHzazgZUo/cwhl3d+NjQR6djpCm06Y6yMuQsgqw4xCd+3kz9lQb89hfDCdASEtPV4wizbW405Sc/L+RTNuI2mpflWFZVEEI6ee7GXSuT+PdkFI4GqsQ0mFTf0zKNMVqR9OFrQZCY5zAdSysSQI2Il/J8vzwOsVpZ7PHx1jSXkoPWNVzPit5gLKj7kJpfDip85Uzca/mbDphv8q42h0/omN/rBMkqmGoC2ZBRBZWBElLnQaYWKEKkKWft3kRUQ81SdAwS32ZrmxAzSXXywFrwZQg9p+tySIfZGuhtYpUCDbDCSYCnEPOK3TeMZgIzugxaVIDGXpcEY0TiiZgK5iw3Ztwf+gZ43DuSG4I7jna5LNGKWfiMc3AOxZl41C1WPTfBr2aZuhFeaIVHBUpRRqSBA3jxGGVL0IGUBPNYZGShTWEFqf891cwg2auIDSouMW2AsvTZD9bFsJ+FMbjMaurqwD86q/+Kl/2ZV9GmqZ80Rd9EW984xuf0Gve9EnRl3/5lwPw9//+31/cJ4TAOYcQYpFwvcQSSyyxxBJLLPFU4cKFC7z73e9mdXWVX/3VX+Xnfu7nADg6OiKO4yf0mjd9UvTQQw89oTf6cwcr/PXo0GFiS9Cr6Z9YSoC8Dnx+TA/m29qzQgIOJxnTIkaUauHMaiOfJbS7O+A30zt8FUDcUq4HPnPICK6Oh4vXDlVLtpZTxBHOSLBd8aDrnA6PPdmXrtMTOexKw1o6RwuLxNEmvpAS/ArRRQ3355sYBI9ORpgQiq2YaiiRueC3btwKeK0AwGxb4pR3ULVWkpchTsL8fIyw/pp+PYRxEfOeo0sczRNcDyaXFOU6OCv58N4W+Q1PpfQtTM9qppccd46OGJuUD0+30YWgGYRUqxHzW/x6/DmDa6zJOaE0ftW3uoIb9DAxi9yjpsvAEa1AzRuY+2VemlTcGV3n0PRoa0U0sYjCs0p2lDE/I5GbOaFquXY8JNpVhFOHCyTVUNHGfvUMICYa0fiMkmogUJUknBjCxgCKpu+LVAFfwOu6lbRjUaUwa0Pum27w6OEKustXsQFUQ03T838fVimhbFHC0aYOEwp00Tm0ZoKqUsRBQxbV3GglzBTBFBCeqTLpSWeLQzQCVfhSV9Nr0ZnvjDGFRszUopbAKbCphcjgWkmQC4KpXxG3XTHqQr82D9ATvy+Wq4L8rGNjZcrMxLxrdicPHq4tmIv5hYxqIGgGlr2yz/+ePZs/mpwHHNWqLxHuiB1M7MetpGWoc87pY2LRsJLkHIVez3ZS/nlwmHF3tc3Z7D4+e+MeHnj+OgdnEwbbU7bDYx5up7wzfyYAe8c9wgqf69VCPQ/ACoJjRTDDb+vaMzZN7BkcE57mGqnQkOmKXIe4wD1O1+SMoLbas5jKO+pObmFgCAJDueZf20mJ6VlS3RDJlihpKM6kJIC49Tz0GwJx+uLr6Zxmcwv5EWj62jvcgGcEKcVZg779Nv/AvADnmbGTEtzfLBOOm5Tt8JhAOHaNP0Z38x565rOCwLORWhqKJoBcE8wEdaeZaq2kspr9psfVfMRRkWKNwIWepVaVZxEBylnEpI6IdUPbN9Q9SXxsCaaSy7MRt6X79JKq+57oYRKNrD2zvGclmaxoew47SBB1iziNZ2JNloziglyvIPOKaGw5KEMi2bCZTLmn68JVlSM6EuyPM0obcCYaQ7/BqpBw4tBz6GSKZGnFuB/iJhI9k+wd9dnr9YhUS5tZTOQzkQBfUTOP6YcVKm4xUYg0oHOQtUQqi44MRavAPWbgTyGejETqv1g8EXzzN38zX/EVX0Gv1+PixYu88pWvBPxltec973lP6DVvWlN08eLFP/H2yYAf/dEf5dZbbyWOY1784hfzzne+8896SEssscQSSyzxxPFnpCm62d/Td7zjHbz4xS8mjmNuu+023vzmNz+xN/5T4PWvfz3vfve7+Q//4T/wrne9Cyn9Kc1tt9329GmKfumXfulj3i+EII5jbr/9dm699dYnNJgnAz//8z/PN3/zN/OjP/qjvOxlL+Pf/tt/yxd8wRfw4Q9/mFtuueVP/TqqFISFd3WZVBAEhlAZ8trTP9NJgqgkTQ9mgWcSTOSw45BWgqpPGQQ614U8Crkn2CJOaqS2NCsGNZeoQjK55p0X83lMv18wSCqSqGE6j6kmESp/zAq/y93Ademywq+4g7hFS0tpAoyTmNSSb3VagRCEdtw73uCR+QpHxxlBDNPzPgdGOMfOrmernBMIAflZh40dclhTNZq60pA6xrcJnPJjqdYMJo/4SLVFPQ9h1VBvOETWopVlsp8R754E2MD8PMhb51zsHfJotca9+xuoAso1Tb4uUec8LXA+PGTuQmrrmRuzvUY7DGlTR90xRFMbL+YBJUBrTCDoRTUjmXOjHWJnAcl+A2Of7mvOjig24NLmAWfTCVcPR+gCZONoI0Hd8y6+k9Re0QIS2p6jNgJdCMKJz9qxgaYaQr3RiV5CixhrVOk/qwstWVwjcVyfDaj2EzLfn9q9l2fUiAzTOiKUGc55J5iJFKEfMsEMZO4zUy72jzBWcLAXEeRew2E1NEO/WnWxRc4VwUQgG4HVCnoNQWAwlUJYsfhsNrKIrEFHhmYWIhuv32kjqFegWje4yL+unHfZRc6zg2a9oR+VPFSs88hshflRQtwxo5MLknoFxKgibwPuzbeY1DFRr6Y8q6jn6tSxp8A1kkkRc61c4YFog8O2x0Geda4uh6q7/b3Q7Ld9tqTmbw0/yOpz53wgP892OOZ50WV2TMIH5+f9/M5DIstp+reRUPqsnZNi07r0+1GRBCB8hk3TEz7LRjoKE5C3AVg+KqdI4kh1jYxbTBR4PVFHGKRxTTHotDRNgNOWvA2YmIQwaMk3FP07nkG5PUDHjy+EPZNMuefsBVY21pknknkbdu8niTdz5s/2jt94t0Q28B8OP5M3rL+T36s2+fErL2d33sNsCc4FR9xTbgOwsztkdR/CiUXVirrRHFYZu9Me+lihc2j6p/qqeRtxuVrhnt1NquOoE1k5n9cz9/pIAHkUsLvaYz2bQ6+l6UXERxAdw/XDIQcrGSuJ10RdWVujGWhU7bhxNOAD1TlqpzE9Q72eEoyrxRxUNiASjpW4YBIJsJYgtzSlJhYNF5NDfiPr9ncBQe5o8wCD5HxwSJg1QEh03BAdK+a1//5Jw4ZZ2oAICCeQ70VcHQ1ZS/3421gRTbpjbgrTPECtWYb9gnGWeHddDaIBrQ3DtKQqAlB/cSUjN/t7+tBDD/GFX/iFvO51r+NnfuZn+K3f+i1e//rXs7Gx8YScYB8P9913Hy95yUt4yUte8rj7v+iLvugJv+ZNnxR96Zd+6UJD9Fg8Vlf0mZ/5mfzCL/wCKysrT3hgTxQ/9EM/xFd/9VfzNV/zNQD88A//MG9729v4sR/7Mb7/+7//aR/PEkssscQSS3yieFIKXW/yNW729/TNb34zt9xyCz/8wz8MwLOf/Wx+//d/nx/8wR98Sk6K7rzzTra3t3nFK17BK17xCl75yldy5513fvwn/gm46ZOit7/97Xz7t3873/d938enfdqnAfCe97yH7/iO7+A7v/M7GQ6HfN3XfR3/6B/9I37iJ37iExrczaKua9773vfyrd/6rY+7//M+7/P47d/+7Y/5nKqqqKrTVcpk4pcKsoRk39H0BNW6IApbpHCMp1287m5MOPXus3LT4sJOyzFRyFbglKNa9XtgtYLvT8oFZjcmHymifoVcL6hlTHhDE+371UybJRxfUGyfOWI9nVPWAXWhCI8EqqJLO35Mhk2D10003qF0Y9bnSKXMiggXWqrOsWIDh1CWa0dDmkrjpgFt5pil4EKH1Q5x3OUSdflIZq1FJV6PMj9METOFAIozBrrsG4SjHUfIuU9PZrXmzMaYWDdcOVgh2gmI9/1DTQTldssLz9ygpyr+8Pgc+eU+wwnUmaTYhEHP64Ku1Ss8Uq1z9XiIlFCeSWh6EqccD5frfCi9j722D/hMqWo1IjID2tTrU3IX8ki1jj5WhHtT7MwzUG2qac40fM7mvQxVzocPt5iHPdpYgBC0KV3qcjfBTmBjh4kdbeVZOVW0yNZrUOpVR7jil851ERCMJfE+NH0QWcvz1q+zGs7ZnfdQU78qX8zFOlRbLWHaUDQB+y6jsQoXWUysFl+C4cyh5x0tnO7TWsVevIqqvBaqyQQEnRaiX9OIEDc7SSD29QBR2NBEChNY6FKaXWyJ04YwaGmKYJGYbhLPEqnVyvegAarUPiHYeVYyTGusE9w/Xufq4Qgx05ju0Gj6jnZkSNOavA04qlNS3XBp7ZC9uMfxcYrp9jVZSUQlKcqQh+eraHkHO+WA/cMeSe2TvRf5PLFhqHJ6MqYH/O3BLke9hxlbg0Fwd73ObtXtE5aFU9NGDpQFJRZZSrIF0zFFeRnirGd728SzS02luTIfcVikfox2YX4EB1oaVsM5SVrTxgnBDHQuKGYRUrrHxM6DKBWPHK5gnSAvQrII2vUeJpG0ZcB7a7+zvTgMkcJSrElG2xuYSLCT+89jsZwZTji62H0+maBK+P898Bw+ND7Dg/trNFcynIDfcRKF4+G5d+XIGxHxoUHnBtkoikpzfTYgP0pJJ/47xIaeeVlP5wTScHkywjyckR0I2h7U6y02MZhILzRe0YFgvNIjCVp03NKmEcI6kgPHZCfh+tkho8gfGw+sG4pViTDQHMb83uxW1oMZxIZqGKBKs+h03G96WGAtmvNABmjlmdlWkcmKZ8Y7uKF/sA1Dr5Uq/Ia9JTikn5YIlxHsz8kGmqOp386xbjzrEyXE+4LwSHI8T9jKpiT9irYXIXY6HV8uoFSkuiHuTTgcDLHas8DCeF3WWjLnIMi8w/PPEdq2XfzOnSCKIqIoetx9T+T39N3vfjef93mf97j7Pv/zP5+f+ImfoGkagiD4mM97orh+/Tq//uu/zjve8Q7e9KY38Q3f8A1sbW0tTpC+/uu//qZf86Y1Rd/0Td/ED/3QD/G5n/u59Pt9+v0+n/u5n8sP/uAP8sY3vpGXvexl/PAP/zBvf/vbb3ownyj29/cxxrC1tfW4+7e2ttjZ2fmYz/n+7/9+hsPh4nbhwoWnY6hLLLHEEkss8aeHE5/4DU9sPPY3bzgcfkzW54n8nu7s7HzMx7dty/7+/pM0EY9/7b/xN/4Gb37zm7n77ru59957+fzP/3z+y3/5L3zjN37jE3rNm2aKHnjgAQaDwUfdPxgMePDBBwG44447npIJ+NNCCPG4v08u630sfNu3fRtveMMbFn9PJhMuXLiAqiE+tiA8O7GRzdDScjX3+Ri9q4Igh3wL3KBFJw3tQUx07Ffo5Zqg3fIMVJg2VMcx0Y4mPBKUgaK3WXG2N+FesQHX+/Su+RVKGwmO+5roXMvZdMxhnlJWgujIr24reZpJ46TvO5ONz7KxQcBBM/A9Rk3Xi7XSLMZgjaA+itHHCqygHRmC1RKpLOVRTHijy0+poV5xyKwmiRumBxnxIwHRse/JKm8zrK57wctkFiOuRCS7UA8E5ozhBWtXaZ3ioSsbjK5DuutXUuNbJdn6nOcOrnHUptx7ZYveg5L4yFKuSNqBpTX+PP0de7ezP8/Ir/XoAcW6oo0FonX83sEtrAczLpd+JWxTw3xb41SCiaBuNQ/UWzyYrxNMBWJe4lSXwjvUrJ055DWDPyAQjneOnsnvD9YW+Ugm9PN8optwChorMIlvUQ+njnB3hhMCXIKNLbprWa8nKf2HHf0rDUd3hATDnP/vxm8zUgV3T7aY5BuLpvOmJ2iGjnC1JApbZkXE1MUoaZGxoR4EtJ1kKpg7golgWkb0VcmF9IjfTQzCKMKpQZV60UY+6uVMlKUZa3ThU6+NESjpu77yKFgkWhNawqD1zEYnxHRdCjRZiw4M7dzvE8FUoHPvSjOxIwlbKqM5nKXUkxBlWSRc0/PMgXOCSRUzikru6O8y1DmP9NZ4Dxc5yLsVYwNoh1KW0mjun25weTLCjkOchvmWoOi+Yze3xtwVX33c8bsiUyxzHmxCLjdri143GRvqoV7sHzq0Ph8scajOHSg6dqGKA88IhmCCLiV+rrl6PKRp9CIl/GTahBVYJ4lkSxrWHGvv2IuOoBmE5NJnVfk3Bz2T5Ds97stD7MQzZG0W4ASo/YCfPfwMAA6Hf8R+2aPpQXkmo40Eu9M+v1O1jGRFFtRcXz/ZJySqhvKhHvdc7pHsCHr7UPfhIB3wB+E5xrmn7k567GwkfdO7FYzzGDn1uUM2Arni2aq7hjuk0qePZ1cEvauW+VlJvSIQgwaTKsSu/2zxATS9kMMsRQjPfgoL8UFLciPgymTIs1Z3/RjWSsrVjGgMaia5f7qB7Xn3nokFOLdgUa8VI0onWQ3mnrkNFLKxuEbRVwVn1IRs4A9Qq0OiQ4OeaSobcFbPOJNN2VHriIMxaagJJl4rGeuWweCYw8EQrml0DnmhCZVhtZezm57+rgVzhywlUjjW4xkfTlsQGl367KNIG7bTCY9GKxjzx0rpnio8SeGLr3rVq/j5n//5x933x1mix+Jmfk//T4//WPc/GZjNZrzrXe/iN37jN3jHO97B+9//fp797Gfz9/7e3+MVr3jFE3rNmz4pevGLX8wb3/hG3vKWt7Cx4a/N7O3t8S3f8i186qd+KuDFT+fPn39CA/pEsL6+jlLqo85id3d3P+rs9QQfizZcYoklllhiiU8qPEmaIq31xyQ2/jieyO/pmTNnPubjtdasra098XH/H7CyssLq6ipf+ZVfyXd8x3fwmZ/5mQyHw4//xD8BN31S9BM/8RN8yZd8CefPn+fChQsIIXj00Ue57bbb+MVf/EXAn71953d+5yc0sCeCMAx58YtfzNvf/nZe85rXLO5/+9vfzpd8yZfc1Gs5Aaq0yFZCZnjByjUqo/mwPQdAcuCIji11X9GEhl5WcbwfEx57DUg9EGRDv5q5tHLIfWwgr/Z8p9RAciab8jnr9yCF4yO6T3Ts2YZQCca1ZDub8ML+ZXaKAUdmnWDuEA5KLWj7J1HHDqRCO59+HIwlTP11extAs9ayuubtThvZjCvHI9wkJbnumY92u+Wu7R2sE3xgfIGoqxLTObSpIE1q+nHFtOgzeNiRXW84fkZI+QzHds9fk87LEDWG/mXDfFuRS8dtyT7X6yHMNP0rhnDs2arj22Murh7xzGSH/3n4HNTVmMFli2wd0/NgB+0iO+aBw03Ufkg89Sv4fMu3VOtC8NCVDd4mnk0v8KvboFeTbwUI6xOij+cJ9xVb7JeZZz+SELnuWaV8U/KCtZ1Ftsuz+9f5ndFt1COfO2WVz8UJTy65O59U3HTJ2PFhg7tyHRFF6GoVpKPtcp3iXcn6e49w9z1Mr/d8dFLwuYkBQs4kEy5PoHfNz8X8TICTjjSpMUZSTSKoFKLXEMQt9VpLtecPz3DqCKcwmSSM24SBKlCR6baVIZh7VxnAIC4JteFqluDGvpuvqRRVo72rUDmQp9+udaN943cjfQq39l1hCGhKjRp3Y5j4TJh6IHA9QxbVGCupyhDR+Dwvsi6ZOW4xraSchTigt1rx2f0Pc0dwxO+Et3DfZIMD6b+UbWQJ1wru3NxlOxlzeb7CdBYjG0Hdh/asYXDBb4zPP/cR7ggmQH8x/kfbKe+rznC5WeN6PUJLz1b1+iXTWkElEZ6IQCjb6cP88aK6ZOa21L7nMHLYyLMqMleUeejvjx1tJrwLDaAR7Jcpa9EMrXzasWghHDvCY0E5UIjQLD6fKhXhocLkMboVWAXVSIOAYCz49St3ADBtY/byHm0P5mcDzxgVIf97dhfbwTGl0bRdHlWT+c8Q73lHVHbDEh0b8k1NfqzZX+lhOtZVKChXJAjvHJTa0tYalUukhTqFrTU/x5/Vv4djk2GNJNl39C7nmDhjbAVJVpH3NXS5StHY0ewLZlshYVbTJmADny4fHQYcTjLwhx2rg5yjtQzVeE3OYZmyGqWL71pZm4VWabfIMAjWgxltAkiJKlpEGRJguKgtK5mnlWo3IDosifb77Dc9zqqA5wyvc7l3K64okTeOCGYdU6Ra7upf5+71Tdqkj6zBtRItLOvJnOvpqTYomPsuy9ZKBrpEBcZv45lFVYpAGc7HR3wk2aK1p5rUv0h4Ir+nL33pS/nv//2/P+6+//k//ycveclLnnQ9EXiX2bve9S5++qd/msuXL/Poo4/yyle+8gmXwcITOCm68847+chHPsLb3vY27r33XpxzPOtZz+JVr3rVIiPgS7/0S5/wgD5RvOENb+Arv/IreclLXsJLX/pSfvzHf5xHH330CQmullhiiSWWWOKTAU+K++wm8fF+T7/t276Nq1ev8pa3vAWAr//6r+df/+t/zRve8AZe97rX8e53v5uf+Imf4K1vfetTMr5f+IVfAOCP/uiPeMc73sH/+l//i+/5nu9BCMErX/nKRcL1zeCmT4rAXxt89atfzStf+UqiKHpKrhU+UXz5l385BwcH/JN/8k+4fv06z33uc/nlX/7lmw+WlD67BgdhVvOXevcytQn/PfApmcHMER/UqDpBh4ZRXHAshoRTR3xkmJ3VxKFnBc6lYx5Ua6gZxAeOYkOwHs/5nOwjjE3CB8Pb0HmXuyHBacnzB1d4VfYR7umd4V55EVV7fYuJQXXX/4OwpQwiIEAVPmNGzby+ocmg2bY8e+0GAHdku7y9fhb78yHZrqNYFajI8KLRZXIT8kfmFtIbnYNpasi3NRu9Gbf0jrgSrhMfGeJHj4nW11Gh4ZkDrxU4LFOmpk80bqmGEiUt58NDxm2Cnkvi3RxZ+1WziWNeMLrKs8Lr/EL7IqIDiA4byrWA4oxjbWtC3fhdsj4KSXa8u69ad5jUIgtJMBUE1yIe0uvcsuWprUGv5HgzJZh6fdV8EnEl93EQzcBRnhugR15fUa6z6EUD2A6OCXo19VAjrF/FBlMIp10+T+NoE0Xbw7v8aouZzRBl5els7Ra0dnwI5o8+AkDv/jFTqxbvY50k23HEH7rave42B8+LkMJRtgp5FBBMBVUr0OcqxHpBueEZkeRQoHOHO4x4tFjlGdkeQdhiNcjKEE7doqsNYBQVXM8abOAThOVcUcSe9Xhs95FrfVaPswJRSZzweVY2cGAEdh6SHPrHB1OHk4JmAPGwZBgXHBUppuvMIjXEWZca7gRmHqBySa0c55JjXpW0QJ9p2M39ieYmNTxne4f/z9bvE4iW/9q8GFMrpBW0Ky2btxzxhec/BMDn9T9AX2ga13JgS95fr/Lu2WfwYL5ObTS9oGQQePfiZn9KXoSYMkLMFcaCCBxo5zPD6lOmyNQS0WswmaEpdZdaLGiNJMtKinVB2cQEY/94VUqujweMohIpPMOEEOiq06Ipy+qqZ2hnSURtM8IjiZ75rrl6BFMhF26r8b5PfP9DdZbaKOoVw+y8wgZgW8H7xxe4HK1wVKQLa4zVXuOmap8yLVtAeh2haAVNo7xWDJ+xVWx6510zMkSBoc4DdOdctQGcybxG8FnhLjumh9IG2fpOMlWmoByrvZyqDLGBP0ZV5QjmAmpJvNowWWkpVxTRoSSYO9pZQN7F+g/jgt2RoZ4rnHY0RlGawO97DkRrUZUfb9kGhFjW9RQbAI1BFTV61qN0ASsyZSXy23mvdahrh2Q3elwvhyQi4lWDD/ILG38JkcS4yRQ9PzkGBbfGe2wNp+wkfaKKRQ/gICg928nJNvYMX2k0Qcc++u4zgyoVgTTcEh6wmc5o3IlV9SnGn8FJ0cf7Pb1+/TqPPvro4vG33norv/zLv8w/+Af/gH/zb/4NZ8+e5Ud+5EeeEjv+Y/H85z8fYwxN01BVFb/6q7/Kf/2v//UJvdZNnxRZa/m+7/s+3vzmN3Pjxg3uvfdebrvtNr7zO7+TS5cu8dVf/dVPaCBPJl7/+tfz+te//s96GEssscQSSyzx5ODPIKcI/uTf05/8yZ/8qPte8YpX8L73ve/m3+gJ4E1vehO/8Ru/wTvf+U6m0ykvfOELecUrXsHXfd3X8fKXv/wJveZNnxR97/d+Lz/1Uz/FD/zAD/C6171ucf/znvc83vSmN31SnBQ9WdDzBl1ohHQ8I9indHqh5ZCtRhYtOOglFdvZhIfCTVQjCKYtqtLIbg/U0tA0inQM6W7D9JaQTFfcHkjOh4eenTj216VdqHBK84LkUZ4VZFyKD/xrlA4TeeYky7xWaZCU7DpBXUuc8InDQeecahPPcL10+AAAd8VX+d3oEuMZZNcqrI6ow5aXZvdxtVlFNILeVT8GPS6Rzx/x3NF1/vLwQ/z+5i2YoA/zAtn6DqG/1L8PgOMm4d3pqeguiRou6AMe0WvIWqBmFS7wjEnTd7y0dz93Bi3WefeebL3zLLg45eXbD/BHR2cBeLgZoirfvyXO55xfnXBtdwTThPAI5v0Iu+VXdef6Yw5Xepgo8unUE82kidiMZ9yzVTO5GBEfdWPoOVL5eA2A1payb3xjeyMIpupx8cU28InRJpSUayG9Xg+UoskEyahglPlVa656p8/5yAPsjU+vaz86GzF4IKe9dh2AUCt0fgtCOKwThMeC9AYIJ2nPKDaHUy5vevtZdT0gPnYEx75T6lxyTBrXNJ07LZwagrG/Xj+tYkaDY6KkoQ5jdC4IJpI6CCF9jBYNvOOq0tAKZCsWLJGLLc4KgqkkOu6eUkGxCvWK4ZbhlFQ3XG80rlIIASpqSWO/Yp7MYvRYEUwF5UBya7T3uPnenfZRU7893GbLS1ce5K/1Drhu5vySeBHkGlkJ3HrLp2xc5vP6HwDgki65bCQPNgM+XD6LD0/P8uBkjWkZkUU1tw8btuMxAHWquaxXcKVEzwVtIzCDFiF9V5l8bJC0EQRJC0lL3Sao+jRxe6M3Q/QdD7UbqMIbMvRMMD9I2cn6BNJgMkObaIIczyynDS/a8IxgYQJ+p7mEG6foObQ9qNYs1YZ3NwnDImPncJIRxw1yVFOIENH6nfCRyQo3gp53ep6EJ0vAema5jaFc9XlOda9znTbyVNeUGKoVjVMOEn+fa+VpqrgE2V2bUTgyURNHDW0isGmIiQQuNAzDksO4xsTJ4nkn+9P2YIJzgvn2iPjQ6/PUTHNQeN1QpFtIW5qe8n2STnRp4Y9hLrt/KmlJpaOv/HElJjPceEJ0tMWxSYGS1chrivYd2N090htnOaz8e31uYmgvFdjNVcR0Rjjzn21SRwTCf47ryrNrspTkbUAaV7jQYlXXp2gcsobGKowTOCeQjesyykIi3XIhOGAU5tT108QULfFR+L7v+z7+5t/8m7zuda/j5S9/+UJA7pzj8uXLfypB+R/HTecUveUtb+HHf/zH+Yqv+AqUOr088PznP5+77777pgewxBJLLLHEEkv8CejyQD/h25/153iScXh4yLd+67fyV/7KX3ncCdDh4eETrhu7aabo6tWr3H777R91v7WWpmk+xjP+fEI0oI4LoiygzgNKp4lFi+hWVMI6hLU46a+XX0iOkLHBSY0w9nGNzwBtpYnGluCoQlUhgTAkIqJ2PilYXfeMEL0U0SaMZA5oUlkhG4GetwgjkY1aZPlAt8ILHDZ02LrrLzJ+FTfqFfyl9H4AbtOOUBrCMYRXjglXNujFFS+PC+5Vj/gV7lW/ynYHh8h6xPOyK3xRWvL/nrnChwfPWbznKC341MhrQ270h7wzez5WS5wSpGHNGZ0z7FZ5WIsLvK7A9FueF95gIPu0VqILhzCOpg/PPbPDq4YfZL/ybMsjzq/mTQgXNw75jLWH+V/mTo4eSAhyrweJlHc73d7f45GVFdowQo1Z6Gueke1x39YGx1ubCHsyZ44bzRC4AsDYpEhpIfGaGGsk1TylOvCPl62j2ITk4hRrBUdHA7JHbkGULcWa4PlnrvOcvp+Ln7qwyebJu7QNzU66mLOd8YBLj+5ykmhirt1AtreQhTVFFSBz6F1rwWkOL4X0Nyqytc5hMxoSTr0rbm/Wo1gNGP7/2fvTYMuyu7oX/c1udbs9fXaVlVkllUolZEnIIMS1aS6XK/EBO6597Wc7QjYYjCNshcFCiCAwPcYvXsjGBoOF4aII+/m98DMGX+N3n0QnjMCSrKYASdWouqzK/rS7Xf2c832Y6+ysQmBVyVUlGfaIyMjMfdZee6615lpn/sce/zGSgpsjsIlGlRYzC0zRLE+QQ88oK7mV9aDLtnKRpNEembQQnQ5C4GsVGIs2OD/bQYvOWmylUKVYpYYL23VtDRs24oLSahbzBLVUuMgRRS2pCff/SdMjnoWMuLKWjFW+Og8fLS8xvzqkdyvM1eVGYEslkkwobuRDzLFCF+Ck567khDPdXJo7wUeLS3xscYmryw0Oix7TPKG1iixq6OmK3a5tcNYmeCcCe7oArwVWAJ1zsy7hVApSOhhkJcO45OlK4Q+DW3RdS1LTcCadsT8c0BCYomgCNjEs9iIujU8ww4o20QgXfMOUcry2H+aXwvHwYI+lzYjmwROIYcN4c0leRNQHKbIMc81OYupNT5rV1NoFl3EnmCxSpExoS43umJVTLz5ngs6w6YOqRGBvPLhOKxYu3p2OQm+D8z1N6EZzKngLHRShG/ORZheJI9Yt5VhQ7qXUQ7FybVbS03S1sOsyH1Xact/ggM0450NnhlTXZdAbzST783A/bw+WqNhiM4c3ntZKpnUCdadlizUuCuONVYtB0HiNqsAdHuOqkngCx7YPHK8YwYeNwNU1ZlqzbE4nNrzh0jUOLl6mdy1ezeHDRZ/bzYjSBu8pVYBaSk6qlHFUhE7D09+IovN28gIlPEKE7l/hwnnPdMOWWtJXNbV6mX7v+T9uS5oXB3+YpnmxWJAkyee1vxe8KHrNa17DBz/4wc8SLv+7f/fveMMb3vB5DWKNNdZYY4011vhv4AukKfpixKnhshCC7/u+7yPL7hSg1lo+8pGP8PrXv/7z2vcLXhT9wA/8AG9729u4fv06zjl+8Rd/kUcffZR/9a/+Ff/pP/2nz2sQX4xQDYjpnCjR+NmAZ9pNhrJYZUGFzrRQWYzjkm2zQEcWpwARKraoczqOZeAHhL3DLvVV0LUsbEI0g/Z6YBtUv49Z7HYJ8C2lN8GxOm+RVqGXimIZKtYTAU2t8Y5VJSNbulRxwUaa85quU8QITd4aevsW+9TT6Hs2GfUWxMLw2siErpyDwFbZyQRdwJ4O1dh9vdt8Wr4Gv1hi8uAMvKfCKvycOcFrv0ozt05i8CSiWR2zlx2DFTn2VKjm5k0cuqaWNU5lnEum3KUnK22DzgXxzJO3gmFUcW+yz8eSi5x40LlHVYKkY4ruTfb51OAszyQboUPMBk+Sy/EBdw9POMx2Ea7LNFoIHpqf5dbmR5CEnCXvBSZpQzUrHc8sIqoj041f0J6t+ca7H6GvKv717CuYPzkkPahphvAV4yf5q8NPAfDLD3wJ+v5X0j4S9FbpLcnH65o3RhF1raF9rvOtjWAvXVC3mqWFZL9A2ITJscFdEuwOQgfTMxtD0tsh+26+iClsxG665Mqmoxpr0sM66FmAZWHQ0rLXm3N7OMQeKsw8pMK3I4izhl4a5l5eRuQnKbIWITsvccTDikGv5OSkh7BByxbOQ2AlTBKO4Sjv4aYR0UJQb4Rk+H7U6eKc6LyePLJQHNk+EObSv7v5RoaPS3q3A/OQX9A0XSDZk63m6tEGyQEgoBLQVyVNVyF/ptnmv84v8+h0l9pqpPCkcYN1ll5UMdTlat4B2FYSNaG6t7HH9Gu8k+BDN93pdwmyEQzjknuHR9yaDvFtSnwCbV8zr2Mu9xti09J27K9ZQrME7wVn0yk3BkOWpofOHdFMkleGXqdbG8gS64Ijff+6xStFJT13j07YN31uHqTEXYefWyhKE5Hu1GRpxbyR2EJTLyJkZAHRdUgF5gsbyIM2CUyQrMMcUTW4ucKdZiR2buWiDZ2IzgpoRXCg7gVW+WAWGJ3fmL6aoS6xXlJvwPy8DtmNyjFvYvIiIu6msZeBadJRy5l4SqpqPtRv8dIQLRzJkWR6En5ZLeMGYyxFZsO1rQ0T33U9Smj7JngSAVo6pg5uNOPAclZld949087O/2w0AaBNwzHKomFZ32GK/tetT/OeC6+kNx4i23DOFvOEK+UW8ypos2QbniPzMmaRxqvsv9Nj8zJcYyB4XUnwKjzbE9XQEy+Tk/Uan4UHH3wQCNqhT37yk0TRnWsfRRGve93reOc73/l57fsFL4q+8Ru/kX/7b/8tP/ZjP4YQgu///u/nS7/0S/nlX/5lvv7rv/7zGsQaa6yxxhprrPFH4wvhU/TFig984AMAfPM3fzP/7J/9s89LUP1H4fPyKXrLW97CW97ylhdtEF+MEA6wFtE6ZCO53YyYyxRXdUxRG7xJvA5Vg+laOULCfPiu/bRy3tA5KrLY2GAzQ5vdqXTgTs4WgF0s0Dkc2QFwsqqiReeRo0rwebhspfLBJ8YLhAvOttHME08d+Z5iaCqMuHOJ51XC6NoSZy1m0XI+m9754MRhJ3fGFM386rMbr4inHjuZkNxcciNPabxdbRs6tmqimeI4T5h7ReNVOIetRdjPTpGe5ClbJy3yZIaqxzReUnrNfhkq1uQwdMnluwmzOkZ1Ii1VBYdnvRSrnKuRytlNFzyZepzpWDppGciCRDUIBybvPJgmgivTDR5r+oxlQWEjhPAY07KdLumbitujAU3/lCmCbFjwZwePcskc8Rvn7qPYOkM8CcnpI5Wz23Wd/d8ufZxf+NK3MOiYouQQ/kv+Ci7ph8nSGnd2B/ZDJ5ba2aLtec4kM2ZNzFKCmpUkjSU+HlO0hp00GKw8NWqxiQkOvHPDUd1jI8pho6bcSjALxWnR6htJJC3b2QlXxhssk+CyrkrACYZZyflBuO4HpkcxTVYeV20fkrhhM82Z56GaPvWOOa2ipfC0TrIoo+CI3AAKxknBOAoTWQi/uk5mJvnU8jzN8Gl+pzI8+uQ5Lj7ZovOui7OKWLrAfP5eeRf1UcpgHjK8orhlUy0ou3n4eHWGJ+bbnBQZvahmM8lpvWTZRETKUjnN1AYm4aTu4TpWt03BjVvObsyZ5Cltm5Kc3JmTslaM45KLyTEfNXdh8+AQbWPJ0bxHMermQneOdeWRVpBFDfekhzyVbbF0EB/XCA9Hc7M6plg0LJYJe9cd/ccntNkmUysYRwXTKkEvJL0u99AZQdPXsAOpaZkLkF1nmht6VNzSDgKV0S40smLVQeYiDxJUxxaBoOn6aLwOLLIqBaoU2FpgE08zcCF3THqKeWB+P3jzXlLTMFsk+F7wVGsGgVU7WvSw02iVURYYGLF6RjRehfk39yQ3C9qkx/xSl0V3xrM9XHAA1LmhqTV1qUM2XyyoxnqV6dg6yafrPT69OLf6LAjPwKoT/Qxkubq2MooQdctkcecrlAfi6xQ7YLcHK6baFZqbxYiy1XgFLgrPiqZVTKpk5VkUzplYtSFVVuNccNT3KnQA6+551Hi5YjJfcqwXRZ+F9773vS/6Pj+vRdEaa6yxxhprrPHy4UVhitYLq8+J57Uo2tjYeN6u1cfHx/9dA/pigVPAcEA7DknoUnhyF3KeAPAWb4LrrBSe0mvaWq2+v/YqdCgADFSJMZY2EbRZqIjOmRMgMA0ueu5nCwt59+JAlqGq64XuFgGENhoQ0qFjh5Ue3xh0DtmBJTqumF/sMYqK5+x3WUVs3DjEAXJZsxPNVz+Txj5nW7P0XbW75EY5Jt0PrJe8eURenKHhWZV2C2paEKeaMo+Y2ITSm3ADtoFtCydVUHpLLBxlZTDzGj9boEsobETuIo7y0AWTHDui61OSizGzMlSxWriQPzRriU8ibs+D4/PUZqSqCblWcajoSquZu5RFG3earK7rKJcsi5iJyxjIEikcSobukr6p2DQ5SdSQdx02sobWKoywnFEtu9mCpzSYWUW6H/Hg4m6+qXP3/rPZZ/g/Lr91lcyVHVj+6/Qy39j/NBfHJxzffzeDTwfWwZ3ZxBuPFA4tgs6M1iJnLWY5pmwMw2G4fqZfY2NDNAU9VdxaDhiagqRXU40SslQibfe065jMu5Jjzg23eSQdI7wM/k21QEnHThy0SrVVXPMCXQQGrh4JtHIMowolQwelbLr9nupvOndf12lzvALSlt10EdgrQCiPbMEUDjOTPHRyhveNh/zm7H70vsHMS5zuWIzIE4mWmSt4vNxD5qErqu3D7mjORXPneXK7GXJcZFS1phfVaOmoW0VRG4raoMU2ky5P62Y+CJ1NCmzqyTZyLvSnQXeyhOSwwqsuG8wqtuIlF6JjImWpy5BxV41iTkqD83LFVJ7C6dB1eiE6JtMNqgZ9kgfxSR2juvtDCY8tNelBDTf2MfeOkcaxF8+4thxhZoLBtdAG16aS+SVNL67ZTpccTnv4KnRBtUNBv1dS6I6hWPSIpgLVBA2R9eBlYG5k11V3yrw443GAdiG/TzadNmmjBuUD+33qlXR1HLLxWoGU0Iw8tueQQLGMgv/U8vTe8GFsteao7rNfDdAzRXpQoa4fkAwiZNcRtttb8JrRTR5Ld3lkfzcwU6VEOaiH4dirjS7XzSkezC/xyMleYL2EBO9oUrF6LgbNZZh/IooQeUGzv0nlG2JhaFDBzX4noe20VaIRTKoEKTzNwFNuBhZMC5hVCbJQdPJPXMcIOS+YNCm2Ch1rXgVn8PDMVzgvcf4Ow7TG//h4Xouif/pP/+nq30dHR/zoj/4ob3nLW3jzm98MwIc+9CHe//73f0FCYNdYY4011ljjjz3WLM/Lgue1KPobf+NvrP79F//iX+SHf/iHefvb37567e/9vb/HP//n/5xf+7Vf4+///b//4o/yCwAXQbvdJ9+LUeOSLbXgRrOxcplFgI0VLoJItuQ2xtcKVfnP0tBY7rwndC94ks5Sd0fPaHogOiNMoU3INerugHPmhHZkqTY1ZumCVYUKP+tlFaO0pG41t+wYVSmSGwvk8RxV9TgbT587DiewnaZF5hV9XfJHQrAa49JG6GmJBXxeIKVnQ4Yy9LyehHwigubJtZoGFSplAajPrqKsdzgnwDqwoWNvqEs2VY7qmAhZA4tl0LQoxyVzyN39Y56MLmMWLb3biqsHQctz5eIOEo9LLTYKWp/Dosfj5R5HRdb5NnX+LhqUcmSioidaYtkipUMISFXDUBfE2lI8q9NoNol5uDzPveaISAZGTZ3kjK6k/MbVV3J05je76xxTj+48ubKrOZ+4cYHHdjc4m824crdk+JqQiN5spggHt8oRyyYKnS2xRtQ2jNfDuMvx6vcqqqSHPPJEM8HBtM9utsBoS5WBjcWqwg0OvRGZrNiOl/jYIaxEl6AXkry+k1QthcfbrmOpDIyfEH6llxD2DlPkTKiQY2PJdENkWqrY0wImbdmI8jtdlqeksvWoBo7zjEfLs9woxkgLTV/T9MK8cAOLEZbb1nKzHAVtUwL12HN5cMyZZ2mKlm1MWRuaRrGoIqwbMs2TlR4mryOm/fDvk2UGTdCM2NQzTCsS1VDVmmQO+ijHDcO2TsPZeMpd5ojYtDQuzGU86MiyEy/ox2M60/DAIGgYmoqBLHA+sDOiqPGiB5nlVXHnXN6JflTZQh1conc353xZ/0meWO5wu4TosGPYNlNcpHjF6JCzyZQnjrZoy7DvZkswSksGSWBsrx0neKFD3lrFSvPlRaeH9OBNNxd7La6WcCIxy+DR1AwFJmvYGiw5XmQUNwNDGx8pZB06Dduex/Ydot+gtKNZGkwhVjoz0UmKvIeFjVg0UdAtLRrcZIqqzmCTsO2bNq/w54cP8jvJK7g+H1EcZKhFcI4v9oLPmtgKxxarlseXOxxM+gw96LuCy309gHmb8Ew752q1tZrHIk2gbshuSn5qch/v2HiKx6oz2MRRbCls538kWsGsSoKL/GZDHinEsCGJGhZFjF4IZMdq2yR050nhmTUJLBWq9nghum8HHKXXVE5Tu8/WTL4kWC+KXha8YN7v/e9/P29961s/6/W3vOUt/Nqv/dqLMqg11lhjjTXWWOMOXgxH6zU+N16w0Hpra4tf+qVf4ru+67ue8/p/+A//ga2trT/iXf/jwQtoBoZyQ9LvlRjRctz2kPUdbZVNFDbxxLINnVqNQLZ+VamddkedND3qSnceIg5VCw7aIXCIERabgNoMqe640OlR+lCWntFT5KChyXTQhTSsNEWjtOQNm9dovOLXlymqipA3DrFHJwh7F/clN59zTFo5vO20Q9auOuYgZCU9G01PcH90G8gY6JLDTgMiBn22hsvVdm+MFe3IYvsJNlYI5UhEw0CV2Ah8GuGScCzSWDJhMEIHNkEJRJbS9ODVvRu8xmSc6wdH4uvxLkiJM4IL/Rl/NoGj0ad5/+hLEdaR3q6IO8fop5ebbMULVNbiIoOq4WDS56H+WWZVgjNQboTxV2PY7OUMZYkRHik8QoSKMJItG2bJIC456U6HziE6MHx8ejdvSK+Q6YqmDyhJfLugeHLIe1/5pwBCppoMXlN2sUA+9gzto6/h39/1ZcybhHoMxV2B3XJaIEvJ07MN8toERmOYIhoXXIKlXzEv/bgijwERXHiXs5ijjQzvQ/ejU3eYIpULjquU0htS1YAJnUe69CGzK485qcN5q51aPShPfVmUCDon70U3j081RYEpipQl0zVZ1DCLPN4HD5vWKVzXheNd0OTZRGINaOmxCCLZ0gwc+Y5a+cuIqOZ2M+K/cpHHp9vIKlTiNnWMTY5FMOs6uRY2wlpJW2lmjWLaSuSJIZ6Hbqql8MQmnIjWdrSJJGR+AYs2plxGDOceUdU4E85D23e8IrnNeT3DSNs5QEuaAewMF9yf3uDpZJNr3dPSC7HSWJXekLcmnH+laEaG4facr0wC+3Ps6vDbyHpEHFNsSb569wpvSQ/47fSEz1iQi8CQiFGCHVj+zPgxdvSMX4/vIy/BLKDKFRLPKA7s7rUoaL5U6RFNNxjjcEauvHZcxxQlvZrGaLw0mGXQe1WbwXn70vCYRDc8fhTOhV5APIMmC5ok0WsYDAu8FzSLKLCJ3ZRwWmAjMHHL2BTUTtNmHtszRFlG3dP4Ubgebxl8ktdGKZYn+NfyTatsvHrs8WdK9rbmnO3u/UzX7Bd92txgY6gv7+KMpBnCQdnnv5QXeWq51Y0BGI8gL0gO4N9eeSMDWfKp5QV87KjGd3LsVC45mfTo9SqyYYEae4ZpiRCe46M+2YJVEkE9kDQjS2bq0P26lKjK4bTAxQQna68oraFx69XGHye84EXRD/3QD/Et3/It/OZv/uZKU/ThD3+Y973vffzcz/3ciz7ANdZYY4011lhjjZcDL3hR9E3f9E28+tWv5id+4if4xV/8Rbz3PPDAA/zO7/wOb3rTm16KMX5BoKquahCh++hqs8WT+TZ62TmoNo62p3EmVPStV+CChsEZCTJ09wAcNT1cqdGlRxUWVcJT1Q4MDjvGCNDdpagbZA036zFwnUS0mLjFCzALS3osWc67XC48D2Q3MMLykfRuZNmnvR06obyA++Nb3Am6AimfVdEY/ZxMqtOupVPUQ8GrTedaHU95rB8hAb8x4Pzg6M4+kchhTTOOsYlEdjlA1ku89rheTDMITFGUlMSi676yEnwLxtD24bXxVUByMQvdRs9EgBA4xeq1b8gm/P3NFrxHH8yJj0N1O6kT7uvfZjgsyOMUs4DyIOWJ3lZgFgaeYjdct2rTM4pKLIIjFzNrE+pGYXRgznb0nHPZjKfScK5kK4iP4eHDXa5ubXF3esxvnncUF0dE05rspuA/3ngtAHf1JwgLopfBYoGdTtn9uONXzj5ANirwylNsd+fZB83O8TzDtopYQr0Zg/OhQhd+xbwYabFJ8GASHkQpmRYJrZU4HZyxddXN2xpOiozDZoBDgHIrzZeqoS0Mx1WwDm6cwiuPTULFbVNHYhqcl1greXZDopdiFb3kvFiNDS9oKs3NYog+7UxrJTaCahSq++2kYCBLxqbA9Sz18I6uyS8Mv7p/P5G0XL++SX8atE04wWHd57Fmp0tGh0WThM9tJb6QRBNFchj0Z+W2wApPFt1JLC+Mw3WatsZJJlWCL3ToEI0M9Ua4N+RGxT1mn0Q4bEeztKmiHsI9wyPuNockqllpOmTrETakvB+3fRZ1HHRgiaHcUNw9PiEVgd0yNFAp5LICKagH8KbBk/RlwpZZIi2Qd12ifoTIWl6fPEMmGyQes4TkxFMsJJXVDKhW8ye413d5XMZDYnGRAkRgR7rxxlGDlI5Gp+jSE80s+czQWMnZZEZP1TyZ7gAgvEZVnjYRuNjTH5bs9BfMq4Q5Xa5id+nbRND2YLOf85rsOmejPv9l5x6W5yLM8Q7VSBP3A6v8CtMABoXnaN4juxEy6Zqe4MzOlP/twu9yzkwA+Ex5huuLETQSG8PiQoyNgifRft7nI/N7OCo6lq8H1cUx0UGEyT23r23wvuGXIIVHZS3VhiE+6c7DCZQ6Yb4r2dqec2l0wtAUPDXbwi9MyMg79SYag94u2U0XPDHZxiwFqnTYRNIMHXclxyjhmDUx7csV+bluyX9Z8Hn5FL3pTW/i3/ybf/Nij2WNNdZYY4011vhD8GJogtaRsp8bz2tRNJvNXpCN9nw+ZzAYfO4Nv4hhcjDzGpMbTuYxn16cDxVDZ+0jrMepUFlUTlN1OiKnBW0a/Itsl8y+bGNoRZdqHfxdjuo+R27JU9VO6B7pcrFcUWCWcCXfovAVpdcIQnUaHRXIyrI4Fyr9eR0zVjmbakGkLBTPumsk3KVqns0U1c0dNsj14lW2GYConqspsiawQABGtitPFy8lrXvutlI5XNzpYhrJlWaHa/UmwgpsrKgH4XOzJFTxt+yCdmGQ8yVYi1dwRudAf7VPVXn8ZIrJPap7GsTCoNIWYT1MppjlXvh84bk/vcFD47P8frpBeiiIjyXTcUZ/UOLGDWUb2Anbd9RO8Vh9BuslTy82KfOINrIUNmKsci5lR3xwGK6HV8Ef6Oj2gM/cfYb7klts3nvM8QPbjB+XmAVcfWYbgNlOAl7gdzehY+yGH3yCYuuVzO41yEZQhE1XXVG+0vhaBW+lcejGsUlgGQ/qcD5qq/HG02RB1yOcoKwN3gm89rSZuJPZJKCoDLerAaU1SO1o01CROxNS0pd1fOe6Kx+6Hz3QtxhpKa3GNjK4s6vODVgHlqpsNMdVxrKKEE3XGVVobi0GaNUJMqzEJlCNBc3Q0zM1FrlyIxYedCdLS68rHvPnwUN2XZEeepwW6KXkick2H0xeRdPNt8MyC8dsBTqXxMcQn4TtXQSDUcHlQWAVb+RDjqNB0BOJcC9WVoMT4R4dZxRbYV4OhjOGsmLuNNMiQTWn9zFsxwsiYclttHKe11WXmdXEHLYDllWEceAjTZsK+qZand+HmgHRgYbbB7iiBAk7Kmhnchdhlh4/Df+X9Q6gSDrr7LyOSBYQzR2qUtRWUbswZt9KVB2eC14KSC1Rr6GZGoQV4WfPcmiOjKXSPuTZ5RZdGiov2NBLhqogTgPd4UzSsd3g+5bdwZzddBHmTCVDl2LHILYJtJnnTG/Oq6KbNJHi/N5rmZ45S7bfC/Oyo5UOrWNDwsfLu2mvZ2x8pkGVjmIvZjPJ+freQ5zrPJhKZ3DcB23Q75Sb3dxVgWV6JN5b3c/1hmN6OaafhHtHn2ienm5weXzM1njB4WZMNAnnIT3w6FywIMJuBlY6kzWP2D3MRBHN/Gq+l1tw1/YJu/GcTzVnMDNQlaPaULBR86rkJj3RMKsS2mrtaP3HCc+r+2xjY4P9/f3nvdPz58/z5JNPft6DWmONNdZYY4011ni58byYIu89P/dzP0e/3//cGwNN83J9yfrSweQeOSuJ5il+Ybiaj5kVMaeyHJso2lSC8JzUPWqnkE3oxsDLlY4DoLQGLz31QCCcoekHL45j6zmo+8iGO11hbYsuPLeKAbdtjfU9jA4dMXJZEeU18UlgipZFjBSOYZcDdJpoDkEjMpDPGgSQz5LVv9thzCVzDHS2t3+gCpEWZq5gKFNulBuoqsuqWhRcmWystlu4krbqGAAHLDQfmd/DtWIDXYA3knoQKqksqlm4kk/WY6JDjTg8xtdBq3HawHGjGAOQHrTYxYLksOF6MVp9nncCkde46WyVRTWOSt6YXOUzw7P8bnQPqgip5NVSI0eOqF9TF3e0PLfnAz40uxcjHNfnI9wsojKO6/mIcmy4Oz4kGYVzamND76Yje0bz4cuXuHzhgC/bfYb3vWIDM9fowpNcD+d5Sh+tPcvLQ5JPdud5/4C9DwxR9S7zi8GTBcBmDno2MDR56JBp0zB/bOQpKsO1ZTgX8zLGKULXW9dU1VQ6XDPtqYcC2SWM29TjnWS/GARWQQTHYHzQXwgRnM2BlS7IZh4vQ7aW84JpleC6a2pj2f0dts2LiH3dpywihBXgBKKRzIsE1TFF3gpsQpcv5Vg2EY/mZ3hivoVcKlQJ0aLzQroh0IvQBZceBb1LPVDoXLB/NOBD8tLq2p8sU9paIaxANnc67toe1FuW124dcikLerdZk6wyARGhay7VDcSWJlM0o2g1L1PTsvSGAztksUjZrE5d6T2tU+zbAQdFD91Jf06dnOtWc9L2qBtN5D1eS7yAWZ3wRBtcw39l9pWkt8Een6zmX+5jIOdqsUE099hF2FaWDb4xXLcjrJcUeUSv9isPIiPv+OEEli4wP16Dii1J1FDLoDNSFagiHF9rFb24xkcerwEfxi+Ep69KnJcrp3II+jGbBCf1c9kMLS3LKrhZR7M7eXh1T+Iix9CU9GRgA0dRyVEGNpKo2lMfh2fO/7X4Er669wj/v8PX0ntGkj22D60levV5SqvZVC1bMny7kMiGutWINmgK2zTMJdkK6lnMzWhIrE9v/prFhQThVNeNB3kZsRHlDLcLPjjP8M8ED6bswMIBtKmmvleFTErhmBUJ8REkE0u50eXlbbS8enybDZ2TFzGjqUcVLTaOGI1z7jf7GOEpW421zxLfvZRYa4peFjyvRdHFixf52Z/92ee90zNnzmCM+dwbrrHGGmusscYa/00I1j5DLxee16LoypUrL/EwvgjhPMI5hPNgJc4L0rhhPg4/Xp4xND0ByrJf9FjWMbKUeOlp05CbU3U+RYs26ir2oDdqtht2zYwaSWGj4EKbBcZGiJDXVFnN3GmUcPTimqIncEmEaFuEv3N3ROJZfkPPet3+IWtSeXxHX9T2NGfUne29fu4dp3P4aNXn61LLM/kGorWhyJjNmR5u8UgTRCEHtgdWYCOBsB6VSx48vsDJMkPl0GaKahQq1vNJztQ3/F5xN/ER2JMpspfhnjULry0CKzTYX2IBMy05ru6kX7tCI2YLbF2vVIO78Zz7TMrd8SEIMIVHOIGoZdBaxTW1DBWrmitmh30eys6wEReUlUHlEmElTx5tcXVnk7ujQ86Og95qPx0QT1o2HtVcOXOGj44uczaekpzJqUcDBs94etc6xiUytAPLyX2aC6+9H/vJR8K5fuwJNjYy8r0B5b1BVzXeXGKtZH7UI5pITB6q4aYHLvY0jV5luy3zGKSn7bF6Mtoi6GOkgHp0x4vHDi0RcGs5oGkV3gnavsNFXd6V9OR50BS5VkAV5qyPHUo5lnVM2eju9eDXAqzyo9rSMJVp0Bwpj0s93jicF3jbfRsvPDbuOnmc4OZ0yLKOOJ720Yswv53pfIosxDOPLiGaWUQbNEDCgptFXG83wHUXulJgQTYy/FxCPRCUWxDv5FzMjlf3wkmVIhYKVUErPYM4dBI9mba0aYRNwjgg6LeutxvcaDawtVppqYSH4ybj6XqbaZGsPGycEas5m1uDtRIvRej8EnBU9PgvxSUAHjy5QDQL10b1+7goaGYq33ArHyAbv3Kz90bhW8mVeoeFTXClDs+RkaQeO7bSO/5gohUrzyCnQUctWnV5dTWds344b0p2XYXG47TEK4lTwbfMCMvURVRVeGD0CoJzsxJkacV2vOCw6jOfpgz2ITu0q+eMjSUuCzq0A9vnyA44yPudQ7ojtp7kRnjm/NKN13Flc4tP3jpL/8TDbI5vW6LFOQ6Wfa40PSAINm80l5mXcUgPEF2+ngjHJWeaeZQiRqFzNsoamlFM0xNEM48uoLaSvWjG+fiEJ7a2OYgDU2QWLSpviC4MKJwkUxW5jckXMdtHnmjSrJgi0Wu5KznGeUmTG5ITh1pWONVjnBTsKUXuLdbJlXb0Jcd6UfSyYJ1kt8Yaa6yxxhprrMHn2ZL/JwFeC1wW0SYSIsc4Kumbmo9fCF14sy6vishxUmTMFwm67HKRTMg3W5ShIq9ajaiD50YzgHhcsakX5M6Qt1FwJd4JDIloB9RDwUhaSq+xXjJKCiZjKM/20KVdaSGSuCETFUY4lAxutqewCTTekT6rMSKaPsuN2wjksxo0ffzc/B5deB4sLvF16RO0TtIM4zBZjEEsNL9bXQhjEDU6a1juRegiaBVuTwdUi4geUGwpitAkxvlswsQpHl6ewSxBGI3Y2aLdbDmrwlScd+dsWAfNgM0MIxPYFYdDFhJfBHHHqW5rJ5qvOuVkLTALx+l6P40aqEF0nTjRRFALzXQnYS9dkMQNjYPoRJDf6vHpC+d47fZV/tTGDQD+v+ML6GVL8syEarjLb+3ey9dcepxhVrJIBkSzltOIuXoYsdh1LF7t2J9vsvNohKvD2MWnnkC9+fX0hkGr9Oqt2zwx2WY5V2S3IJ566r6gGYDLLN53DBFgSx06qLKQxyUcyKkOehIF7cBCLzAkOmnwTnBy0sM1Cm8FIrO4QefzbwV2Gqp3UQukDR1sROH6L8oo6IWakP1UbXQsmOncg0tJLUzQufRbvPSYpEVJh+2YIiHBJT7oQCxUhykHpMgiaKfKLSi3OqbIBcdmkztk7fBGBo8cA7KSUESYRcd4lKw6o4QLc7xVUG06zg+WGGF5ptwE4PrhmPg4dEtVwDguOZvMSJImHIf3K43QbJHwVLVL6QxCucAAe8ALjquMW/UY70M3GgTmxqYhS/CkzrBt0BA2w+DAXDSazxRngJD7ZiOBPn8Oe3aLctuRyIbbtmRZx4hEoM6GbfOdFBE59psh+/UAGkGTBX2P3Ck5n025WYTnT2CKfHAi14ENsk4ga4Fqgov56f2RRU3QU3W5aMKH92kV5sxRM8BOwlxLDzzRwiGsIosaRrrgWr6BmBiyfU80bSg3w46rTcg2Cwa65Il6j9+dX2T/9oitEzCzKrBNt8Jce+bqNmVjKBcxmRH4rQ1EpyecTVM+sHiAC1HoHHxwdpFiGdyzT5ki4YJWyi8FdaYpko719oAIrJjJPXopyCtFpmouRQec7025HYXsNGE9smzDvjrn/X07xC8CE6SnJRAYZR1ZBrLkdjOCpUIvLaKxeAmxbjFCYn0b8gNfpu+1XpSPWbNNnxPrRdEaa6yxxhprfLFjvaB5WbBeFP0RaFNBO0o6bxhPohqGuuTqXqAFbrfjwD5ox2IZY2cRURO6dNoUkLBcdNoNK9HzU6dcyOKauU15pD7LjWWo/OrtoJtxWlBthG6Z6+2Y0kfUVtH2IN/TqEZTj8MYt+MKhyDvSsLTPCnV7+NimLiW4bO+IJXPagr0SnDsgncIgEpbVOctZedzpIXr1ZjGt9zdP+bD91xmb2sLe24bLz1zGyqqnWjG5d0jnrwnI54E3Uq7jKDQ2ASWZwX2fGBH7kkPOLYZT822UJVHbm6Qv2KLzfNT+p3mp27ClHRdt9P8Usr/On4qjMs7ZCOC3kupVeW+qUP3zo16AzMXmIWlTQU+dmzEBY1VyDLsL5qBiwSxtrx2eB2Aj8Vj4qnAK8Vj0x3GuwX/y+jTAPyfZ18XPGsefZydSDO/vMlT25skpmFmwMwa9FH4/PTcLktjecWFfR6rz7P9p14FHwttaC7PieYeH4WLsB0tedTtEh9Ihs+0iMZTDQ3NyBGPK6TwlMuuGq5kyONKbfCgWSjMNGhKmgG4DctwI+hNpPTMpin+KEbVAps61GZNr1dSNZrqKMWcBN2EKgns5aYL11856lpjc41uwjx2pwW57Cr2KnRYkViifk0ctUjpqBuNbTuRjvC4zIIViEagJxqdB51Q24P8XEM8DF4+TaVpn05IjgWqctguhdzGYT/RTJIF0o545rCRoNoQNP3AFNnUQ7/FSMvtasgTsy4Taz90FCEAJ8L9qwpi01ITNC/RLLBj7STmejXmTDxlMCwotpOQb0ZwBz9KM2Ldstjq0uGdwMaBCb4y28QWmjaGfDu4YCcCbtfhvs7rCNmH8oFzzC8YkrMLMlFxw6aUrUb1JfW9gUqd3aWJegumbcr1fAyNpE0DI7M5WpCqmmndMRlLgWx8OFcRKKCsDaoIDJKNwPbC8e1kC6TwyFoQzS0qbxAuwShLJFomTYqedF5it2tUZREuZZwUXIiOeVicRS8lyaRFtI5yM2xb3t3wtReu8Mr0NterDT62fxfRtYjkJLAqOIFZhHOmDwxHST9kQm7D/IFN9NLSZgI3i3j/zVczPM11m4xx8wjpQveZkCDawDoKG+Zg2znwey9QlUCXHpM7TC5wlQq+Uji0cCvtmNMSF2mcAaMtFsmkyZC5RC+b4Jl2+jxUDotkYWNkG/RlXnd6OC+YuoaJUwjhES+XAnq9KHpZsNYUrbHGGmusscYaa/B5MkUf/OAH+Zmf+RmeeOIJfuEXfoHz58/zr//1v+by5cv8mT/zZ17sMX5B0KRQD3XQReSKp+cbnO9P6UWhwo1HFXUetBXNIkJ1XitNv+sgMh6/7NLhl4poGvKInAmp7FfKLT5tz3Fjf0y/YuX6XI0lzchRW8V/Xd7LYd3n1nQIPnSvCRecZCH4j1ypdxiowAK4RKB3dyDLcApu2JSL3RXet4vgodTBS3iyGXNv5/cRxS1iL+QfMZ8jnOew7qOE5E/3r/D++76U0Zdexiadu3AbWKXXJ8/wFVtXeOaeDYrrve79GlkHV+Ny6Lh87hCAPT3lsXqPqweb7C08fnPI7LLhTXtPr8ZVFeGceQP63FmmlwXfMPgkkFH5FtEIhNGozQ26YpyRyml8y2PLXaIJ6GWDO2uQvYa9ZM5h0UN3ni1m4Sm3BOcHU75h+Pts6gUfje8hnoDOBbdPhgxkzZd1Vet7Lt1gunWRFHAPPUbv+puYlil7vTk3UpCNxV2/CUC2H/QsX7F1heoVmvm9Z+h/7M45jyeOovMGSlVNWWviE0hv5LhY4yIDmzVnxjNmZUI575ynm6Brk7HFtxLRaqJ5YP5sAjK2bPUCU1S2hpNyQHIikQ2UkaDfL7gwnHJrOaCuesRBuhF+vgOi37A1WmK94DjvI3OFaEPyfHv6hPBBr6UXEtsKXORI4oZBUrGsI6rCYPNw7YTyqEGD0pZ6HqMmknQfEDAbec5dOOarzzwOwNP5Jh+a3ofOIbo1w45S8AabOXzsEFaSHgXtS3azpO0ZnDHUA4FNfWCKpGdZR9zIhxzOgpeaXgbHZ6cBB61TNF7hfLiHdGGJJ+Fa6InhVjninvSAu8cnfGp7hCrD+Tua9TjM+vTjisPtcO+XPlyX/CijmCaoqcbFkO8Jqi1HJvyKsVpOUwYCFucN87sFFzYm5D7m0eIs83nK0MDyXLgx8zMwyEqO6x5XZ2NUIfA6aMnSqOG47nF7Gu67aAqq8TR9iUs8SnrKXJPkweW6GkoYh/He1TvhdjlELyTJfo46nCObAbFp2dFztLDozq07OinBe5xKuSub8KroJh829yIb0MsWLwVF95h49b3X+Zs7HySRLY/mZzg+HDA4Ct1rthfhYrXqENVLQTkzEDuKPYcXErMMGXl6prj+5A7Xug5KWUp0EdgZF3vwAimB9k42mTvtdHTBs0pYv5qnopUc1AOuNludX1X4kY0lwgXdlwJO2h4HVR9VdZmVabzqspTSkbuIeZvgReiiVRsZbQKNVVxtY2buju/by4EXJeZjzTZ9Trxgpujf//t/z1ve8hbSNOXBBx+kqsKNN5/P+bEf+7EXfYBrrLHGGmus8Sce/kX4s8bnxAteFP3oj/4o73nPe/jZn/3Z5xg0fuVXfiWf+MQnXtTBrbHGGmusscafeLwYC6L1ouh54QV/ffboo4/yVV/1VZ/1+nA4ZDKZvBhj+qJAM4Cmr5ANJPuSK/0dDjb6yI5/dE6EvIVSoXKJWQQKth5BM/B44xFl1wY+FagcXBzEj5GyXCs2ePx4C3UjJlpAm4Vtiy2B7bcs65gPH1zi1nRIebNHUoSvAk6NzACOFxkfnt3D2BQhlDIFv7eFN+GrvEeqc3xFHDLrjp2g7XnUYICdz7GR4LHqDF+fXgNCWGu73YX4Pg6q9FxdjDlxBffHNxAXcuZ3ZcRTTzSR/NeTSwC8OrnOheiYi5snPDZNMLcNqgg0bTPwRHs5r98MguZIWH5j8mrE0ynpfomLDcUOfEkv/PyjVYPYD19NyGKBHw2oth2v0GHx/XgbTCWREjZGNOMgJN3VM05cydOLDaKZR7gQkjoYFuzFMz7NmVWYpyk8CMGl3hFvjCKcfwoEZPsNsnYc7KeYZ3HM/9uZB/nJ85dJCVEsuvBEuuUVgwM+Ob4YxJd5MJJL9gtclXIhOuYNm9f4zZ1zPDsYR+cO1TkAbpglWrlgwFc1EGvalDDmdEFRG3wT5oRqQ3u8iS1td+1lHVqUAeKkYTsJY7ixHIavaydhnvjIc2l8wqsGt5nWSYhAmYT3eQE29uxszXnN1k2uLccctUPMQgYR9zDYA4QbQqCXCrMAWwnKnkTKIDLNywh3EmPyzuBxZBnt5Zztz3hKb2KvjkgPHcLD8rzk0vCYPzcKBdRHzCv4kH8V2Y2C9tHH0efOIt4wwI9aol5Nc3LnDMq8QRqJ0xFtD9qeC8dYSyaLjMapO9ElSQjQFT60r9/O+2S6oqo1xoNoHWYeRO/xieFmPkBtOO7qnfDJ0Xn8rRgzh/x2yvXeiLP9GdtbwVzwoJWoQ0NyUyPa0C7eptCMPGK7omkVV26E5N/4SrQKrW1Gnr6peaza40Mn9+L3Y2QDdT9c52YYwo+vLUccH/ZJZ6KL8fA0VnFtOaI6CA0Z/SkIF47R9huMtrhaYfIQQ2Ij6Hf2D5eSIw7KAXoJ6vYUfzJBuHNsJTmvNAc8GM9WX0vROtDBcuA1/eu8LqrZNEuEBZU3uEitvrb+2u3P8D8lksJ7Zm2CPDFE89AsUuwl2ESsvo7SyxDW2o4tftiSpxK1VOi5IJpCcqBW5phehmdl0+uE/sLhlcA3oenFa3/nF7wLQds2EdQDSZsJEJ6jusdnijPcXg5W+7WpxJsg5G9rzRPLHW51P2/6Cq+SEKVDiMPZr4ec1BkIKMcSp8K8q6zmM/UejdddWPV6tfHHCS+YKTp79iyPP/74Z73+27/929xzzz0vyqDWWGONNdZYY407EP6//896/fa58YKZor/9t/823/7t387P//zPI4Tgxo0bfOhDH+Kd73wn3//93/9SjPELgmboqYaCeOZJbwM+otjR2H6onIX0UCnUXGLmAlV3holDjx204EHPw+nVnTt/PYRot+Cu4YSy1UyP+gxuCaKFo+6F9Wm1CfGwonGSg8MN/K20a1cObcruWWLpahrzewfn2Uhz2lZBH4rzA2QbgiI/trjEXx0EFuZ6Owzi1XvuQj3xDDaCa/UmEJiiUVJQb4QSMIki4knDU7c3+N17hvRkxWhQ0KY9BlcbBk9F/N75uwD4z737uSc9YByVeCtIDiA78LSxYNoXnNmY8freM+H4veLB/QuMnoDo6jFuo08z8OzoUIH/x+kb6D/TUSE3DxA7W3jlWfiaWBh+bfEa4pPu+mz3cBuh0t9RC+YejhY9BqXHS0HTgzP9BdtmjnUS1Rn1qS4092wUrBU2VYUoJfHThzCdkd66j2Mbc293Z/wv2eP8P/YIDNtiSZMJvmR0wNePPsWv7N1PM0hXN5E8nKIWAyySM/GUZvAHJpUSjNMwkAeSG5wfTbnW38D2E9pMY2Pom2AIV1uFqDuDwxYQHqUcTnev+cAa2sSzkZWMorDfp2cbgblchkpb9BveML7K5fiAj8qL6KVYCZfrvsQmnldv3uZP9a8zqTMoQuinl1CPPSILQnxXKmQbfmYrqLbu1FNNoYmP5Wqe21Sy15/zps0rOARPihHpYY0qWib39tHCcalT9j6icnQu0E9cpwXs/iFtcpmzZ064NDzmQ4t7qUaBKcx6Ee3AUG1As9VC5BAzjZ4Z2kKx2IUsDfTZfLuiLBPMLIiurx5sUllNVZhwvYRALcO28UnGrcmQ6ZmMLbMk7tdATHIECMnxsM/Z/ox7xkGhntcR1YEhuxWE+/VQsLjoUedytoZLjmY9oqeCCHf79y3JYc387gQXOSJpeTzf5ZM3z5LekJiloxqHc+kiR+skN6dD1GGEmYd2e7RHCs+0TNHT0JARLVwIBu5BNKzJopojK1BFEGA7A1u9wB5eiI75pDofLDnmC3xR4CXsJAvu1TEXouOV0aM3Cm8kNnO8Mr5FXybEsg37PZwjewnCB7Zqz0xXc+BGPiI+EkRLh00E1SjYCZyGNkeL0FJfeEVzzpJuFtQ9jbUJ6b6gf8Oii0DpNH3F8ozsgmADM9Q5JARGSxBoTkLiiDMhbNtGkmoMJI5FE/F0vsWsiE83pRpKhAuMe7mMePRkl5N5hoBgM+DvsGDKCa4st7i1HIQml4HARgqbBDPeJ6o9YtmQmIbWvEwB6OsFzcuCF7woete73sV0OuVrv/ZrKcuSr/qqryKOY975znfy9re//aUY4xprrLHGGmv8ica6c+zlwefVkv8P/+E/5Hu/93t56KGHcM7xwAMP0O/3P/cb/weC26wp8xRdQjzvYiOEpPMAxGUW2Qh0LohmYcK2aTDYU0mLzYORGnQmeQnUuw1fce46bxw9zUcmlxFzTXLiUaWn3Q37bXYa7hrPaa2inUdkRwK9BJtCPfKrFlUAUShOjns0Q4WQnnLbM79oiOYhGPL3j8/xK+MQH3Kl3sZHjvJsjyzfwxnBYX3nmp3rzXh88zwAidaYwyXixiYfWr6SN/UepxfVTBVERwUbRUuxF6rFj5+/i/PnJoyiAuEhPfQMH8+pNyJm9xruHR7yZUlouf90fYbJcY/LT9e4azdg4z5sz7GjZ1S+4XcnF+jdDtWiPT5Bb24grOChuseXxw2/un8/6bEHrak2I4bjwDCNZcORiymLiFEDLlY0fdhOliSiCSZ5nf5GVQ5QZPK0vVqiFxL3zDVcXZPdvo/P1Ht8Wde3flEPqLcsXDiLzguKPfj6jYd4a1rzb85c58mt+1e6IT9foOeCk7ZHX5UhwPVZqAeSVw+CPcFXJgf83uZT/Ku9u6l2YrwM4ZdlozmuUooyQp4KiOgM7ITHW4FqAR9YhLbv2MkW9FQ4nqpVmGXQTtVDwXCU88bsKcYyx3pJNIP4qItN0TE+dlzODrkQHVHb+9FzSTwJDISPHb1+2G9ODN5g8i5s10MvqhlEFd6HOWoW3VhbwWac87rsGa6VGzwJmKMccTwjmvVpvaQvwqMnkQ2qFLQHh91xhoDX//3cQ7whu8KV2SaLcTA3rEeGYlNR7HrirYK6MEQTSXYTmp5knsSMtzoGMMu54nZQZUR8DKVIuVmGwFWvwcYKNQ00RnrkOD5MuVWFtvzNfs6JHpBMHLoSlDsR7pLg1YNgvZC3hk/HA6JZ0KJ5ZWh7jtfs7bMZ5+wfDxheDedi+MlDaFrExXOIYcOF7IR5m1BNY/oT0KWnOGVp4hCsWyxj4plAl9BmIPsNm0nOrXawMmCVddDG2RSytGLQWYVIG6J2kIRoD2CslqSqCXpErRBRhDPQUxVGaIy4Y1qIEjgjccYzECV0BofxFOwz15HDPtE0WE8EpvmQT9WSpw626O9DNLWUW5pyIzyzTpnd+NCRHIFHUu8INvo5NpPsTyJ0qchulOhJYLbq3T7VKA2GoZELY7PiTkxJLfCdI+OpXqjpB2PQeuRRkWXZRFStpmk0Pg6riXJDIF1gWP3csO+GUCmMCNEzTkMzCjv0reKpySbzRYJsQtSKi8BFnqIyPF1sshMtgjlsW/OyYB3z8bLg83a0zrKMP/2n//SLOZY11lhjjTXWWGONLxie16LoL/yFv/C8d/iLv/iLn/dgvpgw2sxZlkOimUA2oSLxEnwSKgmVtrg2GLzpoqs+JBA7pHa4OjBIANHCk2eCdKPkf958mAfi63x6cQ5VCKKZQ1q/6noY7Sx4YHybJ+ZbISIhDyxUPYT2TI1JWprOFFIsNH5pKGNLllY0eyWLIiU5CGXfreMh79/8EiCY1yGgHiuirT5OEzorOryyt8+nNh8AQPYymC1JDrd4It/hzb3HuKs/4WBwDqzH3J6TdF0w8zJmz0yJ+w2/0bsP1Uj0/hTkGKc1bxw8zf0mUCZLfwStxMyqEJQaa+So5pVmRiwGtP6OTkWmKa6X4CVcabap/QlPH22yUzoY9Ci21cqwEOBqs0Gba6T1tEmIAOnpmtIbysrQOy3mfLhOSVdyz10UTP664NZo4bjWbALHq32LQUN1fohs+pTnGv587xYQ83UbD/Op3QcYqK5qFWE+zG3CnpnSDF04ji7AttyQvCIL3YBbssebe4/x87v/E8WWQRceWcN8luK9oOlCYCF0kKEDi+AqjSpD3IHLgF7L2XSGkWFeFlVEsgiBvl4JtntL7jOH1EiWdUQ88ZjjriLfiBDKs6GXKBzHZUY0CdEMTU8gei0XN0Kp/wwbWJkgG4/U4BSc6c3ZS2Y8kW6Dj1dsnLAQyZYdNWNoyhDNMFviTiahm1M1q1iXHfWszidA7mxTX6j5q+OPca/u8/8cTPhUFJgirwVtKrCDlq205GARk92CrU8X1GNDuaMZ3BcYk/uG+5wUKdUTm/RueaKpYNFG1GPXMQqaKFwK4uOG6CjmuMn4qtER92/c5rcGu8jWkx5YohND6ySv6To1JZ5PDu5COIWZ1chdAz3Ll25cZaRz/ou8TDzpGIebtxHDAeVY8Irz+/zPw4f4eH45mGE2HqeC/g3ADGpS0zBpOw1cF3q7NV7wmtFNnBecmJ0789KFsl9JjxYOoUKXm1Nhnte2i+NwBilc0CcNBwil8BqWNmbfLrhW30dHNAaRjgiBuHOfUPklTy62SA8tvm2wxycr889Pzc/xyPBBfm3xBtobGf2bLWbekO9q2j60qSfqDDKjqcUsWppewryRbCY5fVOz3x/ipUItSpgG5lf1w9xwkYfYBT1RLRC2C7ztzBZP72dhARFMbV3qMMqR10F86ZzAZuE8VdsCWYdntZ4pfB40RgioxiHE2KVd9EulmBQ9WGiiMnSsIcKzoypN0FDJlnFUUNf/AzFFa3xOPK9F0Wg0Wv3be88v/dIvMRqNVkzRxz/+cSaTyQtaPK2xxhprrLHGGs8P4nNv8rLs4487ntei6L3vfe/q39/93d/NX/7Lf5n3vOc9qK5Cttbyd/7O32E4HL40o/wCYJzkzPotbWZoi1DN1WNPshWq/l5acdQqQIWKrwuyVLFFSo8qJPFJWNrHkxCimKUlD8TXuUsvab1ELwTRzOKMoO1Im3vHJ9zXu8XtcoBsuq4zA+3Acv7MCcO45MnDECFQLzSykKH7Z5CTbs251ShwEbINQZcPHl4AIDM1OEHdk7QDAwKOy3R1vJfjA6rN7j/DAZQVuoDSGl5pJnzdxsP8zvlXUe9mxNdaZGerr5Tly5KnSYTj3++9gWX/XNiHC/qn1ybXVp/xKu1AdyIAIWkGhuFwznkV2rTu6k342NbdAIzuuYviXA8yy9LFXG22sI2izSTV2SHFtuCuLorjlk35/eIiaq4R1mKTEH0g8Zy0PepSM2jDeL0JYZ4DGd6r8DgNMopwdY01Avds6gKI04ZiJ5Tz/e05qQheSn82e5L/+x6oC90xq8DGOS/C/jdquP8yPPhQuF5DGKt8td8zek48qKj7Eary6Bz8JGIBeCehYyWJHFHa4KxELEIHmC491YYg6jVsRkvaTmNR54b+ElTt8FKyGRdsK8kNC8siZmvuEYtw7MJ5UB6FY2J7TJYp0bKLaYgFGxtL7h/eBmDZRNyWo8CqGcA4LmbH3Jvs87H+RebxHX2asILWKayXNE6GSt46hJTYGC4kk9W2F/UUG4eAX28t7swm450F9+qwv9qpVVebmbfIHYVQHq0clJLeTYv+5FOYnS2i1+yRdLE1r8mu8/u9c9xsNundrHFKUA8j6m1PtenIdxS9ZwLjquc1ZhqTtxH3mX3K8cN8YPdVtKkhPmqIZoaiNVwyR+H2kAX/r9Gfxqs+smhQlUcox93xISOVo41d3R/eOcSgR7EHb9l7iG/Icib2NkJ5OPXX6R6b26Mlm0nOTbGBarouMi0405/zxt5TVE7zUBruD+FB5xYz0yzymLqnEMbRZNCmYf5Ou/v78eoM0yYNWqrNHlKHufL0YoP/XJznE9OLwf+rg4tCAPGtZsyn1IKr0zHbnf4KOq8v4OpizEfLu/nY5G7iQ0l0UiJLi1fQZh4XO3z3O0LVDj0tMXkMAs5mMy4kJzw83qXN4uCt1rWYeSNpE7CpQ3fz3kkVwpCrEE8jOvusU+bXxaETE+GxrWRZRt35F9ALY6+lChEiucAsg/bN66AFbQcOem24LoBvFGIZPOhE23nEacL93ShOiozdZEGqGoS8c25eUqyZopcFL9in6Od//ud55zvfuVoQASileMc73sHP//zPv6iDW2ONNdZYY4011ni58IKF1m3b8vDDD/OqV73qOa8//PDDOOdetIF9odE4hXACum6FNgU3bji/MQEgUpbjoz6yBdmG7/5d4knTGmslVIJkEsqZeNIgG4WSnp6saRDcygfEJxAd5DTbKc6EMmAvnbOpltROoZaSaB48OHzsuDg4YSPKuTELpWVbC8xcUBpDuy05P5hSbGlmszHxsUTNFLePwra9XgUiaJfqgcILOCkyjtySLdljUy1oBp1b9yhDNk04NuG4qAd8Y/8pfuruExbntzDTeHWetHLcrTWpiHnD5jV+beMcPouh66YaywIIFWtfJijjcEaioghnBJGyq31dTg/5YNeFV1was9xVyLgkdxE5EUpbii2BUxHVVtBRADxUnefjJxcxMwFC0PQkLnY0XnKrGmILvaosbRRYpLEK9MNA1kH7c8/dyKMT8l3BxejwOXOhl1bUw+BXkkR3PEnOKUO9ZWkuBvdiWVucAYckkxUbG0tm920wfChBnt2jzWBi7+i45i4i0hYbg1fB68rMJU2kIbaoQfisJK0x2jKbpZiZJJp6dBk0Q2lcM1Alt6rwFbevFKbwiDZ41YyigkwYGm9pGoWq79yjTguktsEDx2ZUpSHpNBdtD84PplxKwrl4xOyFINXS4bQEJ+irij0zZSPNmUR3wjqFg0Ubc+z6LG0cdBtaIwZ92iz45pxCCsJ91sFmhmGyWP3/mdl41ZEY3ZwRbW+zsvW2ArOw2MkE5T2q2iNR4ZydMycMo4pbFsxJiZcS4SLUqEZHLfnhgLYf2ARznBMtoLSay1qwp57hp/amNNkOsrREM8+8jEk60517zIRxr8CqPqJqMMvgJm29JBHNc76iEErh+gn12PG65BnkaR1aKlQVzpnNwvHt9eYMTRk8znKI5h5VC7R0nNcn3JvsrzQvwgnMYUFvP2J+mDIbJkRpQ72RUOWB6ZlMw1z76OQSN5bhOVCPIowMI7w+GfGr/dfw+PHWyk+oGcaUWxofW45tj0+WF5hPU/aKO/dpG3fhysBBO+Cg6AUX+9YHlicVuCz4SLmOlcKBqFtkG9icTbPkYnTETn/Bjf4Gth8jF2G8bc/QpkDqiKKWtlXUHYMj2tDN+2z9mtPQiMBQ4gSukdQr4yUQHTvte+AAXypUAboMHZw2CZ1/Om1Xnb1tLVF10CBBYIlsFNzFcaHLM7dR8BR7mX7vrVvyXx68YKbom7/5m/mbf/Nv8u53v5vf/u3f5rd/+7d597vfzbd+67fyzd/8zS/FGLly5Qrf8i3fwuXLl0nTlHvvvZcf+IEf+CyBmxDis/685z3veUnGtMYaa6yxxhovG9b5Zy8LXjBT9O53v5szZ87w4z/+49y8GXw7zp49y7ve9S6+8zu/80UfIMAjjzyCc46f+Zmf4RWveAWf+tSn+Ft/62+xXC5597vf/Zxt3/ve9/LWt7519f9ni8RfCI4XGfpEE09BVaEjQ8aWvgkLsdJqXBX0Drr0VCOByyzjrGBexlQWVOfQKksbqj9lUXiObcz+fEDvyCFPZshBRCcJYdA5/U7KNGQCHVu8VOAEPV3TVxVt11Vi5oLkELyULM9GJOOW7d6SSTaAI0k0E5RJYHWWgFCeegjlhsJpqIqI362GfF1qKb3Bdn4ethchJxrZwKIJ79+SPe4ZHfOZQWBFolnYdn/S5+m25X4Ts2WWtD1wSajAZS24bke8lnDOCl/hHZza06rKMVmm3LILzqg+1kvaXucpMlbYROAaxSPLs6SyCV5MW9BmgnbcUtowfT82v8Tjh9vBzykSVCMBWYvzktvlELVUyBVTFKpC01FHCo/vW4qLI/R2j/yc5zXxDSBZzYVBVHGchC7D2SLlxOVsyIwDW0NqKXbC8erC4TQs2ojGK3Z6C65f2GLw2ldSZxqv4MkidA890v8UV5oLSOmoMkJGlAdVQVNLRNbS64W5sJnltF4ytRk6B7P0CB98U/pxTSwbiq4ylqVEth6vBS6GsSmIhaHx4K3AS4FPwzVtehIdh/OQuwjXhhqpjQVt5tmMc3qnfk5t6HrTyxYvNbKWzNqE0pmQNyZ4TkdQaTUTm7Fso6DuTCLQChuDfVYt9ki9HRy0bXeBvMe68PN9u2Ay7XH3YcfOHU/Q5SZ4iFUbfH3isK3Q4fye3j9bckmmu6LJejAisF87J+ylCz56O6MZhnMW7TvM0jOvYzIZ0Sfh/GDKk/EusmqIp47jZcK8s5Mf64JENywFUJSYeYNcJtxuRiSyoW0lsum0KW0LLviGTVxG5Y/5vfxuokNFctyEzK3udAxNGfyEWkE0dyQHFfFxykER9Gw7eo6IT8+TQp7M6F2LiQ9SlucjhmnJwV6KrMN94SZhvJ9KzlDXGk3ounORxEvIZwmfPj7DYpESddN9ccFQbAuS8ZLGKz5TnsHPDRDmgT5/jjI8AriQ5Ci66yXAphobS+ph8FYSkpVTNhKwLjBFraDxikQ29E0dkgB6GpWFeeni4CWFfJaT9en8kl1kRcdsydYD4jkaI6zEu87PTfoVUySUw2vZvY9VHqKw4dlojF2tGWwRzqEIuw+aIuNxxiNMyK90XjCpU5rmjpTkJcV6QfOy4AUviqSUvOtd7+Jd73oXs1noOX+pBdZvfetbn7PQueeee3j00Uf5F//iX3zWomg8HnPmzJmXdDxrrLHGGmusscYfP7zgr8+ejeFw+AXrOJtOp2xubn7W629/+9vZ3t7my77sy3jPe97zOXVOVVUxm82e8wegnKaktyHbt8Qzt6pEaqeoneI4P2WSPKpyeA0ia9lMcoy2CBfcZaX1IEPK+U66ZFO1lN6Q5zHxzMEydLO5rgrJui+xl1VENIdo2qDL4FKru0HUtaauNdEUsn1HfAJNqcl0zZlsjspahAMzh+hYEh1L3MJAl2dVboHNoK0VDxaXuNLOudFsgPQgPTZRIAQm91ydjXmmnVP4itYHXw81LehdC394qsf/e/LlPNIsOWp6XTK7Au/RS8HHlndCgh9qBK7tqirv0IuGej/llxev5NNNzrVyY7WtVyGnTO8bPnLjbh48Pk/bKNqho9z1yH7DoolYNBEPTc6QH6fIGup+cEROBxXOC/bzPmopEdYjbOjmQXuWLlSlt2wfhKceaYq9BLfRcE49t5ukZ2q8DN4/9kbGTx6/kSO35Dfye/GtoM1k9yckfd8sRtxoNkhUS7kD83t7FHshg+mpxRZPLbb4cHGZa/UmkbI0I081CiyWsCAbgXcCoy1GW1LTIIXHW4msQ/VqY0GbhK5C5yXTOmVap4im00Qkkrbv2DXdfPYG74KHjc8ifBbRpOEzIHjZhHkYOqK89jgvOG77HLd9ZlWCqkK6vGg9ohbcKkc8Ve1yXGQ8pwGnq+4br3Be4hS41OATg/DwTLXFics5cTm/MXuA5OBZb209datofMuxE9hGIrxHdP45Xgkwnq00Jx5W5DsKff4c/swWbQ/6uqava4ywaBHuS5camkFEPfLcP9rnS8dPI8c1bSpDp5YNTNHJMuPEhfsx6g5I1C1maWmXhgM75MAOaXznLi4B55G1RZWCo6bHcdunrTSqdKjS4YoCOSswU8nHl5f57TLhwePzJMcQndToMrBIwoGWFi0twgrM0mEOlqRHnoNZn4nLGKiCuFcT92psJKEoifYXJEdQVobNLKe3t6TcdbgI9CK4tRf7PexxHBi8DUmxHRg7SsXRrIetJc0AmgHM7xYsLlsubExonOaJxQ56HtgstblBc88e5Y6n3PGcTadI4fBeBF3PQFFtauoR9PoVcVIHjZ0hOLZ7j6wcqpDcKocctANa182PWOJjhY/D80HWQKEoS0PbqC7rL3SKOkX4zfXs317PYpIQPnSdtQLfisCQ2sDEetExTS6wTLJzh0d4jLbEpiU2LcLYFXsvOt0oBJY57VVs9wITuWgilo3h5cCLEgi7xufEC2aKLl++vGqd/MPw5JNP/ncN6PngiSee4Cd/8if5x//4Hz/n9R/5kR/h677u60jTlF//9V/nO7/zOzk8POQf/IN/8Efu6x/9o3/ED/3QD73UQ15jjTXWWGONzx/rmI+XBS94UfQd3/Edz/l/0zQ8+OCDvO997+O7vuu7XtC+fvAHf/BzLkg++tGPPidO5MaNG7z1rW/lL/2lv8S3fuu3PmfbZy9+Xv/61wPwwz/8w//NRdH3fM/38I53vGP1/9lsxl133YVcKNIjT3xcr3x9hPQUXVUwWWREU0E0t13lHvxsMt3QWomsQtULIWepHsGrBrc5rwYc2BJnBaIJLJaL1cope8MsUcLRtApTh8rcCyByjE1BIoNvB3QdKjOL3gzf6V9MjxmokodHe+QqJZr5VX6WTRXtjsMOW0qng0O3F3wm3+Oj0QWuVlurCr/NFD4xqNIxOerza/kreGV0m5MyDYxZUaLLoDEYPNPj/7r2AJmquFZs4DTUQ4OqHLKBhxdneGz0MQAeq+8CB22mMYMB3jqiE8VvTe5DCcdJna2qM6eCH0p6U7KMRszHGTgRvHtiR5bWlG24FieLDDULU7keCepNz16vwCGYFQm6uFPptSkgPAftkIWb8InifsRcI2zo5kJA7p/75BhGJc4Epii7Lvn/PP4GppdSriy3kEsVKldCRSwbuDYf8VhvD+cF7dCS76lQ+Qq4vQieTJ/ML2CEZZiUHGw1VFWE6fx4ZCWwtaRuwjGVraZsDL6R3XwS1H2B7Tky3TC3CYdl6NxRVWCDbAq237Ktg0vwke3h29M0drUaLwQ9UeU0QoSOtdMH56ROuVoGNjYvI7QI167pK5AwqRMeW+4ymWUk5Z3z5YwnUW1ga6Tt2JoIKRpEA48tdvnPvaCt+t3j8122YPfeRKGVw+ExwmOSlmocBC9ma4N6IJFxzUaUM+4XLHf6tHfv0maaNrtz3ZYuonYKZ6AdGOqBwmaOnSh0d+oo+IOdQtWOYhnxZBNhTEHeBj3OqbuzaAUzG8ax9AopfHh/mmATHbyu/qhSPC8wS3hquc1j8RlmZbLSxPg/UF8qPF55EBJRN5ilo84NSxdzXp+w0QtMVj3sg9awyDFzz7xWbMY50abl03mELZNV9qJsgoYQAdVG5yOVgqgk9TzGW0Hb65ycx47e3pILvSknbcYTky2iCYFp3dok34tpx11mnGqYthnLKkI4gp5oIGgHllFWULea41OdYixBiOBXtBRcX464mm4FXaDsGNxTrWFpieYaM1E0KgLtwQUX61VyQIdTlm31y176Ow6FToR/rk5yoEtO3y8t+KZ7RnpBZNqVz1XVaOpJhGgFZtF9rhJY5dns51zuHxHLlquLcUgLeBnwYjA9a/PGz40XvCj69m//9j/09Z/6qZ/iYx/72Ava19vf/nb+yl/5K//NbS5durT6940bN/jar/1a3vzmN/Mv/+W//Jz7/4qv+Apmsxm3b99mb2/vD90mjmPiOP5Df7bGGmusscYaa/zJwecdCPsH8Q3f8A18z/d8z3Pcrz8Xtre32d7efl7bXr9+na/92q/ljW98I+9973uR8nPLoR588EGSJGE8Hj/vMZ1CLSTRPHRLtLGgGUCW3rEAaEpNkgdX4CYL38mPs1AuL5YJwynoPHTN1OOYZuz48t4TQEh1h27lr1XQomShQtnR85Ba3VU3zkiaTBINai7HQXyhOh2IcCBrBw7ipOHLe09wUZ/w4OZdfCzeIlp44mlXASaKRV+hRjVWe3wj0cpzMx/y+9Fd3C4HeNPlZ21qoq1eqIQXik8s7sb2JK2XND1wW0NkHs6Fzj2HR30e2jxH3hravmN5Tgf9TRy6155oA9swsRkytuS7Ccn5XdpBBA4Oyx5zm7IR5bjNrrtvK0buQzQHd0NQlRHtwELfkg5KRlm56lKqcoMpAsvTpmAHLZmpKa2hKA1xHbpHwnkQoIIvz6cazSdmF4kmkmhW44xAzDSfrPe49CyL340op+0Fr5JoBidXB/y6uo+q0ahcrvbtbGCKpvOUK4Mt8tZAZqk2QpeiFzBfBrbhmXyTvWTGMKpIhyVFrhAuMEqyAVEqyipQOQsTUzYmOPAqqHvBBdn3gsfQQd3ncBEcoFUZKummJ9C9hp6sKHzFjeYCFF0XXleRCw9NqzhsBszaJHQQRXRmLnBY9Eg6fZXzgqYPy7OGeiiwPUttFdeWI9p5hKy4k9VmPIlqMMISyRYbQ9PXmO4zb+d9Hq3OAgSt0rMYm3IrItENjQ9zPE1qys3AgsV7feq+QGqHxJOZmskAit04ZH4ZmDXh/F5tt1g0MV5B01M0PQnKMmtTbssRtpUrxsBHwbfLNYonml2MuMmiiYJ+pRdjU4lXnsqH65E7gxQ+uC5v9qg3IlzPsm0WwdE6brFdh59RCiITGqGEY6xydnsLntjYodqJQ/eZvsOUaWkRkaPua1w/xemgL3NeMpYVZ/tBI/b4cBd6WWChco+rNJG0nM8mPDMYM48SoknYpyg6n7UoZHydJsurQuLrwMC4KNAQst+w018Qy5Zr+QbHBwM2j0BWLa4fU40DUwdQWMOk2WI+SRkVYc5YE3Q3o6ikVJqDJOy3TSU+1uA8qoRJnjJpgn+Ziz1tGjojAWQVdJzVVGIThctsYHi0x4vQaabKsF+zDM+ZNhOBDe68inDiTgt6R7EI5RG6Y4p8yJ4TTiCrEPnWi2p20kDXNlaxbzJUCcmx7zrQBDVwNpvzQHaD3MU4fzF0X74cWH/19bLgRVsU/cIv/MIfKnx+MXDjxg2+5mu+hosXL/Lud7+bg4M7yszTTrNf/uVf5tatW7z5zW8mTVM+8IEP8L3f+71827d925oJWmONNdZY439ovChC6fXC6nPiBS+K3vCGNzxHaO2959atWxwcHPDTP/3TL+rgTvErv/IrPP744zz++ONcuHDhOT/znf7DGMNP//RP8453vAPnHPfccw8//MM/zN/9u3/38/pMvQw+Q85Iyk1Fvd1y12CO7tLIaSXSBianGkvqLctOtqC0GnsSk922qONOJDKO8T3LK6MDIFS9vpGB5QGsEegoVMaJaLBInBcI7/FK0qYwygruifYpvUHrU68SkG3YR5bUvDE+5Izq82c3HuPDvVehKkeyH7Q/NskodxR+09PrFTStQgjPpEr5zGKPWRMjTpmiHYGqE+qBAGk5qTPmacJOuuTGOc/01SOiWdcJNwpzoXaavq4RWxXziyk6F9Rjh5aOozawGJUzJGlNvpuS3D2g7ktsEvQne2bKYFjw9MXQgfbo7C6Ek5g5mLzLNsoEOm3YG87ZSAr287Bf34Z0egg6GdElys/qmLbUxECbduMcQJSFjW+1I27kw+A1lbc4LYgmhg8tXsE3Zr+/mgtbZkm16Sg3JF6AyiWzSRa8p+h0SgTNgVdga8W0CoyFNJamFzQRwkNTBLbh1nKw6nBK44YitbhIIhux6o6xnQaoajVVo8GKLlcKmj7IuKW2iuv5mMU8fF5WsmLM4rjBiJYDW3Ot3kRWEnHqB0T4jLZWHNc9CmsQ0uPizrfFCZZVxKQzsJHCU409yzb4/chBjfWSWZmglgrV3JFueAHOy87DSOJiTz3UeBXYnNYqpl3Yn5GOfEuw9Yp7oCgpNiXGCx5v4ZbdpGkVqnNQbgYaF4GzkpM6o2wNzkA9uMP63C6DZuvxco9pnXSsmcTGoRvpmXyD4ybDFnr1HjtIA5MkLBObcWD7QQ+WQLWVUI0UQjfMbbjQ+3ZAZXX47FFENZKQ1vRVSSIboqilGobj6+3t4jYHtBnsxnNeGd3m9eNrfPrsRRa39EpDBzBrUoxwSO2oB4J6J1sxY3W3YV9393MGPo0QyxxdOMgVpTVsRkuyqGEmPbLuNDp1YA/bzOMSH/ywcolZBP2aN0FrFDb2pKah8ZIbyyHqyJCcOERjsf2YNgPZMVsndY+b+QB5HBFPPKZwSCsR0pPooM9xve45MdDYfoJXIQvvVC83jCps31IPDK7rPFNFi1k4dBFyx7wOXkO+u4dMAclJ2K9ZWtpU0WTBV000Ai8kohVBNxmxyjMzcUsrguZNOIHJHXgwGxqcYCMueGV/f3U99uMRulJkhxacp+4Hbem5dMI98T5X6h0WVYx9rofwS4f1guZlwQteFP35P//nn7MoklKys7PD13zN13D//fe/qIM7xTd90zfxTd/0Tf/Nbf6gl9Eaa6yxxhprrLHGC8ELXhT94A/+4EswjC8+JMcQzRpsqqhGEG2VnMnm7BddGnghQ4J99z19tF1wNptxdTnGnCiyWzn+KGQ8iUsbiMix1bFM19seYq7Rsxm+CmWGkF2XBpK5TWhKHRKhOyZIK8dYFeTOrlxepfWovMEUCaWVbMlQ1X9F+gR+0CKtRO9PAejFitndCbXw7PQXtF4yL2NmRULZalorV5qQUDUKbAKkltppKmfYiReIcwWTWUY01attpXHUThFJS39QMtuNaEoJwwbnBTebUIYetz2EgLYPxabCxgIfBTZpS815ZZRzsBMq/Rt3jSjnY2QNqmHVvZWlFXf1J/R0xaRjY7wTiPZZXShOUDRd95CVHZvQsQ0jGGQlsWwofYR1MrA7qQIXHKUfnp3hyubvALApNYlsEOOaYidBtp3+wgvA42JP0+3bNiFHSUhP6yVSeLSxNLHHF53GoQz0xMkyJdGBsWqtDL4qdInfGnwUHHZPYTtm8lT3Y1OPMo7SavImwi8CA6Xq0LlnE+jFgXU8dobDuo9suv0beeezWsm0SQMzKf3KKwnhqRtN0XX4SelxPUvlFDbxGOMoasMyj5GlWKWVn2JSJ1yrN1m0cdDjjAJbYxOwTrBs425eW6oxlJc30csWm8D+vM9/nL2BW9WQ/CQl7Tq1nO70L43idtFnWQW37DYRnWeN56QKbM4z5SbLOjjFN5nARaHr6uZiSKRbKBU26tjDjcD2qMhROcPMpUjhsRlUG5omC8f3TLXZ3aOCRRV37Eu3Hy+4WY+DN5OTK2bSb49pxmk4Z9KRiJbdaIYc1tTDFFWDrMKJe2Y6ZpbGuCb4CNVDRdMLWrmpzTiwPUp7xxPHy8D86cKhSsWsiTmTCKQIjuddDBy66LRiAlziEFYgFmAWwcvMRXeYVC89/c4JfFFF6IXALNvgNJ5pmgx0Ny/z1nC06BFNBMlJi543yFrjnSCSLYlq0J1WsukbbKrxWiAtNF6QyoYL6YRHNnapRoY27ZiiRYOqXGCJDESDGmNaclLwCrPwJIdhjLKoYTNFWgUIhBOIKjBgeIEVDtkxRf20otaWhYmRVmBmLbK2mK3gL7aTLPhT2dUwBhwPRheQTfCTwntUY1CR5VJyxI5a8JA7z2ya4vK1puiPE16weaNSiv39/c96/ejoCKVeJrvzNdZYY4011vgThBfFvHG9sPqceMFMkfd/+Fmtqoooiv67B/TFgv71Bn2QYy+MaftB06OF4ygPOUTRsQqdXR6aHuyO5pyNpzy92EDnoE5y/CJoirwAHVlMR/E8Wp8lOpHI4zkuz8OE7VR0jVcc2x6u0EQLh1pU6CKlaAy5i6i9wrnT7DCPnOYkJxkH85SZr9gSmnu0x/QavIxhGnxqTBphFknonujN0MLxpN9ifzJgPklDt0bd+dgknmpT4GKPjCyLJuJqucG0STHGUo9OmZLOAbnQPD3dCFqEVkFicdIjtWNaJXx6cQ6A4yojn8ekp0HzPlR0B0WPW+2YgSwZyNDB14tr8u67f1V6VBqq9dS0bMcLMlkTqY5JcaEjRdjOj6iWLKsI2TFzofspbNr2PJGyIevLC4TwNH3I9yKEDZ0sJ1XKx6sw5l0156TtYeKWZugRjcDFDiFdqLxjF3x7CJ9tM7fSXEBgWLx+lv9P5zVUVYaTIuhO8iJCVBLRaYZs5hG9hiRu7uzDiuBW7UIXnIvAKEfjFIsyRnYMlHDgosDIpKbBecmR7THvurJsLGkGenVeIFT8p+fCRR5rO0bGC+o2bOs7R2Gvwmc0pWYqU5pCY3wYz+mTQTjBYd7j0WSPoyLDK089CP5KTge39ivLwLrMigSvoBprnA46kHy/x3+MXsuiiIlvGXTVsahReD8eitpQtwqvPG0mQjaW8hR1YFIOyj5lbfDKY1Ox6hBcVhFVq8CK1fFXY0XTC12dc5tw3AZNkTOBhfISyBWPzIKtx3HSY1HEGBGOCUDMNB8/votxVFIuIrKOPLD9GJspZCt4YrHNR9LLPJqfCc7uonOyXoSNDw6HTNMUMdUh/T0KY/BOcK3exAjL7Y6pFg3B5dt7ROuRjaBsNc7L8CzxYqWzU7VH2sA4CeNACRCh09Hkjga50jZlacWF7AQjAiMtmy5fTAbH9rYH/aRjaYSnrjXJIjjvq0WFrhKEFWjR+ap1HbttnOKVQNYuMOyNIlYt56MTzo33eHo0DF5GgLAWVYZUAJc49kYL+lHFlUYjXEQ0t6iTvJtrDreT0fQETc/jtEcVAjMPc6lSAqnC/bidLamtYpb2wEn0rETOS6KzCXjBheSEN8aBKbJeoGMbmOp5idcSa2A0zHkgucaWrLhVj+EggWd5dL2kWC9oXhY870XRT/zETwAghODnfu7n6Pf7q59Za/mt3/qtl0xTtMYaa6yxxhp/kiH+CELiBe3jRRjHH3c870XRj//4jwOBKXrPe97znK/Koiji0qVLvOc973nxR/gFQnp9jj+awoUxbQLDpKT1ksk0VPeDfUhvNzQDhdeSrSRn28yRwocuiLrBd+fIJpIkbshEON3X6k3MAsgLvAturqpjNYywNE4jGoEqHXJRYXLHvIg4sj2U8CsPI+HCPqLjCnec8lgTsxXDUKZkaYWN0pDSDYh5jioD63B3Fpyvj6uMG9UYeRShSnHHt8V4bOpwqUMLOFj2WdRBf1ScJMQLwamNjyoBH3FcjSG1QVvSSpChwj3OM/JO3zPNE8RRjFmArro8t6Xg1smQj2zcw3Ha59G8q8bnGWYmiKcekztsrIIWQniMCP48rTutLDumyBE8dqwIjuAaUA6beMRpa5TwTPOEB2cXSVXDrEqwmWd5RuCFoN5wKOF4vArjeIpdHp3t0pQaCZ3bcHADDx4ooZsFQveZ0x4lCB5K0oWMrMhhY9n5UnUPNi+oGo21krYwyFqCD3oll1mSrCGLQqlfNBpXK0wtOudgcMahpKOxiqrWyGd1wJxqjnomvDh3CaXVnWePwOlTZ+yw/aKJQn6VlaA61sf4kLfWDdc6iaglOheAoMFQ2063kXjqgXhOy/B8mfCk2rqj++mDLwOFn09SHm13AahmMb0isECiy47TJ5pjP0aWkmxyR6tUDSX1CFTSopUL4zMdU6RCl1LVMVtHZUZVha4ip8I58RKcE7QoEJ5TeU6bdF19jeJGNcIhqK0OOXEqsCVmqnjqcAuA5SjCthKRQd0PnW9mKnn8+i4maRFTsxIm1CNDm0hUAZ++eYZFE7G/6CNPDMKGMZ36BrHQ1Lkmnkh05/vjRXcf1T0UjkkeNFOneiGMCan3KjCgWobMt9XzgcBgCtvlfnVdXF6Fe0L4wDyeOlpfHE14bXaN3EUYaalt54XmPTaStD3PRhpu/qEJFIlsQC1r5KJCdaxeT1fsRjN6nafRQoGsLXpaEU9iTnKNxHEhOuLy4Jgne+eDozwgi44hbVO8cZzpzRlHOddOxogaommLmHedvf2MakNT7IHdbQL7PI+IpmFcNhKcnt7dZIGWlqezLRAGuajgZIrOt0AIzpoJ95rwfL9uTwBC7uS8gGGGTeAV42NeF00wQnG7HJDsC2y1Xmr8ccLz1hQ99dRTPPXUU3z1V381v/d7v7f6/1NPPcWjjz7K+9//ft70pje9lGNdY4011lhjjT958C/in5cIJycnvO1tb2M0GjEajXjb297GZDL5I7dvmobv/u7v5rWvfS29Xo9z587x1//6X+fGjRsv3SCfB16wpugDH/jASzGOLzqIgxP8ssLGknZgOZPN0cJhi3DKkhNPdJTjVdAYJaolEV351jlVy374WT1QjLKCVITSfGGT0OEjJbKX0aaCtNOP9GRFpirQHq8FyODU2taKuUsZq5zIBPbHxiJ8Tm3RS8kT9S5fEYeOt0FS0aQCVLfubdqQCi09F+MjzpsTnsq2eYizRDOBmQYvIIBqLPA9h0xblLYsipjJJMPNIuJDRXIculZOoUuoSkUzkMEHJQr5ZFKHDLfqNMNrkpDMRMcu3amS68LwxHybaZPyxCQ4nNe3M8ZHkBx34x7LwJI4SeU0ldMs6zBg0Yg71XYgMgKjpC06aWlTg2xOq1BJfqvPh4rLKO1oFhGqDR2Ebc+jdgvGccl+PQRgvxrwxNEWnEToZae1iQWukaEL0D6LIfFBT2NbSW0VEYGZE5HDZd0A06CDUl0Hj7XyToK39tjEQ2KJo2bllFvWBnKF6jrwXASkjshYrJM0lcbUYjUGZ4LWKdOh+6x0aWCKOg2M6ypyG4XtF1VM4xSuVshuHESOyLSorivSO4FsAkMoWsBLaqMga3HjhkrrlS+Ol546jzjqWA6vg27LBysg9IHBHgeaJs4FKg/dT00maHphTqhFYKWEg3oY9luNoDrTsDdakpmaqQg+RDZmlZB+6n9zbDOaeURaPIuJeTaV1eVonb6sanBzw9PLTZyXNDbolbwU6NITTQSLk6DLmkbBi6jYsqhKofLQtdgexNSxQZfhOACWZzutlId6P+Wx/AzkimghVlq3ZtCNS3lkKYNvVufY7HXwBXIIFjZeHV/kwUUa1cuCD1PiGZqKvqowynbH+iwGQ3T7P2WKnuUpZQ3BNRq41Dvm/vgGV5stHAJdgl7UiLoNcz9x7KYLADajJUIGZlzmNeQFsvV46dkyS+6Ojlas0kKG/chbh2S7GWqhcUjO6xPuy27za70HgO6CzJfI0qCLEULAOMoZmwLvBVEO5miJn4cxsDGg2JbUF2rOnjnheJHhr3e+Sbmn6Umq7hScTyeMdM7H+3fhdApVhZvPUZXDS8UZM0V2PEFP1LS1Ip5Z/MkEkUTYBO7tHbCrgnRk1iTEE142n6Iv9pT7v/bX/hrXrl3jfe97HwDf9m3fxtve9jZ++Zd/+Q/dPs9zPvGJT/B93/d9vO51r+Pk5ITv+I7v4M/9uT/3giPDXkw8r0XRO97xDn7kR36EXq/3nPDUPwz/5J/8kxdlYGusscYaa6yxRocv4kXRww8/zPve9z4+/OEPr74x+tmf/Vne/OY38+ijj/KqV73qs94zGo341V/91ee89pM/+ZN8+Zd/Oc888wwXL158Wcb+B/G8FkUPPvggTROYjE984hPPMW/84wpflqAU9Uihtkq+ZHCdRZsgOk2ItB4ai7B+NVlPnagR4CON6IVysU0FY/PccsIZYNBHxBFtIoi7TiqJC4xTHPKPkn6CMwLvBUsXs6kWDJJQ+yzGArc9ou0ZEJ65S1f7H0UlN1OBOI04cQ7ZhqFuqQX3mEMuJsdI7UMXyhJOzY7rIZC2DEc5kbIsq4i6iVC5DJ11Vch8O4VoBaoG2wqscoisJe1X9JMaKTyz4nQMYsVk1P2QF1ePPXGvRgvHrE6YLMMx6IVEF77rppLYROCioKMpbMS8jZnmndtyFTRFXoV9e+OIo5ZhXGKdYNoz+Nx0+xWYhYIbaXCz7Y657YEdtmwPc4amXPnoXF+MyKcp0SzoQlwUjlfYUG1LFzRN0HV+tQLXKOpGY6QjNi1N1tB0jMupc7nRdpWqLkTHEilwqcPELd4LFmXQYlXzGL0Mrt3OQNv36F5NoluKRuNzvdJ4yQbaBHzsyHRN4xUTm7Go45WGZXXXS8BK5kVC28qQjdZ2c1M7EtOSdvNWqYTWi9CNU3VsFRD1GpKoIc8imkV4UZRhX7WPEMohjKPtOYQL5zA+FquUeOEAAeXWqVN36NaTzZ25cto5WO5aRrsLzg+m1FbRWoVoxJ0xW6jLrlvOCdRMY+ag8+D9JLquTSl8SFM/PQ1N52A/U9xeDBhHBZFucYnHRgKz9ESLsD+AelOzNVhyIj1L3SM61MgKzFxga4WXnmIn7LvaEJ23lEc2Eo6766ih3PHYUYvpd15lXuCqBFWHjjGngzN5mtWMTYFcqWM61/BEIVxC05e41JLpGiVc0NqdZn+dbiv//+z9aaxuaV7XD3+uYU33tPc+59SpqaurGhCa8VFUBEwexUhDApKQoOlgOopJa2JaFBADr+hWSUsUA9EXEo1xgBfkH+OEipDQ5lHpblrAP6jQ3fRY1XWmOnu6hzVc0/Pid61171Nd1VXdVFVX4/1Ndp2qfda97jVca9W6vus7SH5VaSPBiT5PzmVCB1CZUJ7bnlp5ulSw3tWsLhL6/hry/Z8q8kgt/WsndofKGko24rZVIaGKxJvqe7y5vMXNWhidTyrQ2x5/5y7VneuY7QmayBfZjvv1p7DzgaTk2k9bGczF7hFShEJFjEo4Z1heJNSd+/gLyV8z6jGGFdy8ecFXX7vFr4fHufRL6rNAeeFobzRk0o1Hy3MeK844nrVc6BNwnjgMkgWnNQ+Zy+ni0CoRe0N5NhAuLrBHS5KGm+XldA66IB2PangdP628ALz3XF5ePvC7320x+nvf+16Ojo4ekNB8/dd/PUdHR/zyL//yCz4UvRAuLi5QSn1OfaWvFF7WQ9HVV2b/5b/8l1drWw444IADDjjggBfAK9V99ou/+Iv8wA/8wAO//pEf+ZHfVTDz7du3uXnz5qf9/ubNm9y+fftlraPrOn7oh36I7/7u72a1Wn3O2/K7xWetKfoLf+Ev8JM/+ZMsl8sHfr/dbvkrf+Wv8E//6T99xTbu84qU0E3DsNA8dLzh/9N8kvt+QbUQlsbNClJTSJO8giEadrHEBbNnimqZOScj/VVncceJnhGS6Ani0Qy1kw6mXc5XueOPWMcabQPDsmQ4qWXmHxXPuSVL3VLm5vJhCd3DM3wjmgJzZSZZmiCz+SKf4q7HuIR3hoBmqQLX7GbSthiXZF8QN1Wz7Pmik1NmduDZ7YpnnMVtLH6W80786OYS1iDU2cGy8Byd7Hh8ecG1ascQLZ9AEq13RSNOl0Z+uhvA4y1vvnmXL1o8x7lr+EQhyzqbCLWiPzH4WtHegHTkmBUDa19xa7uiXcvMptqJZiMa0ZfoOrCqO07qFqUS7aLEreU4FGtFdQblWjQHpMSw1GwfVfRJUVpPoQN9DrZZDxV0Jqc8yww/lgmqgAKSEycP7F1wySl8kLyYWTmgVGKnJT17hA+alER/hEqSNGwjpgoURcB5Q7fLzMulxbTCTPkZxCPH8aLDmkC3bTCXRtyMCMOAUqgi0hhHSJozP2fTl5OuanIZKsAr3GAJg5FuNK+glLTsedmzKmW8nxaeTosdanL6mcSi6bk+23JuG+71eZa9MahWEQdFWgRUEUhzT3AFdqukcysTD6GG7hr0DwXMyYAtAsO2gOdK0VDFvUtOHTkeP7rguNzxyc0Jw6akvpT1+Rr0oImD6FKS11RbhW1FnxOa3IWV85iupm/rkChasDvFLrNzJ1XLMyuHbyrUKRSbRHmZU9Gd4Xq949HZmg/bG5ynI6q7ZtLKuRX4k+ygqoPkPw0GtnIeiYowi6gbPW+4ccGqEhfXrfWKi7u1JNk7cXuFGq7PWq4Xaza+3mdBAShFLC2hUCgjKeoXvmHTV+hBztN4vmMJlKNj0VK1UF1EqjMvvW855+rS19wPc+64Izm+55F0foEqLLFQmMbzeCXOrFo5kSoNibTeELeSuWbKwO8r7/DlheHx5hyADxhg28q2n15ihhMWpuemWfD7q3usFh2xyExR35OGQcZyUlTao4mEQbLh/L3n9ifPBUINjy4uebK5z/+2j2B6qE4HzMUO29bTotfMhsftGY11XCZIu7w9LqJ04rrugEXeNw9OY9YDEUibLbmqcELvrbDvz/v9q4ZXiJD65m/+Zn72Z3/2gd+9GEv0zne+k3e9612fcX0f+MAHAF7wDVJK6WW9WXLO8da3vpUY46vWofpy8Vk/FP3zf/7P+Tt/5+982kNR27b8i3/xL37vPBQdcMABBxxwwOsErwRTpABr7ctmYt7xjnfw1re+9TMu89RTT/Ebv/Eb3Llz59P+7t69ezz88MOf8fPOOf7Mn/kzfOxjH+OXfumXPq8sEXwWD0WXl5eklEgpsV6vqev9E3gIgf/4H//jC9JnX6hIMYJWJAu1dVzXWwobWDUyq+uXS/yyIlaSL7PzBWdujk+aaCHMCpSTqZoKcH8759f6JV9cnHPuMmOyLLFJ3smP+Uf/Y/0UPhlSVPgZDEdWOsKc5sPbm+xiyaaXp/pYQnfN4htFnLtp2/vk8LnTiyKHsfQDekiE3nLPL1knYYxkZ3lgFpIsLJuep+b3ObKS5H3Z19zvLIOyuPACMwItOhZbBublwI16y8PVJZe+5lMmD/KcPE3KzNIy8Pi1S/7A8dO8qbrHx/qH+FAtY+iyiQxLQzQaP4f+ocjyqKU2nsuh5u56gbrMfV89otuowS8iVeM4KjuOyx1WRbaLirtHwgD4rWSY2DZR3x/QQ8TuCvysoNtpNn3FxdDgM5UwOJudYeA1+FVEHQ3Mlj0xKloUMSeBa5fZIq8JUWN0ZF6IXipEza4tGdoxHEdcZyonRevaU84cTeXQKrHtSmJ2OpYbLe6oAtwy0hx1XJ9tccEwtAXVWlGus9bNy7kwRaTRLruWavqhmLJqRtdV0llvEhTJZQYoASqhTcy5N8I+ji40la7kQSUwSrrrQtKkXlZcXGhMJ1q6wSYog+TjmIT2CtumadbtZpINdfzGC950fMrOF3x4uIndKur78h0+a4pMEVgVPZX27FyJurTC+l0k1Eox9IpwdWxmJ+I0xqMikR2BJpHseByERdJekozndmBpe35neQM/qyBBuY6U57J/7UbS0B+pL9ktC85nc8BMertQKeJ1OW4nJ1usjpxvGobWoL2enIaLec9j80uslvvEM+EYu9GSzbUN+JkmFonaOgxJ3GdZGzdvM8ORcm5WhPO+YQiWi22D3eUkauR8hwqoAtZEUhBtYHXhKU5byiM7JaJfuIbTsOCuW0FrMF0UseF8xjBXLJctTxTicO2SJKHbLhEu17IRQFF6nrBrKrXkmt3uz0cr98602UKEoyyEe9wsOapbtsW1fJ9IpCxwVDaysq3owJJkt12Fcp6kYFH0LEwnGqcBzKZHbVq029/Y5lr0UuO1Gjeb/O8BdMHRFfbwIR2hiFNoTep69ABn2VbYpp6dKzE+EcMXlqbos8GNGze4cePGSy73Dd/wDVxcXPArv/IrfN3XfR0A73//+7m4uOAbv/EbX/Rz4wPRhz/8Yd7znvdw/fr1V2zbP1e87Iei4+NjlFIopfjSL/3ST/t7pdRL0mwHHHDAAQcccMDngNfxs9eXf/mX863f+q28/e1v56d+6qcAseR/+7d/+wMi6ze/+c28+93v5ju/8zvx3vNd3/Vd/Nqv/Ro/93M/Rwhh0h9du3bt81Yb9rIfit7znveQUuJP/Ik/wb/6V/+Ka9euTX9XliVPPvkkjz322KuykZ8X+EAaHKZLnHcNt8MRsJ8xx0J6pJKSGeZZO+NsKWxPaKA/KcSZBqiQWJ83/P82b+Ze8yyn/VwcWCuL8hHjEpzKAPi1e09QmEAcDKGUdvdYgN4Zfvv0Js/WK+6fy9S59JLGOyyk02gXK9rU81EfWA+VsAJN1qV4D0qRBs2n+hM+Wt7gU/0JvjeUuWH+gRiX/B8haXzSkx4mlYmkI8qM1hZg0Kheo3caT8lpOeO0ntGYgbWvuczv9fWlpTqF8lKa5fvMsFTaTRlP4UpK9ahXcnNIS09TCvNx1s7YrWvsNi/rJWvFL2S51axjZh1GJawOzIph0oL11zTdYDG9xvaW4sKhQ8LuEvZSc3E+42l7PHXR9UPuCSul9ysuA8tVx/X5lj5YvDeTXikpcUIpJ1qhlBSlDmDleLrOos5HF5zO/VbCmOm542TectLs6Lxl15WonPszamuiBWaB43nLquy5185Jg8G0e41O0jI2bemxOhCSZhdkRj8yBjGTVaFOKDumH++b7pMGlcf5EDI70hfoQWF6cSyZQaEGzW4oOdOJ9bbGZialOhXH17ACP9fEhUJpaW7XPRTbBwYaaeX5smv3+PLlLX5r/SixszR3YPVxR7KKIXe1+ahZFh0r20ly/KAo1onqMhKtERdVdocqE/BLjZtrVMzdZ2MSOUjSeZZR+ErGftKSb2VVYGEHmsqxtXJ9lxee+lTG2/bcctrNeGJ+Rm09SifRsVyIEzVahT+Wbe5XFlU6ghfNlt3Kd4Va0w+W076Zxvz6bMbyOajve+zGoa5b0IqYFKd+zid310gXcj2X64RuHaky0/Vy3jdcDDXDWlLCx3wmXytCA0XjJeMsyT6ZLqAGjw7phV/NKIiFQq2WpOtH9MfwxuUlj1hxfn3KnxC8xvRxYomiVdSV45p+8H8teoC4lnCztNuhg6T3j1gUA+uxJMFolDGS71REToptPqeRKcuI/bLJQmPctD4VEXbL+UlHBuIOdsmIFsjt2Si8bPvYOABw0ywoFwN+WaEBZcSZeW9YEok84x3bvuR4SA+wUa8mXimh9auFn/mZn+F7v/d7ectb3gLAd3zHd/AP/+E/fGCZD37wg1xk5+AzzzzDv/t3/w6A3//7f/8Dy73nPe/hj//xP/7qbexnwMt+KPpjf+yPAZJs/cQTT6D1yw7DPuCAAw444IADfjd4BbrPXk1cu3aNn/7pn/6My1wtlH/qqadetGD+84nPWmj95JNPApJG+clPfpJheDB/52u+5mtemS37fEMp0jBQbhLPnc/4f3dvZGZ6WmcfWEYHmRVf7GouXENjHcNxYPuIlQAakE6fdcH/OHsjl77moq8JdaK9boBSupPW8pB57/6SovIop/GNpPn6Stxe988WnNkZ8Uxmi9rJzD/MJPX2Obfgfw2aDw2Pct41JA3+WBwdui4ZFrI9t7oj/pd9Ax/e3CRuCsxwJfUXIEHnLbc70QL9ztkNzu8v0Oe5S6pIpCozDEFhtpriUlgE32haN+fjJuKTpvOW9aVsQ31fMb8dqU89/ZGlP9I8t57zdHcNQ+JjuxvcG1mwc80YCeKWQFT4qFkPleQe7awwKMgMP9QwHAeao46TZodWkYuh4bRvWA/VJC1Rc0//kLSEx8JS59yYpCWZe7gouGeWGCuzyGFXQNh3a6kiUNiA0RGT4sQoybEAHSQ3KfSGwRtiUmiVCFERe0N1mdmxM5mt+0ZymLROHNUtN+sNG1/xnF3QjaxG3DMZmDj15IWY07BhaoGPhTCLRiX6aDkNc7a+QqmEbxJutW+MD43k9aSoYEzVNtInZrTk3bReaKVuW1KtFcUmYbuEbxR6UPS9JSUY1iWzC9mW+ixh+kQsNNopYtasKacoWigvgjS1AypolIlcrzbcsGtiegy9NixuBZqPnhIXFcUTxwC0KvFwecnj1Rm/VT/CLZvTr4eEGZKwi5nhqmaOLmj6XfmAjip4TQgapdOUteRn+5yrFBVtKCWnZuwYDAnTB8qNHHe7Nay7inYsT0PYymKTMEMkFpbhSL5w2zR0ZUlYj9ovORahUnSXFc+aI7yXZc39guoiYdqcWF/IuHPRcKs74pnLI4o8fuxOxmes7JToPXhhQdiZaUyDXBuhScwrR5nTrpOCaDVpVkoidk5cv1FuODZbGj1AGXELS7x5zHBjxnAs/WEjq7uLJaE36DGnR2l8rZiXA0UOPrrr5B5iW4j5/xVxGFABXHqQ9Uk6H++sgwyFQlvJbdNK0rhDXTzwmbBsCE3iuGhZatE/Jo3ce1U+r/kauQgzznVLH+yDrMuLzO+PFy3djWssyhK1mKMi3OmWfMTt+KQ/wnnzwh884Asan/VD0b179/ie7/ke/tN/+k8v+PchhBf8/QEHHHDAAQcc8Lnh9V7z8XsFn/VD0V/7a3+Ns7Mz3ve+9/FN3/RN/Ot//a+5c+cOf/tv/21+/Md//NXYxs8L9HKBSgYVEmlr+Vh7nevlbpodqKy90EPEbmF7WXF6YyZalus928dmoGTZUILpFJ84zXk9riTOA+1NSyxkpjelz+6stI8jmTSMs1wFobWEpLDZKYLOKcBzsEXgzM/4zf4NfKh9hF1bUpTQ3sz9YBG66wpVBja+4kPbh/nExQlmk2eVo0MFYURSgtN+xkXXcO/eCnurpFzLPvuZIvhxFg3FhaI+FUeXmyliadidVLTzgoiaZmq6h/IyUJ52QE2xLtm0BWfDjEp7Prk5JpzKRiyeg9ndKAnOjabrNL2zWB1lZn3l2TuWkvKsjweuL7esip4uFNzarDhdz4TtGVkXnWDh6W3CN4ZhqSXjR8k5MDtNKApCkWeBTj/AoiWv2XUlRkWGYHC9RedjoX1uDG8VobVsuopF1VOagNFJUoPzedZOnEoyhhQxKqyKzG1PTIrCBrDjwkzHOnnR8VzaisEb0InQiPZMzl3OpAmaW+0RPhrOh0aYj3lg0HqfU1RF0RINGt1ptFeSwVSHyQXX5vystCkoL6G6jGif6I+znivrdJSXhGTZt727LNmELvat7aZLFBs3sai2s6SoKFSg1vKdyins1sP5BTou0e4YAGMjb6zu8+bqFh9ePsxvLJ4gVAVEYYr0oKbzXBaeOFcMK4N2kjOlvFxDOyAFcXaBuORUyBlUQfNcN2djK9q+EE2KUUSrJiYDZJ+NStTGYUvJBEtGmELTJ+wuZxptJGfLtDrnD8kmaifJ331bEPM9pehlEIbG4udZT1gFUlI818252DUPsqOriu56ybACVckF4XzWViH6HpD7TywiWkfR1yTp8PNzQ7I13YlGLcUZdlLs0GSWTCV8Df6oprtmCfNIpT3nOTn/E/0NYWydnGxzciS5bmVPyK64T7WixSyumNBkB4RpGuHTflyqukJZO2nfulRgUkIpyS4ziwUhp14P12vCwnNit9TaUZggjJ8xKKXQIRFzftYdd8RMD5IPVirMcklYr4lVARFOo2Oh967qZdVxcaxZ3XwIGvn9/W7GR/w17vkVKSpCrQnmNZKSvM41Rb9X8Fk/FP3SL/0S//bf/lv+8B/+w2itefLJJ/nmb/5mVqsV7373u/m2b/u2V2M7DzjggAMOOOD/WjwgcTjgVcNn/VC03W6nPKJr165x7949vvRLv5Sv/uqv5td+7dde8Q38fCHdvIZKBW6uScYTk0YTpzb7zRz8zFCsPbYFtbbc3815dHHJ8WrH/YcqtJMZoB6EDdhdNHzKiA5FzTztw4ZQ7zueAPCKZETzEGaRWCrQMtNTUYHfz1ZDJZoUdxRYlp61q/nt9jE+srkhDEYFu5uyDdFC+xCUM8fGlZz3NefnM4qtJCW7uaI/zvt+7DhpWkodxH3UGWwLpsvbmSCN3VFJtm8kYmRbE3Uz8OhcREF3FhL0GWYVvtGig6g1oYGycdwotyyMuMPG1OVimyjWnlhpVJCZWGEDdeGwtmQwex2N0hCqRF17TipJ/D5vF9y/nOPvNKLXytvn55G08ui5I5SRtrKEc71nbbwi9po4iZDYMzYAg6bblvjsLkuD+TQ9lvagMwuwbSps3TIrBzbLHpe1JmYQhioaudkFp9m6kq2viCjRfpRZO1QKm6eSuBAvNzJr9UGjbMSt0nQCxpyhYVPyO/dvcLdZ4IJBqYRZOkKtp9miChp2BruRjB2UOCeLmeOh+YZV0XPaiqNydE6ZNpKsIpQQmsjRvKM0gbauiKWckDHlPVSyzHw2EKOiL7ILcQiTM9P0NQSNVokjs+Ok3BKrJPlf1kJKksWTMdM9j9kNT9XPUSwHfFOQjGTlFFtot3J8h4XFmAhNxDca24oGKq4t3ut9IjtyDakkSeUpKO63c5RKDLuCKop7yx0V9KuRwU0clY656bEq0NQDu8Wc/kjYDt+o/fWcnXxj2rrL7G/I/XSm2A+eMEv0xwrtLdHAcAxUknF1MdTiFM3LuoUGVdFe1wxHUNRZhxS0aODUvp9uzGPqhkJyt1oZs6HShFLcq2MnXxcLnnbX+Xh7HVqTj48RBriItKHgI4OE8X1o8zB2rVE+YRYL1LUT3BJWRU9PYBM23N7JtW+7/TnUTZO1UrJhLkdCj0w1qyWEIOxcUNwdRJcUvZb07mvH2CP53fqawTQ9VbZfjt2TWA1aoV1C5THxsfbGtJybg3rkJjoEXGPBaX5zeIg3WmHMNrEjRNFIpZMlycp1c7Fr+GD3GLtYyhhZKMLw0onNB3zh4LPm/b7sy76MD37wg4DY6H7qp36KT33qU/yjf/SPePTRR1/xDTzggAMOOOCA/+uRXqGfAz4jPidN0a1btwApkfuWb/kWfuZnfoayLPln/+yfvdLb93lD//CCqCq6E4WZea6VWx6vznjDUjIWfuPkGt2JRjuN9olirTnfNiyrTrJLlg63lBlKeZmTbi8sl3pGOXOYIuBWnt4Y0UKMVWJeIdPL7AQy8m4ejTRfRzWxMn6WRAOSM3y6UPD07oRbmxVpMMSCif0JDfjjwMwGNoM0zMeLEj3ITNI10N+Q2eJDNy750qN7WC15R6f1Et8wzf7dSUAt8swsKnpbkJTG75S0zT/keOrklK9aPotLhqdXshHPrhZ0JwYdZIbb3Ux8+Y3n+LrlR5jrno/Pr/OxSh6so9WkQk/9Tyw8Dy/WHJcdg7fsyr1mS0X5SUgekCbho8b3huJSU50y3QwGp+mtgeOAbRwecLEgrcVJON44pvyeIkINyRlwWY/RG3zIDFmEdEWbYrQcJ+XAt5Z1WzErBo7KDnsSuZ0ZtrZqcOd2YqhiZ7m7XlCYwMw6rAmYmRxjvzDi0kqgO4W/qLhIClsETBXwR55kcu9YJ2NEnxes+yXrWUPZOKrSc7QSHcbY79Vd1Ni1oX5OxqefQ7SJG8sdX7x8jkp7ntmIJkQFcXlpn/CVxs9AHw+86fgUqyIXu1rSnwFfKYxOct5mgeNZS0yKW7MZobbChPqcLOzFHWRU4ljveKI+Ix05+qOS+ayBlMiTd4ZtyS13wq76FEvdMWsGfDOXBO8uUl5oipyV1C1KyplDFYFYGdIgGVJ2o4nj9ZYvpFjl3rwmopX0EDpvSK0VRqWE/sgwHGWNzkwYyxGFDYQmMqw0sdC4OcLeAcw9tvJ4Dc4XpKylcsuIrgN15fBW5qa7haU/3uvfvEh3WHcVRkeiNxM72q8UvlH0R7LdFtgNJa6z6OykG9mqpEE7TX9ZkaKiPDfTMQ21JhXiygP4yOYh7vRL/te9RyjOjXSwVRo/U6Qy0oWCj3bypuBjF9co1goVImo+I1xfMKxgZgfWMXIv1JxlprHxV5iik+M9KwRskqS+j/vrbyzQQ5BkcG/4VHdMTIo4yP6no8WkSXNzjTKJXai451d02S2ZrBZ3sEuYnGf2ic0Jy7zjbgHDY0eUQJgZVKf575sv5SvL/w7A/x4eEgevhbCsJ73Tri354E6YshgVbgbhNTKhvVI1Hwd8ZnzWD0V/9s/+2enf/8Af+AN8/OMf57d/+7d54xvf+LLiwA844IADDjjggM8Sr0imz4Eqeil81g9Fz8dsNuNrv/ZrX4lteV1hWBpiWeAWUFaeI9vykF3zxtkZAL957TG6k4ZiZ1BJsop2lxVnzQyjJPF5dLckpTCddEINqmCICl3kPqhSk+LeuWO8JmlJT8ZInkjS7JvJw5X2ayu6hKL2GB3Z+JLOW863DQzSfRbG2dc8QRUIUXO2mdGtK+ylNHun7GJTK5n9vmF1wZPNfULS3GlWPDsfGFaGMFPEWaA56TieS8N0iIrTYkGvKvxMEetEvei5UW+Z6YGLcQMg641gWGj6lSKeDHzp6i5fWT2LIfFwvYZGdk50DJphoRhWsDoW9mJhek77htvsU5ztDpmhd5YhGirjWZU9tgpyDlJmgRB9l/Ki4zI2EotAtBJ3rAKTa2pkimaLnsIGBmfo2pLQWvm802ATqkgkKx/ypSZ24uRSUaF3hraouKwcJ3XLzeY+DzViw3l6fsyd+YpwWmI6hdkYtnrG01Fzfbml0IHlQma1F07jKLFbjRkUaWPwqoSFw5YevUq4nDCetKW4FA1NujT4hWa4rpg1A48vLyhN4NmN6DFuXVbSgXUuLFAsFJSRRxeXfMXsWVyy/E/7uByQCMZJZk+00su3WrW8aX4fTeSj9TVOi9Et92D/WG0dVkduNQHfWEJtUW7MuUqoQbELBUZFbtg19XxgWFSkskCdX9LckxNtb5W8//xNPFk+R5cK5tXA/ZloY+zOU64T5XlmEI4tsfLYKuCWHh8L7FahnejWkr6SXVQmyWxaeIrK44Om7wr0zux79QphjMZxPHjL3X7JzpeSPp51gZ7MuM1kwJWNoygCKWpCZaQnbxSsJdGFjYnLykh2UizFKac9qI1haxpJc+70tM1+JqHNoRYGwe0KfG9IO3FDJiPbLGMiM4ipQPcqJ47nZH4rxFTs5H8FHz67QUpwcWvF/FzuOW4huiUzk3F+K+eXna1n1Fs5hyzmDMcVfpYodOB+rPjQ8DDbnVBCsytu0XS0FBY7WvrkuIjSseelVoz+RoXpcuJ4UNxtF/iowWmiVcLc5JyrWEB0mme6EzahYt3J94XKYOpKmEa5VXH7csWq7Om8JVbQXS/Qw4JQKuxG8757T019bHeHFZttRWOgvyYnPhoIveVjG+nn8p2Ve/BrlELzek+0/r2Cl/VQ9P3f//0ve4V//+///c95Yw444IADDjjggAM+X3hZD0W//uu//rJWptThjeUBBxxwwAEHvOI4sDyvCV7WQ9F73vOeV3s7XndIOttqlQjqLnxDFwsqIxRyWXv8AnydRaidUN2X85qq8ln1u1+fdmC3kIxm0JY4U7m7IddD9PsAQFBZKKmINonuOshrnysdioQ6vzLJNPx6qNgNJUNvIeSAtyxoHF8juc4SnUGfFZQXUm2RDA+UgMakWIeaPlp2vpAaiPwqT1ciDq2tvNLog0WbSNBJYvUjDJ3lE+sTfNKc9jOevXssx+xUUW5yJQPyCquPlnWsGZLh/jAjuf2DdSwUoVaEWWLVdFzPCXA+aug1diPLFVvZh6GzxKS4VmyZm577JzOevqgwncVkCj2WIoy2RaS0gWA1USUJFmzltYWpFT6/0piVA9dmO3pvuacWbJ2GwUKUWAJTBWwOzmMOw64kXVjsVlNcanwsOTNzVlXHG5pz3lCfA3BS7vhNlbjlTmBXUl5AaAs6rzhViUeOLnl4IQWaRkdOWRBihV0r7FZqSkIRKStH3fS0Y4Gr03Apdn8RoCvCUtMUjqfmp6zGdwnALXOM9lC0Y6mlgiryaHPBE+Up9/3iyvhVmD6iQswVETAvB64Xa1y0Ek6ZXwtpJ1UgplXQaXauZFYMMk4KqTUZaz60E7v/vW7J/bDAJYMxkWRAxUg8Pad6Vl7XzJ+9wf+58zAfXD3KNbvhRrPl9lGkX2nKCyjaSLmRi65r5c/lvKMvPVud8KmkvJBX2UntXy2HBlh46sXArB7onSUOhnKjKLYSSpqMml7X6l5xtm1Q6hq7oaC9qCk3Wl7Njv/jGktIg5gmgtNSqNspeTUWNE6VtH4fF8FWhPd6kBJgudY1gy+IpYzR0WQRqv2rXt1qwE6RElIjAiq/Pou51NYMCtPK9aKDVI24uRLrfo4ouLxsiL3BnkmNjq8VbgHdQ4nVqqU2jvNBDpzbFcz7vLvzWiQHVSIkxdPuhI/0D+O2shEqJHTTENuWOJeb0r1hye94x2lYMgQz3av6I4OpNKEUEf5F14icJsq2Dqt91Uc0EHvDJ7YnnBUzuqHAGvDLAtM1pEJP0oTNZc3T5TFtXxAtDCuNbUuiVdgdfPLuNX7JSKO7CwbfFYQG2htGJAYLIMK97QIfNGytGAU8rzoUh0Tr1wq/a03RAQcccMABBxzwKiKlV0ZofXiwekkcHopeBNqnqYphtyn56OYGlfbc6SSMLKYxVFFhYmYaOoXvLcZGYZhy6F8s1CSW1gOYXhGMloLR0QJ+pf6BtA9cA7Hg61F46dnXNFip24hB03tLRNE7K7UaSsLoRozVHbG3qK2hWCuKXY4KKGXbxjj8W1mIu/MFz5wd484rzCZXlqiCtW3oB1nWe4M7ryguTGbCFEOo+bh/iGfqY3xXUDwrQsXZbajOAyqB6TRsLB++fIj3lF/OLpT8xnOPUZzKeosNUjQ52pOD4dzNpOR0N5MSWtFEYruEywxTbTyPlhKbcHex5PZqhb80+5l7CamIlKXEGISo8Pk8GCc/sVL4TvbXRYNWicp6rAmAQjmptYgKmEFTyVTUmshGJ/pOoy41xRrsTtHFilvNiscXFzxSybY9Vp9zq1lx2x6hHZQXcr9SydI2FWmluFELMzazDucNl9sCdZnFvyiG2hAWmsoGjJYp+2ldkIxYyU0vDCZBURnPI9UFN+ya+04UrbbyJF1NzE8swJSBhR0olKdLBdtBpu+mBzNIxQfIGByLaSMKF/XEXJgh13nsQG8N59sGX+upziJdZVBDwraaO+2CZ4brrENNHIXIIRL7DnsqIaD12XUu1hWbUPEl9R2+ZHmP/33jUYZVQyw1posUmxwK2Soi8NB8Q6kDz5YrnvNHpHWB7oUpGa85twBdBo7nLU0xcJZmMEhYZXWRqM6DiLlzxIbuNMOu4Fw1DINFbYSJzPmjwvbkKp7QWoJJUoexFXbT9pm9cRrXF1Okg+6zEDzfJ/Tk+hdhezJMhbdjQOZ4vFWU+0lScq17ra6wVlfuPZ38eyiFKepPwC0T5BDJ6CTQ0/RyybgldNcgXe95eLGmMp6Ny4rzXDwbC01aVQwrRaoDPhqedtf5yPYh2OaoCB9RZYlynlQatIdP7Y74n90bWMeGi6Ge9s01airxVV6x7fd1IKGC4chMYw0FqjPc2Sxp64LgNaqC7sRAqPH1flymTcFZNcMPBq0leNF2RopnB4hnJR+3IqLWJpK8ws1h97Aw9/1JQhWRbrD0XYnZarm+HuxEP+ALHIeHogMOOOCAAw54neOQU/Ta4PBQ9CJQMaGisEVqY3n68hitEpd55ux7g025psGMFlsJ91NIbH6f7eWhUWgn4XHjrI0x3d9IAONYsErKQYS5xmJimxC9DnavK5gYo6imotoYlVh7q0gcgx9B7OM6kZzO+hBhnabKhwgMssKLXc0QDF1f0J7XFOcm61hAeYMPJbtKho7yGrMWDYvJVREkhYsFobSYXpGJG8yQROdkFdHKd97dLPhV80Yuhpr7d1bMT3PNxy6igzBwysNlW/HRzXV2vuDyYka52+urYqEIM7Bzx8P1mqVpWYeGy6HGbUpmZ4pS5Dn4RsLafNCU1rNqEu28wteWwmSWox11GhLWtq4qtEpSkdBrTCfn0ytN9BqTZ7jzciBETV/UqChRAcaJrmc7m/GJ1QmP1sJ6NHqQKg8lzIDdCTsZS8Wws/TBMs/tn3MzcK+Zc1kuAIlRIIJvNcHtmSwQ9idUJdEozHheo4wfgEIFGpMt7jZKmW4tkQWxBKUjfbDc8ytuDcesWxnvepCxEq0ilkqKXkm4aHHxQQYo2qxRy+xpty1FW9OaHCwopcHyGdHAdK7g1M/poyUlGR+pKdFlCcZMl5fSiZNiy5vLW7i54b+ffBGXy4akwe481YVshN1a+qg5Ljsea84pTeD8ckbSBbYTndB4IelBkXRiWXWsyl7YsaiwXS4wvnD4uZ1qe0iyHYUNhKCFCcoSQRUzy9Nly3htSEWcIjVUzKxNkoJkUyj8eB1rYXB8JedMxawl8aCC6AvTaLNXieQe1BgKS4Rc96Q9+9wrtN+zUMmAqxXDEvpriXjk0bnmI3qDztrFZPP2rCL1fGBmHVtfToGMptVSuFoZYqkZVgqqQESqOZ7drURXlsehqiu00bhCowLc3S74zd0Toivsqul8JLsPnlRO0XUFOl9joZJKopFFS0b0bqP1n6QIdaJfKbQzogXLTJFda4ailHNlwa2gHQetlv0ZLnKBdhFRQRHmka6SouS0cjQzuSbDYCg72Y60z/F8dXF49fWa4PBQdMABBxxwwAGvcxxyil4bHB6KXgTJKCkk1MhMdrCcdQ27/D590keY/DPaA5TMIJVK+CYXKs7M5C6TDwujhI5QJOJY54E4c6ZwRiP6AACVEqlQwjDlVcUykcqEAkLU4EXrpE2ExucZrSyrdCQGTfBqYg/G74ilzMzSWG0xHoP8D9k3JpZLBbUPoFOyDW4us3tSdnhNuicJmgNobyiGlSUW0N2AdOSxJrIeKs62M9iZabtCqaaQwGTAOcvt7ZJtW5HWBcrvnXWhgu5G5NGTNQ+Va9ah4X9cPsn//tjjHP/Pghu/0VKcigDJXZ9z+hU1Z3rOrh44aXacnGy53xm0KyjWWcuQNUpDW3BZ1WidcM6AV5MLUMV8TPLdqrEOVxguikBShdRK7BLRKOyF4bnLBXeWokl7uBbqSps0sSqjhk0NiiGYid0ptRfXo967FU0HtlUMg8FFcZcBFEWgLYVxilnjor1i01fcHZYUKrD1+46FWAh7poOcvxg0d/slv1M8zEd3N+g7mbI3SUIS1bJgmCtiGaV6AkVAU5qAn8vJ64+01L5kd1ccjASWdhoVhdlzc7n1DEuZ2ZfWY1RE5+sn1OCPG4qbDxEfOsrrVTSLni8q7/FFNrGNdzlpdlwYcbyZy5Yqs7bFxrIbNKX23CwvaUORQxSFJaouIqM9tOsVHtFurYqWuhDNlXZg24BuB3Sp90xYE1ksOx4/umDrSp4ZDG7dCDPYM7G9I5SNMEu4IH09sZVlQp2repq8sE6ERhErTdgp9OjssvtrcLxPyL0hs87Z6RqLJPcLk+T6zGNYBWGGTS+6xGhykfQS4iKgqyv2qV6jWylIVmEiv4lJcdY1RGZcXsqJLbYKFRO+0biFwS2Q2plouDOsOGtnmLEsVQHzWV5e7oubruLp9gQfDf1QTP/Xj4W64mRUhM6Ku9XLGA2V2t9flDBpvjd0psi1O7mMuFRon7C7PCYuFbGwxFkg1pHuusY3wiQlLfqlUTuZrJb9LhJpEbAzz2LR0hSe3VBIiG6U+7J6RZKmD3i94PBQdMABBxxwwAGvd8TDw9drgcND0YsgGkWsFaGGVCbKIlCYMLlvUGnPEuWcn6SENdA6UppAl9/TD0WUEsysJzADRKcIjcwidZmIRXarlAbV61xOmt+xa8nEoUwPBFYkk1A2kaLC9wavjPQkqoQtAtYGCrsXHXRDQezEmaR9ns1m51FoEnYuM8Ybqw1HZce2LrkNtNQka8WhVibS0mNne2YiJoXrLa43pFEgoRNKQQyKWGXW5TjrLGaB6qjn8aMN1+odPmm0jsI4CZHCDnH3DUcQlh6rE7uupNuW6FaO5chADceJ4mbLU6tTKu354O5h3vuRN3H9v5c89P/8b8LFBeNR0MAjv/MYpKc4XSy5/uSWJ1bnKJW4r48I963UQIwlj17n7BOpasAkYpWIBYQ6YmvPvBSdwaIYiElhyiDsm7SHTG4iN1g2maW5FrdYFTFFyE6gPOtXokFy3tAHuTxL7bE6onJ+z6Rf8UAv21dkJ5hS4iQKlZ6ymdSgWG9rPr69Th8t9wdhQhJyPkOtiD6PBWf41HZFTIp77ZyYdTSxEKbGzQ3DClIViUnyu2JSFCZM1Rb9NS06r0rWr7wCn9nSBL7R+FrGQnei8Eeek6plpgdclJwiV8NwVGAeOmK4LifaLWHV9BybLZWyGBXxUaO8MDpqvcNk/VGxq0lOE1HUytMYh9aRGMH2CbuTwlEQJk2pxKLouV7uuF0MMn4jKBdRLmQ9Vb431JGHFhu+dHmXS19z2dVcnFbEnIkzsYj5OrC1x9qIqwP9zOK3BuWUaGfqzOoC2kbRB5aWWIqOT41ZRCHn4ajxnpByYbSct6QTjO60KA5Js5NrsdjIj93JSY/N6DZMJJ2IXpNc1mJdGsl8yjlX0YrmatgV3NULfDDEC2HLTcd0PoeFwjdgTGTjSna+YLOrpu2PVhGPZqAUbmGkhsQbTvsZPmpCuFJhkuVFyeRrojMkkzBeHHXRML0GEpZVkZzBOWHD9ailClDsEipmZ12hCZViqBXMPWmRGJyBVmM6yZEaWaWkREcU5glTe5bLlpNmh1ZJmCKnsuvvQVbwVcXhmeg1weGh6IADDjjggANe5zhoil4bHB6KXgTGJfyYCN14VnXHcdlJPhGS5yK5IHt3hfaKEDQxaqKJk9YEcqJst88bSlq0A1QBY+OUJh2SgkGhsksMFLGQoshURSijaAbI2p+oSIMmepu1BQmqiJ456tKzqESYEJMiRk2XxI1iWyi2Wc8yE2akaYTxeGJxzuPNBbtQUFnPJ7hGp2spmS0i5dxxfSUZOg/NNsysowuWs77hbDtjt6sIvYFBilHH7U11RNee42XLzcWGa1WL1YHTfkaMGmUjfiXTrjAbHR+eZtFTFp6uL2BnpdjT7ws6/TxyfdFyo9zSR8v/OnuU8kMNN3/xafzFxaedW/+pZ3n4v6/YPnaN9SM1X7x8juOy5bdU4q5dES6L6QaUgrBwZGcWTcBnt5FpPEfLlpNKKJmZGei0RZuEL6Rg1VeKUOSMmavjQSVmtmdWD1zMIm6mAVkWlUhJ4a8E+tRGyk1DnUQr4fIstdfizsnr9sEIc2BF24USTYlrLbc2wgCNOTMpytjys+yi0UCvub+eM3hLm7UTINdBfyQzdbcUlnLTV3xyd42YFO1QoHLejp8nklaT7gWn0V6SpFWUFPhQyr4Nx2AXjlXZ4ZLh0ksGlhpdanVBaGTZaGUc3w9LboUznnZv4LxrspMyQogTK0Bi7y5TEXPl2Kuwd4pBzlyykbkZWJiO2nhhXpI4ApULaBcfYARKE6i0p9JSxkwSNrDYSmHumJY9DBqlYFYPxMqx0RUuVcLiBIUaFEllNq5UEwuY/zFlk6GEsRldWaESBjvm4mh0ZpGDsER2KzlZAMVatkv7kb3ca3KUk6JVm1ml8lxRXuZ7gwFd50yu3tDpUtLwszNTOxnXoRJWMBkIznBvtyAkxbApabIzK5QKv6pJVuFnkkPkB8Ppbia6NK+F6UISxpOBWOUxmXWMIwsnG37lgk5ynaasdVRBWCLTRYpLPzngYlEwrBQDUM0HFk2P84bNuiacVZhWkq1H+EbOoy0Dx3XLtbpl40oGZ9Gt5LLZNoE7PGn8XsLhoeiAAw444IADXu94RQTdhwe4l8LhoehFUF44WEqfk9KJeTFwVLYMOZPF2EjIzjTlc4eTg+Q0zuf+pjFQKM9eTC8zCzPILDo0mjDTpOJq2Igk3dqt2msAckeRtzIj1NkllqIiOo3eGexWS7qsBb+IeBsxi8iy6KdV74Zyyl+pLhL1fZ9ddpauVdLng7AYC9NhVWBmHUolUlCYPr+7t5ZhLsehNIGTcotPhiEanotzwrqguG9FlxD2jI5bJcI1GGpL6wtOQf7czNhdNKi1vcJMJFg65kcdq6ZjCIbNppYk6zXY7OCB7IYDXNKc+RmnmxnNPfCfePpFz2/4zd9m9v/9Ri52NYWKXK/P2K1KNl3JtjfoPHPWrSaGkqEJ6CJgyoCuPcZElk3HtdmOmRWGzSfN1pUEZ/ZZU1kvFGrRpdU5I2hkGZrCcdZE/Dw7s7Jzb2QkQbKFFkXPfNZzvqzwu9zlloQ98NuCbXbrpCi6nViIVkh2IpG8ZtuXnJrZtG6lE6mO+LlC99k96Pa5QsEbmX3n8+GWKrvHQA2a08s5vZdcoV1bknLOley3pCsTJcF9nIULW6HwtWyanyVs6RmC5VP9MR/bXKe9qFluQPfxgXu4DrDpSj7UPUKhPL+xe4L1rqbykIyGeUNY5ByxRqGKiCYRk8ZFTUoqO4oUsdSTpihasDpidc7qSQoVssPQB3Ae3Xtsl5OnW8P93Zxb1RGXruZy01BcaqqLRHM/iGvV5kT0pcYtLX0pt9roNbrTFBei+VJRtkWO8T6FXjth1uyOiRUU59V+zIcEqc66oqQg5M/tJI07VwViu6xJ0sLq+CazMDZB3N9vQPoZTS9EVbBq6gpUGrmfxX1SdjLZJWpyXluAsLPc13NSUKi1nfKEYqFwS0sySpjOAGlTcF9Lv17YWUwcl82sYJmPh2ZKkVejFvLKuJi2J6n97zPLZzqPyc5fPzfowUCCqvAc1y0uGrqhwCXZ7/GYjeMCBVXpud7sWBUtO18w9JbiUtHcTzR3Hd6/NkFFh/DG1wb6pRd5feCpp55CKfXAzw/90A89sMwnP/lJ/tSf+lPM53Nu3LjB937v9zIMhwz2Aw444IADvsCRXqGfAz4jvqCYor/5N/8mb3/726f/Xiz2Ld4hBL7t276Nhx56iP/23/4b9+/f58/9uT9HSol/8A/+wWf9XcW9LWoxx7RaXEeAVYEyzya1SuSKMXRIpJwYq7wSaY9Kk85jtEPo7DzTIUmKcK/wTpMqvXeURXl3bnd7B4h3OU8miUPFZldb8JrYWkyrKS5FsySaA41bSdLyquzytkdJjdYJ5aDYRKr78nfJzOiuGbaXMg199njF3Az0UXQo7XlDdcdSXAIKhuOK07ifc3SL3Jm2XrG7O2f2ScviGZk1K58YcmfU9lHNzhW0wN2gUTrRb0vUeUF1rrG7vcNHXGeKworrbwiG6AzVVlFlzYPLGShupVlva86GOcuiw+iEr5lauV/0HG8T676gjQUrWnTW8qheYy8zU+RH9k0TFhozdxSVY1EPLKuOUgd2Xqiwi77m9sWKcF5SbbNOR+1nvGXhsS9kVdGi7RpdjCRhymMWfhQ6clS0XJ9tuVw2uJ0RrVZOjE4bQwx7V5KKOc8lszGxFNOS84bOW3S+M2qVoArCFNnc1p7UlCtEUnvdjX3QIacHTTivuNxlkYtT6H4M8pnkPJLk7mQ829y7lXTWO+X1xqC51845H2qeOTvGnBaUGzAuM6Jj1E2Ati358PYmXSz4yOYhhm1BBfiFRV+b09+QMewWoAtJV74IDZe+JgSNIp/PSvRe4zYAbH3FfRIXfY0atOiJQoIQUC5MTJHdas7WMz5mr7EbSoaLisUaystEsQ5ZNzM6vxRuY2ltzje7LKnONM1dqM4TZhCNGEhSs5uL4xUFysk+6/HPK3FCotfKTE7MbErWE0m/4l5/k5SklodKjotbCpucqih5RjmtXA5yZmpKhZvBsIKwDJiZw9iISxCL3IOYtUTa5THhwGwsIWt7bLe/R/hKoRdatGZKUuPL+wa/q0GB9WQNZd6GMhFqYTKTykxRPgb6CrE+3mJVzgtLGhivJaMmtx5ccYqNt2WViEn0TLpXohHa7selisKSrZqOh+tLZsZxt10Se0N5Ds1dR3XrEhP2bPwBX/j4gnooWi6XPPLIIy/4d7/wC7/A//k//4enn36axx57DIAf//Ef58//+T/Pj/7oj7JarV7LTT3ggAMOOOCAVwyHkMjXBl9QD0U/9mM/xt/6W3+LJ554gj/9p/80P/iDP0hZygzsve99L1/1VV81PRABfMu3fAt93/Orv/qrfNM3fdMLrrPve/p+/6R/eSndVOpijd1dw7iC5BU+7vU2gOTq5GyidGU2Mi5TmkAo5V1zV1WiLSnB5vTr0f0yOk1Gp9q0qsQDGRjRAk2kmQ/Mcyt7OxSsO3GdmR6KnczywgxcVJTWc7MSC8rC9OxCybP1MakQd5XqA8p7isuScm3YrWU43N/OJ0fZ/cs55tTS3IP6VHQiplckIwzBeTlDqYRRifW6wZ5b6nuweHqgvC3fbW4Ko+cWFd0NRYpILsmg4LKgek7TPCd6q1HngVK0K8kv0UjPFrkHTRKJAyYzE8NSs76oeO76jKOi5bGjCz70phXdH/8qyv/0gRc872axIFSKGBQXQ4MmcT7U9G2B3WiqM1nOtnLs3U7Re0MwiVj5aRx0wbLJfXj313OG5xqqe4bqPH826yMo4gOZUX20rH3NbigyK8EDybrOWbqwvzwXpuda1XJ7NrCtS+JWOtB0DxaNj6PDJol7zSbRvKk09ecFr2n7Amv2bJUpI2EWZJkg2VBEJbk1WVsjg1qymZRWkuETJP8oeSPj9wpziJbJ+Dh+JwdVzCxRcYUp0ongNae7GSFq2ouaaiNJxKHQpGWBW2RmohSX0e3dkiFYnl4fQycaEV9rOC7pV3nZzLZcDjXPmmNutytcZ6niqFdRE0NEgmGw3G6XnJuG+9s5uheWLFkNZUks7QOM1dBJX9fgrBwjJesMlSbZ7CIkX+tRSQJ+BN2J3qe8TNSnHu2SuFABlUzWO2UdnpFjObIw4/rkuLHPL8vLjPtyVfMzHotYgJuDWybCIsJMLHjJaej3jMrISCebGaVlRM08VeUw+VyFrHuatnNiBRGnVxIHJFFN59kt5ViqIPs0aqVKo/Zp3fl8+Ly9qY5QZdef0mNhwAN9b1xhf0TDmcd+ofC1ws+ssH1AKMaGAskB27mS7VASWku1E0eu7bODMjv0VBk5rlpuluuJYcVpbAvleQ+n5xBfI4nGK5GHdHiuekl8wTwU/dW/+lf52q/9Wk5OTviVX/kVfviHf5iPfexj/JN/8k8AuH37Ng8//PADnzk5OaEsS27fvv2i6333u9/Nu971rld12w844IADDjjgd4MDU/Ta4PP6UPTOd77zJR9IPvCBD/CH/tAf4vu+7/um333N13wNJycnfNd3fRc/9mM/xvXr1wFQz2NsAFJKL/j7ET/8wz/M93//90//fXl5yRNPPCGfVUzN3FZHKu0n91BdenZlJFRmyuhIOVFW64Q1gRxVwqYK+EZ0RCan+sbnpWBPm6iTNIQXe6eJX8iMrTrqeOzoglUpzNZp14jrxxaAmhKzpR8t0VjH9WynuFGs2cWSDy9v0C4ahoWmnhXoXX73DtNs3wfNEA0h6skFOh4LWXA/C9U2Mi8HKuPZNiW7piI0Gr8wmKOGZBXtQzJd3D2s6B71XH/0kpNmx2VXc88Z0qn8vbh98lfkWZExcer1ul8FmUFqUD5hW1mo3GjM2nLZ1VRHnq84us3ll9Z8avcwj/OHX5AtCl/1xfQrOfaXrhLtSdcQe0vZCesGUK7TlJobK0WYa+JyP576YLlsRbwzrEvs+ZVE4CBZRckChbBpY/bQuWu42y7YbMVRZ7cye1YB7E4xtJaLXta7mxXMjKM2jrp0bKtItEaIhMwgGP0go5PKREKydtBJ2Lne0EWFsVeLuRKqENaTuHeviWZJ7TvuGMd4ypqN3NeXu9vSlVb2FLMTygsrOGYWTa6iaq93SlY+1zuLd0aYH8Q91l+zJA3dtTwuFwllEuu+ZudKYTE3Zu+sqvV0zYzp3Pd2C7pgubddkNqcf6REczXpnjz0u4JblyusiWzWNUWvSDrhFwWkGW5V4Rs1HYeR2bUmQh0Yjgy7XuGagmSgP5J1D8eJtPCYyhO9zpljI4th0E7SxwGGucLNs46nzoz0kHvLcsbTeN2NOrVk09SPSEAyiFRm5MZUdpWdbRXEKpGKiMqlhmrs8stDYky5H+9NIOyc9wavxD039SZmdieFkRHbO3GjlXM7HTMtrJIZMqPkssYsV1fEQjRMkA3fTvkAAHm2SURBVDOYjOStmTIQvZo632Rspr0uKOTUb6clTX9czIqOys/N9B2+2bODIWi2Q0nbF9AZ9HAl5f/KeFdG2gkAXDLC3rpRPyrZWMRXgsJ5GTg8E70m+Lw+FL3jHe/grW9962dc5qmnnnrB33/91389AL/zO7/D9evXeeSRR3j/+9//wDJnZ2c45z6NQbqKqqqoqupF//6AAw444IADDvi/A5/Xh6IbN25w48aNz+mzv/7rvw7Ao48+CsA3fMM38KM/+qPcunVr+t0v/MIvUFUVf/AP/sHP/gvmM/zciuPGRkodKDJbBFBZT6ojoTGEnml2RZK8n8FbSafOSFZmiKEG4j4DQ0WZfY1t9iLGyNqgzEC5BaSV59pix2OzS+Z2n1J9qwgMuf/oqg4pRSWdVHl757rnxO5YNR3reWRYaYbjElsa/Nxk3YHMeJrKca1q0SrSB8utrqB1JaGWWehwDPFh2YYvuXmfrzi6TWMcN+otvx7ewGZYkJSlum6IVrHLz6S7Nzm+6Kk7/JEbn+BGsebp7hrv109xu7+Gdlb0FPk4uDnQSJLsjWpLZwvuz+dsF7U4dCo99dDpQZqw121NHy1P1Kd8/c2P856vLHg2XuP68ddz9NuiFdMXO+LxnMunGvxcdAitl0ToEEUvE82Vnqs8254yQvTIXg0sioGdLyTRGPZurTTOotW+16wIGB0Z8op3vuT+bo5flzRrRbkBu0tor/AzGFrLZWaKLlxDkYUUpQlgozAEWk2z2wdMbSbBqC2KOXPHa/CaMCTiOOs2EWUSSieUDpnhURC0sA5e7Z0+UfRGSSdSkUhllBygK2nsY6bR2KUVkdRmPaYT28wYVOJ+AqCOKC0OtOhkpp+MnP9YSAbOkFkXP0toYN1WeG9wZxX1pZoym5JWpJExS0CvOd82tM6y3VWoXnQpycoEf0p1DsDWsrYNyiTSNvf8FYphaQmFxs8NbnZFt4WMHa0jpva4Y6GKh5Ws1y0zA3LsqVY9delExxI0Q19ISnSh0U5PupthKfvqFzm5PmVNkxJnoPJMISpxTEnXiLs1ITeBK/eAq2NiZHBMpwAjXYxBYTqF3aop/dpmRmrURKE0LhUMvRFno5Ocpem4cYVBzt8t7KKMkzAyW0U+n2P2kgczJHROg/YJ1MgqKXF96SJgS0/QGm+tsE9azvPI/qgo7JPpFEHLl6kh68FyJtIoegpVzuJSiZj7BcPIfGX2e9zvWOTfBcV5X/Nsd0wfLWftDN1rVExybuYNRA2nvPp4JV6fHV7BvSS+IDRF733ve3nf+97HN33TN3F0dMQHPvABvu/7vo/v+I7v4I1vfCMAb3nLW/iKr/gK3va2t/F3/+7f5fT0lL/+1/86b3/72w/OswMOOOCAA76gcQhvfG3wBfFQVFUVP/uzP8u73vUu+r7nySef5O1vfzt/42/8jWkZYwz/4T/8B/7yX/7L/NE/+kdpmobv/u7v5u/9vb/3OX1nOGpwc9ELKZ3wUdMHi0t7F5qy6cGG8yS9Yv2m5DwqYtZjhM6gfZ5l6mz0GN/BD5rQ7U+Dym3NYx7M2Gatc14PgM/0xRCMZK94coaHaEf0IFk7m6Hifq6dn+mBXZ6SJptktt7IzHxMpR27hwodWRYdS9uhVcIHzT21wq2yEGPpeOiaTC2fXJzxVH2fSjtiUnzq6IhPXq/o+swsGeivy9VcHfU8MlvzaHnONbPBVYaH52vurZb0J4Zk9p1MfhkpZ455MdAYR0RRFp511nH5RtwikB1OA/Rtwb1+wWP1OUe25cmjM/7fx+dcbCtQQjfU9+dZv6DyTFDTDgWV8Vgjs36/sgzdSN3JuRgdMZSRWT1wo95xUu7oo52ciW1X4hcG1+vp7uMWEJqIzizc2Du2dSXrbY3ZmNxgnqRHiXz+BkU37Fml1sjnChPQNmY9iSLlcTLpP1TW6djcvReErdmzPmqvNSlVZnyCMEYSfSTrjLK8cqPejH2OkhEdUlF7rA0olYhRE3TuKAvZuRbzjF2NDrwxaTsRGzkeuthnbiVnUF7tNTA2M6ZZf4ROxMHQOg2doTi1FGthHEA0K2N6+uS8Cpp+KEQLQ3ZX1aLBGnvExmTw2FqiTpK3lGRdbqGlwy6PZZA8Hb+zbEyNNlEYLp0Is6znshBnOc+s9pQ2YHPCvS4CoTH47Kgb+8NA2LTxvpAGSTjXveQOTanWowNuzNuJiPstKumXG/Y5Raa/sn8uZ/w4RWjlOpN+MHFJjvk8tkuoKP1tZhDtjB40odYTQzbmCU0s4hWWenRQoiEqNWW0pUIRyBlawxWWbtQy7WVCMs4KyWOrCo9TBl8FQm0IjcI7MG7/v3flRYen8nVo2tyTFrM+U++ddeOxTlGcrSkpyHo33zA5iadxNBie2yxISdEHy9nZnGIr7shYGvRyRhrpsFcbB5bnNcEXxEPR137t1/K+973vJZd74xvfyM/93M+9Blt0wAEHHHDAAQf8XsMXxEPR5wOxtpLLEiH2lvvtnNKEiRXovBw6ceGo6d122mg8BcNuf2h1r/NMhmlWn3Rmd3p5mT06v3QnDIjO/UNXHT3tUHDaz6b13t4ucZvygYyNaBTGyXde7Gqe3p0AEJLidJiz6avJbaKSpGtrl7AdmK3s29m24c5sCY3olqrCUzaOwWtwsgObTsTpH7m8ztaXWBW53S65fb5Cra0kGGcmZ5ypdXbGr/IEt3fLqXH62YsjQiu9R9HutTzJytRx7SrudEs2rmS9q9Fu1ADsZ+6Qk6c7w93dgk+U1yhUnFiZWIDPWvpQqSnrxPRAa9gNJYuqp7aO+aznclnsmaIoy8Uy64u0ZCbVxnGcLWpjl1jrSu70hiGVxEJm+r6RVF5jIj7oKdNo3VW4XUHR5tl4kJmtSnn7oiLksTYEMzGURkVsERisdF7FF5qk5nRfFKIrUpm4yt1Qo3MqBfnvlJS4kXIze0riHJN05MwUJTHZKL13qMUr2xicIfR5Y1qD6TSmy11VKbuhMkuUKtEjjQhOk4Z9h5/p9q66q7k0utfEzD6JFmafpuxnwua4HHLv59m9ZORHmUQsxenlG6YEcfmS7Hzsdc5gUhNL66fcrD3zUlwAyeJ3klulrhwv2dA0dfhFZ+j6gsEb0U0NmQ2brj8gOy4l50d0ROJ43Dsy1aiBupJBpDxoLe3wKki/nGnlujPdnkFTCWIANZ5/v7//GPfgsmZIWY+Uss4mX2c5b+nqNTelsI/bGYSxlaEk+zhlQeXPPzBGR2ZpZJqujmElbHyRWTbvDW5ucH12EF5hwcZrWeXxLPtD1qepvT6w2Os+o1cEo2UsK2H8fX2FcR1ZwU6zuazpB3FHpvNSNFEBktGkuiSF18B9Nuq1XoH1HPCZcXgoOuCAAw444IDXOw6vz14THB6KXgTJiLPHtqAvLfeaJUMwmPy4vm0rYSx0ng358d02qKAndxkw9ReBMA4pu8uSAuUVJqip10jnTJLx3fzU5ZMUQzCcdjNcfod9sW7Qa5ObrVPu2krZbSQpveeDCDKsXnI51LR9gc5aATMkTOtRPtHUCjeXWf+2mvMh4N58QUyKy13NsK7QFxa7k9mYK0WQ8fFmwUdrmfaqzlBcahbPSfp1uY7oIHkhAP09TffsgqePFnx8ljUlTlFmtkQOVv7DKYa24K5ect/M6bqCcFpRnymKHZNrBa7oE7xm3VXcbldoEs9t55m1kBmxfJ/MhG2fMJ30zzlncNFQaJmVqiIQi3xpaJU1J+LM8RvLxaLhufmcue1ZWMloAlhWHRfzmt1g5NwGJYyXlU61zhX0mWHctaXko3iycyonIpc540Xv988nPfWgaSVuMcaMq9FllEN1U6dkBqsBG2WGbqM4HpXofKZ1G5meKyV2uZSYWAeVtSojSyPdUvm7AiSvCUAYjLAinUG3uSNwJ9k6Y+bU2Js2ZteIMy7/XdDQa0xrsGtFsc2ZPCHP1hOYSd61Z550L9uWLLiZaGT8TJyRAGERsLWjLLwkrhuDt4lYJmL1ACchrIRXJC9M2OSqypqmmFmQsfsMhI0Na0Us1H5fsoMpRjkHIBpCF8nskYZWS4t91vEUu7RnxeKefYmZoZn+u+ABV+TE2IRR95PZ4twxZ9yV3Cgtzq8xqyiU5K40Jg3TuBMjQ5WMsKq+Fk1XGDOO8jkBSC5rcBLoOLKd+7+HPYs6MlNTf5kD0yVMP4qKND67+8wgWssYFZqEtYHQ9KydxjmNinq65k1PZg7lUh2ZxdF95vOxg5yIPu6fM7goTkuV9VvpyrJXewilC1DYTHvlXhULTSyNpJW/FnglnokOz1UvCf3SixxwwAEHHHDAAQf83seBKXoRRKunGUhxqejrkgvAljL9DV4cRrGQ1OIxB0R5MBG03TMYI+Mzpfjq/Q/sZ07jv8v3y6zOzxNhHqhmjio7fYbMFIXBCOszag6yBiDm/BKl9jO1mCS3SD3v+1VIGO8pLzT1qWyQn2l6M+PuyqJ0ds9dWspzRXmZZ/Ljeq2SjiqLzOrHRvQ+oX1CD4nSjzPARLHVuFPJGdrnjuRZeXllJqwhOU23KWU2tzFUZ5rqVNrtx7Ro2DMsyQgj07oCnzRtX0o2zdWuJK2mrBP5InEJ+mCmrKIUFWZk7gZJtx71D6DpdMNH1XVaV3BSt3tNkZdpprKS0SKajERKopvp1f5y870VDUrO5RGGSHQxMe/LyGfEpDJbJOcwZb3GyEDqIWs5GHUVhhAVsQFVJGGEamGL0pXsLHSStOskLrYUFMlr0bzkgr5k8zHOrrZYCEtFYlpW9RrT6klDZtr99ow9Z/Jn3g4b92yD16K526jswtvrQabxMNmSsuwpi6RiASFJtkwyEBoImYGkjOi8byE7jUbr1ti1NWo0hGGVvxj1gTCyJTLWR9YLmNyOo6trTLMXJixf11f901nLk2JOYI57xsT0TMns2gsdJ+NAEpjFJSosWKjzMYQp4Vl5tWeJNsIS6cmNJ/vra/BzWYef5ZwpJSyt6cSFZ8ek53qvBQpV/sw8EZpIKjPzmK/n1MsxnVjeqyzEyJqNads6/zKzOcYlbBcp1h4VE3owxEKuH98ohpXG9ZYw0zTGsagSbmbYeYN3xd4BN8g9Z7rG8/AeWbVomHKgQkPWiSrSzqCSQTmFbdXEzo8Y9Y0p53hNgy/fq3wFodGoYAn+tfnf6KHm47XB4aHogAMOOOCAA17veEUeig4PVi+Fw0PRi0Darq+8o3aK4DQmz5y1STlzRONzTghc6c8JDzJFkl+Spn40aSCX9Y7v2mXhK7O0RSKceOYnOx49uuRa1RJR02z/0jR7PUP+jlCM6bGJwkgSN0BtHN4aZvVAN4u4hWFYGnRfoN2eEQD2/WmANpFUQqyN5IS0+T3+2LmV3997ZCbrZ9Afwy5qlNf7hnQY40yuzCLHbZWup1infb5LGdAmCXvRi/bHtllvkJiyYwBcM6ZGSzaPT5IoHrMDKJm9i2hYCMM3zCU5OhYRm2fdIWpilNnv2A4vs/kk+qtBKIakDb2a8YzXnM0aTNbo9M4yDFY0NlfvPUmye7xj//txmdHlVIvrLFRZ13BFpuCjZgiWiCKk3O80uney1mmEDuN3aNEO2YAuItrICU1JmDDIzFAUdiiFKz1Yo3OqAK4wE6lIkrRskrjVotgo1ahrGbUxVzK2QiNMg19EmHtMFdA6EVx2rWU31vj5cfsnHU3WwcBVTYscOJVrpyYtjmJyfTFoXGeFIUJ63666vkamRgZQdmRZJpaVSVeT9TtXnT9alhsZoonptGTNUiI2eRxXAVMGlBJ2OWq5VrTXeZ/V3pWVm9lDpRgWimEJbgVuFYnzgC4lTwqEYaMzqI3BDNK1V2yy7int85hAGuqHI/DLAE0Q5jAqQis7q7wijmxP1knGcmSokrBvTZB7QVSkbHnUKbPc+Ufl85Zy5o9fRFIVp/GjehFI2Y2cY9NH7LpHDR6zKyb2dpgX2K1icJoQFYUOVMbjakPfF4TCTnlCOmS3XWbHopXjF3K/nrBredfKNOmETCs9lKbPzObI0I/ZVTovX0UZsyYStCHUGj8zuLmaHKrevUaaooP77DXBQVN0wAEHHHDAAQccwIEpelG4uYb8Tj8WkIqEKQNV1hRpHelVQRc0cVDEwshMOc/iYc8UxQJhQfIsm6RQjmmGbPq9BmPSUpTioGmOW9507ZQvWtxnZVs2oWKXtSt37XKfcDsyByG7QLwi5LZ7gJg0pfHSOD/zuKWhO1GQLGYQB8+QM17cMqFWjpOTLdcayeI5bWecH83ZHpUMF+LoAvlOSYNNhGVEzR3VzFGWTjRNUdE7GWaut8TBwKDBZ6bEIPqP2lPXjqaSKWtlPSFqtn3JDoidlhlgDS5n1YxMUZhlrUVO394NpfQa5RlcLITBknOipz45twBmkpprTUCrhNZRkpOzFiIU0p80arbGTBSz1ThbsfYanVvnU9SEIbMuIExN1q+IpmTPIKW413eNDie4oqO54j5LWVM0QSHTmWx8Gt02I+KohQlKDrGNFIXHaDk+PrtlfDSiC+o12ivRaVzpgUo2TTP9sbHc2IDSSZiv3pCcnvZxGu/Z5RNLcItEXAT0wlHVjsIGfNDEHBl81S00uvBSKYxnmO11MHIe5RwLkyXnZGKo8rkZtW4+66pCHeRYjhfKFS3flKactT1759cVnVApbEMyPJhhc2V/UemKLi5CLcnoAFUe01ZHfNTsqpLOlAwUjHPS0almBlmPrxVuCf0J+BOPPeo5mvfU1uNyLtR6V9M7jXaS11ReJsrLhHHS3eeM3qd615KqzkzYJoDYZz1N7j3LkVuTviqEcWwqYiluuqilQ89kl2GxVtgN2Q0qy/tG9HF+EUlHnnImNzatE0Nv8ZSErZGcpZhQvUNte5QLFDO5rxWtxQw5f0lBbTy19fiouShqgk4Ts246KDcR24pOKtRKnHszYSndIhHHMZwZPz3k47bbu/Wk64594rWW8a/KSFF5dNaIucoQKumKdDPp0vPuteEWXglNkXrpRf6vx+Gh6IADDjjggANe7zgIrV8THB6KXgSxVMQ653Q0CZpAVTma0k3L+GAk4yWq3Pp8xXUDqKmHKRELcW8oDSmAGuSddrGVvBIz5sxo8FHcIsmm3LO15ZHqgpkeCGh0phtikJ4004sjy+4CodKE0uCWivai4k69nLbX6ogLBqUToUr4RrKJQpkItSI0edvrRDlzPDJf80WL+8xtz6Wv+dTymE8sT7g4n+E22Wk1ZDdXHSiWAyfLHY8s1tyoNyzMQECxdiJueK6f89x2zrqtGTorfVQKTBEpK8ei7llUElU7zgy1Sjhv6HuD60XvEo04SK4m1aoE9IZ2U9HbUjQrO4vpVdYg7Y9vLERnEWYRXQZJzVWiR7ImYso4uZjc0ojWZ2Slxn6t7F6K3uwdXZMzKk2aoGTS1EQPTHqePcXHpFEBpiyf9LwpnVaSpF0ZT1V4hko64ELFA3qelBmkcd3KRKwN1KXk9ShlJp1NChrVyczfdPusrGiyxqsAcvK0qTxl6SlskB6oyQWnJg3atM1Tl5R0nKmZp6rdxLImL4nCcoCFoVKeB5yRMXcKhipJthFMadPjmLfbnCOWrx1TghszhrRkCKVKoUxE2UjUiaDsAzooAJMb29XIjtisSan2jqVQJdI0hrLzK+5dgCoCHrQSpiLanFOUFEolCiPdhTEpvNf4zhBK/WnsxAhJvZeMq6II1NZTWk90xTSO1CDp38UWynWi2AR0SJLa/Xz9SWYro9fgxc1ZnmnqU6jOEuVm74CLVu4LKo4ZTJrgR7eX3LMAykso1omiTbkfUJxzIGPY1o7lXCjlQkfWpmLbWWJhhM0Zy/a8B61QTrZBhcToMCx0YGYdtXF01mJ03s6RKeoTxTZid/ILFw2+UqikMtMnifIAyiSS0ySfk+OzrmzKpVI8mH5d7K/bmBTRa5TTe92okrEyXdOvNl6Jh6LDg9VL4qApOuCAAw444IADDuDAFL0oxtTpmGeruhBGYXq3HDXOGWJnKXZaZq2Z8UnZYRLGh3IN2CSZMSQI2XGTZ7vVRZrScqMFFTV+BqrXDM7ShYIuUx2XvuYip1SH1lLuZJZYXniK9UAsDSqVhNIQSsulncv2ekNZeLqhIPYGM2p6Ri2SS5g25wltNf2m4m6zYGYdJ+UOl3Ny5OAw9TyZVuesFk1YW+7NK+7PF1TNnhnoc9t73xWEbYHZaXSnsbn3KJaJdlbSzmsusgahrpx0HgXpJ1JGXD2h2bvCJuQuLJIhdloMNFEca6Zj6nqCnFuSWYBkpRneecNOC63XDQUpO3Agu3BmV2aQWe81sRdXNGSAaF4soh0D1JhZM1rv8qxydHqNjpKR4Rm1LMpkfROgMktkdRB9ReHY1l7a1nMOkx7zncZxm92O2gj7ZXVEq4RXemK2klcYpzGtEl2Fy/tdQrKKGNMDuUYpKdEkBYNrraSFb6TX76qDZ3RkXe3tC1EzOEOMmqG3pNZO42fsqrrakzYlm48t8OO/D5IrYzfCkNhdwmQ9i0Oh6vE8QCoTpvHMZj1l4eU81yXOVKhoMH3+kuyoFOeW5F/5RuFGtmF0JO1PsbDDmbEa88lANDih1viFDKA+O/xc5URX47LWzemcUQTFRg5UsY2oKKykDhq0orOW1lSkpKhKhxv1YL1klE3HLTyYYD258diP/RQUBMmVslstjrW1JM8X25CPcSKUot9TVzOVcqaW6UWHA3LvKteSNyT5URrfqHw8lGjssgZKkyTp+/kMlkYiy42ZHLApZ4kpJT+QmVKVxOl5hZgZtZQjy6SdFhYpa9Rynd/zTh779PErDHIomdjyUOV8r5S1kJl5theG4jKPvU7y0oivEfvyGlSsHXB4KDrggAMOOOCA1z1ekfDGw9uzl8ThoehFMGZuRIOwPDkdt8vppV1fMOxKzMZQrKFcj0nLkiSr6qvuszS5dwBCVKCMJGY7mXHYLjuYtCLasZdL0/UF50PNvWFBpT33+wXr3FBPnmXbNmG3Dr3tpX/MaqqFxi0UITs6Wg1D5fd5NHF0qyVsm1C7va5Je0XflTx3eZ17RyvKRsQXrrOkdUF5ZqhOZdnycuxvSjmZ2eArS6gaQu5/y7tNPeRt7RJmCKJxsAo/U/Qrg1sZhpUwNpeLAE1260Vg0BOLkCzSzD2aSobsuuslkfhq55y6krsCY5ZMPidAHAybWLNVlegteoPeGcq1rMTu9v1KY9eYuJQUSUvuzASdco7MC9x5kmh4GPLMOWvKHtA06D1ThElT/tE4S9YqYXUU3ZONuFLavXV15WtGXcTzZtTAlIYdRw1EYsrtGf9M43+PrEP+M3qNA0hW+s62BrvR4kDa5mM0LmvJOT9K+qGMYQC8NaSghKnMDibTCduh/V4nMm3PFYZi3DkzSK6M7XLfn5eNFA3RPjXezxLMPItFy435ltp4hmi4b+acOUPcmgdcaGbIjIfPCfVRE40iFKBLMEYRx4ORdO7u2jfSayfbHTKzqL2sfMAyZBemNkmyijqDbSXBu7xMNKey48XFIN9fGUwnYqOkFZ0p6JAE5ek8JwV6r3salpqkRT/na4WbXdEIlqLLGjOORPOVCJXCzWVfR80cyOeHpWJYgVslOZZFhKBIrZ5ylSSfSERxKmYNWr5GlFeEzrA1MjiVTrjWondG2DWfGRtrUWVJqgtiISxYMnkMeEXnLJeuwifNxpUTUzaeu8kdWmenaalFc8ieZUzDWB2QeyHz9secBxcKriR4p/0x0wm8JvYK3UqvY3kO5QVU64jpZdylvcz01cVBD/Sa4PBQdMABBxxwwAGvdxwSrV8THB6KXgRhbCyvEqnY9ygNOZPCDRZ2BrvLScv9lRm/ze+n86w1NpGicVSVJyXoYintyoXJqc6K6PZupMmFkmSGOQRDG0piktyheIWemHJuSoMurbyEv/L5q++hjYlgYGhE8+B6Lamug/QvjdoG7RS21ZQXGreoCFVF0lB6YU6KteigAKqLQLH2mM6LiGpkBwrRCIxmLFlvRPmIHgIqJGESKoubW8xg6Py+p0x7g/dq37UVgKQmvcQ+HjszQrnhfEoZNqOTiAfcXcmm3E+VRNNzaVFBOqCqHdPsvVzLgbNtFBZMiSNRksAV/Urhlgq/lI4xAOqIUhFt46SFiFFcK2MbvM4puLoVTcnz2+Rl/3Iej9o7X4Zo8Emz8wVDMNK9l5mwq8yOSvucKuUU0Rl6Z7PzTHKKJijAiNtIlVeO2Tju7d59o1QijfsyaMwgjjXTsd+PtHdlJQNxEEYsFpKuHWN2q/l9D9k0hi0P5ABNLfBT55zs48T+ZefPmG4dKiUZOeM1V0ds5alswGZtlo8a5yWb6apjTzthOpUTbYxKz6PYRox6sLxNY+ecMF0pM4mjLma/b2jRdhkdiWpch7ifjAOdm+J1F1DZPmd6g3biklNJ1mFtwOZkcm0ifVK4aIXV0opQqylvx832xyLUCeqAqSWZOdaBUBva2uKWmq5TU5cYKrNd832+VF35KV+qbwu6Re4om8u1YLfZuahzJ9io6xo0To2iHaA12J1GZ1YxWkWcFWClbT7U2bFn8rjuNJtNzW2VKE2gcwVDZ0WvdCWDaVjqKUtMssxy/2ManYkjJZgguxevdkyO7HOoRbcIwKgZdGM3n550bMUuYfqUme7XTlJ0wGuDw0PRAQcccMABB7zecdAUvSY4PBS9CIYl+CX4eURXAWtzEmxmaaIXJ8eYzyJt3opkZZbm5/JZADNzNLWjLhwuGlwRiZmxCOXYUZSzYzT4rAeIVaTOGSWFDlgdKHWgLmSKu25inq1p7EkxuTfcwuIblXujZBuKxnE0b2lKR7couJjXtLMaPytwC0W5Nth2nOnLrN/0koisXXYzZceGn7H/rrlFO4P2WdiSj0U06tNcSKOTRYX0wGw/VLnJe7F/p+9nkqasck5O8kom6lHSl6OR3rURI1uS2LtKQpVIZU6nHmd+I8PkhCWzWyUagbPE7LlAfafF3L0knZ3Led5sSDGhyxJ97Zh045j+kQW7hwt2XuwxQ86koQ6YQtKjVSYxvDfCrnjRiOmspbFt7lxy+3yevftsr2EDyV7ZuJKYFNuhYtNWxM6i+8w2dXvWYzwW0WQnlDUMqiBFhTFRdEUj46Fz632Tpnb4ZFJminLfVRaEGZt75YAYcsJxoSRPyI/Hdcyo2XfwjazXlOytE8nGfXN5FJtRLK8wZs9n/K440SRpW9YPso+j4y7Ue5cgSXrVLnc1fdah9ENBtylRlxa72+cUqax/CrXockKtGOZauseW2X1YpX3KeLhii8rjfczF8Y0kpfuj3H12NLBYdMxKh1KJbV+yHgyxsoRa4RpFMTf5vJUQIdSa7rqlP1YMx4l47FkdtVyb7SjyoN+5kvtA6xVuyOxH3CdLj8dgHA8JMFYS+bWO+MYwzCyus7icbi0HVIFJpFJSucvKU1eOQgdiobAm0uVr0lUFfm5kXA8q6zDT1L0ITBo6YWj0dMxDqXBLA6aadFwuO/ZCJToy3SvCZcmF05IxFLQ4HkfXIHL/HJYK3VwZB9lFlrTsj+7H46H2PW2jlk/tnXoPEIQJYTRzP6V2+zcB0Uqa9Zg+HoYr7OuriYP77DXB4aHogAMOOOCAA17nOLjPXhscHopeBP11CMcRFp6i9tO7/DGrJ8XxXT9TI7XKjdpuvmc6QDJnYhJtkPMGP0hOCVfYEl+POUWijfANpDpSlY7aeBrtck7NPlVbVx7fWNxcZlkq2ZwzsmdpRgeSNpFF1XOz2WJ1YLcsubtccO94weZGhbmwFJsxtXY/Kx9nXrGWVG6KzLqY/TRUm4gyCZPTkwsbKE2Y3FPjMfNR0zkrvWRei9sr54hokzA2UOTjPLNBdCxJMTiLGyzBGGKCEERrkUatiWafqKz32x2rfA7KeKVLTNwoJoDdKur7ML8VmT/TYj9+B3/rNlcjkEbEviPeuo0+v6DiSXyzoj/Kl0+eOdvaM5/10i8HDMGwSwqHzDp1L/ozuOJqy7PVUObZqpZ9GPVEIMnpbf5z3VUMbZGdhzknxz/IFKFE5xI7RSo0wRocyPnLY3dcDpuIcc+CJAUpuyV1EbBFZoqMMEUo8AnCTOETJKUxZXYujuascdxkjUYqE8omVD636L3uLWRGS7sxGfvKtqn0gCaNpPasbL52xuMXcx/Z6GDTvSaqgs4ZOiO0VPIa1Rr081LOh5U4IEFP17Iwvbkhvg778Y5sY+w1vtc5jXtkyBKhjjAPlAuxch7NWlZ1J5oYb+m9FdbDiPvLz6HLOi83LyVvaaboj6F7KBEeGji+vuXR5SWrop868PpgJS170JOTrbpIE9vrG0WfGRUVNEMs6KMizPV0TmPQU27RlFE2JpsnA7ogWtgUewdbegFXYyoSITNDSaepl09O8NVcrnz4SmHTotX0K41KaWKMZdtzd19CEvODldvEmGbeqQf0m75+cNyN/YHSUZemMTVeJ2Ou1Ogk1SD3DbcflykxacRUGK8L2bZYqElPFBoIIxN1wO8JHBKtDzjggAMOOOD1jpR+9z+vIlV0dnbG2972No6Ojjg6OuJtb3sb5+fnL/vzf+kv/SWUUvzET/zEq7aNLwcHpuhF4BYRPffo8f25N8SocL0csjQYdJAZw9imDfuZSjL7HJ0wGNoxG2MwsLEUa02xfdC1Bnlduf9qdP74qGljgU2aLhQMOSspRSUT/PyjQsL0koobLblbSfQKXVlz10iq8Y16x8L22HmkNJ7TasZm1tBtZb26lcRtJiYskuqIaTx1M7Bqeo5qoTxu1FuuFTuulxtO7JZjs2OpW4q8Uy4ZtlGmgBdhxqlfcN/NOXczNr7au6nig8/nEUlBdiHnj0RF0HlaNy76vGRbIqIBGH+8ZAk9sGxQmE7ydapTmN15kCV6KShjiFWBm2vcAtwqYo6EFbi22nF9tqXUQRq9h5q2LyQbakxiHtOAd3t2JVmmjBeZaSdJwh6PRcrHImpC0LK+Ky6nUYMDe7Zp0kfkzBisEueTusIUjWNHJZJSVxgZJE/Ia8aKspSU6JxyH5aywsIFRF8Wyyt5QmqvTUojw5IyuzoKXMZkYZPAZuJHqX0yc+5V02l/HY3Os6tdVZi91u1qd9iYlZNMpg/HDKlZwFeKsFB7FiOzAtgEZURXwg4vK0dTuEnHM47F1hV0fSHs5aBhdPSZhLYBWwXqzOYqJfqfda9ph4LttiJeltid6MEga2jIWphKWJT+JOFPPLOl9AFqEpeu4rwTq+NzFwv8nYbZLc38VmJ+y1Pe79DbXq7ZpmK4Jtdd+1BBe0MxHBe4ucUVMi7sTlGvoT6F2T3Zx/pejz3dwuUG+kFYvbKExYxw1OCOqokhHVaSc+Sz0y3k/K+U88nG8TeeO50HUyzBZUZdxopoBKd7aClM2pQaH5U4KgeFyc4xdUVfk+z+vnk1zT1ppvsiyPgbr5dJEpbvGZO+LI0ZRmrfcRfUlAkl2lHZ7okN7V6Dd1KJV8bm9ipu6nd/93fzzDPP8PM///MA/MW/+Bd529vexr//9//+JT/7b/7Nv+H9738/jz322Ku3gS8Th4eiAw444IADDnhdY2R6Xp/4rd/6LX7+53+e973vffyRP/JHAPjH//gf8w3f8A188IMf5Mu+7Mte9LOf+tSneMc73sF//s//mW/7tm97rTb5RXF4fXbAAQcccMAB/5fAe8/l5eUDP33/uxNGvfe97+Xo6Gh6IAL4+q//eo6OjvjlX/7lF/1cjJG3ve1t/OAP/iBf+ZVf+bvahlcKB6boxWByWN1gJLAxKZIXUSKA7UScqIcrdL7eU/hSXplt9kkRx+CwXmO3Ioy0W7FTG5cetNGmTNk6TduXPNfOJ4HlZV9zupnJopsCu1MUOyg3kfLCYbbyKqe4LCl2JbYVyt+2Be1mxUdOap5d9szqAaMSQzBSEutzqB7y2sG0e5o6KUOyhlBZdnXFbjbjXrME4JlmYNV0rKqOVdFTGxGEj0GTO19yOQiNv+krNl1F3xXyGnEQoedIR6PT9LpF2StW7oSIJZ2eXus9cKzVKIpESk1zuJ7JtR9J64k21l6s8OUa6rPI7M6AfW5DPD1/6SGxXJJ+3xvZvGnO5nFN+2jEPNzyyLVLAB6drVkUHTFpLl0tr7ychc5gtxq725dpFjupqEgavM6vwiaheELpOBXC6iuia6XkNVAqErFMUz2DvnIlR4vEMRQyjicRdX71xVWzQMzFn0EEpSoBTpEGSJ2WOAMg2CuW9PEzLr/GG0WpVw9WUiif0GhSTJOINY3vqkbNtc/r8uO/M1XQEMd4iHHH9tEL0ysMs3/9GOokQYVAbCK68VSNY14PzMqBxoppoTSBUntsfgdjdaDSnsY4Znqg0p5aO7SKxKTpYsEmVJw7ue7OhhmnfcO6r2mHgsEbYtDE/HowBsWulXdB212VAy+NhL1uNdUG7EaqSq4K5MdXP6EWk4CyYjTY9BWbvqLtC/oLURXbuwWrW7B8OjD/xAb9zF383XuMb+J109DcvAFAeXFCdVnTnRh8tq7bLlGfembPbFEf+gRhs5m244WMBiMs+/9pzAH7xW9iePyY7qGK7ljj5wpfMQWRfhryq85Q7kNCYyVi9jH+QduIzmWswRvCYIitQadcqXFVGvP8P0FeB+fQTLmm8isxLbUcow1/Ko7Nn1fhypv5AEk9OKivBsdGIwLzWCRieI0YnFco0foXf/EX+YEf+IEHfvsjP/IjvPOd7/yc13r79m1u3rz5ab+/efMmt2+/uCzhx37sx7DW8r3f+72f83e/0jg8FB1wwAEHHHDA6x2v0Ouzb/7mb+Znf/ZnH/hdVVUvuOw73/lO3vWud33G9X3gAx8ARBP4fKSUXvD3AL/6q7/KT/7kT/Jrv/ZrL7rM5wOHh6IXgXIKvR1D1Zji4afS1KvWzlGoefW8XiksxQmVoYJC9/sgMHV1tjuyBSP7EUD1mmFbcJ85m64SW/9gGS5lFlqsNXYrsz7TRXTr0bsBQkQNHuUjKvtctTeYTtFvKrpVQVtHYWXi3pI7WvKLda672Kap5kKFBFoEkaEU1gggVDVdecSugFtjNUMamZpcdrvLNvs2stoFdB/QziFFnppUGvzc4haGfiUrGZZiV/Yz8I3YuqfqhCIJwWQyS1LkygWXv9cBOVaALNQdY/2l+DNRbCLFpaM4a2HXTrPJF4I5PoZHb9I9sWLzhoLtY4r2kUB5s+Xm8ZpHZ2sAjkoRn+98wVnXcL5tcJsSszYTM1jsUt4OZP/VfuaaRoG9lVqISQyqHrwZKpWIJu0F2mkvtIZRqJ9nsmOA5vPH57Sy/TkbCzT3gml1pa4iPfiyPe7tyurqWB9Xl2foyWURtFH7ayTt2R8RxavJIj0W5F5lih5Ybxbaj4aGKS5iFtBzx2wuF+hDiw2Pzi95ojnjjdV9nihPecRc8JDpONKGhSop1Ivf/vrk2KSB05C4G2bcDkfccUcA3BqOuVOuuF/OOe9rtkNF7w2Ds3hvCE4TXT4hnUF3WuqAdnkMtPsy2zFwUM5brhYq9vcBN1icE7aEjaW8L+ud3YHlM4HZx9eoTzyLf57LJ7YteifjUW9nFJeyr3GtMEOiPO2xn7yH/9SzL3oMXg78Rz6G/qhm9SVvon7siP5ETAihkgDXyeKeq3ZGFjPNZKzHRqpEmvnAspZXOPOyx+qIj5rtULHuKlpbElWBCkYE26MwehwrV8aNisJEpgIYbfmMY1DGsfIS6TEJ90eGPt8nRvZ5DB29WtsyslCQr4EXq4V5pfEKCa2ttaxWq5e1+Dve8Q7e+ta3fsZlnnrqKX7jN36DO3fufNrf3bt3j4cffvgFP/df/+t/5e7du7zxjW+cfhdC4Ad+4Af4iZ/4CT7+8Y+/rG18pXF4KDrggAMOOOCAAz4NN27c4MaNGy+53Dd8wzdwcXHBr/zKr/B1X/d1ALz//e/n4uKCb/zGb3zBz7ztbW/jT/7JP/nA777lW76Ft73tbXzP93zP737jP0ccHopeBGNQmIrkgDaeVyJ5ZRZ7xRKcbJ6pF0wlpBjRxqSQQGl8noHHzHCosH93Pc2ktPw+dYYhKZyxpCTBg3onK9aDzOpDLiqFGjOzOW5fZfZlH50/Fi1qp4iIvV0HZCa7hVKkMVTnieY0UJ4N2IsOtW6hbUlutBlrsHnnigLKAnSmI1IC52BwpM2WsNlC+vR8+uf/ppzNqB99mPpRmY23D9fsbuqpOiGWCZqAsiIsCUHjczmv6jSm05ixnLcFm1kq0wszZIbM0HTCVJnWo3qHagdQCr1aopcL2YeqJM1FPxKOGtrrFbsbhu66orsB7rqnPOm4ttyxLPcCxYuhYecLTrsZp5sZ/UWNPrcUlyozenv9mZxrJcXD9T6wLpYScnhVR+SDJqImJiI6qWVQV+oKrjIqKuZDfkWbI+ct29IzklEkG0mlJjklurJRX5RZtgdwRcsxaXvGWfTzA/3G6gQjM/Ors2tgqjBJGpROKJ1D8vSeeRr36flFsaKlSqQ6omae2aLnocWGJxbn/L75XQC+rL7Fm8vbfEmhadT4aqDIPy+NShVUqqCgBXZENPGKSKbQgbnpOS5rLl3DxpVshortUNL2BcO0f3o6XhMzbLNehRydMYYW5sBIP5cASF0InZyCXPe21ftIh1bYYRUjqrBIG3LWoFU1+sY14o1jANyNhmFl8Y2GlHLNTiK17cs6Fi+JFCEEVIjokNA+yTV19Xzne2QscuinkfsWWedmTWCer6XjqqM2jpgUG+ukSDcqWm+IvZ5YdRit/jJWjII4yDHVFcRSTaypnIsrmzyOyXxO9Hi9PG/MT8tdLSme/lI+85rVb7zAffRzWMkrsI5Px5d/+Zfzrd/6rbz97W/np37qpwCx5H/7t3/7A86zN7/5zbz73e/mO7/zO7l+/TrXr19/YD1FUfDII498Rrfaq42D++yAAw444IADXu94JcIbX0VN+M/8zM/w1V/91bzlLW/hLW95C1/zNV/Dv/yX//KBZT74wQ9ycXHx6m3EK4ADU/QiSFYcPnhFjA+WjwLTu2a4MgvKIWKpkBLSqeaj2E9BYlQEr/GDQjuNctl1c2USII6aPHqdhqhIyjC60lQOnUtGZpfJIDUfXqNSMbFQvhFNDoBfROIsYBqPLQOFTiTADxbfGcLaEstcdmsVsbD4WlMsCuyuwfQBQgKjiMU+FDLUWn4qlQPPEE1RAD0kbBexba6K2Hl05ya9E0qRSkuYl3RHJf2JoTvJNQbXJMAunjjK5cC1Wcui6ilNICZF6wvWnUyxt7sKty5JyqJDZouGRLFJFJtAsfXoVsQCupfvxwe5SSgFTU06mpNKS2xK3MLilnJp9EeKfqUYjsGtEmHlKRYDdSWs2daVrLO7rneWbV/S7UripsBsDMVatCSjpmnUj4RSSlB9JefQLXKBcBPQhVRqhBwKGILGeSNhga1FbQ1mpx8slb3CWkYjbKNKCq8gWGEUtU0UpacsZGPsWN2BMDchKnwwhKCn4tg4hkRGNf1M7rGkZPL6fE1Fdg2qqfIhCUt1tSIiD++U8nfknzSxVA+6EmWDE6oIFLVnXg9cm+14ZLbmydkpX1Lf4feVd/iyQlxUN80CaPhc0CfHndBxGgvuhwXnccY6NHRJTp5Llko7rhdbVrajLze0oWQTSjau5nyoucghi+tZRbcr6ecW10pxqnb7fYvZRQjZMVd7ytpTFAGjIyFqhsEShzTVWIAUkQ4rg/ZzbFVgbl4THU1pCcuS9rikP85FuCuV6ynk/lFsNaGasUhvQP+vnrjbfU7HCcA+fBP/xY9x8VhNd6KlLDozKiOLA/nPzD5qD7oHW0AqNN4WbE2cNHQhaprCoUkMUYJdR2Zxuu9eYSyv1tyYXu7DZhgDbJnKq59fLjyFvIa9E+3qSH7gvp6Zz5i1esmmSXOU/GvkPnslNEWvIq5du8ZP//RPf8Zl0kuIxT9fOqKrODBFBxxwwAEHHHDAARyYohdFOnLEypKcRg1SAGm6vfss9VzJ8ZHfPTD7eN67ZmXEUTRa1WJQxKAl+8grxj4FFXLdQnZQ6EGmI1fzWaaKByV6hFDnWU1mt2Il+ptyNrCcyXv6k2bHjXrHUdHSmAGtEn20rF3Nc/2c+7s5FzvJQNlsSjZbi+41eihQMbNPZSI2EbVwLFcyu3x0dcmbFvf5ktldniyf43F7xrHuKVTCJcU2FdwLCwBuu2OeGa5xe1hxv19wPtS0vsAFOahWR64bmVrOrGNR9MztMJXhxqRoQ8nZMMNfmT2GwaA6I/lPl1BeJOqzSHXusOtBqg+6fOKy6w2lRA9VWeKsJMxL/LxgWBqGpcItZd1usWdx4jxgao82CR80664ipQqf6x98b4i9hZ3BtFLroXumcl1fs89MMfncNeKuC7MIM8lqMSaSksL5zMYFLevuLGanMdtcEdPKzFi7vRYiaZkdg8xq1VicWkTqZuBkvuN6LefuWrXluGinbJ4iT+tj0rhkcNHQZ3akD5Y+ys8QDUO0DMEwRENMCn+lpiUlyevRz/8hTVqpsSQ4Ip/1UROSJkT9QOWL0ZEit7xW1rMqeo7KlhvlhkfLc54o7vNEccYTZsjs0OJFruhPx+0grNLTvuKT/hrPuhPuDivuuzlrX9OFYtovrRJl3o7aOBoz0BhHpf30M7c9x0XLSVlxUQlTdN7UXM5ryecaLN4ZXC5CVrl6pMgFrdYGykLKlLWSEunO2amIN+kkZaQIC9ydaGJRYo4sKs7k3NcaN1MMC3DZYOTnWYNlEipIoepwrOlOliwf+iqaj54TP/QROXfh+ZT4g7CPP8bwJY8AsH6yYvuIoruRCKsAtctVMBp6jW41dpNz3XaSyaZzzpBxwBZxvzpL6DTnCxlr67qhKH2+DqQI2feG5NTk9J1qbbLWJ11xkY33ZW1EszlpgT7NaXmFIYoPLjOy7aEAxhqREmId5f5aRjBR2M9qeLlD7neHV8KS/zpOxX694PBQdMABBxxwwAGvdxweaF4THB6KXgSr450UFzqL6yzRGlBmyqRQHnD7XBXYv38OnSLUakobDrWW8swqonJaq7YRTCIaRbKK5MdgEg2DzIi0U1P2zgMM1JQjs//OaCGMpZhlxFSeunIsKmGKFsVAqf2U0hsTMtuPlpiUzISt7EhsPMFG0ZTohC0D82bg8eUFX350hz+y+B3+eCMppdf1/HlH7mrm7Yg8k2ruAndf8Hh/0q/5sDvmE07sn88OJ9weVpwNM57uj7noGi7biq4tCdu9XgdgcSHOueoiUp17issBc9HCZgdtRxqG/Q1FKVRZQlWCNcRZiV9WuFXBsNQMSz2xQ5Bn2U0i1jE73yAGxRDEDRi93p+7XqN6je4VpldT5smkNbtS3Dpm7IRaEn1THVE5myglRQh7PU8YjLgOO/2COVfJ7IdEtHndTdaUzSNq6Vgd7XhkuebJ+Rlvmt0D4MnyPo/bMx4xG440zJSlULmAl4hLkS7JmOhSYp0Mu1hwGWt2qWIbK3axpIsFXSpweedctFLo+7xI45EdCmh8XjYkhY8Gl8TdJZ+T5YxKlJmFAViYnqXpuGY3XDMbHjJrrpuWazpxpF84fA7gMrbci4Fn/YKPuxt8rH+IT7TXeGZ7DMC97UJ0aW0BnZbk9NH5ppGi2CqgKzkWZeWZNz3LUn5m1uVrS9idIVp2XliPkdHUOqJ1wljRzlw1Eo3asZRE07UDSPL7MBhSb4R12e5LZK+yjyFrAUOxdzKOTjaA0ESohdlIgJtpQmNwc01/YqnecIP6/9/em4dJUd37/+9zaunuWZkFZoGRxRXFuGBUUAPGBY1rkmvUm0T4XqOPSRC33BgfTUTUaIwavUmMy/WSmKtRn0RyzY174nLdlZCfqFyFsKoDCMw+091VdT6/P845tXT3MAMCM8M9r+eZh+6q01XnVFU3dd71+bw/U2rl2Dp8ON0+eM5Xn7XhVTrI1tnoq2foGw3kRys1t64LjdWdaC7vRK3TC84E+gIXm/PlWN9TiU87K5DrkOfF77DhdEknfysvfz9tX762e4GgmyPocNU+CTlXqt6k1HUmpKLOSMZh6d9W7Y4d/06E/mQFHmWROkTqN5Wi4rJKPQ5j/hwGn2T2GpjMYBNpgaBMOqU7aR8pxwfnAoH72UpkDBpzU7RLMDdFBoPBYDAMd8QOSMk3N1YDYm6K+qEilUPg2ugBEPgcQmd/aWfkLOD0Kr+QvJx1AABZ0pXWTzP4GfX8v5zBL+MIyoScbcQVI4tAjKISPATAt8CFfB5u90V/lvLb0XFNTFCUxaI9b1yGIO0gSDkIUmXY6NYAADbYsWfrQmWH5eQ47Kx0Wq5Ubss1OQGelymcZDH4GRdeRTnW1dRiRe1E/H7M51HWIOMxDhizATNqP8CM8g9xgFM2qGPrkY/FeeDV3r2xuGM8PtgyBls2VYBvceG2yWOW6gDcToLbRbB7ApT3+qjq9cH7esCyHtCXBXLyQIi+PlAuF8ZDEIrrNzFbTgF5eZlUiSrLEVRm4Fe7yFfayFdx5CsYvHI1yy5TsS9pmUXIHBU/AEAEMiZEBKp2mxepfNLjRwUmKN8qyATCUNUBtOs0hakOLGAAl+qK0O7mejuqRlnofqx8XvxMzMsntt0gLWO/UO6jrDKL+soetFS0Y1LZJuyV3oBJjlTrWuweNFkZOKx0HE6GAYW+t52iD13UjnZhoUu46BJpdIoMekUKWTXNznIHOSGVIx2b5JEFAQ5PyHglX5l4ecThCws+JX2AOBOwmQhVIwBwWACHOegRKXCljWXJQTvPwWECFrII1AHtFS46RRqf+lVo9Ubh49wofNw7Cq3dVWjvziDXmYLVreoCdnM4vUA6W6D88shHKEhbCDJyn7k0oS+TwZa0DzsVwLaDMJMvnsUHAH7egvC4jE30eFgvLnRRjhH+l6fiBnkg1RTuqe+qh1ApkgoyhTGNYWxN3DNK+1P5DOQxEPEww4tsQlAukLNkxli2VsVO5V0wFZRGtoxX9MoBvyoAr85j1KhejK2UKdUt5W0Ym2pHjd0Dl/nIk402vxycCWR9G90pF3nHCfcHJq9hFkiFiKusLWFJhUb7NQUpJrNZU0DgEsiR8VTyfBBgyZppAMJqA9oZnWtFPeYrF7nZRxlx3JMeZjygmCpIYYCosFhCidVZgiwVwFX19DKO9FDyxS5Sigy7BHNTZDAYDAbDcMeoPLsEc1PUD55vw+O29AjJWWDZqLo9ALjdgNtFcHqErDvmy+mGsBhEisMr58hrx2XSHhcMcKSDq+UEcJwAnFOYYQHIDKYAAAUW0MfA87IOWbpNILXFg9PeB97WAwCgzk6Izm6Q7xX1f0eikplQXWJdO4D/Qh3+C9O2c+ttqEMb6gZuCAKw9dyYYphlydpl1ZUAAFFZBr8qJb2IKizkKxj8MhZ6OgVppbS48nySS9JniiufHZ3lparDJzx6VF0lmQ3DIFSSWxgHFm+qnMUhAOZzVSOMgywdRxHbNCPp1ZMS0vVaT2i1QzUncEf210n5KE95qEpnUZfuxehUN5rT7RjnbkGz04ZGqxOjLXm91PKt1//qoxy6hGzbRUC7cNGufHs6Aund0xWk0Stc9Pgp5ITcVl/gqHg1C/lAqkD5QCpGgeDwAw5PKUVCMOVDI2NqdOYaYwTbErAtAVeZhLm2j4ztycxEO4eMygJLcR+Oknd0XJP2DWrPl6E9l0ZbX5mMG+p1gG4bTi+D3atil/qUcqFVhVB9jWJSyEPSSVlYEHkGz7aRV15Mur4hfCbrc0GpvXkWqRaqXiKPZUuFLsox7x15cFRcjFIzmChuq+NdiLOESiTVmKi/FFjyulJNwnpz6gulY2kSNb6Uz4/ICBlXBenFtSUrFWFBDG35Mrg8AGcCeWGjM5/GlmwZ2noy6OtOAV3ymtDxUFZeHhMrr+N5lALkqe8DlJLjA0EAQDAIIgRpABap2oCBVHUQ+46ojF0KWKjI8byM7eNKyNGqOHEGWx0r8phU3KF+u10V95bS8VrqGLgAOQKWLWBxqQoKYkBBtuROxWSf7RJGhE/RCy+8AMZYyT9doRdAyfV33333EPbcYDAYDIYdgKDP/mcYkBGhFE2fPh2tra2JZT/84Q/x3HPP4bDDDkssX7hwIU466aTwfXV1KX1jYLqyLgIvHToI29089NoAVHxPjsDzQsYTCagaT0xmgaiaVkCUDRJUCvDKPMorcqjKZFHh5uAq/51sIE9FZzaNDjeDHFLgOQbiDNwjuJ0+3PVdoNXr4O+omkW7KcyyYI1vgT+mGtn6FHLVFrwK5TuUkZlZQUrOjoUTZbmQRXI2akU1whgHAKlckKrTBKVqSAMgCmfXzGIQUBlkXPqkMB3voL1QtBqgl/kA8kzGLVhM9sOG7It2NbcBODJ7yHIEbNeHawdIOx4yrodKJ4cqV16Y1U4fRjl9qLV7UGt3o9rqxSjeiyqeRRn3kGYCntrsp0EeAnnlJ2WjR7joojS6ggzaA6kGbfFldmGnn0aXl0Zv4KLXd9DnOcgF0qvIDziEUoAAJNywSXCQ0HFYDAiY8pSJ4qWgK5sX/GbLmlPynMjjQIAtwG0B25F+To6K57F5sl5cIJhUpgKOvG/Bz9syk8vjYFCO7zpuzGHwC+rH6ZpXMrtTxbWofshYMHXeCxQiXTORK5WGqzggnpcxQTyvlRAqviZi449UQkTOyRwQoZLDolpwKvtUXs/yT15Pse+EirkJ45V0RqufjLtJxDqpmCrRzSFcjsC10ZdKo8eVMWgfxVVU/f0QDMhHWZh2X0yNyyqlSMdfMgBK4Qor0kPtX/0xpcYykg7SzCIZj6m+G9yKYv10xp7OCA3yHEL1A4CshZYCrBTgewxWPvpuyr4oXyKoDE6dyVcmM0SZI9Vi7SEWCC6VThNStFsxIm6KXNdFY2Nj+N7zPDz++OOYO3cumI4cVIwaNSrR1mAwGAyGEQ0BtCMKwprHZwMyIm6KCnn88cexadMmzJkzp2jd3Llz8a1vfQsTJ07E+eefjwsvvBCc9/+UMJfLIZeLbvU7O2Wp+HzWASwLyKp6Rb6atahNBS6DVwYErhW6BgubwU8x+GUyY0M7ynpVAViVh6rqPtSV96CxrAv1bg/K7RwcFiAnbLR78jl9q12FgLjyRpKnx/IAu8cH29yGwKhE/cIOPxAd+1SgaxxDtoEgavLIVPaiMpNDtfIS0fEpghi8wJJOzb6NnGfDD7jMNPS5VDYAldrDQH48IAiJ10wrOlYQ1gdjQvoZhVXng9hsHTGFIBY/wiEdnuUUmYVeNsQIjAOWGyCV8lCeyqMilcOoVBZ1ypW6zukCANRaPai0sqjkfSjnOaSZB0vtpEu4+JScsIaXVoS2BOVo88rR7pWhLV+G9nxaVnzPuch58hr08zYCT2bbka6/V0Ld6Rc94xeqlJmIHQelFMX9ZcKPsSjOBZxCdcTjhLxF6LMQKXvx2mqJjrGwVhsYAa6QioqWY2LxOVr5Y1qhYiTVCItgKUVCO0xrxVAI5VcVcAiPgWwOUs7TIi99yLgLiDzAXaXOqBpvpZSiUBnSY9cKEY/UH9Iuy7oul60ULQtKsS4+MWHWmz7OIqobFq9RVuSHpvYr98ekZxv0PlXmYywGTvsDaSVKbxdQKhZnkc9W7ByHGZSxcYXXSMDAPIAgPdZIxwFxVlRTT2dtEgNgU/TUKMzSRZSlJmJ9sGJ9cIAgJTPOKCXAXAHuJN3m9bkPctsa6bidmMdfu4QReVN0//33Y9asWWhpaUksv/7663Hcccchk8ngL3/5C6644gps2rQJ11xzTb/buummm3Ddddft7C4bDAaDwbD9GJVnlzCkN0Xz588f8IbkrbfeSsQNffTRR3j66afx6KOPFrWN3/wcfPDBAIAFCxZs9aboqquuwuWXXx6+7+zsREtLC4TPwYiHnjPCjmqMAfLZs1fOwMDkJFg7CafkM+igXPrEAECmIofail6MKevG6FQ3Rjm9qLBycLgPT9jophR6lDdIVz6FnqwL6rXhdjOZ5dYZwGrrhb/x060eq/9rBMdOBQBsODyFnv1zOGTSOny1/i+YWbYcezv918DqoxxW+gGW50djRa4RK/vqsa6nBp/2VqCzN428r/yHAOlBFLDIRIZDKRYUqgnckiuZReAqvgLQ2VQACQ6hFBZo9+JA1byLx9doWDKmiNkCzFKOyOrP5tLHR3ZJhB4/HlnICgcWBLIk/w3A4ZGNXuGiK8igI5B1udq8MmzJl6M9n0FbLoOubAp9ORde1gblLenQrTKCmM9gKaUroeRoVYLHMpcsFW+jloOriuIgmdiVUMhUnEss3gUxBSX0fFJtwzgsHc8Vi7cJK6gD0br4MVUhYdBKT1yB0uqQyjKUsSpRzApnBM7VeY53STAZQ2UJBL6lHOoJga5l6Er1SGd7cV9lfVEJRabwGlB91DE3cSVDxsAVHGudtVioEimFTl9zLMxSY9G+YsIo50kVRR8yKGVJn3+h1KDQI8mKbUdfD9ohGvFzWkIpLRy7+rzM0pTXgcjLmDtwHh0HdW1R4VeIoj+9khgAhxDYQEDJfWl1jcI4Pgpj2CxbgFvKVy5Wu09oZdmzYNh9GNKborlz5+Kcc87ZapsJEyYk3i9cuBB1dXU4/fTTB9z+kUceic7OTmzYsAENDQ0l26RSKaRS/ZcIMBgMBoNhaCHjaL2LGNKbovr6etTX1w+6PRFh4cKFOO+88+Aop9StsWTJEqTTaYwaNWrbOxfE3F+VoymYqoWD5LNocOV46gDClXWsrLQPN62UopR0Ps0GNjbny9HhyZl6Xljo9lx0ZDNo71HLOlOw2myUbWbIbAQq1vvIrOsCPtmw7WPYDen9yhFoPYpj70PX4nt7PAAAOCFT6F+99UrpGZbCAQ5QztajR6TwcW4UfOLoyzvI9TmgHhsspx1+WaTkMIqcqFPSu4XbAk5K7j/tesg4PtK2h5Ttw2YiMbPMCwue8qPSmVueL/+CgCMIeBSTBISKExjUTFXIWCjB0etJZTEvLPQFDtotGZOWsSrDqu2WukgDVfW+L3DQE6TQ48vPdnspqUzmXfTkXOTzNvycDcpzsDyXqoJWPApUokihUYqFHWXhwVZKmh35O3FOSqEoVjFIxYHov9BvJihQ0vpTklQ4kW4jT1WBdBDtLjym4WutZGl1Q7snc5LCXjzTTH02rhaRzpTS2Vc6mw46toaFHkPEAFgIlUey4n0u6CeLvQ6VsOTx0woOMch9q7AplBq+ViABCCZVFxFIFVD7FYV+SLH4rjD0KlRUovehWmXFjl0sJirRT63c6Pix+LGJxRiF6wiAHzu3AIix5Lb1+1ifQqWJITp3iC2PK2rxmDSLwLQaqBRgrq7fRGIcMYhAKkWJ+MOdjbmh2SWMqJiiv/71r1i1ahXOP//8onV/+tOfsH79ekybNg2ZTAbPP/88rr76alx44YVGCTIYDAbDiIaMUrRLGFE3Rffffz+mT5+OyZMnF61zHAd33XUXLr/8cgghMGnSJCxYsADf/e53t29neTkl4jpbA7HZB2IzKJZ8vg8OqXR6FnKqsedZ6OpJh47IOltFeBaQtcB7OZxu2baiC3A7gMwWgfTmPJxNPWAbt8Dv6NiuYfCMVKB4XS2otgreqDT8SgdehiNISY8QRtJ3yemW08VUWw5W6xb4az/avmO3A/GPPwyt01zwQzowZ5838L3ae3fIdjcG3Xg9uwfe7NoTS9ua8El7NXLtKVjdNpwe6SQORDNY4tLPhjkyLIhUJpPtBihPy8bV6T7UpvtQ4/ai0s6iwsqhzMqF2V8BGDwlNfYKN1Ruurw0en0Hvb6DrO8g71uhxw6gfH9iv2U688ULLPRaLjrzqcj1mQdwrQA2E7B5ENYIE2BhjbGsL/uQV+8BwLYEhC0A+Ai4BbIJwmdgvk63jFSZQhLxQ9CvixsSAUxJGWHcFdRkX8/cdfaQpeQAIWflgFQQSDCZiaSVF+0MLSAViJhipNXceCxL5H0T71hhQEoUa5NYHVeHSsSwhPuNbz/+Xse5iGhdv9l7hRloocqh4mN0thbTHleIsvMScVzF49BxYCxUqaJOFAp5heOnwvOsloUqYDyuK67wCOVPpc5feA6VezUYiwoWqtivKDOxROxVgYoW95XS6hvZCGOxAP07TZGSqWMCuaxBybhUhgCE3kdM7VaQvPa1mit8WdCQfAbKjwgPZMMgGVE3RQ899FC/60466aSEaaPBYDAYDLsNRuXZJYyom6JdCc9xWKGvB0s+EwfCTBYCQp8iPX1hvqwzRExOUQKmanap5/8sYOAeg5Nnsh5QH2Ar+yG7F3B7BKyckLOdlANWUw07nQKyOVDei74cjIGlXCCTAVVm4I/KIFfroq+Oo6+OITuaEIyWtavqxnRi/9pPcET1ShxRthJTXV3RbHC0iV68mq3Fi12T8eamPbD2E1mtzG5NofwToOKjAOUf98Fa9yn8T1oH2JrEGjUK2KMJveMr0bmHje5xgNhDHogDxrXi5DHv4isVd2KMtfUYoW3h46AL/9O3B97omop32prxSXs1su1pWJ02Ut0Mdla6DrOY9YhUiQBm6Zm7nGlajnRULnOlUlTl5lDj9qLe7Uat3YNqqxdlPAeXydpQAMJK8jmS1d67gzQ6nIx0jPbT6PZS0jHad0KPIK0aBUIqRp4vXaQtTshxCxZ3YKtYCMcK4PAAjhWEGWqFbs9aVbK5gMsD5G0Z6+QJC3nfCmOd/MBCoJQi6cPDgED+q71jwliauI+T1IMShMJJkfoSxenEPp6gKDxGxYmEsTy23gHF6obpvmnFgSXiZbQKARQvC2uMiZhiEVN1Er8FJZSg+ICZ/q7G1/VDFIsTi5spUEFCR2sr+cdDR/SYWqIFDCuK8wkVPVaQtRXvXDwWKHFeCgaQFNSiY6Su04RyJ7R7dHTtFFW21wqakD5C4TGLxQzFjwsQU4f08dHxbcoVXr5Wqo9FgPaciilD8ZihOFqhFULGD1GgHNr9WI27gAF9uyj7bEf4FJn7qgExN0UGg8FgMAx3doSjtbkrGhBzU9QPzIMsKhu/Dlk0U4tn3uiZmKydpWOLKKrJU/CcnQSDrzxDfJXhw1Whe+4xcI+DexzMs8H9NBhVRdluMVfbsD5PGSGoEOBVedSMasOk6i04uHodDi/7B45Oy5pYKRbP1ts2lQgAangZTinL4pSyJUDDEuCAgT+zMejGJ4GNTwOp9LQH5ciSg4A4HOajnK9AJc9ijNWNBivoRxHafpWoU/RhaT6F93Nj8X5vMwBgRddotHZXoaOzDH63A6vHgtsrFTtdwRxAmGUIHtWTCtKEIE2gtABP+3BSPtKuB4dHygsA5IT0BAIQegUBUH5B8uT1Bqmwunx34KLbS6Pbd9HnybiirG8jr/xPAiEzXIRIpvTEZ7qWVopsFVNkCaQsHylbDqhUnJEmHm+UDyzkhSVdvpXbNyCro3u+hcCzEORlbSlGDMxT3jfKgweQxzDMKOovJiQcREwhiSkiYLGZv659FqoCFMXvcaHcnlVdqlKKU0ytCBUMpR6pA6CyoJLO42H/Y/8CyfdhjFBMYYqPlSiWsRfvS1wxS8TsxOKICpyskz5FkUIitCqif4t0hlXMN0rWJ0PM9VupJyUlPRa91seMACZ4uCy+PlTWiCVjgET0+xkuQ+x4FSpthTD1PWTRdVHk12TH/JqUKpRQhOwoTohbQvlNUUI5BZTvkPKcAuRvdKDUIRFE8UPM59H1oZ8keKV0JsNIxdwUGQwGg8EwzKEd8PjMhCUNjLkp6g+mZiFAlM2hZ2BA0vHUkVW7HTtAypGz87TtocyW8k/a9pG2PLjKP8ZhAlx52FgFM5aghL+KxQg2C+CwAGVWDpVcqj+VVhaj7U6MtrrRaOUw1qosMZCB/Zx2FmOsCoyxgCitJMqg88hHN+WRI4E8EXoJ+IffvdXtecQQgCFLNrLCRhelAcgaXl0ijS1+Bbb45diSL0dbvgxbchl05dKyhldO1fBSbs0sz2ApfxayCb6lMqsYZLxFbCYqLMgq9a4AcwQcN4Dj+Ei7PtK2H846s76NNpShy0tjI68syvzKCxmvAwDZwA4zzXK+jbxnw/c5As8CBbG4BSD0vkmoDAXO2sxWKpWqIO/aAXK2jVQgr8U0+UhbSjVShahsHsBiBA6CsBgCYvAtC3lhI29byAY2+jx5/WQtB32ejRyTwVUBUz+wAVeKKkvUueJ5VVNLV2IPChSCGAmlSNfY0vWvHFmvCkBYCZ4cXcpMOVHbQmYRKfdhQKoCFhewuHSiZgwJdSCe0UfEoornQmUXBTEXcsGkMqbPR6FSEPfbiWe4ofh1SEwhC49DIsuMIlfo8LVUooGY+hNTpVmoGlJUnw0AY1QkmpHKphJCxcloJTr0ioJywC5QRnxE9ftisUAsQJipW1IdTApUCTEqrhLKsaFIHQvVsFisEIDod9gS4LaOF5LqEFfnX2c6MkaR9xwlz7sgFqpDQCyGTntm6eMQVxl39Q2GeXy2SzA3RQaDwWAwDHN2hFJk7okGxtwU9YNwCJSSsxCyBZhD4HYAx1VePq6PjOuh3JXVyke5vahzezHG6US93YXRdifGWLJy+Wgri3ruoIKnd1JvXWxPnNDOoo9y+Mj38HFQifX+KGzwqgEAm7wKbPbKi7Ks/MCCJzj8gEOIpDePrB8WTafj3+n4cl2xXC7XM+EoHkKvYxaBZXwgo2epMg6FsWSMjlYVuIrXsS0BiwlVe0yAsaiNp4K8PGGhPZeBIAY/4NJJOu5Y7XMIT9U+8zmYx4tichy/YKZdMOi4q3A4g7ZJOq4DCGyC7wrkHAHLFbAcqV66jlS10rYXKUZWAJcHRXFGNo9S7/RyeQxkvFLWdpCzbfi2BeFYCPIEYXNwVx5jnmfgjlKKVJwW9yMlQWcWqcMvx1UQd8dIthMsSqLSCDBwROXoCBwMAsQYBJOtGSOZxQWpDlhcSFVMeSSViikhYuF1F5DM9hP6ulS1rgCtrkgFIYzzUj480DFEoUJSoCjEs73CTCqlZMQyw+LKD1e12HQ8jD4f+trkaox6bKWQqgiDgFRHdDZjIDgCHyAl05CKCyI/cjTXdduYz2TtM3V56NeJGDIqHUNW5IQeqp2xMKYSmXVSIUIYLyQshD5DACLXdCtSxuR5BERgISi4kSilkJF6jYCFYgxTKhECBh6PmdLnVo8jrlrtbIxStEswrlMGg8FgMAxjCAJiB9wUBQgGbvR/HKMU9YOMVSDAFeBOADsVwHV9lKekJ01lKovaVB/qUt1oTHWiyWlHs9OGsXY7mi1fZVLpeJ6hi+vZkfRRDp8EHtb7ZfjErwEAfOLVYINXhQ25SmzJlaMjl0ZnLo3erAsvbyPIW6Hja6SKyBln3DumMNYAiMUZhPFcUaxFqdkit2VcAbcIFpcxXrYlfXoc5c1jcQGHJz18bDXb5oxCP6F4zTIA8IWlYoM4fMHDOma6hhkg/YMSsUEeBzwO5LnMKswz2GGWYUxF0bE3hXEZsahIitV4ivxYVOyNwyAcFXfjAMK1IFxC4BACVyCvr2E3gG0HcB3lfm0FcG0fTsIFO+lppF+nLV8eRy6Vp7xvI5+O1W6LqWC+r7LTCs53YUYXUBCDUziJjWVj6feMpEJBQm43zLriHMSBQF0TUc0y5bYcz7piKKmohMpjGOiiXlOkAgEI63dF6+U6BvTrRUQFChE4C/syGIiYqrtF0XsiGQPFCAykYqSiDQqwsG3kuRMpYEKwhAeP/JCqvVfgzQR9SHi0TNhaYY1nnBVklZU6DjGliGJ/pb2HKBFvxAigAFFtu8ACOMmEuELPK31eKPk+dD8PswWlGpSId+vHmy6u7oXu4TuZffbZBxmU42OsRAv22u7tdFMH2vEpTjnllB3Yu90PoxQZDAaDwTBMsW0bv3v8QazE+/DJ2+7tLMdSjMUk7Lnnnjuwd7sfRinqB7uPATaH8BnIlZXJ9cwKkFliguQzekEcnrDgkfzLUgey1IUmS9Ydc9jIOszdIosNwsd6vwzrg2ps8Kqxya/Exnwl2vJlaM9n0JmT8VHdORfZvAMvZ0N4lqqwzsCVQmDHK3DHfV36ycQJJ+vx6tvxWAIV38UsmWUFALYtnaVdx4drBaE/T9ryVS0wP8y4KpX9xyEg1PwgIJkp5qkpoE9SDRJMevhkAxt9voO8b6PPk1ljnvYT0upQnoPlOCylDmlVSGdkASrGxlP/+hQqKDwgxOt2aSisM8XCrBxhMakM2ZGvks7OClwGspn81+UQtoWcS8g7An0qQ8tyAli2gGsHsCwB1wqkkmYFsNTxCWOr1L9aWXN4gDJi8IkjUHE3OrZKCBlT5QdWWE08CJjMqgtUVl2YyaXVwtIeN6XqiIVKkycvHhZXSArViRJxLYXxTKXcqoscq+PbKhAkSu4u7j1UqI6UUklQGC8WqaMBj2WfxeqOaRWVaRVMqSWsUDEp0clIFWOJ8ZNWwBgi/zVBgM3ABEWxNUBCFYqOFys+vvFdx/sUU3cKM/HivwWR8hO5YMfHov8t6kv8Gor1t6RzeVz1K9H3YndxVXPOZmDZna8tnHrqqShHFVbjA+yFKdv8+S20AR3YjA82vbsTerd7YZQig8FgMBiGMYwxPPPmE1iL5chS7zZ9loiwHEsxAfuirq5uJ/Vw92FkSRi7EHczA88yCJuBbK5cjR1kXTmF6HMIm1yB1W4Ay5XxRpmUh3I3j0onhyo3i2pH1vEa5fSh1u5Brd2NWqsbo6xe1PFeVHMfldxCNU+D74L7UwGBbpFDF/noEhztIoV2UYauIIP2oAwdQRkAoMPPoNOX9bi6/RS6PRd9voO+vJPw1AGkn4fwuQzi0N46xOTMyqZEDEJ//jRh9W39LyD9WGI+PNAZOGHMkMwIA6SLs44bkt40crmvM9nAkA9UdfoSWUcA4JPMMIrHCwEyo8wLpL9QEHDkdfyMzyF8C+QxMC+KmeI+U67kKkbIixQhFqiK4EDM44US8VTEGUCUjFVgrNj1WSsMLPyo/FcAUPsVACzl1MtsgggI5MnrGQB824JvCXixWCxbuWHrzCbto2WpWKN45lYYh6WOu0tSuQuEPJZBgf9PEGZxRZlcYT0p7YujK6jH6qtFSiNLZjmVcJwOXZPj6wvrmgkqcliWCoJS6QKtHFBSLSpwvkvEmpQ4V+E6xgrOW8F7S8X+JGJpGET4PlbTLJ6hFXO7DuPutK9RvA9hVpvsNHF9gMIuh4Nh8dirAkqFfSVWhq+jA1JkFkjJNkWZevEd6Zig2DlFPN4JBapiqXMdFJznAg+lIm+pQlUQSKp+ifMm/w1y/R2UHcvnP/95jEYz/oH3cAA+P+jPrcda5JHDO71v7sTe7T4YpchgMBgMhhHAaytfxAasQxe1D6p9QAH+gfdw3wP3IJPJ7NzO7SYYpagf0m0A70M0OwhnbNGsTlgWyHJCP41uDnTawCcxXw1AzeSUn0U8Uyruvmop1cO2AlicYHMRqh42i3xxSsV5aLTqIXS8EzEEFPn+BELGf8Rn8NobSM/gAYCEcvPVHizKv0PGfUTZG4CacBbGExRmnsSUkHBRYQyBasfUdgmkZoAM8OXsNmBc1oJiOrYiObvVLr6Jme9Ws4ySPkZhPIXynZHHAgnPEh3/wgLAUut4LGZKKw1hFlkQzUR1PS89fmbJ81KceVVwYOJxKXqWGo9xKFQQCquGx2uCCYZ4Vi5R5MHDLYGAW/AsEXo1caW6aWdgXTeKxdSiUghI3x+ufKC00hQI6SUkVJYYCQYhROikTEppFOqYS+VIH191rEpUWE8cd30uRHQedHYRD/R1HFcQlHKkVAlmQalELFQT5DVdcF7iMoiySi6MgwldqrUKWKT2sURMEbHorxAWExXj7xPLE6qGWhrL4AxjkLQfEovFJEF+l7Tzc/R9ihyxC79PW/t+FfqLaY8ginuQqe8cCZaMc1L+QfHfG9KxZBxRTJoaf9FXJvG7pJbFFKRSztuJjM/Cz8aGmVThgCDfr362w5k4cSLGYU8sx1IcimMGbL8OK+DAxde//vVd0LvdA6MUGQwGg8EwQliy+XV0Ygs20/qttstTDqvxv1j03O/BufmvfrAYpagfLK+4LlmcwiyK+AxResow5agLhHEz/fybyLpiMqnGK9VWbwvJ10UZHVujxJAsCksq9d9ueyZDhX0p7G/hMeuvTSI+o3g3Wzs2W6WEmlV0yuPLY/EGJWeRVOIzevZfdIALKDXGgmVx1aHI60V/Jh5bojOWtGoQVwxUW8ajmTEJBoAQEAfjBMEInMsN+zHFgLFITdBqZX9OyoVIxUkg3C1nMQ+eAiVBcPWvPhBQ2Z9MFz+LFEwVbxLZXJeo3k6IZRpFsSoJF+pQ5Yz2WXR+B2Irimh/51IeC0qsA6dYe6XmxLPPVJso+yx6rZ2wAYQKn1Z9eMH507XhNGHsmFZiWbR8a4QV5lUzrRbqdXGHel2VPvRQErFadAmnaXWQtGO4VrCVU7WsRaZU5bC+HiuqwwYAQr0WhTXatBooIjUwrh4lMxEp+V4rlbuQ2tpaTMRkLMdS1FIDWPzkxViFZahGHY477rhd28ERjrl9NBgMBoNhBLE0+yZ8eGjFmpLre6kbH2Mlnn/nmV3cs5GPUYr6IVfFYLkFrqalYmVKKAmJ2USM/lSI/hjk5FtuajDKSLjhbdhGYRhF4aykcBZcuLzo88nlJVWeUsu30r4onmJ7tl/qM4XbLTXWApWvsP1W919CBYuWU/KzrOAzBevD+JGCNnGVQcdascR2KRE7ErbT/dQzZ5Cc5TP9MaUAhPFFrEhtAJIKEgsViG2DSlyY8WUi9row2ykR11IQ49LfNhPrqHTbBFv57iXGH2vKSh4f+W/hsYtXd+cFxxNAv4pOoXpX6rPbSuG5iNShguWIVKBCtGqU6AsDwqPDBQAeXr8gWceOWUzGZsYr1IdqEin1R74WWjnUag8iFSmpDCH6rY55GhUpRfG4soL/D4Lctvz47hhSqRT+46F/x//75/PRQC2wWFKK/gfeRSP2wIEHHrjL+zbSMUqRwWAwGAwjjLPPPhsppLEWyxPLO2gzPkUr3vzo5SHq2cjGKEX90NcAWCn1pp8sBL2uOKaEFbcdIP5EUzJrq0S7kn3ZStsdzgCTo8GoTv2qN6XW96PSlPz8QOrPIFWpUuuK21Kyban2JftFJcdL8e0W9rlwn4XtY/tIZuDF9x+foicVAyKGsIaWjouL9VduK6kKlXJPLlRH4suKs5ei1wMpGcWqk3wdnyP3F/cykDLSXxZdf30djmj1JSjxRRAFF31/ik/htuJt4/FBpdrqeCEg9vMWb0vxbcXWUZQFmtgnFfcTDNK3TLflkPXgSG0H0luK1PsicyW1vDDjM5E9GxtAcaxZ1E6/F1kMCZxz/Nfzj+H4Y0/AWJoIl6VCo8bx2Btjx44dmo6NcIxSZDAYDAbDCGTmzJmowWiswjIAwKdoRQ+68P91GqPG7cXcFBkMBoPBMEJ58b3n8DFWooc6sQJLcccvb0dlZeVQd2vEYh6f9UN+jAeeGSiP2mAYnoSPD4ooePSxS3pjMOxkYo+LYw+E+22+I6970bf9let3BPvvvz+aMB6L8RJs2LjggguGtD8jHXNTVACpB+Sib4geFBsMBoNhxKD/r6CiQm+7jrdbX8VeTfvid4//JxzHGbJ+7A4wGsozOQz56KOP0NLSMtTdMBgMBsMIYt26dRg3btxQd8PwGTE3RQUIIfDJJ5+gsrKyX6fQnU1nZydaWlqwbt06VFVVDUkfdhZmbCMTM7aRiRnbzoeI0NXVhebmZlNOYzfAPD4rgHM+bO72q6qqdrsfMo0Z28jEjG1kYsa2c6murh7S/Rt2HOa21mAwGAwGgwHmpshgMBgMBoMBgLkpGpakUilce+21SKVSAzceYZixjUzM2EYmZmwGw7ZhAq0NBoPBYDAYYJQig8FgMBgMBgDmpshgMBgMBoMBgLkpMhgMBoPBYABgbooMBoPBYDAYAJiboiHnxhtvxPTp01FWVoZRo0aVbMMYK/q7++67E22WLl2KGTNmIJPJYOzYsViwYMGQ1uIBBje2tWvX4rTTTkN5eTnq6+sxb9485PP5RJvhOLZCJkyYUHSOfvCDHyTaDGasw5W77roLEydORDqdxtSpU/E///M/Q92lbWL+/PlF56exsTFcT0SYP38+mpubkclkMHPmTLz33ntD2OP+eemll3DaaaehubkZjDH88Y9/TKwfzFhyuRwuvvhi1NfXo7y8HKeffjo++uijXTiK0gw0tjlz5hSdxyOPPDLRZriOzTAyMDdFQ0w+n8dZZ52Fb3/721ttt3DhQrS2toZ/s2fPDtd1dnbihBNOQHNzM9566y38/Oc/x6233orbb799Z3d/qww0tiAIcMopp6Cnpwcvv/wyHn74YfzhD3/AFVdcEbYZrmMrxYIFCxLn6JprrgnXDWasw5VHHnkEl156Ka6++mosWbIExxxzDE4++WSsXbt2qLu2TRxwwAGJ87N06dJw3S233ILbb78dv/jFL/DWW2+hsbERJ5xwArq6uoawx6Xp6enBQQcdhF/84hcl1w9mLJdeeikWLVqEhx9+GC+//DK6u7tx6qmnIgiCXTWMkgw0NgA46aSTEufxiSeeSKwfrmMzjBDIMCxYuHAhVVdXl1wHgBYtWtTvZ++66y6qrq6mbDYbLrvpppuoubmZhBA7uKfbTn9je+KJJ4hzTh9//HG47He/+x2lUinq6OggouE/Ns348ePpZz/7Wb/rBzPW4crhhx9OF110UWLZfvvtRz/4wQ+GqEfbzrXXXksHHXRQyXVCCGpsbKSbb745XJbNZqm6upruvvvuXdTD7aPwt2EwY2lvbyfHcejhhx8O23z88cfEOaennnpql/V9IEr97s2ePZvOOOOMfj8zUsZmGL4YpWiEMHfuXNTX1+Pzn/887r77bgghwnWvvfYaZsyYkTAxmzVrFj755BOsXr16CHo7OF577TVMmTIFzc3N4bJZs2Yhl8th8eLFYZuRMraf/OQnqKurw8EHH4wbb7wx8WhsMGMdjuTzeSxevBgnnnhiYvmJJ56IV199dYh6tX0sX74czc3NmDhxIs455xysXLkSALBq1SqsX78+McZUKoUZM2aMuDEOZiyLFy+G53mJNs3NzZgyZcqIGO8LL7yAMWPGYJ999sEFF1yAjRs3hutG+tgMQ48pCDsCuP7663Hcccchk8ngL3/5C6644gps2rQpfDyzfv16TJgwIfGZhoaGcN3EiRN3dZcHxfr168N+ampqauC6LtavXx+2GQlju+SSS3DooYeipqYGb775Jq666iqsWrUK//7v/w5gcGMdjmzatAlBEBT1vaGhYVj3u5AjjjgCDzzwAPbZZx9s2LABN9xwA6ZPn4733nsvHEepMa5Zs2YourvdDGYs69evh+u6qKmpKWoz3M/pySefjLPOOgvjx4/HqlWr8MMf/hBf/OIXsXjxYqRSqRE9NsPwwChFO4FSQZ2Ff2+//fagt3fNNddg2rRpOPjgg3HFFVdgwYIF+OlPf5powxhLvCcViFy4/LOyo8dWqn9ElFi+q8ZWyLaM9bLLLsOMGTPwuc99Dt/61rdw99134/7778fmzZv7HYcey84ex46g1DkYCf3WnHzyyfjqV7+KAw88EMcffzz+/Oc/AwB+85vfhG1G+hjjbM9YRsJ4zz77bJxyyimYMmUKTjvtNDz55JP48MMPw/PZHyNhbIbhgVGKdgJz587FOeecs9U2herHtnDkkUeis7MTGzZsQENDAxobG4tmQVpSLpwxflZ25NgaGxvxxhtvJJa1tbXB87yw37tybIV8lrHqjJgVK1agrq5uUGMdjtTX18OyrJLnYDj3eyDKy8tx4IEHYvny5TjzzDMBSAWlqakpbDMSx6gz6rY2lsbGRuTzebS1tSUUlY0bN2L69Om7tsOfkaamJowfPx7Lly8HsHuNzTA0GKVoJ1BfX4/99ttvq3/pdHq7t79kyRKk0+kwzX3atGl46aWXEjEszzzzDJqbmz/TzVcpduTYpk2bhnfffRetra2JfqdSKUydOnWXj62QzzLWJUuWAED4H9NgxjoccV0XU6dOxbPPPptY/uyzz47o/2RyuRyWLVuGpqYmTJw4EY2NjYkx5vN5vPjiiyNujIMZy9SpU+E4TqJNa2sr3n333RE33s2bN2PdunXh92x3GpthiBiyEG8DERGtWbOGlixZQtdddx1VVFTQkiVLaMmSJdTV1UVERI8//jjde++9tHTpUlqxYgXdd999VFVVRfPmzQu30d7eTg0NDXTuuefS0qVL6bHHHqOqqiq69dZbh2pYRDTw2HzfpylTptBxxx1Hf/vb3+i5556jcePG0dy5c8NtDNexxXn11Vfp9ttvpyVLltDKlSvpkUceoebmZjr99NPDNoMZ63Dl4YcfJsdx6P7776f333+fLr30UiovL6fVq1cPddcGzRVXXEEvvPACrVy5kl5//XU69dRTqbKyMhzDzTffTNXV1fTYY4/R0qVL6dxzz6Wmpibq7Owc4p4X09XVFX6XAITX3po1a4hocGO56KKLaNy4cfTcc8/R3/72N/riF79IBx10EPm+P1TDIqKtj62rq4uuuOIKevXVV2nVqlX0/PPP07Rp02js2LEjYmyGkYG5KRpiZs+eTQCK/p5//nkiInryySfp4IMPpoqKCiorK6MpU6bQHXfcQZ7nJbbzzjvv0DHHHEOpVIoaGxtp/vz5Q56yPtDYiOSN0ymnnEKZTIZqa2tp7ty5ifR7ouE5tjiLFy+mI444gqqrqymdTtO+++5L1157LfX09CTaDWasw5Vf/vKXNH78eHJdlw499FB68cUXh7pL28TZZ59NTU1N5DgONTc301e+8hV67733wvVCCLr22mupsbGRUqkUfeELX6ClS5cOYY/75/nnny/5vZo9ezYRDW4sfX19NHfuXKqtraVMJkOnnnoqrV27dghGk2RrY+vt7aUTTzyRRo8eTY7j0B577EGzZ88u6vdwHZthZMCIhpk1sMFgMBgMBsMQYGKKDAaDwWAwGGBuigwGg8FgMBgAmJsig8FgMBgMBgDmpshgMBgMBoMBgLkpMhgMBoPBYABgbooMBoPBYDAYAJibIoPBYDAYDAYA5qbIsBsyc+ZMXHrppbvVfufMmRPW6NpeJkyYEBaybW9v77fdr3/967CEjGHHM2fOnPA8/PGPfxzq7hgMhhjmpshg2EE89thjuP7668P3EyZMwB133DF0HSrBggUL0Nraiurq6qHuym7PCy+8UPIG9M4770zUwDMYDMMHe6g7YDDsLtTW1g51FwaksrIyrKQ+1HieB8dxhrobu5zq6mpzU2owDFOMUmTY7Wlra8N5552HmpoalJWV4eSTT8by5cvD9fpx0dNPP43JkyejoqICJ510UmI27/s+5s2bh1GjRqGurg5XXnklZs+enXikFX98NnPmTKxZswaXXXZZ+KgEAObPn4+DDz440b877rgDEyZMCN8HQYDLL7883Nf3v/99FFbjISLccsstmDRpEjKZDA466CD8/ve/367j8+tf/xp77LEHysrK8OUvfxmbN28uavOnP/0JU6dORTqdxqRJk3DdddfB9/1w/f/+7//i6KOPRjqdxv7774/nnnsu8Xho9erVYIzh0UcfxcyZM5FOp/Gf//mfAICFCxdi8uTJSKfT2G+//XDXXXcl9v3xxx/j7LPPRk1NDerq6nDGGWdg9erV4foXXngBhx9+OMrLyzFq1CgcddRRWLNmzaDGPtC4br/9dhx44IEoLy9HS0sLvvOd76C7uztcv2bNGpx22mmoqalBeXk5DjjgADzxxBNYvXo1jj32WABATU0NGGOYM2fOoPpkMBiGDnNTZNjtmTNnDt5++208/vjjeO2110BE+NKXvgTP88I2vb29uPXWW/Hb3/4WL730EtauXYvvfe974fqf/OQnePDBB7Fw4UK88sor6Ozs3Go8yGOPPYZx48aFj6u25XHJbbfdhv/4j//A/fffj5dffhlbtmzBokWLEm2uueYaLFy4EL/61a/w3nvv4bLLLsM3vvENvPjii4M/MADeeOMN/Mu//Au+853v4O9//zuOPfZY3HDDDYk2Tz/9NL7xjW9g3rx5eP/993HPPffg17/+NW688UYAgBACZ555JsrKyvDGG2/g3nvvxdVXX11yf1deeSXmzZuHZcuWYdasWbjvvvtw9dVX48Ybb8SyZcvw4x//GD/84Q/xm9/8BoA8L8ceeywqKirw0ksv4eWXXw5vWvP5PHzfx5lnnokZM2bgnXfewWuvvYYLL7wwvAndGgONCwA45/i3f/s3vPvuu/jNb36Dv/71r/j+978frv/ud7+LXC6Hl156CUuXLsVPfvITVFRUoKWlBX/4wx8AAB988AFaW1tx5513btO5MRgMQ8CQlqM1GHYCM2bMoEsuuYSIiD788EMCQK+88kq4ftOmTZTJZOjRRx8lIqKFCxcSAFqxYkXY5pe//CU1NDSE7xsaGuinP/1p+N73fdpjjz3ojDPOKLlfIqLx48fTz372s0Tfrr32WjrooIMSy372s5/R+PHjw/dNTU108803h+89z6Nx48aF++ru7qZ0Ok2vvvpqYjvnn38+nXvuuf0el1L9Offcc+mkk05KLDv77LOpuro6fH/MMcfQj3/840Sb3/72t9TU1ERERE8++STZtk2tra3h+meffZYA0KJFi4iIaNWqVQSA7rjjjsR2Wlpa6KGHHkosu/7662natGlERHT//ffTvvvuS0KIcH0ul6NMJkNPP/00bd68mQDQCy+80O+4+2OgcZXi0Ucfpbq6uvD9gQceSPPnzy/ZVld8b2trK7k+fnwMBsPwwMQUGXZrli1bBtu2ccQRR4TL6urqsO+++2LZsmXhsrKyMuy5557h+6amJmzcuBEA0NHRgQ0bNuDwww8P11uWhalTp0IIsUP729HRgdbWVkybNi1cZts2DjvssPAR2vvvv49sNosTTjgh8dl8Po9DDjlkm/a3bNkyfPnLX04smzZtGp566qnw/eLFi/HWW28lFJQgCJDNZtHb24sPPvgALS0tiVil+LGKc9hhh4WvP/30U6xbtw7nn38+LrjggnC57/thzM3ixYuxYsUKVFZWJraTzWbxj3/8AyeeeCLmzJmDWbNm4YQTTsDxxx+Pr33ta2hqahpw7AONq6ysDM8//zx+/OMf4/3330dnZyd830c2m0VPTw/Ky8sxb948fPvb38YzzzyD448/Hl/96lfxuc99bsB9GwyG4Ym5KTLs1lBBLE58efwRS2HAL2Os6LOFj2T62/bW4JwXfS7+GG8w6BuxP//5zxg7dmxiXSqV2qZtDWYMQghcd911+MpXvlK0Lp1OFx3LrVFeXp7YLgDcd999iZtWQN506jZTp07Fgw8+WLSt0aNHA5AxSfPmzcNTTz2FRx55BNdccw2effZZHHnkkZ9pXGvWrMGXvvQlXHTRRbj++utRW1uLl19+Geeff354zr71rW9h1qxZ+POf/4xnnnkGN910E2677TZcfPHFgzoeBoNheGFuigy7Nfvvvz9838cbb7yB6dOnAwA2b96MDz/8EJMnTx7UNqqrq9HQ0IA333wTxxxzDACpKCxZsqQoaDqO67oIgiCxbPTo0Vi/fn3iRuLvf/97Yl9NTU14/fXX8YUvfAGAVE4WL16MQw89NBxTKpXC2rVrMWPGjEGNoT/2339/vP7664llhe8PPfRQfPDBB9hrr71KbmO//fbD2rVrsWHDBjQ0NAAA3nrrrQH33dDQgLFjx2LlypX4+te/XrLNoYceikceeQRjxoxBVVVVv9s65JBDcMghh+Cqq67CtGnT8NBDDw14UzTQuN5++234vo/bbrsNnMvwy0cffbSoXUtLCy666CJcdNFFuOqqq3Dffffh4osvhuu6AFB0DRgMhuGLuSky7NbsvffeOOOMM3DBBRfgnnvuQWVlJX7wgx9g7NixOOOMMwa9nYsvvhg33XQT9tprL+y33374+c9/jra2tq0qJBMmTMBLL72Ec845B6lUCvX19Zg5cyY+/fRT3HLLLfinf/onPPXUU3jyyScT/+FfcskluPnmm7H33ntj8uTJuP322xNeN5WVlfje976Hyy67DEIIHH300ejs7MSrr76KiooKzJ49e9DjmjdvHqZPn45bbrkFZ555Jp555pnEozMA+NGPfoRTTz0VLS0tOOuss8A5xzvvvIOlS5fihhtuwAknnIA999wTs2fPxi233IKurq4w0HogBWn+/PmYN28eqqqqcPLJJyOXy+Htt99GW1sbLr/8cnz961/HT3/6U5xxxhlYsGABxo0bh7Vr1+Kxxx7Dv/7rv8LzPNx77704/fTT0dzcjA8++AAffvghzjvvvAHHPtC49txzT/i+j5///Oc47bTT8Morr+Duu+9ObOPSSy/FySefjH322QdtbW3461//Gt5sjx8/Howx/Pd//ze+9KUvIZPJoKKiYtDnxmAwDAFDFs1kMOwkCgOet2zZQt/85jepurqaMpkMzZo1iz788MNw/cKFCxOBxUREixYtovjXw/M8mjt3LlVVVVFNTQ1deeWVdNZZZ9E555zT735fe+01+tznPkepVCqxrV/96lfU0tJC5eXldN5559GNN96YCLT2PI8uueQSqqqqolGjRtHll19O5513XiKoWwhBd955J+27777kOA6NHj2aZs2aRS+++GK/x6VUoDWRDGYeN24cZTIZOu200+jWW28tOh5PPfUUTZ8+nTKZDFVVVdHhhx9O9957b7h+2bJldNRRR5HrurTffvvRn/70JwJATz31FBFFgdZLliwp2v+DDz5IBx98MLmuSzU1NfSFL3yBHnvssXB9a2srnXfeeVRfX0+pVIomTZpEF1xwAXV0dND69evpzDPPpKamJnJdl8aPH08/+tGPKAiCfo/Dtozr9ttvp6ampvC6eeCBBxLB03PnzqU999yTUqkUjR49mr75zW/Spk2bws8vWLCAGhsbiTFGs2fPTuwbJtDaYBh2MKLtCIwwGP6PI4TA5MmT8bWvfS3hYj2cmTBhAi699NJdUgLllVdewdFHH40VK1YkAtgNEYwxLFq06DOXbzEYDDsO41NkMAyCNWvW4L777sOHH36IpUuX4tvf/jZWrVqFf/7nfx7qrm0TV155JSoqKtDR0bFDt7to0SI8++yzWL16NZ577jlceOGFOOqoo8wNUQkuuugi8xjNYBimGKXIYBgE69atwznnnIN3330XRIQpU6bg5ptvDoOhRwJr1qwJs6YmTZoUBg/vCB544AFcf/31WLduHerr63H88cfjtttuQ11d3Q7bx7ZywAEH9Otsfc899/Qb3L2z2bhxIzo7OwFI64d4Rp7BYBhazE2RwWDYLYnfBBbS0NBQ5H1kMBgM5qbIYDAYDAaDASamyGAwGAwGgwGAuSkyGAwGg8FgAGBuigwGg8FgMBgAmJsig8FgMBgMBgDmpshgMBgMBoMBgLkpMhgMBoPBYABgbooMBoPBYDAYAJibIoPBYDAYDAYAwP8P4omD6EQq2BUAAAAASUVORK5CYII=", "text/plain": [ "
    " ] @@ -815,7 +823,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 11, "id": "eb6e51c0-eec8-4172-9369-c999a97a6c08", "metadata": { "editable": true, @@ -828,16 +836,16 @@ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 8, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABOcAAAK7CAYAAAC5/usHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9ebxlRXnu/7xVtfZwzum5gWYSMAIK6NXgPFwwXtSIRsUhahyiMdFgJGhEISTQkIAMiT+MU+I1UQxO1zk30YjikCjO8UbFOEREEMEGuuk+5+xprar390dVrVVrD2dous/ppt/v57PP3mcNVbVq1ar1rr3reYqYmSEIgiAIgiAIgiAIgiAIwoqjVrsAgiAIgiAIgiAIgiAIgnCgIl/OCYIgCIIgCIIgCIIgCMIqIV/OCYIgCIIgCIIgCIIgCMIqIV/OCYIgCIIgCIIgCIIgCMIqIV/OCYIgCIIgCIIgCIIgCMIqIV/OCYIgCIIgCIIgCIIgCMIqIV/OCYIgCIIgCIIgCIIgCMIqIV/OCYIgCIIgCIIgCIIgCMIqIV/OCYIgCIIgCIIgCIIgCMIqIV/OHWBcf/312Lp1K+6+++6RdaeeeipOPfXUFS/TSvDjH/8Yr3vd63DyySdj/fr12LhxIx7zmMfgIx/5yNjtt23bht/93d/F5s2bMTU1hUc96lG47rrratvs2rULl1xyCU499VRs2bIFMzMzeOADH4jLL78cvV5vJM08z3HRRRfh6KOPRrPZxP3vf3+85S1vWdZxLKVcAPDP//zPePGLX4wHPvCByLIMRLSsfADgqquuwhlnnIFjjjkGRLRo2/jkJz+JU045BWvXrsX09DROPPFEvPOd7wQAbN26FUS06CvmccMNN+DMM8/Eox71KExPT4OI8MUvfnFsvu9973vxvOc9D8cffzyUUjj66KOXdZyTytZqtUa2nZ2dxVlnnYXDDz8czWYTxx13HK644gpYa/e5vCbV8WWXXTay7VLbFQB87nOfw6Me9ShMTU1h8+bN+N3f/V1s27ZtZLvltPcbb7wRZ5xxBtavX4+ZmRmcdtpp+I//+I+x237wgx/Egx/8YLRaLRx22GE4++yzMTc3t6Q6EQRBuLcjcZ7EeUtF4jyJ88YhcZ4grCIsHFBceeWVDIB/9rOfjay74YYb+IYbblj5Qq0Ab3nLW/j+978/X3LJJXzttdfypz71KX7JS17CAPiiiy6qbdvr9fikk07iI444gq+55hq+9tpr+elPfzobY/iLX/xiud33vvc93rx5M7/mNa/hT37yk3zdddfx1q1budVq8ROe8AR2ztXSffnLX87NZpOvuOIK/sIXvsDnnnsuExFfcsklSzqGpZaLmfllL3sZH3vssfzc5z6XTz75ZN6dS/3444/nX//1X+eXvexlfNBBB/Epp5wycds3vvGNrJTiM888kz/96U/z5z73OX7rW9/Kb3nLW5iZ+ZZbbuGvfvWr5etjH/sYA+BXv/rVteWx/b3nPe/hQw89lJ/ylKfw0572NAbAX/jCF8bm/b/+1//ik046iV/4whfy/e53Pz7qqKOWdZwXXnghA+B//dd/rZXl61//em27PM/5EY94BG/YsIHf+ta38rXXXsuvfe1rmYj41a9+9T6XFwB+9rOfXcvnq1/9Kt9666217ZbTrr74xS+yMYaf/vSn87XXXsvXXHMNH3744XzSSSdxr9erbbvU9r5t2zY+7LDD+MQTT+SPfvSj/C//8i/82Mc+ltesWcM//OEPa9tec801DIBf/vKX8+c//3n+27/9W163bh2fdtppS6oTQRCEezsS50mct1QkzpM4T+I8Qdi3kC/nDjAWCtruzdxxxx0jQRQz8+mnn85TU1O1G87b3vY2BsDXX399uSzPcz7hhBP44Q9/eLlsbm6O5+bmRtKMdfzv//7v5bLvf//7TER86aWX1rb9/d//fW6323zXXXctegxLLRczs7W2/PyqV71qt4K2NI0TTzxxYtD2rW99i5VSfPnlly857Z/97GcMgK+88spF8/7whz+8YNCWbnv66afvdtB2xx13LLjdBz7wAQbAH/3oR2vL/+AP/oCVUiMBxmrnBYBf9apXLbrdctrVwx72MD7hhBM4z/Ny2Ve+8hUGwG9/+9vLZctp7+eccw5nWcY33XRTuWznzp28efNmfu5zn1suK4qCDz30UH7iE59YS/N973sfA+BPfepTix6rIAjCvR2J8+pInDcZifPqSJwncZ4grDYiaz2A2Lp1K8455xwAKIewp8PIh+UON910E4gIV155JS6//HIcffTRaLfbOPXUU/HjH/8YeZ7j3HPPxWGHHYZ169bhmc985thhzx/60IfKYeszMzN40pOehO985zsrccglmzdvHjvk/+EPfzg6nQ62b99eLvv4xz+O448/Ho961KPKZcYYvPCFL8Q3vvEN3HrrrQCA6elpTE9Pj00TAG655ZZy2Sc+8QkwM1760pfWtn3pS1+KbreLf/3Xf130GJZaLgBQ6p5f2ktN461vfSuazSZe/epX3+M8l5v3cre9J3zlK18BEeE3f/M3a8uf+tSnwjmHj3/84/tlXkttV7feeiu++c1v4kUvehGMMeW2j370o3HcccfVyrSc9v7xj38cv/Ebv4GjjjqqXLZ27VqcccYZ+L//9/+iKAoAwNe+9jXcdtttI2k+5znPwczMzB6tE0EQhP0RifMkzlsOEufVkThP4jxBWG3ky7kDiJe//OXljfVjH/sYvvrVr+KrX/0qfv3Xf33B/d72trfhK1/5Ct72trfhXe96F374wx/iaU97Gn7v934Pd9xxB/7hH/4BV1xxBT73uc/h5S9/eW3fSy+9FM9//vNxwgkn4P/8n/+Df/zHf8Ts7Cwe97jH4Qc/+MGiZS6KYkkvZt6tOvnCF76Agw46CAcffHC57Pvf/z4e9KAHjWwbl91www0Lpvn5z38eAHDiiSfW0jzooIOwZcuWsWl+//vfX7Ss97Rce4t/+7d/wwMe8AB89KMfxfHHHw+tNY444gice+65GAwGq1KmSSzkqfLABz4QWmsccsghePGLX4ybb765tn4wGEAphSzLasubzSYA4Lvf/e6q5TWJ97///Wi322g2mzj55JPx7ne/e2Sbpbar2EYnbZu24aW29263i5/+9KcT0+x2u7jxxhsXzD/LMtz//vdf0jUkCIJwb0bivFEkzrvnSJwncZ7EeYKwMpjFNxHuLRxxxBG4z33uAwB4yEMesmRD1fXr1+MTn/hE+cvVnXfeibPPPhv3v//98clPfrLc7oc//CGuuuoq7Nq1C2vXrsUtt9yCCy+8EH/0R3+Ev/mbvym3O+2003Dsscfioosuwoc+9KGJ+d5000045phjllTGL3zhC8s2OX7Xu96FL37xi3jzm98MrXW5/K677sLGjRtHto/L7rrrrolpfve738UVV1yBZz7zmbWby6Q0p6en0Wg0FkxzT5Rrb3LrrbfijjvuwFlnnYW/+Iu/wAknnIDrrrsOl112GW655Ra8733vW5VyjUNrXTvXAPBrv/ZruOSSS/CQhzwErVYL3/jGN3DFFVfg2muvxbe//W0cfvjhAIATTjgB1lp87Wtfw2Mf+9hy/y9/+csARut/JfMaxwte8AKcfvrpOPLII7Ft2zb8/d//PV72spfhxhtvxF/8xV+U2y21XcX3SdumZVpqe9+xYweYeY/kf9NNN42pBUEQhAMHifPqSJy3Z5A4T+I8ifMEYWWQL+eERXnKU55SG1L+gAc8AABw+umn17aLy2+++WacdNJJ+MxnPoOiKPDiF7+4HLIMAK1WC6eccgq+8IUvLJjvYYcdhm9+85tLKuPxxx+/pO0in/70p/GqV70Kz372s8cO019o1qtJ62666SY89alPxZFHHol3vetdu5UmM4/M0pQOLd+dci1Eel4AH2gsNx3nHGZnZ/GBD3wAz3ve8wAAj3/84zE/P4+rrroKF110Ee53v/stu2x7g+HjBYAXvehFtf8f//jH4/GPfzwe9ahH4YorrsCb3/xmAMDv/M7v4OKLL8Yf/MEf4N3vfjeOP/54fPrTny4fSIZlFyuZ1ziGg+VnPetZeNrTnobLLrsMZ511Fg466KBy3XLa1aRtl7rd3tp2d9q/IAiCIHHeUtdJnCdx3mrlNQ6J8wTh3ofIWoVFGf4Fo9FoLLg8Ti//q1/9CgDwsIc9DFmW1V4f+tCHcOeddy6Yb6PRwIMf/OAlvWZmZpZ8PJ/5zGdwxhln4LTTTsP73ve+kc5+06ZNY3+xin4l437R+fnPf47HP/7xMMbguuuuG9lmUprz8/MYDAbl9ldfffVIXd2Tci3GcF5XX331stPYtGkTAOBJT3pSbXn00Zg0Vfq+zMMf/nAcd9xx+NrXvlYu27x5c+mh8chHPhIbNmzAq1/9arzpTW8CgPLX0H05rxe+8IUoigLf+ta3ymVLbVfxPE/aNm1/S23vGzZsABHt8fwFQRCEpSNxnkfivPFInCdxnsR5grAyyMg5Ya+xefNmAMBHPvKRmgnoUtkbcofPfOYzeMYznoFTTjkFH/3oR8tAM+WBD3wgvve9740sj8tOOumk2vKf//znOPXUU8HM+OIXv4gjjjhibJof/OAHcfvtt9f8GYbTfNrTnjbxV+TllmspDOe11PpOedCDHoTbb799ZHn0h1kpI989DTOPlP1hD3sYfvCDH+Cmm27C/Pw8jj32WHz7298GAPzP//k/9/m8xp2Tpbar+P69730PT3nKU0a2TdvfUtt7u93G/e53v4n5t9tt3Pe+9y3TjMtPOOGEcruiKPDDH/4Qz3/+85dUB4IgCMKeQeK8epoS5+1fSJwncZ4g7Gvsn72psNtEo9Fut7vX83rSk54EYwx++tOf4qEPfejY10JEucNSXieffPKi5bn22mvxjGc8A4997GPxiU98oqyLYZ75zGfihz/8Ib7+9a+Xy4qiwDXXXINHPOIROOyww8rlN998M0499VRYa/H5z39+YnD69Kc/HUQ08ovle97zHrTbbTz5yU8G4H81mlRHyynXUhnOK/5qtRye9axnAfASkpRPfepTUErhYQ972LLTXG2+9rWv4Sc/+Qke+chHjl1/9NFH48QTT0SWZfjrv/5rHHbYYXjOc56zz+f1j//4j8iyrHa9LLVdHX744Xj4wx+Oa665pibJ+drXvoYf/ehHOOOMM8plS23vMf/Pf/7ztVnvZmdn8bGPfQy/9Vu/Vcp9HvGIR+DQQw/Fe97znlqaH/nIRzA3N1fLXxAE4UBF4jyJ81IkzhuPxHkS5wnCvoiMnDvAiL9KvPnNb8ZLXvISZFmG448/HmvWrNnjeR199NG4+OKLcf755+PGG2/Ek5/8ZGzYsAG/+tWv8I1vfAPT09O46KKLJu7faDQWDeyWype//GU84xnPwJYtW/Cnf/qn+H//7//V1p9wwglYu3YtAOBlL3sZ3va2t+E5z3kOLrvsMhx88MF4+9vfjh/96Ef43Oc+V+6zbds2PP7xj8dtt92Gv//7v8e2bduwbdu2cv0RRxxR/rp64okn4vd+7/dw4YUXQmuNhz3sYbj22mvxzne+E3/5l3+5pKHaSy0X4H/ljb+W/vSnPwXgb26APy9Lqddvfetbpfnqrl27wMxlGg972MPKAPWlL30p/u7v/g5nnnkm7rzzTpxwwgn43Oc+h7e97W0488wzd+vX9E6ng0996lMAUMoAvvSlL+HOO+/E9PR0ber5H/zgB+WMcLfffjs6nU5ZzhNOOKH265sxBqeccgquu+66ctn/+B//Ay984QvxgAc8oDTvvfLKK7Flyxa8/vWvr5Xr/PPPxwMf+EAceuihuPnmm/EP//AP+PrXv45/+Zd/Qbvdrm27Unl96UtfwhOe8ARccMEFuOCCCwAAV155JX7wgx/gCU94Ao444ojSKPjaa6/F1q1by9EOwPLa1eWXX47TTjsNz3nOc3DmmWdi27ZtOPfcc3HSSSfhpS99abndctr76173OvzjP/4jTj/9dFx88cVoNpu47LLL0Ov1sHXr1nI7rTWuuOIKvOhFL8IrXvEKPP/5z8dPfvITvP71r8dpp51WCwQFQRAOVCTOkzhP4jyJ8yTOE4T9FBYOOM477zw+7LDDWCnFAPgLX/gCMzOfcsopfMopp5Tb/exnP2MAfOWVV9b2/8IXvsAA+MMf/nBt+bvf/W4GwN/85jdryz/xiU/w4x//eF67di03m00+6qij+NnPfjZ/7nOf2yvHN44LL7yQAUx8xTqI3H777fziF7+YN27cyK1Wix/5yEfyZz/72do2sR4mvS688MLa9oPBgC+88EK+z33uw41Gg4877jj+m7/5m2Udx1LKxVydi3Gvl7zkJUvK6yUvecnENN797nfXtr3rrrv4Fa94BR9yyCGcZRkfd9xxfOWVV7K1dmzak9rW8Ppxr6OOOqq27ULndvgcAKi1cWbm5z3veXy/+92Pp6enOcsyPuqoo/iVr3wl//KXvxwp1x/+4R+W52/z5s38rGc9i7/73e+OPYaVyiu2w/RY/+mf/okf+9jH8kEHHcTGGF6zZg0/7nGP4w984ANjy7rUdsXMfO211/IjH/lIbrVavHHjRn7xi1/Mv/rVr0a2W057/+///m9+xjOewWvXruWpqSl+whOewN/+9rfHbvv+97+fH/SgB3Gj0eAtW7bwWWedxbOzs2O3FQRBOBCROE/ivKUgcZ7EeeOQOE8QVg9iDuJ0QRAEQRAEQRAEQRAEQRBWFPGcEwRBEARBEARBEARBEIRVQr6cEwRBEARBEARBEARBEIRVQr6cEwRBEARBEARBEARBEIRVQr6cEwRBEARBEARBEARBEIRVQr6cEwRBEARBEARBEARBEIRVQr6cEwRBEARBEARBEARBEIRVwqx2AfY1nHP45S9/iTVr1oCIVrs4giAIggBmxuzsLA477DAotW/+rvaVr3wFV13+ZFz9wV9hampqtYsjCGOROE8QBEHY19gf4rwbbrgB57/uEfjf7/0ZDjrooNUuzr0SYmZe7ULsS/ziF7/AkUceudrFEARBEIQRbrnlFhxxxBGrXYwRnHN4+EOmcMOPBzj/jzfizy67c7WLJAhjkThPEARB2FfZV+M8APjNJ0zji9d38fLfWYu3vOvu1S7OvRIZOTfEmjVrAABHn3MBVLO1dzPbT74Wpf2knML+C+9Lgxf2pbIIQsD1e7jpyovLe9S+xgc/+EFsu9PiY/9wKH77D27HH7x2Gw4++ODVLpYgjBCvoV971QXQuxHn7Ssx0YrcN/dEHnupnPtK3LBH2sPupLHMfXarnLt7bPvINbJi3NO2uAfa8h6/HvaR62ufYy+2bdvv4adv23fjvOuuuw5f/VYP//qBw/Hk59+Ks97wExx77LGrXax7HfLl3BBR4qCaLeiWfDkH7DuBqHDvZV8JsgFIQCLs0+yLMrxer4c/fcNLcPEbNuFJj5/GqY9pY+sbjsPb3333ahdNEEaI15ButuTLucWQL+cWRb6c24P77a/Il3MHDivQtvfFOM85h3POPh3nnbUBj3tkGy969hqc+5pfx0f/eXa1i3avQ76cmwRh73dMw+nv6Qv+Hqa3ogHoSgQZu5nXiqW/N9vbMtJe1g1+D5V5+HzuVpCxDz9EjGNfebC4p+wrD6r3evbh9vLWy47E+nUKL3y2/7X3svM34+Qn3ow/PvdHOP7441e5dIIwHtcAqLGMHXajr1vJ/nFJ95RJ20xYPjbNRfKp7bOE/UfyGLPPxGNbqCx7s/KXUtljsp9YpKVuO7xsOXns7n5LKcdS8l6kXMs+Xffk9C7zfrrg6d4T186eavNLYF+MPfeJOHIPleGeHIvbF+phAu9///tx1w6LV//eegDA1nM24bhH3YTrr78ej370o1e3cPcy9k23QUEQBEEQ9nm2b9+OS67ajsv/fDOU8lH//Y9t4MXPWYNzX3PyKpdOEARBEARB2F16vR7OP/eluPgNm9Bq+a+Othxs8Cd/uAHnnP0EyPQFexb5ck4QBEEQhN3iL//01/Dwh7Rw2inTteUXvm4TPvdvHXz5y19epZIJgiAIgiAI94Q3X3IENm3Q+J1n1b3w/uQPN+DGn+f4+Mc/vkolu3cistZJKID31leXk75gXsJQ4yUPl+VF0tsbX3IvZ5j7nh7aP2m7Zea1YDqLpbeSLHBulzSUfoEh9DRhu0XTXeqw/CW2892REez2dkPstWH/+6CcYFmMaft7oq5WW9KwV2UeeyrtffCntJ/97Gd4x9U78dV/GZ35csvBBq87cwPOOfs0XP/Nzj7poSIc2LgGgGZ92T2+/+9uXLECLPceXm5PY/Yv1/EC6xbaL102Jo0xZRyVv44LBCeksVwmxo1UbjCS/QLneHTbNLhaOJ17GkMvxD2ziFlM37zMfJcS1+8pie1usjvx9UIy74nrksIvOY5ejrx2mSxbrrykcznuoWEP5b+f4txql2CUu+66C2/8mx348LsOLdURkZlphQtftwnnnvM8PO1p88iybJVKee9iHwz3BUEQBEHY1znvtQ/C856xBg86oTl2/WtfuQE//0WOj3zkIytcMkEQBEEQBOGecPG598OjHtrCEx43NXb9y56/FkYT/vbKw1e4ZPde5Ms5QRAEQRCWxTe/+U3838/M46JzNk7cZnpKYes5m3De638Hg8FgBUsnCIIgCIIg7C4//elP8c5rduLyP988cRtjCJf9+SZc/NfbsXPnzhUs3b0X+XJOEARBEIQlw8w4549PwR///noccdjCMobf/e21aDUJ77jiiBUqnSAIgiAIgnBPOO+1D8YLzliDk+4/Xh0ROf1/TePE4xu4/IJjVqhk927Ec24CvDc856Iufhn6/2Gd/YhEfwH/ugU92BZIZ7nTsJfbT/CGmOQZUVvO92zd2DLEdbtR5oXKPXH9hO12i6V6R0zyhBvj6zLiHzNm23FpMI2mV0tryb4yE9IYcyxAvX4XbPdL9Va8B9fdUliSr8dC6e4hr5zd8RdZ8vFOSns36muf9WBaiCVuv1seL4vZ9+xDP6X98z//M37w4wE+cfWhi25rDOGNf7YZLz3rdrzkj+7G+vXr934BBWEJuAYDjQU6okX6qMkxwNK8lJbjWbZgfkssgk9kgW0neLqNXT8uFhjOYyEvuQW9tyYZT41fXE9o0vL6zhNjwHT9OF84nhxvVsvrQda47cfGuFhg2XLqcFwsl56LJG5zw/HdBA/BkfMzsc2MKediLBDvx4wnna/aeWKM1vFCdT/cMJca40/Y3e80/P8E77jl+DIu5j83Ie/lxiEL+QCOWzW2Hhd4XuPhcxFW1tKh0cyW2k/ukf4R2K3nr8UKsei5iNej2wcC48DXv/51/Mtn5/HDrxy96LZEhCsu2IzHn/ELnHnOL3DEEfJj7D1hHwr3BUEQBEHYlymKAq9/7bNwwZ9sxNo1ekn7POUJU3jQCU288c/vu5dLJwiCIAiCIOwuzIzXnXUqXvOKDTj80KWN43rog1v4rSdP489ed8JeLt29H/lyThAEQRCEJfG/33Q4HAO//8J1S96HiHD5n2/GW951N26++ea9WDpBEARBEARhd/nkJz+JH9+Y45xXbVjWfpectxn/55Nz+M///M+9VLIDA5G1ToJ4eWNkl5TmMrYNY2AnDoWdIJEdkQKOGx6c7pOms9jhLjJcfHjYebnNuP24nkZt+VB+5OrbT9yvtpzHb4tJaQwPr07yHi7P2KHfkytvUjNafJhztcFYuamq/19uRzQqYQ3SheF3v46qZWqMNIJCXjS0LqYf1k+Uuo6TWqTLUd9m5Hgxpt2m7CujwJd6fe/GcPrIUobGr5hcdIn53OPy7AUp8FIlBnt63/p2y6yYfUAHPDc3h4v+6i687bKDkWXLq/yT/0cLz3zKDM7/k5Pwjx/etZdKKAhLp7QvWW4/sqjUa8yacYuWIqNLOpyR1cvpEha874wmtKiEK9yTF5aH0visF5CpUQwshqRyI/Fbut+YZbX/x+0/Jm4cG2fG9CbtO2m/4e1RxaX1Y12Y0VguiddibIbqc/kK8RwQlxFYh8+62o+V385pgDUDKmSkAVY+IPfLASgO+zAo/h+ksERVRVHYjhKZbHnMxOCxsm+qyR7LbRhgR+AYdIb/4zowhWcEAsKzQkwvxu/ECPpdlGkgxP0j8mUMn7PRoo5Y5oz8UxbBrxgnAU4kq1HNOTYOpvCB4ipO0h5Trt2MicYyoX2OlW+Pa9cTl9Pk7TFU55M+jyvPAow8U4x8SP6P/fvQ+aJxy8cUZMG+c2I7CZ/3gSFTeZ7jDa97Li543UasmVlegY4+MsMf/u46nPPHj8a1X5zfSyW897MPNANBEARBEPZ1rtx6FO53dIZn/Ob0bu3/l+duwkf/eQ7f+c539nDJBEEQBEEQhHvCO990OAjAy1+wbrf2P++sjfjm/+vh2muv3bMFO4CQL+cEQRAEQViQ2267DX/9jh24/ILNINq9n+ePOjLDq162Huec/RjwAqONBUEQBEEQhJVjdnYWF//VdrzxzzYvWx0R2bhB4/yzN+L1r30arLV7uIQHBvLlnCAIgiAIC3LBOffHk39jGo96aPsepXPuqzfgP77bx2c+85k9VDJBEARBEAThnnD5BUfjuPtm+K0n7Z46IvKql67Dzl0O733b4XuoZAcW4jk3AaYFdOUrwbBPw/Agg5pv3JA3GY/fDMmqMj1KVizkOzfspTG0bKLPRuLLEb3j4jLvA1GVp/SWc8m2AMhxuYxc3DZ4Wti4bdyGy7yIAViuto/pWa68P0rPCU7KyKGM0WBgqFIcRqChbXgpI0uGvxof2qdMY8S/gBKfERryRYh+JBT84/xK76sTttX+vfIcCfsoKv1I4vK4XfVK0gu+JsO+PaU/HTDRw27EW26MJ8eSr78Vuk4XK8+Cp3wRn4lJ2wxvu5jHyT32rJvAbtmd7SMDoyb7g+yZ7f26pR3sPbmnrOb96IYbbsA1H53Ff37+Pvc4rQ3rNf7s7I045zVPx2mndaD10mZ8FYS9xh7sqxbrP2pdxdC24weT8tiPI8nv4f52JL0x3lwj3r/pfjGmG96ujOFQi/8wEuOFfdPl8WWTOG8oLqQwUKOMB+PyNA4NMWUV/4V1y4kNmZPyM+BcODauTmSyXbXPUFyZbj/2RFD1AgBFYKUATYBSYB1iMq3BRoENgbWCyxScCesygjP+ZRsEZwAXRsW4LLwM/DYZyuVs/LZsGC7jMjYkTWDjSk85UgylQz0pBxW86FTwoqNFGicz+Vf87Cr/OXYK7Ngvcz54jFXB5bNG8Jtzoz5zsZ1R4jlXPh/E97Ig459d4rrylIw5nLHX/bB33PAyoDyvtW3CdjWPaCTbp95mY/zMlhwvjhzEmENYgv9bfRuqrR+3/9i+ZaE09wDD6ZV1Gp99Mfo/8fjtyuUjz9H+3Ez0fh/3jE31sq2mtfCtt96K/+/vduBzHzlit9URkWZT4S/P24xz//JOPO/3u2i379mPugcaMnJOEARBEISJvOE1j8Dv/8463O+Yxh5J7w9/dx3mOw7v/pvD9kh6giAIgiAIwu5xwetPwOmnTeMRv97aI+n99tNnsOUgjf/vL47cI+kdSMiXc4IgCIIgjOWLX/wi/v1rXfzZazbusTSbTYVL/nQzLrziLnQ6nT2WriAIgiAIgrB0vv/97+P9H5vFpX+6eY+lqRTh8gs24/K37sAdd9yxx9I9EBBZ695iD0uQRoZM16QRnL6hnHobQ0Nyk2KN2X2BzMcPQx6WtNYkDENDx2M+w/KEcp0DlA3SVOtlCKoI68JyZRlUMMgyVJQ1WP8/FQ5kXSl3QOFAzlXv1nnZAQBYW/3P7P+PY+gdg9l56cGInDXRs6qh77UTyYF/U7X/S1lCul8qVRjav7YMAGgoP0Vjtol5+PcobS3XKeWX6UQWgSBf1RTeU5lEkLkav85pJOtQLZskeY2S1mG5aypzxRBLvW4Wa7NLlHxOkpYOT6G+UDpL3XZkKvfF8lrs81KlFWPyHMtuDKe/p0PwlyTV3N1zudTtJsrQxh/cbpf5nrIKslbnHF73x0/Gua/egM2b9qz89Lm/NYOr/m4H3nTxffBnl925R9MWhKVAFqUMcvGN9/B2e3jfYUuTBbNZaLulSlcXiP+URSVHTepYJf+rAmW8pgpAFQyVh/eCofK4zoFyB5X7d8otKJiMU26BwgJ57t+LAlyEwNE6cJ77d2sB9gXkPWBQPkmVty8QQy6tNajZ9MtaTVCrBbSa4GYD3DJwLa9ftS0D21SwLQXbIhRNf/5tk2AbgGvAS2GDHBbwy1ymwIbBmsGGUURZq2ZAeakrCF7SOhSulqF1KV31stYoT2VHQJChkgNgqZSokqPqucH6/6vnhirNiTY5qZx1nHQ1lRguUtcT49cR6erCstVx60fW1fIYer6bVODl9CdLeA5cCvckJuTh4180s+Wv2+04cUl5jh78JFnw8LN5yRjbpJXgnD9+BF7xonW471HZHk331EdP4XGPbOPi847FW9519x5N+96MjJwTBEEQBGGED37wg9h2p8VZL1+/x9MmIlxxwUG44m07sG3btj2eviAIgiAIgjCZ6667Dl/7dg/nn73n1BEpl52/Ce963y785Cc/2Svp3xuRL+cEQRAEQajR6/Xwp294CS5+wya023snVHjcI9t4/GPa2PqG4/ZK+oIgCIIgCMIozjmcc/bpOO+sjdi0ce9MznXC8U286NlrcO5rfn2vpH9vRL6cEwRBEAShxlsvOxLr1ym88Nlr9mo+bzx/M979wV340Y9+tFfzEQRBEARBEDzvf//7cdcOiz962bq9ms/WczbhM1+Yx/XXX79X87m3IJ5zkxj2BxhmnK5+JTxJ0jTGTQ1destxsrDanuO0zcN697hv4gOWetgxluclQImnBCXLaMiHpPKO8z4lZL3XiLLeewRA8BvhxHvEeq8RAMgtKC+850heAMFvhAc5eDAAigI2L0q/kVWHFEj7XydI69Ifzn8e8qNL/Odo2HNuMRQFa4rE7EMpPz22UoBWQCgHlAKM9n5yWoONz4uN8h50xvvQOZP40ZnKg85p8h50ITlO/OaizxwA73c3zmctrZ5J07YDoNQDcMx05ClMVbtPfT9qy4bf4zbp8uE8xqRHGJ9HvTw1q5Dx2ybXb3ktU30TICnTmDpcin/kokzYZk95idTSXMo+w1PdT/IlWcJy/z+P324phVoF37fVMDTavn07LrlqOz74d1ug1N496Psf28BLnrsW577mZHz8U3N7NS9BSPF+VbvZvsd0iCO+b/fEA2psnjGj3dh1SX3/wn5zaVwX/4/ewSqEZDG2K2O6AqV/sMoZOg/vA/8CANV30H0L1S+gegWonwPdnt+p1wd3e3DdHrjI9yl/t30ZthYcJ9sZM+mOavoZGc3MNNBuAdNtuKkGXNvPyF1MGdiWQpF40bkwWbdtAM4QXEZwGcAmxHqIfsQAiEd91mKbYar5FNa8qG31DqBqW857FkYvw3K/EQ+5BeLElDQuTZbVyjwU7w1/pnHrUHnqURJHjnlkqy1Ln8tGntMm9CMj3clIzDx+/aTl49JYkMXir7F+eQssn5DucHw92ae5Xvjd8o3bHRaps3F9b9WX1guz2/ej3aDX6+H8c1+Kvzh3E1qtvTtWa8vBBn/yhxtwztlPwJe/3vHPosJEZOScIAiCIAglf/mnv4aHP6SF006ZXpH8LnzdRnzu3zr48pe/vCL5CYIgCIIgHKi8+ZIjsHmjxgvO2LvqiMif/OEG3PjzHB//+MdXJL/9GflyThAEQRAEAMDPfvYzvOPqnbj8zzevWJ6HHGRwzpkbcM7Zp4GHZ8kWBEEQBEEQ9gh33XUX3vg3O3D5BZv3ujoiMjOtcOHrNuHcc56HPM9XJM/9FZG1TiId2nxPJKyLbL+k6aIXSHOSVKFSpI5qLGoS1VTGWq7E+O2SMdjEYeh2+hqWoUUlaXxXScHCkPZUdQvmcki7Khhq4HdUAwc1sFADCxoUoF4ODAZ+x0EO7vbA/T5cr7/vyFcnwQ5c+DKytSCtQVm4DBMpK2nt/5809JfjCQDgOCxy/nO5fExdKFXmQ6msVWuQ0YAx5XI2GjAKnHmpqzIazoQ2lCmQJrAmKENgRXA6lEN5mWslEZhwISUP4aUkwcV3HpG4+m0maS6pJkeI+bIKMgvy5fLlS19+m/gzRZTjIi5L0ywl40MShknSgyWsnzhcf4nD/5fTf0yUNQ1LHRaUFi89P2Do+q59wKiMd3j9OCbU02i9cX35uLzHlHNSfivGhHtNTeKyl7nq0l/HGU+ZwYNOaK5MhoHXvHID3vL3O/Fv//ZvOOWUU1Y0b0EAsCQZXLXtAgHYAjKt3Yn5RrJJ9XALSabuaUZJLAim6h4YYz5XbZeGeWl8V8aViHLFIGntOZiu1y6qnoXuDECdPjDfAc/Nw87O7uZBrD6ldYnJfHwX7USAKi5j9tLTvAAXK/+g6vq92jtpDTUzAzM9BQAw7RZ4qgnXzmBbBq6pYZv+GGyD4Brkpa3B0sTp5GZP8QOG5KtctgFyla2Nyv0yZRlUcLkeAFTh49q4r499hw4mjffiFw3Kx6c+NiUglG+cHYtLLVl0FcPGODGuA4VlAKAwKt+k5DOG/h8Xy02KXxZjnDx1nAQ9fd4ajrGH+w9Osl9K/5H2DWnZh49XjamP4dg6/E9cbRvrvV63Y6TS6XpgtA53tzMc11EvJAeelFVyTGO3T3e6R18ILI93vvOdeOiDm/iNx06tWJ4A8LLnr8Vfv2MHPv7xj+O5z33uiua9P7HfjJwrigJ/9md/hmOOOQbtdhv3ve99cfHFF8MlX0AwM7Zu3YrDDjsM7XYbp556Km644YZVLLUgCIIg7D/MuTNw7H2zFc93ekrh8EM1Zvfjh3LhniFxniAIgiDsXWZnZ3HsMY0Vz9cYwjH3ySTOW4T95su5yy+/HH/7t3+Lt771rfiv//ovXHHFFbjyyivxlre8pdzmiiuuwJve9Ca89a1vxTe/+U1s2bIFp512mjQCQRAEQRCEfRiJ8wRBEARBOJDZb2StX/3qV/H0pz8dp59+OgDg6KOPxgc+8AF861vfAuB/Tb3qqqtw/vnn44wzzgAAXH311TjkkEPw/ve/H694xSuWlR8PD8XF4rKwkuVIWJci41pgVO5iWddFrQuJXcO2qVKDhlSEw9LV9OPwMOnwf5zJC0B9ltYwnFwVldQw6h+ICc4xKA5PL/NkoHCAtcDAywC40wV3u3BR5ro/wQ6kG6BGA9RsAFkGmDC+3hg/g6pS479Cd/CzUllXyiTIOsDZapmr1sGxl70GarO/RomsjScoSGsdgZkAy74Mzp+bUHSQQiJt5mSWIb9dNZtV1C6GvINsNcpXfV6V1IGChAGJFALM42WtpZzV62e4lC54OQMbChIGlLPJOhNkDaEwDKoNpU9nm0Uqa0hkC+X/ZTnGnKMJ64b3Gx7yX9tmAbnrSFoLFSEqQRKpQ3qd12ZyHrNvVfil5RfTjftOnHl1aPsym4XkH2PlIbw8yUjt8+5qwPYiQyeWOZF5rET2YDi4xTfc4/kKBzIrH+cxWI22uol2IQvIVdP/F9xumdK1oY8Ldlf1vnqBjMbNarjYPWfElqIulSMb7r1xts0wS6saACoMxPUyQ5QxRkzSOIYaKJAOthv7oe+karag1q0BZqbBU94SwE01YJsGtuktQdhQItejMq6hgr2VSx6sXMLMtdTNQd0+0O2C5/2Mq3a+g71h38LWwu7cCRViaeq1QL02dKsJ1crADQNu+EdGlymwUaVslIc9qziRr1oHVYQ4r7Cgwnl7mtwCeZjGd5ADeQ4UFjwYgK0FCr+OHQPswPGZgFT1bKA1yBggM6AsA2IcDYAbocwtA9fQsM0QAGYEq3y86GecRWnX4kyID8Pss06jsjyJMtdUqjkuZlloOTA5blwsDql5qQzJV+MyF0IsF2L0RE6e/h+3T9MqZbBjJK/DRRt7TKmsNUh/KXwuL/cQTxOjFluTS58BMVp/5PvqSbLhWvw3KY5cAvX6mXw+Rme7Dc9F5Z/h9ePT4JH1DNYr1/etVpwnkd7i7Dcj5x772Mfiuuuuw49//GMAwH/+53/iy1/+Mp7ylKcA8CbWt99+O574xCeW+zSbTZxyyim4/vrrJ6bb7/exa9eu2ksQBEEQBEFYOSTOEwRBEAThQGa/GTn3hje8ATt37sT9739/aK1hrcUll1yC5z//+QCA22+/HQBwyCGH1PY75JBD8POf/3xium984xtx0UUX7b2CC4IgCMJ+hGOGXY3JdeQH1QMaifMEQRAEYe/DWJ04T8K8xdlvRs596EMfwjXXXIP3v//9+I//+A9cffXV+Ku/+itcffXVte1oaHZLZh5ZlnLeeedh586d5euWW27ZK+UXBEEQBEEQxiNxniAIgiAIBzL7zci5c845B+eeey6e97znAQAe+MAH4uc//zne+MY34iUveQm2bNkCwP+yeuihh5b7bdu2beRX1pRms4lmszm6IvgKLMn3YwFd+6K+VEvRxE/aZti/KZmyedwuNce50gMq+G1N8JMbm0D8uMD2k/wLKPqRWO9HQsFyQlnA5QSVE5xh6IEqvWCYQkNlhKnWLRCmqodW3vxsP4WLHISm95hrNcFtP3sONwxcw4Cz4OsRvNQ4eQAhyyD2084D8F4e1vn34M0X16GwIOenpAc776eQPsxoDSgFaO8lEpexUeBMg7WCy/wLCN4xhspp6b3vSDim1DsCqHwrwhTu3kArnsu655wqXPApYV9WIJQ7vA/XX/DkY6XAhkoTCwXAkfdWZAJYEVzo7VxGwVuESn8Rl/qKBG+R6CuSTum+8MkMm+2uR9sw0VtjIc81Gs5wuEyjXhjptVmuDNcpD523mlcd6usWKvfYz8CC/eGCvnrDn4mH/h+TxvB2C5VzqAyL2tDtqZ/+JvWhQwXwHi0r6UUCuFX4fZPlN9UDmpWO8zjxIo3UvIAmsGB/MuI3N8bfbdzuI33A+I05bhvjtiUXcMImiR9UzS8r+jiV9yGefIwMIHjOUvC2ooJABdXiPD0AVJ+g+4DpaZiev7majkLWNjBTGUwzAzUa0A3vHWZ37MTe8Fjb07h+D5glqFYTnE0BAOxUhsG6DIM1CvkUoWgDNkyQ6Boovc0iFH12C0Dlvr50HzBdhun5k53NO5iOhZ4voOd6oE7f7zTfAc934Lpd79m2TEhrULMJavnrhJpN74Ec40TnY0wgPBpZH0OWvmEx1uQYi1pQ7l/oe49oDAZAfwDu92F7fXCRL6uMbAHAjjR71WwB0/D+c81QoEzDtTPYtoGd0iia/jiKtoJtALZJcA3AZoCLnojRc06lceBQrAGMb//jPqO6rhfrM8bGRrV9xjyMjvGcA1Pwbq62i5/L5y9XtbXSM9JV6UW7tbLsS4j30v6EgZovXy2GHn4ly9P+Jt0n+s2VfVR6TpDuO6GPWuiBOPlci3VD4uPi+VFPUa7eluhzx8OJxLT16LZ7i9WK8/ZcAH3vZb/5VqPT6UCpenG11nDhgf2YY47Bli1b8NnPfrZcPxgM8KUvfQmPfvSjV7SsgiAIgiAIwtKROE8QBEEQhAOZ/Wbk3NOe9jRccskluM997oMTTzwR3/nOd/CmN70JL3vZywAARISzzz4bl156KY499lgce+yxuPTSSzE1NYUXvOAFq1x6QRAEQdg/WL1ZvIQDGYnzBEEQBGHvs1pxnoybW5z95su5t7zlLfjzP/9znHnmmdi2bRsOO+wwvOIVr8AFF1xQbvP6178e3W4XZ555Jnbs2IFHPOIRuPbaa7FmzZpl58dxbulx0oIg/xonfRod7jrhM7AE7dS4BLGklj1W3hpkEHXpWjIct1y0NN3FJBnaSFlrcjqqSVspjL5XuZe5qhxwA4IdEEzmd3SGwBlBGwVtCNAEpf2v63FKdcUOLkwBvz8Rp6/XACgzALzmwTWMH47fUrBNBZf54/RD7hNpq+NyeLoqojSUofIgEQ2yUZV7ySsse3no8Dh1Ii9R0AQOdcvGS2qdUf4cGCqnnPfLESStKF9AvX3R0PmP514VfnsVjoUsB/WEgoIDk98GABgKROwlrGl54esiltmXT4X682W1DYLLyEsXGn4fm1XyhShrjUPJa8cyLDVIjic9rtq09nEqex7dZyyUdDHJUP6oWCqVS0k5UmnnOKlFvcxD13eQLHjpAqWb1I8tbpusr6WT5jBpGP9Cw/sXkJTG9SMyj/R4R2SuyXqMSad2QhYvH498GPp/zEFP6s7rx7GMsCSRVfCYtigI9zZWOs6D5rp+ZIy0v8ZC8R0w9vre7et2qH9e8PNyGFfGRC5Wk4qpUD+KaxI/CjIzf/xc7QB/f2EG2BLIERDkrQCgcgLlVMo1dc8v1z0N01XIOhrZ+gayuTbMrD+fZtNGYOcu2O13L1sGudK4bhfu5l8AN/v/s3XrkB12CLIta9DbnKFHCjaoq20LKKYZru2ApgUZB9KhfsnXoSsUUChgoKD6oQ67BqZnoDtNmO40svkgd+0wsk6QvHYKqF4O6vkgigY5kOeAdcCwPUiwM4ExwcrEB0OcaXCm4TINNiHGUlX8V5Pjso9FgRDLWQXKFRRFqXPU7Hm7FVgDymwlv12mbFk1Wz7d6Tao3Qam2nBTTdjpBopp/1hbTOkgJSYULarqvQm4ppeyuozhMoBDvZdtPLbt9FJJJaNBxl3KkF34v5SWJssnkMYupYwzXvLDMs54LaYMdw/Jh/isFb938eUFKJaZUS87J9uMPLMl6xdgNF5L4toJ8tVy3xhvRyls2g+VyzAS83J6roZkrVWek4PWNNYtl5efOcTAyfNWLY1F6mBkh+GNx1foyHkWDkj2my/n1qxZg6uuugpXXXXVxG2ICFu3bsXWrVtXrFyCIAiCIAjCPUPiPEEQBEEQDmT2my/nBEEQBEHY+zAYdkEXaEEQBEEQBGF/hHl14jyJLBdnv5kQQhAEQRAEQRAEQRAEQRDubcjIuUkEXfwknf2i3ksjfmw8us1i6S7iObIUj6NJGvhy35hFLY9JB13/vKDf00S/ruBL4ajmOUcFlZ5zdgCogZ/qHAB0k2D7BNNQME0Fl2nohm+6umFAjYafAn5uHnZuPhzD/mVmbnfuhOr1oXgzAEBpDdfUYE2wTSrrwnuoJd4MoPJcxvpUBUMVgM4ZKli0qIK9F0jBNZ86ACBmMFHwfKi8RNgQnKaav5wLPYbTGPWbG/YBS30rgGq6dkdQlkGWoOL5t76sKvqVOJR+eamfSZV+9JxD6YXnDJXefDaD95prRG8R/wLC5+A15wx7vzmdXJ/D10x6HC71TIx+KgBs4tk2Zpr6hTznaq/0ugz1SqguyWjxM+zhEeuiWjbkD5lWXukll/jRpV50tYpepOy1/5fwe9hyDJiG+8xxfiXDfU+tDQ75kQyXcylFGe6PUz+SoW2YMHp8w3mNu0ek26V5hRPF8fysoBeJt5+RX1SFezcMoDR1BOp98LjGOBQ3jfy/CGO7yFrANprXyD68wPox/shV5sk2S+iry342+M2R5tJzDsQgFV/jCgmw8/2ls8p/BlAUBMoVbE5QOZU+anrg/ecGfYLpKpiuRjbv/XfNfBvZ/FroXQdBz3aAnbMotu+ImSx6HKuJ3bkT2LkT+r+AtTMzWHvfI9G5j/fSmzvUoLeZ0N+oUBgHM2UxPdUHAMw0B2iZHA3tA6TCKXQLH8B08wydXgPdXgbbNVAd7xGnO8rX3byB7jVhuoDp+fNiegw9cFADDr7EbrR9U4jxdIytKHjNURnvxfgPREkMOuRTFuJLlTNUjEcH/jypgfP+xwMLNSigc398VNjgRWe9Lx4ARG9lpb0nXmbADQPXMihaviC2pWHbGkWbkLe9v5xthbpvAUULcE2Gazq4RognMgcyDNKubL/pVcPOt112CrAEBL/E6DEXfRO9x3MoYgFQ+F9ZVF5vwNh6BlD6zLGCj0GVj6uBJLbW8cVVfWiuPGgTj7VaLBj/DvcnwRev9hwZrtMyTk395ZKYh8b0TbXDSkOiSf3hiB9ctfOwB185dChZV3rMpeti/0PhsSAUhCbFWhz+sC8Ip/URj52TY09iPY7Lh9OcVBELbVeWxae5oDf1XmK14jyJ9BZHRs4JgiAIgiAIgiAIgiAIwiohI+cEQRAEQShxYFj5dVMQBEEQBOFeBwOrEudJZLk48uXcBMqprAFQqlvi0VGrI9RkVxMkV9XqsHC4AHFILUaHuy6Uf1QsjMmrNnX18DDfVOkwLNkYV/Z0mDFQTUEe18X6S4YZp3K5KBFEKWskL3PMATWgUt4KALoP2IGfDt30CKalYHphKH/bQE81oKeaoOkpmLVeMsDzHbi5eXCRL1BZ+xau34O7+RcAAFMcCoMNYNOGbVSyVtaAbfh3p1E7p15q6Yepe4kwQQVpqCooDLnnUpZZk+YR+SanK3kkKyrzSYfZAyHvOCQ/DM8fkbVG0mHxUfYZp6SP5z+ROUdZRDrVO3E97VJxqeGlt8ZLVUvpavjsGsnnLLRDw2DDgGFwlOUMSwbjkHdLZTnYEqhAdXDpNPVIjs1iVNaabhdXJcdCoQ7LvFS177jlGHeNT5B4jhzYkEyBk76Ga8czTrswWv7JeWFEggVwIhtIkh2T1UQ5a9qn1NbxaHmGl9fSXUKIkHSUxIlMJJW4Voc2Ps3hekqkrmn/OJJYKnVgAvTixRUE4R4wLOsat0mUvg73eclOk9TtIytTOeC4GG9YITUuThwp4JhCp8vJ7xfj2thtcUwvysI4lXGxtz2oFQZlf6YUg9LChTpiJijj4KwPKlgTOGO4gsC5gmv4FG1OUC2CHgDFlJe49tf6daanYHoGptOA6UzDdDbAzG0BAKjZHrBrFm7H3XCDwYQD3zewc3PAd/8Lze/6/6ePvx/mj92IXfcx6ByaYeAIPeNv9OvaPWxudbCpOYe1poeWquLYnsswXzRxd97G9v4UtvemAAC7ui10Ow10O17qauYVdC/IhrsE01dQA0APuCbJJMdD8VWUtcbYL8RYuor/SsnlUDwWUgzxfbj1JnGeijGe5fJzWYbUDgRpXl5O6+M4b1ViveIZrgnY8HItB9dwQNMnQg0L07DITPUCAE0MFQ7YMcEyIS98ZnmhURQaxUD7+C4nUN+3XTUg6D5BBdsdPfByVsDb8VAR7GPS2HVY6hljZdTr1Gn4GDYes0msVzSCvDiUGeQl5hyfu0IGimtxEA11DTGci9c0Df1fi8nSOAfj+h2MsKAl01KemeP7kEVSKVuNzxgqWa/YH2eUu6LqpCiJs8aV3ce9DIoP+gDgUMlcY+yeHgth4bh4XGy5aGzsy8EhLxY9owD5ck4QBEEQhAT/bLUav6jKb6qCIAiCIAh7EwaLt/A+inxHKwiCIAiCIAiCIAiCIAirhIycm4SqjfAfZcLI1ijvS2fWS2eTKTeM6xLZUjpTYikBTIaH+x3q0toR2WqUeyUyw5FCji14ItdIlqcTmdX2V0Mz6ChUM14mUkEKs3qN5M1xWHEYQm8JXBBcQX7m1pygBlHy4KWtqg8UbYJuE0yY5ctMKei+hulm0L0WVHfaF687A90dAN0eeG4ertMBWzvm4PdNil/eBmMtMrUZrKbAYQYtZwBlCLZsZ6jkjcoPZVe2VFyCVSVRIMtwYcYp30yqE5JKU6vZulDOIFV+LofQozZLa/k5JDt21tMys6R9J9JVBDlAOXvUOLlPKBcnx1yTAMTZZIOMlQ2DwztlcRYwhjJ+pq5hOQ6H2ZucVWBLgFbgMFsXAWBHNelFPJ5KrjumzxiSny4k1ywlxYSyD6rJRmj8frGiJso8a2Wt9zUg9nUe1w+Vu9x1jDxznIR27AxuSf/FLtl8ktxr4jTZo/mWM3iN66fGpFP2aeM6+HFStbSvLeUgQ7q2pfwUGMuezDRGw/eGFPYF5XAPiLKWlYCZYSfN2i0I9xZoqBvger81bvvyPY23xvSDKfVudTR4G5b6LzgD62IMxVljl4/cVFHGgWVsGfN2XjrGBG9FAgAavh+n2EdV/WEa7xF5ySSFm6YjBXYWDgpQDKd9Z0g6zAya+RnXbRPlTPPFANADghpo6L6GHhiYbhMAYPrT0N0NMPOHQs/1QbvmwTtnAQD27ruXV28rTPGj/8bUHRuQzR0DVbQwB4N+5o9rrjWAa89hRvdxRGM7Npp5TKt+uW/PZZh1LdxRrMG2wVoAwLb+GtzeWYMd3SnMzreQz2fI531ApLsE06UQRxN0kGECwfIkzNRJzOBE1hrjvCi7LCWZBl6OGd5rscuQxclIHJDKKsvl9Vh0OD02HGI8B24wOMRylDnohkWWWTQbOdpZgYbxB9Y2ORrKwihXylgBL2UtnMLAafQLg07eQBQNW6dgcwUeaKCnoHqJNLhfPYfogW+fOudQhz6+TiW8JUl8HON4wF8brAhLih2WygRJq8/Pv4ceq+pWmLxlR7UygccvDvulK8twIX12HRP/TUxwJPYa85kS6W48pjJ+4rLPifvQuDiSfJxPIbbj9FlI+f7Kzy7tz0+tbpgmPEPz2Lg7nT223C8pkp/ROsTfCv7BbSXjPGBV4jxRSCyOjJwTBEEQBEEQBEEQBEEQhFVCRs4JgiAIglASBuutSr6CIAiCIAjC3mO14jxhcWTknCAIgiAIgiAIgiAIgiCsEjJybhKK/YvrngCUfNVcn34cQxuFdSqmhQU9oODY+1kNDx0IHlylz9Wwln/I64lV0MTzkM59yCNlhNKDCXVN/LDuP/FYKY9Nex8lClp50gxSLrx7Xy9f1ronADMFbT/gHIEtea+vQsEWBJv7dSpXsAM/lXmcwjwPnnN6QNB9BdNn6J6B6Wd+ea8J3bNQ3QKqtw660we6PZ9vpws3N7fPe9AVv9oG4xyaxWZQ4b30yBqoQqFo+Snlo99HJHpexJeyoe4tKq+5YA9T9+0KU7srJFPY131HynOe7FPzvaNqvxH/NNS3KRnj9UNDP+eMTEef+NvF8jrD3hPFhLZlvC8JGQYZB20ctPaJKsXQ2vuQpG0RAKwjOKfgFMOShiscoEJmRMk1nFZ6ctzDxxU/Jh5x1TTw9b5j9FpLlqefo99jeX7GXJPj6joWhut9Tep3FL1nRohdw4j3B8Z7vgGlnya50mWp7u3kUHoYpct9HVHlkZKmH/JNfduQtMnR4x3vcULph/SclB1reBuxhGEwKKwe9Y4a7w+VpJn6pZTnKukXqb4bM3k/Hlv1r4Ig7BlKb+CyM6TKTbLstMK28fod9tuN26R94LApcLynMVXxY9nZodxm2d5MY+K5JVnUDd1rar6ntfv1mJh1UpJJWYi41sdGjyGi4HurAGep7LtZEaAJNnjPudz7DgMANQBbACr4fKmiWqdyBT1g70PXa0H31sB0DwIA6E4OvasH7JqDu/MuuMFgaQeygtjtO9D4nsI6cwycacBlDQDAjmwav8xyTJkB1pkuptSg9JzLqIBSDoocLCu4zFdi4TQGTYPcaeSFhrMKhY3xtYYNXr6xncXbpkPwTHNActaC9xb8vSm038qnLDmIGD+Gp0nW7GNINXR9YEzbTNtven0lzxPQDNIOyjgY45AZi2bmfeUa2qJlcjRNgZYu0FAWDe3XKXDpNeeYMAgFHLBGwar0m+sOMvTCc0PeM+C+huop783X8z59AMpnD98GUfMedhogVR1cLT5VVVzt9FB8rZPXmNjbr+Pautj/jNRliLXSeq57V/oVI56aC4UVNOF9mDTNJA/fbqo+bthbc1w+TFR58cZlZSMk329GX8TwmWKnHfaPheJx5nvD5R7qg5fs8Zn0jdFrrix3+SwQPNfLeJLLZ40yr/T532JFPeeEfRf5ck4QBEEQhBIHwIrIVBAEQRAE4V4Hg1clzpPIcnFE1ioIgiAIgiAIgiAIgiAIq4SMnJtAKecLw7oR30r5XTL8Ow7aHyNDS2Wf5bDXNJ84hXnUk6bpplK/VNY65OBYDmFWIYlxB5RIwiYSpr0fO3Z5aF9W8MNvNYM1ewlrkA2SZijtoDRDKwdTygkdiFAbal7OUs2EwipYp+Csgi0UXOEryxUKLicgV17SECSuQJjOvO//jxJXANB9hul6mavuNaG7beiuH+5OvQF0dwMw3wF3urBz8+FE7HsUd9wJtXMXmrsOAQBkm9aiWNtEMW1gGwRnqBruDvj2YQFyYVp3F+QkicqGFYE1JTIE/7mc2j2SSCfHNos46jzIHWqKvNAWh+WupQR2HMPS1uHVpZTID/X3ZY8yCgYMA1mUQngpq4qS1lo79O0yxTrfbogIBQCGAikHkK5d1xTlBAp+uDpQ1Vkqt0zqsFbuVIaqkvXDu6XD7EdWjpFYIUlb1ZfX0owygxQOsvkgoa9JEBCPl6tzmpZDMaAxMsQ/zYvBIDvUrzmAbCLXH7r8SKV1SeBxcnpgcbuAVE6W1kO5iADFlT1AKclOpQj1ZBGlrcPnZpxkJCTApU4uvVAqua7Szq8aPjVBgswgQK9cH8UA7Cr8vCm/qAorSrh/IPRPpDj0WRgr6Yr9QtnvlX05V9fvkA8Dh34w9rGldNCh1s+XEjBgcv+fKLBGpII0YfnQ9qOfuZZGTYoY7yXKx3jx53xSDhSWKRXsS0Kh0ziPhjpJZoJjgnME61Rpa2ILBbYEtgo2V6DCS1sBgIKMVWVeTqhygHKfnioAG9bn00HmmvvARvcb0IM2VH8dTHcL9LyXtapdXWDnLhR33Il9geKuu9D8+gCb+/eD6bYAAHOdFm7ddRC2bV6DH687CFumZ7G+0QEAtHWOjCxy1pgvmpgrmgCAu/stzPZbmO020e9lsF0D6vngUA2okmNa+HtilFfHZxDHY2MvtjFm9OEQ4NNxGlDGy1nZhHTh48kqLqP6/bqMhbhqX0DVxsJzhQq2OIC/N2rj47fMWDS0RcP4WD5TFi1TwJAr21/hqoDYMaFghYHVGITlfWvQyzP0coN+bpD3Ddwg7NNXUH0VLHSCzDCpD6dDSFE+OSexXxmb+voot08kq/5zFbukcvKaHdIC126UUJbLeGin5Bl1uB+hIWnzODg9L6l9yXDfluxQs1oa6u9qMaWbmET1bKB8O4xxte+T4eOo+Iwc+yFHSV1Qvd4SWWzKaIyV/jPmmCZaDFC5kJLN6tYlXL3GWRAEaye25Pt+RUCxgnEer1KcJ4HeosjIOUEQBEEQBEEQBEEQBEFYJWTknCAIgiAIJXHAoSAIgiAIgnDvQuK8fRcZOScIgiAIgiAIgiAIgiAIq4SMnJuA99eotOw1gpdR5V1E3osqeAgRD+vPAVDw7Eg8uOKM0NF3riaYj3NDJ35Q5eJa3kly0R9vOO+wY807ID3WxJcg9RWoezOh7kcSPCUomeZcGV/I6PGVGet9IoK/l1au9PpSYLikXq1T4UWwrFBY/wKAwurSk8QVGrYgUB48wnIC5RQ851BOe657fpnpKZguw3Q1TNdPl266DaiehepOQfUGMN0e0PM7cqcLO9/BvuRB5wYDuJ/f4v/5OWCmptBYMwO020BmAO3rgil4McSiK1QGC0qBjQJnGq6h4RoKtuH3sy0F2yQg843XBa8HLj0X4NuRq/s1lP5r8ZX6W8S2o6vPse3GNjauHcZpxmueBMn2rP1xVZ5z7L3mDAO6aoPDXnOpz5ymyh8H8L4kUFWlaWbv9aW8l52Nvn3ae19wuP5i+yXynmpDVkMhOa55jUz0S4v7Rj+4xKsj9SKqV1hS/yGvsm7G+VtGLxCOJ6PKC4kH3LCnJVE41iFPlOi7FPuBst8Ix8OOfLoF1X+e45CXrfKKvjcARrztRvrS4ONZbpvWISeeTZwc17B3CEd/qKQeUbUv4uCZE48nqQuOadQqN+mbE4+VstzKN3xG5W/HBH+Oom1N4ktSbsMAk/KWK2o4072Hn611TJvby4gVibCSsA59WGx5lkrfuZIkhgJQ85uL9yGKXp9I+iK/NSgEaWN9Kp336hrue4f74FqZgydU9I8t+4rEJ7N2Xw5lr/sxpf1qEpemaUQPsNAvRY+5eLxae985H9d5nzAA0IqhyS+joXstEL2GvfecDYXw8Z6Gtcq/cgVXeB8wlxPcwPvQqQFB971/GgDwAOAcpZ8rE5UxqtME29RQLYV8RkNt8PGfyqeg8o3QvSOgOznUbA+4e6cvxyr50NnZWdC/fwebvuE95zYfexS6R65F5+ApzG2Yxn+tOQTFlN/WNRlsuDxOim2V/b2WLKBzQhb95RC85orwHttc+kyB8BzDXOuEoz8sEwMFoEJMET3oSk+18Bmo/i+951TlH1b5r3HlWx3SQ4jlmAEYVRaQlW8vzNEji1DYyleOc4JWruZlHd+ZCbnTyK1GEXyF80JjUGgUuYbLFbhQwCAcWK6q+3fwQXNZyMegqhuq2lw8LmcYnIVjM+G4DIOM89dQeA3DzpcTXMVJPnYKz37RO3fYG204ZoznsoxFqvTKviU+Tw6d4/TZkGKcGuqeYhwEjPQhacxfXuZlbBfebf0Zc1ycTLE+tU+YRzrKobzT1cPHX26TBMDpiqF4kkZ2TDJL63lccFI+X8XqCPFduT/XNh05/+x9vp2i8HyrqueDFYBBEufto8jIOUEQBEEQBEEQBEEQBEFYJWTknCAIgiAIJcyAk583BUEQBEEQ7nUwVifOk9ByceTLuUmUU3sTYEdXj0wd7cfGBvlAIgGL26VDacsdARCB4Idyk6umgqZk33T66XJ66jAUuZRmAZWkMcrKUK0bmQ47GclajrwdmhK7JmeNkodyGHeQOGgHlYWpzo2vqMxYNE2BhrHIlEWm/fKGslBB5qCIy+HnAFA4BQdC4RQKp2DZy1wBL3nNo+w1yF3LdYWCyxWKXKMYKNDAp6n6BNMl6B6guwTT08g6fh/T0TA9B9M10J0Mqt8E9b1OgnozMP0BMBiAuz24bg9c5KMNYBVxnQ5cp7OsfchkUNNTUNNT0NNTcDNNqOmGX2cNwLqUySAoBkjVRvEDqNpK2ozLbaMUR9fXxfSqdgZMHEmdTH9el1MDCFII1gzOgqTDOEAzdOagjYXWvhBGO2jtZa1Rxholg8OSVpWUjYnBykExeWmrduVxOQaYVVT4VnJHRf56SK+bUhbAlXRKR4lDdayxTKWswQb5hw39joWXCZQnYLT+arJP5XUDIxJ6BHkKQuGHTkCUrwzLWmuy2dpxwUtQDINMyDMdjs8AnPLld14yE5NI86GiKltZf0HeUPaFsR1SkPIkshFKZFheSluvFAoy3lRam8pWfJpUHhdxJc/xUosk/Sg5jbILGjoJXMnThqMPIiol3uk1FPtwDn1vrMNU3urgoKBKCZAgCHuG0r4kdjahj4zS/Pp1TFXg5XhI1kX+wqYx+4R+ibxWvJITFhTkhlTKDUdkaCMFDlkpeGmrSvp/RZXULlocqGTHUpYL/1lVq2K8i0R6RQog5YIcD1DaQYX7qyKu3WOzxLLE33MdjPIvhUraOk7iGt8L9rFf7jQGhUGv8I8ng1wjzw2KgUbR17B9BdX3hdddgu4DupccYhqvJ7Iy1j4vqwiuAdi2Aq1rgA6agu6v8+XrHQ492wXtmIX91TawHRP870Vcv+c/fP9HaHwfaCTr1JTXtar164A103DTTdipDK7pb1i2oWCbCi4juAxwxr8AL/GNktJaG0JQBXKMAYakkMzV/Yy9LBZAJXMNMWMlSUzu36WktVrnDGqSV2dCvGMYbKrLKn3WGPE/SbBOAQqlBU6US8d1XgJbSaYBeNl0obyE0BK4UJU0GPAxgSE4YsCMkWHG41OJfDVjUOZAxkFnFtpUcajRtpR4xzL68nl5bmEVXFomhG4kPsAN2R7RSL9UK3oVi9T6kyouGbd/qcRUXD+Xqfx4WDaPKg9G0m5COchifL8Wu9s0nqxUyiFmRmVdE/OPCadEyW84vpp9iUs3p3qcHGO/8rk4HlD92Xip9R7ToBifxlhNK7BjKOPCs4Yr20Elq2Uo5ftA0uOlz8KBh8haBUEQBEEQBEEQBEEQBGGVkJFzgiAIgiCUiFGwIAiCIAjCvZPVm/hr5fPc35CRc4IgCIIgCIIgCIIgCIKwSsjIuUlQNY18nAa85gHCGPUEKfXpiSlU9M4qveCGNO0I3kUjXnB1nXvpUxI9S+KmiXcEkl1ZBQ+UYb+E1GuknhXAYRrzYY+HWC5V+QCkfnMmszDGopF5f46WKdAyOdpZjpYu0FDRc66AIkamKh8PW3qOKBSsvPeI06X/nF/nfSTiMsdUes7FadIHVpfeJACQ9wyKvobqKuiOgukC+bzPy3QJWYeQzSuYtobuZdA9P1+66lmoQQHkFjTIoYP/HAC4uflle73tK3CRw+7cCezcCb1+PZRdX63TCq6hoAoqp42fRNkyeOh/B4z8GBLbZjochlFvf+O809J9gcoHI3qcZQ4qeHrozMIYh0ZWIDMWmYpeH97fUI8x7uHQlqLfnAOgY17OAUohGtcMj+Txdm2quq4RNg3HWc6gHtPT0ZfNe/co43y/Au/nU5bJKThL4NKEo8ys+h/VtV9Oe594HMVLl4If0YinXZzuXVHNLs1vUM9nZNWQDwgMAxmDtD8XpKu8quNxYCiwpWpd9NZzwZMkdAVkq+OK9UhJVVS+l6j8LuHLVR6jo5o3ItnEj8SG/2MdxqoPXnDxuBx8WRmxTwaYK6+5ugFN9U6pl4tD5WETtyF4Qx1Ntd3LPjz42LlwYpSq+85xmcHKsFq/qI52IoKwF4newuF6ZcVlPzE2xgt9J2t4f9DSWyh6V3LdijLGb5a8d6ijMq/YJ8WYjorQDyLxnBu67GvewdHPK/FtKj3FNNXXqdD3KH9gZXyIJD1C5cEH7z2nNJdec9E/C/BeWpny/xtyyLSFCfezhrKl15wJPsOGoldd8IAFQ5Eb8aADov+cRt/6WK5nM3SKDPN5A/ODBuZ6TfRDvDboGqiO9jFeBzAdlPG6AYf6ZqiCy3sNbPCHTfzonAkV1QKgpqCaGfRUG7x9B+z2HSNlXA1i7JnGoITS0rd8NwcfBN60AXZ9G4N13rUun9EopghFi2AbwYsu9Y8FyvaePmuo2D4tQI4r77B4nwv/pB52qQed95UDONa9g/eWQ/KoFD5HH1tkDpQ5mEZoa8aikRVoGu9fnSlb+hum7Sd6VSP6UcPHPf6V3K5js4/+4IqryqOwuwMo8UGL65jgr3nNvqw6xqH+OUhr5+PQ4L+tiaGVKz22rVMoQqzFTKX/nc01uFDgIvQNhQIViY+ao5GyVCdiuJw+sijjQ4TrP/hfDsd4tfjOVLE24N8pHm8ST1Iof+mTnBM4D355wQczfTZQyfkvi5/6ZcKffxe8B2OsH8sAVfdi41gfLsRlsZ8O7RVAzWdvuO7KvlH7csQ+D0TVc/IwZQxe1eOoHyH5e0isd+PrzlnvGewUlbErhdiVYlccPtMKxnmrpZAQFkdGzgmCIAiCIAiCIAiCIAjCKiEj5wRBEARBKGFQbTbtlctXEARBEARB2JswQ+K8fRT5cm4C5ZTILgznBsAOXtbgEtkqkmHgLgyXZYIrh8xTTXZGQDWEOtEGUhhqWw6Hjcvi8OBEQlWfIhojLZ2pKsvogcXXBP3a0HD/cp8gLSzlZEHOpo2DMRatRoF2lgMAprIBpkyOKTPAtBmgrfzypi5gyEKj0opYVNLVnHXt3YUDcEld26GOJMphB9Zg4DQ6hZc7zA2a6AwydHsNDDoZio6B7vj0zDwhnyeYjpe3mq5C1vEnRfccdN9CDRxo4CWu1PflV+0W1FwbducucJGPqdz9A+50QNNToKIFwLfvVHVYbjeuz45Ndnh4fJDZACglrqz8drXWFNpeOaycxqyL10DZ1gA2DpQxtLEwDYssSqgbeSmjbmhbSqhNIhmNsugoky5YVfJoVqBEJq0VRqStlQjbl9ERwvD3cMBBBpFe8lHuVEowtZe0Ku2gEtkQh2vOwYGcquoqyjHLV1K3aX0hShbgh+aHfou0q8kACAy25OWaigFFQ3UfeicaOl+JPIV1IjXIHMhUfYDSdf2XswCzAluu0k6OjaJkLDku4qq/IzfaDcV+KJVeKe1lwpyoNnx6yfExAKaaXKcmN426WQRJAXn5KvOY9rtQIMNUl7eiLosjR2AO5xxpYOTArLyklsMOmkHKlfcDIl5RuYMgHBCQ709K6XqQ3IPYf+ZKoh6vZY79v2JwlKkr3w9zlEhF64KhG2uUkAEANIV8CQ5hl9i9eF05wCj7oRFiH5rckzlKylz1GQgyVxvuR4oqCSzCMqq2jWVW2t9vU6leI8ham7pA03jLEn/fLUrpqlEWGTkYZaGH5KuauIwBM2WRBQ2aIoeMqu01XBIbKvTYoO8y7CzauDtv4+7BFADgrt4U7u60Md9pojuXQc8ZmFl/INkcIZsH3DxgugqmGySIOUPlDFU4kGXAMcj5dWQZKBxoUACFBdH+Jy4qtt0BNTsHc5/D4bIg8WwpMHnbEtcAbDNIW4HafVJZL68GAFV4OarKY3MmULwpp88gQ7d3BKuecNsNMuuwxsCXIQNcg+GaPhHXYKBloRoWpmnRbg7QznxB2tkAM9kALV2gpXPfrpILwgYrnIIVejbDwPrMetagbw0GhcFAaeRFVUIiwJGCI+f/CdcxWx/gUWrxk9p1hOs7xiClvUq0LQnXdownmRg2SGsLq8LLl88WCi5X4FwDOQEFQUXrjYJGZO1l6KGqcsT6HYFDH5TaazgfzJRHU8aPIbYLsmIf21XxlTIOeiieBLy01BYariAwdBmwsQOIqG7JlDwjx7yTsCspR5C0NhyQhT455B3z5yilhT8+hgp5hPgrHLMqULXT4RBUhT6RObTNcP4VJ5JhjD7jDB1Tal8Sq4dV1WZYUy12dkaBQpuJ7YhSK4RJ51M44JAv5wRBEARBKGGsluecIAiCIAiCsDdZrThPZmtdnP3vZyFBEARBEARBEARBEARBuJcgI+cm4IfROsCoUvJQylPjbIM1yVL1zslwV+dQmwGTkUgdVDJONs5qqaK2oC5zLfMJQ2qHZ44tPxL8LIdRJjZOGpbMCpuqtGhodtd0HyZUs/YAfqhzVpe0zjT6AICZbIAZ08da08O06WNK+dlOp3QfGVVSBqDSu+dsYOElrbkzcPCSw3SbShpRHbwCl9vmrNG1vrLnbROzeQt3D1rY1W9hV7eFbsfPXNWbz/zsXnMKeYegO4Ss69Pz8gcN3XdB4ppB9f1+upOBsgzaaLgdd8OFWVz3N6jRALIMnPnh9c4ouCBdnDisOpWzhv/TNlibnUlhvCQwzpIUZZLJEPLy8wQJdZwNq9ko0MpyTDd83U8nEuqmKmBUTYQKx4S+Mxg4g0GY/W3gNApSGDgdhtsrIMhgrVNjpa3DOChQqABWVA6pj8dSzsga5YmaK+lDIpMg8u03zipWydeDvIpRvQ/VZSlvKCUjXEpNSVcSCyBIKOH7MqI47D7pa4KMPj3/XJ4vLmfP4izIfwzXJK3pMTFTOQvVCDzUhtJ2xaNKgnI3qspDCqXEIc4SSwCYFFzcWUXtbF1OW1ZfyI/jDLapNCzKIHhov9h3clVv9foLs7+NUwyX6VAtXcUAey8EMFdeBI4dSKtSKkOE8fW5l3CgUla2kohwV1hJlHZeQh77cgoda0F+dut09sqiLlkvZ/aD38UZCn0llVYDrOH7Z+IQbXPZ13CD4BzKWaUpnWnQUn3G1tFJx+v90rjVSV8eZ9f0/c/ojmX/71DOdgp4yVVmLJqmQLuRo22CdUm457Z1jrbKvcyV/LpMWSj4mdLVUMEr2SqXUlYAaFGOjAq0VI4W5WhQUa7TYCg4OCgMWKPDTdxtvax1ezGDX+VrcVtvHW7vrsEd8zPYOdsGAAx2NaBnNbJdhGwXoTHn+7Ns3qEx56C7BNMpoHLrZawAKLfAIAf6A6DXh5ubH1+5+zjUbMK1GiimfMyTzyjk04SiDdiWfyap2d6ENsZDt8xo00DB3qe8FmrXAcrYDvBSPhflqybIaH0I7Zc1uXyhFc5x06LZGmC6OcDaVg/rmz2sDUH5WtPDWtPDlO6jRQUyqvSpFj7u77sMs7aFrs0wb5sAgNm8hU6RoaMz9IoMPRXqotDIScMSA6T87LJRJhmDoNhsU1lrGSNxKbOMdh7xmc45ArOqJPAMuGCh4iz5WVltkLzmBMoVKKdq1uZ0pmiurmFWXEqDoaMtDNdnGk1xUZ5fnV//jEmVxDNKL0OMF2fKVcZBBVmrzvzMuEY7qNQqxinYOMM168S+BEj7lbL9DMdSQ5/LvirGm9EOBhiJZ52j0E8DrlCVTctwuumzcppv0u7L2XrHPifHOkvkus5vz0yl/Qrie81uisrj8s87VMbQzoSyZiGmjs8IqaR2hWCJ8/ZZZOScIAiCIAiCIAiCIAiCIKwS8uWcIAiCIAiCIAiCIAiCIKwSImsVBEEQBKGEwwzHK5/xymcpCIIgCIJwIMGQOG9fRb6cm4A2Dsicn4m69GDyInQO/h0cNPc1X5Dg2cBRi269Tt1xYmMQJyY3rvKdi34G0auEvKY9eg+UXiRFMkV0TC+WL+RfOgPoZOpzBjh4zbFCzUchUlqRDF+sFDy0NIOCx0KcXrvZKNA0BaayAdZm3nNuXaOLNaaHDaaDNbqHNdp7RzQpR0vlaCSeczbk5b0jjPecYw3LqtTCp52HIoaGK33nVHKVOxB6weCvxxnmbAs7izbuztvYPjWNHTPei2Rnt4X5ThODTobBvIHpEAZdn4fpEEyPoLsKWZdhugzT83mZloZuGajMQGkN3HmXz3c/8p5TU1OgjevBa6dgp3xd2abyfjnRtyH1ARv2uhn2CEtsJlK7hZrfYekrV/mXOQ3vcRHbe/RpC15hSvsXAGhjkWUWrUaOdpZjTaOPGePrfF2ji2ndR1v7tjXcHnKn0XENdG2GLnnjE2UzDEjDRV8IS8k1zt6qgwga3neOebgS6te4U6ryEwNA4JonmtLOHw9xzbcD8N4d3t+MfH9S61Mo8bBI6jlci04DyBzQqK5JlQUfOOLK2xLVNcQu+CElfklUHjvqfhzl+UJ5vqIPCGnvNRc99NK8OOY1rj+h5N+hz4TRrmcSMb/U246p8vrj6MeXerUNp50e9/DypN+v3qvGT4rAoa2V/nVM8EsT5zxKvAOBIf+ouF11gXB5wQXj0HBcSqUXmyAIewJlHKhhy1jOKeU9nQYK3gCJwCFcUSEOi/EXgNq9TRnvO+cy77MV17NxwQ80+BiX/W6494W+38eVVT8NR+V9oOZ/Ge4XwFCXMOKpWd+v9ERN+7Z035F7je/bjXZoZgWm0xgv62Jt1sOM9q8pNUAres5RAR3iNAA1TyObdLbpNlnwmGuR95xrqQLTIb0WObSIoABoIlhm5KGwPSbc7RrYbqdwe7EevxhsxM+7mwAAt3bW4ba5tbh75xR6OxswO71pV2OX8q9ZRmOXRjZnYOZ9XqqTQ1nn+21FdS+r/QRz2KEo7nMwulta6G3wdT9YS7AtwDaDBxYl9yH2bZoKQOWhfSN8zgFVMJSNzzL1RsKKSi/Y6KXFxnvMuczn5xr+HYh+cw5o29JnDgBmWgNsaHewsdnB5sY8NjXmsNnMAgDW6Q7W6h6mqI8W5dDkSj/qHBo9zjBr25h1LWwvZrCz8HF+QxUwql364ZYxECcev3C19knBTwwhdgCq6xSEygNW+ZhHjYtD2PuiAd7D2FmCKxRcocCFAuUq1G/qNYf69Zr4zPmXj5sB+P4perLFh8TqCPyzqfVpc+Jh6SONEG8QV8+N0estxuAE308BIWb1cWvNizD1LB7HHglVUq+/KsZUqjqXpLjmL1x6Z5YFXWLZ0lhPsfdWT+NThGcaG7znyG9c+dEnz+tJvEcAUIRzmBOcIVAW2qNlcBZ8nDNvcBr9hQVBvpwTBEEQBKGEAdhVmO6eVyFPQRAEQRCEAwmJ8/ZdxHNOEARBEARBEARBEARBEFYJGTk3AaUdVGbhFMNZPwzVkgIT4KCguBrSyqX8YEjiCi8HCyJW/3+Sh5euRh1sNRQZAJT1Q8r1ANA9QPdDucJQcz/EHJXMDaimLy+qYeTxW3EmgOKU2UAp/6rpIjhIK0r9A2pyW1KulBoqzciMRUNbTGUDzGQDzGQ9ACglrRvNnJe1Ki9rnVbVVOg6jPuN5cvZwIKQs8YgyFsrWWv1HbIiF2StoRxDuss8zDfe4wZ6OsOsaWGnmcL6rIu7m364+/bmNHa029g13UJnpoFBJ0PRDdOsdxVMh6B7QN4hmK5/AUA2pZDNaWRNA5NpKBPmNr9zO1yng30Z1WxBbVwPrFsDO9OCnc5gW778rqn8VN9RYR2r1KKSu4yRwSyqsgvDwsvh81EiaRjI2EsyVdWe4vT0OsglTZBQZ8aiZQq0Qztb2+hhjfFtba3pYUb3MaW95CGVMORs0FMGynLZXuI6xwRDDo4IROzlpfHQOF6rYeh8bGvE4DDcnxSXUihlXLlP3D5O+x5ln2qM/NOGPDled5zI4R3VJcM6+azCFOwZgxq+nwIAk1kYY8O096EeQhkLq8CK4BSPl44GqVOizq1kFWGYP+tErhuG34+Vs8bPaWJDeUUpTNkPJTLokfJF1cI46RVSiSuC9UCyU5TwKq7WDcl3ESWwCPWs2B9zeK/JYkvFqpe2+k8c8k4kD3Gd49LaYOSaYYT+nquDDhXC5BOK9V2T2a4ADlRKhwTh3krWsNDNvOy7rFOwhYLVGk4ziHQVDgUJGlyQASahByvAhXXxf6DqtylYgujMljEUUSWAZ0dwjsDxnhBsU9iNu/C5lHpFqd0InO6PIM9NpLKuLqGLcWQqH4v3MU0OTV1gyuRYE2K89VkHm7M5rNMdrNcdrNFdTJOXKHqJ6nBc5o/LsoKDgh3TvzTIlvv6OJFDekCTFDIoNMlAKwUVY0M45GzRN7O4O9uB7c1f4PaptQCAX67dgJ/1DsJNmzbhlrn12LZzDQCgs6uJ3s4M2U5CY6dGY5dGc5eP/7K5Bsx8E2a+DeoMoKanoUJsx50u7NzcaF3vI5hfOwaDIzfg7i0N9NYr5NOAbfl1LkMl03TV8wVQSVlTGSsQ2rhlkAMSJ5qQSJDqoZK0BkcZL2MNUlbXBGyLYZvhWalloVoWjXaO6dYA61r+2WBjq4tNjXkc1JjFwY1d2GJ2YqP2db1ed7GWBphSjCw+LySy5o7TuJsGaDl/QPGZos8ZujaDUVkZF0YcUxWnALV7PIUbdZSvxn21dtDKx1ZauVpMqYjhmGCZUFiFwobYmhnMyl+HVoEKAgoqz0O0vOAopyxj5UrKypnzkngTpKbBKqW87sNb7D9c4R/2GCHuQHj+q0ndw7Nn2J9d2Naxj4dCP+QcI1o5pXJL58j3lVaV/cqwfUnMN5XRj8RSwwRpPyXpsSUwKTh4aS0nsWKan5flBtsWAKzDseqqjspt43Oz4mCBEvZR4fi1l/jGPrY6cPIxuiWfvg7nUgOUUykJJ5e8O//OXrlaxuSlBRUpQFtAezkxDVnf7E14leK8PaJ6vpcj0bcgCIIgCIIgCIIgCIIgrBLy5ZwgCIIgCCUMgoNa8dfu/KL69re/HccccwxarRZOPvlk/Pu///uS9vvKV74CYwwe/OAH70augiAIgiAI+yerFeftjgzkQIvz5Ms5QRAEQRD2Oz70oQ/h7LPPxvnnn4/vfOc7eNzjHoff/M3fxM0337zgfjt37sSLX/xiPOEJT1ihkgqCIAiCIAjL4UCM88RzbgKZcdDGwioHq4NrnFKw5Cd/d0Bi9ua15KWlkZ8CBQCgXKqPH/adU4ANmnZHoIKgBn4b3SOYLmDmAdMFso5PxHQZuu+gcu8FwQRwmMLcZYSiFV5tP3V6MeVzspZgucqbo6+IRvIlNnsngtSLJC06VVNsa+W855wp0NIFpswAbe09H2Z0H2t0D1NqgDWqizXK+5RMqz6mKUdGbsRzzmKAnFXwnNPIoUstvEsKouA9UOL+qeecg8IgmLy0kGOemmFbh0wVaAZDgKby5V2T9bGz2cJcu4lOrwEAyLsG/Z6B6irorgrnIPhcTBGyKUKjrdBoaWQtf/noZhN013bY7Tuwr0BaQ2/eBKz1PituTQv5VAbX1LANBZcFzwQATlPljcOACh6Lab3z8I8dQxYTcVm6zns6VL47LvjNcSN4pRkLlfhopH4eRjuY0NYapkDb5JgyOWayPtaYHtYGz7l1posZ3UOLcmRkoYPZg2WFnC3gAKd8u4o+OEZZKOfPnWMKnm+J55AjOPhlbshLTiuAyEExwGr01x/v2YPSpyROQa9qXnPBq47Y2/oFf6CaQV+s9+ApVPr2KQDRhyRz0A2LLHjONbICmbHIlAMRg5mQJ156zqnQR3GYcj71M/NeHcSJX1Lw3mDtPedoxHOu7jcX66r0Tyr9TdIKir4eFLw+YgJ1D6faLtFrLnmV/nbRKBF1T5TS0yR6kRCVeVHi7QflfUHZRJ+SUCadeOLpeBDj/d9IAXAhH+evJXahTJZ8WtEj1FZ1QozgCxPSc347n2biZxLaD9NwZe49GLQqs3gt9xfVN73pTfi93/s9vPzlLwcAXHXVVfjMZz6Dd7zjHXjjG984cb9XvOIVeMELXgCtNT7xiU/ckwIL+zGtRoFmK7nPMTCwGv0sw8AYOAVYxBuYv545Xs+ph2S0Tw1+lvHeyiZ4JhUEEMFClx7GlS+cAucEyhUoD9e8JajYZ5SGUaF/MgxnGC7cR0kFz9GGRWYsjLbQoX+u7muEwmpY632ibKHgitjRBz9MAkC+nwdQ+qTq8G7IoRFiqCk9wIzuYb3uYKOeK33BAKBJjAYRFABNBMtcRmkDZuQg5EzBY3h0fECM7UIXihxABxYZHBwYigkZ6do+GSmsVwYtKjBN2wEAm9Q8DjKzOLy5Aze3N+GWmQ0AgFvWrccd62bQnW1hsNMg26nQm/XlaMwpZPMG2XwTpmNhuhaqt96XqzOA6Q6A+Q541+yq+8+Z+x6N3q9txtxh3uytt5GQrwWKNuAanPijBi+5AUENvH91fAGA7jN08JpTOUDx3pV6Kpb30hgz+s/e55pgG95rDgh+cy3vOWdbDNdyQCs8N7QKNFs5Zlp9rG93sbHpPec2NedwcGMWB2e7cJDZhYP1LNYHr+p1qsC0UmjCICMdfAZDerBwZL3f8Jix144VBlYjtxqF9ec4L/xnWyh/7SW7UHjGUZphtPfvzUyIr7RFUxfItIVR9bwcCIVTyK1G3xp0g5+fc1TGScwAMY14NZextWK42KwNAw0Hyix05pBltixH6X0H9t6wrjquvNC+VqJJ3Bi7yqrYMajk0uuNHQFOwRXx5Gs45aAU1doTM8FZBWcJHHznSp+1uI3yReD0Uk3KU7OoC/FffJV9JgD/lOdASlVFjl56MQ70Nns+tozPw/BxHznU/YopjW2B2kCuxG8O2vusV355XObt64lgQx9KOYEyAg8IKidQ8J5TwYc05p/6N1LwMGXnTQeJGCrG2yuE/6pi5eO85R7hgRjnycg5QRAEQRD2CfI8x65du2qvfr8/st1gMMC3v/1tPPGJT6wtf+ITn4jrr79+Yvrvfve78dOf/hQXXnjhHi+7IAiCIAiCMBmJ8xZGvpwTBEEQBKHEzzynVvzFAD784Q9j3bp1tde4X0fvvPNOWGtxyCGH1JYfcsghuP3228ce109+8hOce+65eN/73gdjRDggCIIgCMKBx+rFeYRPfepTEuctwP5Z6hVAh+HMmgnO+fG6eTKU3qEadg9WoCANUMnwVSCMiLVhhDEBFIb7A2E0MSUyhr6XsgJANudfzV0OzR0W2U4vGdCzXdBcF+j1gSKMjzWhXO02eKYFO9NCvq6BwVqN/jqf22AGKGYIxRTBtrkcgs5ZkDGMk0xFmcYYvHzPSx2McjDkStloRhYZFWgpLzVskR/j3aICGTm0yCXfCvt8cxA0GBpBSsEOdsx3x1HSWk5vHgQTFgqOqZK5MtCiHDkZtFSOnA36Ye74mVBfihhGOTR1gXbm13WaGbr9BvK2Qd7TsB2NouXLYdqAbRFsS8O2FGxYnrUMslYG027D3XEn3GAwvtL2MqQ19CEHgzeuhV3TQm86g237MtogY2U9Ro4KVJrAceONo0Q1vqer4hD2ROrHQcrKekgyaBgIckyVWZjMwoSh+kZ7KasmBx2krVmQ6zSHpNNtndfamkbYb5IuMhCHbzv2baVg5aUITmNQ+DZh2ctaU6nrMHrMVOepnJWIS8lDKmn1N0ICEZX/M1DJP10ieeBKzZRO9Q7DYMM1SWuzkYd6ssi0LeutSE4Wa0JhwzTtpIKOoJIEQFWqhXK3MM08DPtXInlKp5jn9DjK4xmStJaSZw4S2iB5SGSt5XtqDxBXleu9nCBNm7mSjpTWArF8pRwHpSSXmWrLWTPYxHpicMZg4/yxquo402NOC8VMQJAEA+TlqUF2gSDPIOU/g7iUNZTbMPmbiaukIZxobYgYSrmqDdzLec5znoO//du/rS1rNpsTt6eantnX3fAyALDW4gUveAEuuugiHHfccXumsMJ+TTsbYLppSwsFx4TcanSMRddk6CiGpWjB4TsJA99Ps9cE1YiypVLWNPCdKxcEVjr082HbAcFE+5IOkM0D2bxfmXUcdNdCD1ytT7QNBdvWGMwoDNYQBmuAfK1fl691GKwpkE3nmGr3MdUo0DL+3mCU8/cfp9C3Bv3CoJ/74yms8hI1F2X0lXVBrJP0Bfj7pGOCCvfdBiyaYT8vQdTISEOBQpcYrTK8JDEP74Og43cA8pg2ht6ZkIf+cDZ2nvAVPGyPknMllbUgtGiATXoOeUOXsWJDFZjOBtjWmsGudhv96QaKOX//z+cUzDzBdAmmq6B7Bqbn8zC9FnTXwnTXQu/aAHP3LNy2O335u92RtrWn0evX+yN/4DHYed8W5g8j9DYz7NpQF+0COgtmJLmCG2ig44+LCgWy3iLHvxjBGQS6z1AFeznrGMklRwsK7WWsAOBMkLQagmsANktkrU3/2bYYruklraoVLGWCpHVtq4e1jT7WZb7eNpgO1uku1qguplU/2JQE6SrBtyMAOVs4MHqh3fSY0WODeW6g45rouAY61t8rduUtzBVNzOUNzA8a6AyCdU2uYQsNV1QxXmnRoRkqxGyZsWgai6nMx/PtLEdLF2jpHIZczaqkYIWBNegUXmJcSmiVr/8yxkvllbU4JMgZs7Cy6WPkrFmg1cjRDBZCAJApW+Ydr2cgsU5hwFkfkyDGDBT+KC4fADhdFyTtcf9YL84CxKq0AYlhSSrt5IK8fYcbug+PeV5gNf6ZIeYbrQN8eVRY7ABW3jYkjeHiPghlTyx0/DJ/vOxQe7ytJNoANJcxoK/EUGdB0kqaoXSw3kliQTBgg5wXAFyh4XICm2BREOypMPDSVbiqrGmMX2sPFJ4txjxf3Bt5ylOegmuuuaa2TOK8CvlyThAEQRCEfYIsy7B27dpFt9u8eTO01iO/nm7btm3kV1YAmJ2dxbe+9S185zvfwR/90R8BAJxzYGYYY3DttdfiN37jN/bMQQiCIAiCIAgjSJy3MPLlnCAIgiAIJf5H7JU3Cl4OjUYDJ598Mj772c/imc98Zrn8s5/9LJ7+9KePbL927Vp873vfqy17+9vfjs9//vP4yEc+gmOOOWavl1kQBEEQBGFfYDXivOVoQA7UOE++nBMEQRAEYb/jta99LV70ohfhoQ99KB71qEfhne98J26++Wa88pWvBACcd955uPXWW/He974XSimcdNJJtf0PPvhgtFqtkeWCIAiCIAjC6nIgxnny5dwEMuV9SJgBS4l3U+KrFPX3Lk6PHdalMntKdObkAFUk31S74ENn/RTnput95gCgeTejfUeB1rYO1O3bUdz2KwCA5aXp0ZtTU2hvORjFwesAAL2Dm+ht1OivJwzWEIrp4LHVdt4LzPB4LzL23gS1qaiHSL0XUuyYBDUYCt5HQoNgq7m5g57f+f3GlKX0o4MrvUb8/wzrJ9uu/L2cggMhowIKGRQ5ZMGvxJBFRg5tXfmxNHTwN9MF2lmBTiNDr5lh0MhQNH1duaaGywgu8x5uthHqsKHgmhrZVAN6qg21/W4Ud901vrL2MHpmBrTlYABAsXkNuusayGc0inaY3l6HioyN0sW2yJUvYvSTiB5cKrRxEz3jAKd8GuUpTaZVL4k2EBrejyQL+2ZhufGeGtFvLp0evqEttPJTxBsK7yp6xFg0lPX+hmShk/ZmQbBQGLCBTQwuLBT6LkOPDTq2ga7NMAiGKT2boWcNeoVBr8gwsHEK+uC/41RqA5H4mTG0qj5Hu4PUZy71nYvrAAQ/RN/MU5ui6M/Gzvcnw5cSK5QeGLEOyTjozMFkFo2sKNtuwxRlv+XPK5f9lXYErRgq+naoqk34aks86KKvR/CbY8Mg7aCMq/w3tD/G2mUa+0NHYFf5rAz7fVC0pKPKI670PRn+nKRb+jzV8gwNkQBKM6PKc4UVQDrpu8n3Z9Frz7fX1NPPgYzflxKfk5jscBmoZoAX8on+K5r89VSocuua90h4jT22pC4orasVgMN1tdLwMn/F/e3f/m3cdddduPjii3HbbbfhpJNOwqc+9SkcddRRAIDbbrsNN998894oqnAvIFMWU6a6/yswClZomgKZboKI0Ql9SoHKdw7wPlzBxra8puP9Md5T1QBQhb+Iyfr/Tceva8wCre0W7TsGyG7bCXfLL+H6vQXLqwBkAFrhf71xA/jowwAAnSNnMHdYA51DGti5qY1d6weYWePTW9vuoWVytLMcTVNgYDQGWbgfFgZ54e+BLonZ4n2M2XtbDZxG13rfrq6LHl9NTKs+emzQCj5grTKWAzQpqKQfcXBQsMjgfeeir1jOjIwYebg1Oa57z+WsMICGc+Tv+eFe71Pz/zsQBmwQHY0HrNFzGTquiZx1eS+e0QOsb3TDPZmxSzv0M39cg6ZBMaWguwTdA3SPYPrhHtoDTE/BdAyyaYPGVAbTCEZrt94G1+kseO7uCeohJ2DHCT6Wnz2K0DnUQW/qYf3aDmaa/VDXDrnT6OYZ5rpN9IvKYFgVBD3w7VUNED6HWMbF+z3VfMBc9CjW5ONAXcWTMcZjU8V6oWl4v7lm8G5tOqiGhWmE+LpRoN3IMWVyTOkB2tr7uTVVgSwYNVpW/txFAzEH5GShYOHg20MvnP+Oy3C3a+Muuwbbi2n8Kl+Hu/JpAMCOwRTu7rcwP2iiM2hgMAgeiwMNLpT3S+PofRtvvg5OEbT2y7VyyELfkPoeN1QRnjt8fcTYcuB0LTYEqhiPHJV+k35FeI9ethpAFuIrU/nNTTVytEyOVvCcawRPYceEgatM1qxTKJRDThoU4p54XKQJDB8PEodnvXjMwXON4ku5yme39Hjz5Y0+uaXfnA1+c7bq88rYJ/q6cTg2+G04HnviSVf2m1zlFQNlIiptN3nkwcM/K5IKj5Dax3e+QiqPuxH/aOLKEy+Nr3WM9/y70g4qrNPKQQU/7Fjf0aezKBysUXBawyldi2vVgKCK5JiTY60ViTDSdvY2bpXivOVyIMZ58uWcIAiCIAj7JWeeeSbOPPPMseve8573LLjv1q1bsXXr1j1fKEEQBEEQBOEec6DFefLlnCAIgiAIJS4ZnSIIgiAIgiDce+BVivOWq5A4EJEv5xaBCOUU7H64s58Unp2DLRWZBMeJbAmAim0vGcZMcaroKCcMsi9VALoPZPNezgoAU9sKtH45C9x0K4rZ2WWX23U6cDfeBNzo/585dAvaRx6E7qFT6Byk0fcj5JGvVSjaDNcMQ3tH5GXsLyQKw94TWW+ZFxMcE4owxDpnjZxNeGn02OsaG2xhyU+FHgdj61K6UB/j63hMpxHGRGuq5IIaXL4sVZIxR15vMqAcufLliNOa56xR6Go4uCGHhvJDxlu6QM/maJkMnayB+cyiFyQPhWGw1mCjwpD+MI22IdiGgW0pZC0DM9OEmZny6+64a6/JHcx9joDdsgH9jV7kMlinkU8TbNNLWlmhNvV3lM+RBZSlZBh6eA/nPo6Uj3JWNl7GUEsP9XTTdsMqSB0M4BpeFgkAnHlJpjIOxnhJa5QTZVHWGqaojy8gkYaCULBG3xqo5MJyrKCokjoDsQ3qIGltYM420Cn8NN1zeQOdIkM3b6BXGAxyjcIG6bKlUoaAKFcNQ/v9u4PRlXwV8HKSVM6aylojqqzmSg5fSgUmyRnj1O2Ky6neyTCUcdDGwmhXvgDfjo1ytXpLy0FBPkHEXu6QyBrA5JelEo8gQybtoDIHnchatXLl8Htm1KTAJYxqDP84CbRKjj19L+XVYVEqfRhuf+kxEspzxYrB5OuNgswWUboa5CwgL2NgzeW6KBsmzV66mxxneVhjzlddxpJIaC3BkQbDhYupPiU8lW0hyE3Gpu3bFA/rIARBuEf4+4zvOwHAKAszFNvEa7nDBMvkbU6UguoTVLBsIIv6fTCRLlEOUBFsS+aB1naf19TtfWQ/vwPFzb9AsZvlt9t3ANt3AABa/wG0tQb9j/tj17FrMHtEC50t/p43u2kKzbV9zLT7aGd5aR0BeEsJb8nAcE7BBqlW7KYcCLnT6FmDTuFjoTndQJPaaKocGVloJPcdHgAo0IrWIzUtXyj3UEen4FVsvqvnEZNyCx9jDlgjRxVT5mz8shBr5qwxYBPW6SQOaKLrGmG5giJGSxeYbgxqceZAMazRYKPhGgTXIFivvIRuArZFKFo+xuKMwEHmmTGDb7oFXOTY0+iTjsfO49di9kifV/cQB72pj3VrO1jX6pYxlGPCwHqJcpFrcE7QRTiXFj4AIR/L+fgwrItSxZH7LpVxX/me3Is5SF2jdUlQdsI22cd9DQfKGDqxL2mZAk1doKX9e6aqtpGzQZ+9DNlBocO+4n378u3FS5w1euzP5bxrYta2sNNOYXsxje2DaewY+Nj77kELs/0W5vsN9PsGRT8UsFBA4WWZlMQBEVYMZ6iULEZUsC4xoTyKXFkhw9FPaXnkoocH/L0/5pluG2KuSlIJkPbyyYa2yLSPk6OcNdqWFC5Ku6ty1uWbDIoWNSFmBXvZp7f6CAXRDKVizOMq65M0TQasHbV3Kv1JODmu+EwQoeTfoUe6srhjny2S2LF8DT2jxpRVjGtTSxGuYr1RL5LqpTiR/3pdvZf3oiZjzULMHeN9ZiAPD0tKMXKlUSDcM8K5YUfgYC9DFiNEOyye9BwgHLDIl3OCIAiCIJQwqPRuWtl8BUEQBEEQhL2JxHn7LqJbEQRBEARBEARBEARBEIRVQkbOTcAF+Zl/j1JOv44AKO0QRs+HYayoS1ujrCGROyRqOZ9e/BykhlQAOsygpLsFaNf8bklax1Hcdjtw2+2Yud99kR25AZ1Dw6xbfUK+hlBMUZhhKZG1hWHucQacdEZaDnIPB0LhFApWyMPx951BxzWQUQFNrpxds8EWGcexva4mZXXwM3TlrII0wcsXAJSyAw2HDPWxwTqMFVbkh5ZrxP8ZaoFxwgqMDjVgnEXhdFn2aTPwEo4sw1zeQCtrYlcYkj+vm8hVhoIM/NhnnxYT4IyCbRCKlkI2Y2DWeqmp2bgGZvss3LY74brdpZ6uBdEzM6AjDsXg4Bn0NzYwWOvLnk8RbCvMohVlqJFE0koacC6Z2DKRtabShThTa03SkMpkkcw4iWpdKWttMFzm5Q0AQJkLkkwvxYyzswIoZztNiTPHxeH7EctUnq+MHIyqz+AKALkL7cgZdG2Gns3QKbwUpptn6OQN9HKDQW5QFAouzKbprKodDyWSUhgvvLEEENnRYfi7QZQMVB1GlXcpK9fsZw8FqllTw3D7KAMeJkrNxxLSLmeNUgDHa0WhnLkKhgHjoBsW2rgwrN9fC1HG69jLP/xkVL4OyfGop0Qq+yyltYRh+cMkWSvrqj7K2c1Ql+qm+ZDyM4+BGcwOgELsetLZiaGCpDXWr6lmpR03I22p3Biq23Q7TtZbKBAHSasaTiS59gDUJuLmqm44nMuJ53MvwEHCJwj3ZvrWoGepNqt2RBF7SVnmRaeFVeg7goOBVQAbgsujbDDYRKT3RaCUYynn7726x8hmgzztznkUN/9ijx4PWwv+jxsw8x/AuhOPw+z9NwIAdt2nge6WDHdubMHM5Gi1cjTDcWmKVgXetqEmu0/qZWA1esoHvbNFCxk5ZMqWti8RxwSn+shVgRwOClTalwDewsSBYZmRR7kiAzkIYeLQMAs7lelFNDk4VmWefv7OKk60rMrtS1mrMyPn1VuZWDRNgbbLy/XMhBw+HmXSpZ2L3xFhxlL4GUyNhs28bNhlG9BoZcAvfgV7991LP2GLYA4+CIPN08inqHzeAACbK3R6DTim2uyReaHR7xvYvgEVVSzDKsyiyv6zbSW2Jkm8wyqRGqb34RgvJDFelMiW8V4WrCEafqZWZAxlqtgBAIy2NeuNeI/pOwNNDT8Tq8u8lDUUMMaF0Qc1tcrpuwyztoX5ooldRQtzRRO7BkHK3W+hO8gwGBjYga5mTB94WWsa91azLRMcKTjjYJ3yM3JyvR06VuWNu2yjSVuNz0VAfE4K6Y/MGIoqlolSyjgzqI4xMo/EeDEWGDiNgdXIgyXLwGoUVnlrFkulXDLiz5kLkk1vjwIAOnPQ2p+jzNhSthmxTCisQmH9jM4AYPMY23Allw47UfmniuHKZ97k8Ifbk7daQRUnqaQzTV4U7V5SOEhHFQ/JYZP6H657BOm+SmZIJS/tJc3Q2pXnAYC3kAnPLDH2TevJOYJV2pdbVenVdL1p0R0qm6twzgqra/LhvQ0zViXOG5k9VxhBRs4JgiAIgiAIgiAIgiAIwiqxX305d+utt+KFL3whNm3ahKmpKTz4wQ/Gt7/97XI9M2Pr1q047LDD0G63ceqpp+KGG25YxRILgiAIgiAIS0HiPEEQBEEQDlT2my/nduzYgcc85jHIsgyf/vSn8YMf/AB//dd/jfXr15fbXHHFFXjTm96Et771rfjmN7+JLVu24LTTTsPsHpKGCoIgCMK9HQeChVrx14gcWjigkDhPEARBEPY+vEpxnrA4+43n3OWXX44jjzwS7373u8tlRx99dPmZmXHVVVfh/PPPxxlnnAEAuPrqq3HIIYfg/e9/P17xilcsK7/CKnDQ8rs4ZXXwVyotGlJtfMZgZu+EwSjnoafEY85vO+SlRH53l/mXzYJ3QVMDrWYwhBqdin53Kf77RjQHR0AVB/niDJro5QqDHCimCbbhywF4vzEEv7maQUAgeh8UrIK3l/exq/wkRi9EC8I0DWBVDg0emiJdoccGPc4mes4Np6eDcZMKaYWZ7ZHBogHvK9KiPLz81Owtl2NeDdBxjcqTJBxb9LToO4P5rImdeRtNHbxZlMMuADkTCkbN1I0V4DKCbRLyaYIOPnBmQ4Zs8xSyLRtg7u4A2+9Gccedyz1tJebQLeCDNqB/0BT66wwGaxSKqeDN1vTnrvSJS09ZsGyA8R4HFPwOgLoHYq196lG/udKnLPg48FDbBqJXHcMl3iOA9/PSJng2KB7xiXMgqOCBYFH53RSkoBxjoDSMNTDKwUQ/EmKYMMW8Ate8Pxyr0pdj4DS6wXOunxv0C4N+blAMDGyuABs8QmxykIoBzbAuKaexoOBLQhT98sj7G6a+ahyvf64tSz0snVNhCnUqvYlKghcJK+83R8H3Inr2pZ4kNMaPJOZnY9+F8Ln0P0GdZFr56L8W/eayzPsuZcYiSzwCYx55nDY+5qvYz2Y/6XuW2J6GyhE9OEfbIYf/2XtgUr1eY/F92hze/Llz0W8ODqRivXDZ8XL0poteL5mDNhZKMZSq12/0fottPvXNGC5PvGewYjBx3W4m9Xp01bVEihAsNMHOl5GdbxvOEdyeuw0Iwj7JSsd53bwB6vt7BAA0tC39hIrgNxU9r4x2sJlFwYBTGk4rwKSec1U/XnYHDlBF2KYAijahmA5x5doW9MYNsNt3LLealoS94ceYubENAJh68HHYeewU5g7L0N9sMLc+Q28698fcKNDICu9vpeqdMlF1n+YQ6wFAz2aYUw2ofKqsn+hdZI3CgDXWch8tssiomg9Qk/c9c6hiPoTPjiufuXEPcCr40mrkyMjHZDkbTKPv/WWVjx3zYM7Wc5n3J1MZ+i5Dz/l9DFlkZJEpf65V7R7tD3/gCHDk+/EYJ8XzG7zWbINQtIPf11qFbNMGNA5bg+ZdPahf+XNa3HrbbsfvqtEAb9qAoqW9b2HfLzfzCrnK0CsU+llW+pQRofQb44L8vTSsc03vneey4Ds8zh8RQ7ZoqSfY0P08/u9jRPZefNFzLvgMq8xCZz5OaQSvWkNV7GaZ0LU+JnNM6HMGQ97DcNhH17cNfz3mrFE4X+99Z9B3pvQU7hTeTxgAurnBoNCwhQJbBQR/SBQEZQHE85k2NVI+bigUrFEogu8cgNJb20U/RK630dKTLvUpj3/i/2k9xutKM9j4OEQlnnMqiT1ifxTTL5xCbjV6RYZu7tt7f5AhzzVcrsCFAsc+KTlnpAAohsocTMOfk2ZWoJXlaDdyNHWBRrguynxZeb/JIkM3DzG0MhiQgQXArHw+sZmH2I4Vh3iO6uFmPO4xHoYIMR4nvm2sYrmDl7Di6tl72G859dkLsfUYS+awb+pZHBaFZxMKns5GV36JmRryyWaqxYA1f8FYF45KP9LSfz5pNmR9zMcFgQuFYqDhBnpCgYUDif3mK8x/+qd/wkMf+lA85znPwcEHH4yHPOQh+N//+3+X63/2s5/h9ttvxxOf+MRyWbPZxCmnnILrr79+Yrr9fh+7du2qvQRBEAThQIXhv9xe6dfIl8bCAYXEeYIgCIKw91mtOE8UEouz33w5d+ONN+Id73gHjj32WHzmM5/BK1/5Spx11ll473vfCwC4/fbbAQCHHHJIbb9DDjmkXDeON77xjVi3bl35OvLII/feQQiCIAiCIAgjSJwnCIIgCMKBzH4ja3XO4aEPfSguvfRSAMBDHvIQ3HDDDXjHO96BF7/4xeV26TTwgJdBDC9LOe+88/Da1762/H/Xrl048sgjkRcartCllMmn5WVGUYoWh8+S4jA02QFBqlaN8A3DfeNweFUNNY/SQ9bw42rZD3MFAFUYqHwtGsVRKH76s92vuDEUt/wSWcMP/W7r9WDdgNeNAZhCORTasZcJsoKfMnsM1vmh373CVFOeM6FwuprKnv0w3Sgx6Oku5tlLTct0WMHBy1oHbJCzHpE2NGBr054DidSBGRkBjXCuFQAQMIUCOReYUjnWuh4AYJfrYda10OMGei4rpZBpWXLWmHUt7MinMWVmAABGOTATdjpCYQm2HDJOQdYK2IY/hyqexxzQAwXdz5B12jCdDchmjwAA6Lk+aFcHmJ+Hm++A+32wtdWxNRqgqSnQzDR43bQ/d2vbyNc2MFijkc8QijbB+pnjS0mrM6jJAiNxiH2Utcap5Muh2LF9prJWVb3XZA0xrZoktmrXLvND9TlzNUmmClJMlUhl4nuUswKVRCBFkR/mH885gOr/IXlKlHc6Jn8+bSVdGgS5QzEwsAMvAaDcH7SXfFB1PLqS5VpMhokB50BEYKrkCPEUxLLUpKZMYOflB15ikRxzlLRqL2lVQWoaZcFGxynvk2MGAa466bnTZV7WqSCNDFJJlwz3T2UtQToAwJ8r44f1N02BhrHlkP4oIbZB+mWH5LUTIQDEYEWh4UUpbJC0xnZIQ/2k4nLfpfzo5uUKXv7AzKAMgEsba7WeVFq/XtKaGTsiawWiVJhC/19JqKv1EwqUyN1i/1peh/E+YqtrEo68GsoRrFUgxWOvib1F9JxbaeQX1QOblY7z5nsZXCND3/hQWJML0k6PdYTcVTIjpRjK+IvUEcDRR6OI/Wq4f6R9argnsya4BuAaQSbXnsbUml9D66btKP77xuVU05Jx3a7/8LXvYUP/AdD9NZjrK3TzDEWQ2/Zn/HuzUSBTtjx+Su6ppcVEuJ8MrMYcWmU+OWv0OEjeOMM63UGHu2hRgRblyIJeP7UxiTLF8v/hgCWgyUGDkZGFBkMl50ejX+4fZbEx3oz2KD3O/Cv4tXRcEx3XxKxtYVfWxt15G61gXZKptg/FmZC7IBGNlheFV6g6hBinARRTCMfsJYSqaEDlDejeWgBAY/4+aMxaNO7OYbbPg7bvgtt+tz83/d7E86Y3bgBt2ohifRtsvAzThM15DiCnUOQE11DeOgT+fkmKqzhCc3lrdwSQYbggoyNH5b0mlbhOHLkcZaypDFFxZX2iuSpH5kCZg8q8/UaWxA0UJeOs0LNZKU/tUgOK6vJfl7QHFyxBol1JbDcF++ePaF/SKzL0C38t50HS6grlZb6hvSsLUB6On8nHFqn8Uyk4xbBWobCqvP6LMOrHxmdCqu79NjzzFOxlsIUNthauemYcCY9CjAfDIOOgjIXOgoTSWDS0RaYriWmUlBfOl6mXZ+jl3p4FQD2eLRKZfcirlD8rhkrkmq0sx3RjgDWNPqZMjoYqarH0wOkgY6/OD7OPKdkSnCXf1uJqjhnGz4mtR/o+bPcR21eUtMbrXMXKCxLUELMBvj8u5alATWYaj53HxE2VnNVHHGW8HuSs8V0Tl21XJ3Y6UbocnwGt9fG1l5SrmpVBjOvK6ywJQ5X1/QppAg8UnAJcsXKyVl61OE9YjP1m5Nyhhx6KE044obbsAQ94AG6++WYAwJYtWwBg5NfTbdu2jfzKmtJsNrF27draSxAEQRAEQVg5JM4TBEEQBOFAZr/5cu4xj3kMfvSjH9WW/fjHP8ZRRx0FADjmmGOwZcsWfPazny3XDwYDfOlLX8KjH/3oFS2rIAiCIOyvMIeJWVb4JRzYSJwnCIIgCHsfh9WJ80QhsTj7jaz1Na95DR796Efj0ksvxXOf+1x84xvfwDvf+U68853vBOBlDmeffTYuvfRSHHvssTj22GNx6aWXYmpqCi94wQtWufSCIAiCIAjCJCTOEwRBEAThQGa/+XLuYQ97GD7+8Y/jvPPOw8UXX4xjjjkGV111FX7nd36n3Ob1r389ut0uzjzzTOzYsQOPeMQjcO2112LNmjXLzq+wChw954KunFMNPxIte9DVkyLAMJyjUi7vmMuplCvPubBb8FJiA3AGOEPVOqNgG01MTR+E1ropqNu3+3L98rZlH8sI7ICuN7DQ3QJZx8A2CTYL+Ze+EuQ9rzg57CEPEu/Nob1Hgbft8P4PYYrzrs7Qd76ZdXQT60wHs66FKTVARgU0Kh+DnA0svN9b6j+iyUHBwZGCJQIUyv00OzSivwGALPjOZFDIwnzblhlrYDFP/pjXqAFmXa/0JEk95xQYmhwsK3S4ibvMDGb0xlAO9tOpW4U5S3Bl0TVYEZQZ9XMjGzzoCkAVGmqgoQfB36bfhu6vgx446D5DDRxUEbw5LMMxgzX5ttAMvhdthaJNKFrkz1kjeMwh9bbBiH9ceeqizVdqb1a3+qj7QsQ01JA/REivtCoJ2/pycOlBQqby6FGJ15yLv6CEBGzw9YjnwgbvRmABzwh4q0atHBQY4yyH/Aggf86iD0hRaBS5hss1eKBAAyo9ImArLxbW5I8jeJWxA+yY698xQSsHS1R6lFWeePVy5IWGDeXwfije/42TfAFU08drhjJc8yLJjC29gdSQkUmsv8pvL/zvqPK4C35m0fsMtXZRebqRCp6OyoGCP4dKOsA0D+9np8q8fJoTvFaAqm3FeoptianyIoltN/odLvPHNiIGFEHB+WNOT0b0KSFAae/B4o+ZobWDUg5Ge8+R1HeJmWDJ+yOVnpPBdy/eJ3w9h89WwVlf5xQ85FKvH0p8Wvz6ah1CPbIjn4ZduYHuDIITLxJhhVnxOK9n0Mka0Lq6RxHVfc0i8X6kgscwsUPspBj+Xg9Q8B9Nb7A+xnNNRjFFyNf4db1NhLnDGmjcbwtaJx+MqdsHaPxihy/XHvYZBjuoX2zD1EwDRasF2yS4RrjnNhxs099fGuHeAqD0WkqJHlsDp0sfsIEz6NoG5oL57U49hXWmgzWqhynVR0tV/sINKmr3kFraiH7BXPrM+bIDOvjNZeTQIodWjPOIkEF5b+cyHR+I5hggZ0aPGTkTeqUXncE8NzDr2rjbTmF7MYNfNbzM+bZsHZqmwJ3KYReAnOE9tRDOLxMUkhg+dJHOAJxx5Y+aoHIN1Tcw3TbM/GZk8355Y9ahMedg5ix0rwDlrvR2dtqfH9syYO194nQ/5KWj9xsFH7Rwf2o43w4VRwvrWizHNsQjRCGQqeos9Z0bvl9z9Jur+RFz5TWnvW9a9OYl46Az71ertavFKMzk205B6MGMxi+hTcXP6fLh7SLWKe89F3yF8+DZVVgNVyggeAqXPmADgsqD9x7755x4Ph0DDsFzzigMtMHA+PbU0wYtXcC46E/JZXzVsxl61qCbZ+gVBoPoA5fr0gMOrl63TAA0Ss85nVU+cN7j13tAmnAdlv52TmFQmPJYi9wX3uaJf7JN4jtEz17y3pzwTSDWvY4+a8RQVL37PMfHAMwhNqk9AyeE2IvD57HecuP8gynZv8xsbBHK7aMXtX+lZZywS7RkVK7cJ/VSjvVBxDBDvs7x2B1T3cc6nAdf/5R4x1MZ15XPFckhxviYHIELAuf+tXKsTpwnLM5+8+UcADz1qU/FU5/61InriQhbt27F1q1bV65QgiAIgiAIwj1G4jxBEARBEA5U5CtTQRAEQRAEQRAEQRAEQVgl9quRcysJW4ItNNihlCj59zjkdMyYWWIvR0unldYEYq4MENMhsmF7aAaXEsYwpNt42WI+bdDbsBbNw6cBAI1f2wKzswfaOQfeOQt7993LPjY1NQW0W/4odBynHqYYtxg7xbqfOXx4eC9gnR/e65iQkx/iq5VDzxo0VIaWbqBrGwCAOdPHnG1iRnupQ0Z27PTpNtRVlDVkVCAjC6e8NEIzI4Mf/m0RpK6+qpGF75vblCGj0LwJmAEwE6QVHc6xRvXQ4z5yHs6LkYVT1XGEu/QuTKt+SN8hdxq51Sis+v/Z+7eY27asLBh+Wu9jzPm+67B3nXeBnx+ffiG/F2iCaBSjgpEqo0RDSJREIh4wwVBGCQSVcFMQQykJpEyIB7xQCAEMiQmQELFuAA0xliVGAwkX/49UUVbVpmqf1uF95xij9/ZftNZ6b2PMOddau2rv9e5duz0rc805x6Gfe+ttzLc/T8OVUddIw6+3MPVotBZPc6XF2rjTJITynJBmCPV11pDeC5AW7luhG32CUEeg7Ah152is0HelAAq9Yk1rZe59Suh92yh19nX7k71SGlZb0HkzAzxdOwHIMg+QGMoubtvDK0uY91rzih5t28WZgapUQcurVlrRW33o8+3Wdo+WZpX5DAB1kXDnmBLSlJAmAs22Dd21SwLqiE5XrHKqaFtmpesy5BoiRk3rctgW+lpJ6BcloSxK/1yEqshL0n6hbh8SK6W1Io+l0R3GoWCXS6MheFh79XZ0tIZHie23ffanT7FSV5eSUbQzLYz8XJVasalXXRJQhLJr9MxVXlZdMz+M9QXkxqHRIp6gCifrSUr12dpsO+77y06RURzqEa0VSKi104IqE0pJbZzV2mmtXEio0ouMeW9TfeFpO5+sUkofqbXTZp8GKmglLfD08DQpHYG3OuqSgUNGTTLWydYrcvTWM0OSiDstn/paRaXbO2JHC1Sph3pbTi4EHBh4UGX9SYc9hqsvAQCMr3wJdq8Atz5bcPnpawyf/Jzc8/Hf+fwry4w0V+SJkZXaBwBFy5tTxZgKLkfxkwaluFUW+uTi1uSpZEzIuC4DhrTD/bzHRb4EAFzkGbeH27iTD7iVJ9xKE26pD2V+30gFGbX5fxkqIYCKTLVRWQHxu+SeiltUcTsl3FLf7pL2r7oZKioOfI179R7uMfBC2eOTy9sAAJ/YvRP/e/cufHx8B/5PLvhcuo2pKV5kcErgyUlfDOrTjEIP5ouKtCvIOy37ICTNyoRpzri6zsADKftwP2F3L2G8N2B3b4fxASMflF43qZzMQLJOVhbfBEBSmZSqvqa5AQz1N8zfArt1VbiEpL4eqa8KOHmFExIU4ve79dn8tXSC0mrU8FxBbt2sTE1ShHnEoQyrc3K8+37SR+tJt5UJWZWR0WQm5iVjMVrrlFEPA3BISIeEdK2+/qS+uPl6qUvD2NxlyqgJmBNwPYzSX7nifqqoTLjImoeukdfLgAfzDvemPR5e7zAdJME6ZWCShJqPbXVIDB6qUFp3Bbvdglu7CQBwuZuxzwt2qfQ5qB1bQU1Gw0tomK/g+65BaaS+/TpNVvy46yJlvnaDYKkJU824WkY8mHa4nqQtpmnAcsjgOQMzAUuncpL5LY7O6n05bJ8lWoH9Z2oHqFIfh4DIBjiJEm7+f38OOAV/3MvhGI0V8Md0LGvbW3sVTu3577AMOBh9eRpaX9NCIJ2rfl5t28KeqVo/Mem8fIp+Ht+MnxcBIR6P2DkXCAQCgUAgEAgEAoFAIBAI3BBi51wgEAgEAoEGCQjx9P+6+Sjt50AgEAgEAoHAa4Pw896YiJ1zgUAgEAgEAoFAIBAIBAKBwA0hds6dQS0JVEg0g4wUXrsmApHThzoVDpr6Z+PLk4We3sZ4JojuXGaUpBoMOaGOhHIBzLcJ129TnYrnBgzXF8jXz2I4VOTriuGBENzTgwnpwTXw4CH4/gPUq2twEWEJyhnp8gJ09w742btY3ib6INMzI+ZbSTQz8om6nAEzodaEmeSX91RS0+Yw3v+YCx6m0rQMHi47PBj2eCVP2KcFY6pIOOb22/dRRTEu0ox9mlGQ5OfkCiTTCKCKmTOKxLlH0go0vTmHPY3t/RbPOPCCor/hX+j1exqRTNshV7yjXuGCPgNA9O0elh0eLjtcLyNKlesmAngUnS0qBDjNuVSgGgQEGlQnZKWtoKG0Ve8vTV37LE+iXSC6Iqb1QagDWn9xXmu9Hb+czoJpQfjvQAv1baIOXsOESdMwDbDtkD/xJ5AeJl31H1yFK8ucMg05rxXGOr+4pmOtR6bWpqvCO30gOqEPxKb/xRKqHJD+wJyQZkKaCGlC13NZeltwXmuzgGW0sl5iha+VkFS7bCHRtujaZV1Tr1bVJptVf6UksGl1mISZ3kiJQbliUL25/SgFNL05r5+x1VmrfDyJW5ksfL31kZw8ul7SlfablwxmwuzyLDVJXaxOSxJbCYidVO0MqqRh5F0eVj4vkfIIG3qknbIddNp27DRXRPctiandaOpR018RnRKiPm5Y610roSbV7TN9Q2IZGq5PAaAUbYsiupNtvAKiu7eoJovOsyNJFLv8jA4LV1lA+ClqzvENaZEEAk8TogmZwFXntLONTUPU6SU1u9s0PW2N0rXC1vqm56XaS0n0w+ogWqIAgH1FGguGXcGQC4bchV9LTbi/ZLx4NYAfXGB45fcCAHYv/t+4+Bxw+/mCy09fIX/ycyif+rTWpeAc8rPPgt/1Diy3R1TVMWtreaWVpqvpe+2ypFeZUIvpU0ljzDWvdE1fUX8PAMZUcJEX3Bpm1Z874DKLjt2tJL6f+XQXqgMsmnILdlRwkWaARIcOAEatw0iMHRH2yJ+X1pwhIeGS9rjMe7wHwP87AL9/fB4A8Inxc3jv8DLeNd7HneE5fHyY8fxwFwDwcNijPhzAB9WVqk5HKouWFumQSNrHQ65NL7aMCYdxwKTnljwAKYFlEQITMKr24UAMKn2t3vqMDeafQd4p2YK3WTyb7rGMz7TA+TWa/lr+WZL3ft8mX21M0dl2a6i9V9a5xWh61ObnM3edOWDt//m85V3SNh/mlK4wQ57ZypxERxIADgl0SEgHQr4m5IMW+QDReFZnjp3mXN11X6WkhJIyrvPYywHRYbvOcsNUJK/rZcTVPOLqMGK+HkTrzsowqx/EABKjmj0ZGDQy8q5gvxe9uduqOXd7nLDLBYMK1S2c2hxM4K6xDGifQ+xTBphVW843U5LnS8rqy3PXUj4sAyoI0zLgFa2jzfOlJsxLxmEeRMNvlvryTKDZ1W3j14g0Lzl/0/vrwJET5J28NoS7n2jVIe1ne24sSMioqEhIqcqzqCaz1phb6811HWE51zTmNjrDlWll8+aScVgypnnAsmQsk7VHAg4ZpFqeTTduoxnutZQ567iz5zQTpnuUPvRrjBvTFn6KdXyzIrzvQCAQCAQCgUAgEAgEAoFA4IYQO+cCgUAgEAg0VJDsVH7KCC2SQCAQCAQCgdcXHH7eGxbx49wZcCWhJNUeqpoK9d24tN6qSsZWPbNdk3SrLhl9UPMg6uHOOQFkodlRASQsCahZ6K0AsEyyNT0VAi0JaQHSvAMA5OkSw9UzGK6F7poPBTTbvlpGyQlln1EuEpZbGgr8krBcEMpettiudrhaedt7b4taJTx6ZUKh48mdUkVOAzLVFop8lxdcDDtcaIjwIfVt2+0+MroqY9B99/u04DLPuJuvMeeM2+mwuicnxsgFF1xRz4TR3mJPI/Y02obok9ckJLwz3UbJ9wEALw0v4Xd3d/G7u7t45WLftrQTgGUUWpvR0FhDx5c5yVbnKSHNkIHiqtwYfkptte31eZJzKQvVkmz7f1rTWTmvx+Hq3cMYf3SCxcjr90bVsDGeOnW2j93GXJXvno7AG+PrqAuo6LSG2rfqd+qqfq7UQ897aqSbKy2zLNvC65bWynpPkVc2qpFRO2asXnKub6EXWqtrl0RAItSUrKhaBNbw7q5tT2zb5ypb8mF19jRobVujqFBipKEiKy3GKEa7YWm0owqhhZyisQK6Xd9oComRUkVKSdopsdTHF5WO269WAih1CpNeu6KyOhqr1dXsRvu8bRbPUwDW+Rpt1J9rNOn19UYjsrIZVaONLZdfozYQNxqyr6u8dRoDgJMrZKkJReke1hbLlGXOF+nnRuOtBBRZO2A0Xw9HaWWjfLQyUbe5T5nWGgi8JaC2a21/ACICJwZXbrQxShAKItDlEorzDRdqUgmkMgkiSSGURc5AHQlV5RVqIdRLsc3jUHAxLrg1Cq3tcpwxUEVlwnUZ8GASGufLDy/wwv09Xnx5xPjSHexfuIOLl/5vAMDFixW7l2bkBzPSYQaYwVlt1K0R890R07MDllsE9natEOqScJgHXOexUbyATkOcjNJVOp1vKQm1prb+GBUspYohV+xywT4v2A9CcQWgNNcJl2nGpcqbAMCtfMAFLbiVDrhgobsWpXgiARmMmQsKneBevgZ4Z7oNAHj7ruJu+iTu5ivstYwXg5Tx+d0d3NtfYHo4ok5Z5DG2xVkITAmzNnAZMqYsMhS1EsqchQIHCP3tjNwBb/w0TtTGnlFJ7QXv//l7nA9FJjNRuk9/BLvXr9GvZsmxNbQSKkSapBBDHDTzAbGSGmm+kD5fONZ4axBS6RIvYbLK1smW0CL+NiASMflASAcgXwOD0VpVxoSMyp4IVbnTi/qInEikhTJj0Tl0nUa9JiEnmReL+gqHecA0DZivB/AkdFoASHNqPiQnrZfR2kehte92Qmm9sz/gjs7/i7xgl2XcVZVEMb+PnCRHShU5axsOOkZU+mf1LEpCz6dURTKFuvzJvMhcvkKnGpfFnl8yeEnAlICZkJw0DBWIn755bkCSvvLPESs/z/uZ23HIZ46bDwR7hNL2RdUflyoYCYm4P1MRNZt0JP2iPiBSBZy/l1NtPqRRWhd9lpuK0FnnOfd5POm9c0JaVIZoISSvMEA4kh4CAB5Ynt8GfvVzLfBFj/hxLhAIBAKBQAPjtHbh64/wUAOBQCAQCAReTzDfjJ8XO+cej9CcCwQCgUAgEAgEAoFAIBAIBG4IsXPuDLgmkG6/7pFXNjQpR7Frhy3ypdue69hUclh/qaYq21o1BGCPugO0CC512GydT0p/9HRTPZ8W2Xac5oQ8MdIy9qhhLipRGTutoY6yq7fRI41upnUx+l9JCZwZVSmsC4RCZtFuttuGLXpmIm5RyMah4EGq2A0LxlQwpIrBRckBHDWCuJ27yDMu84yrPOJh3uHZ4QqTRUtqfEtgpIoLVioszy0666NwjtLqcUsjud6mCSMV7JPQcvdKdyg7Qs69HBbBEgDmw4CaJLKZRTVaUQ8ShGLIBEr91/JapZ8lqhVW1GfOjtrqt0k/rirUX6ugQMnRrT1NwsqmdAIXuHJTCdI/wbj7XAZWdtkuLnOqLkkoRbZNXml/qAQLONapgToWXRTcRq9NOocyr7fP27wzKkehFpG1RcZdlNK6oNGQktFYqVOMfXQlHgjQKK4Wxo/139k2b7agU0B7nfW4p3BAaK05d3rQoLTWTLVHNlaqqc09Ty8iWs+nnCpySlg0opv16aorN39AkwhqCaUNvh61bxVp1igz5ygJwJrla1GpnL07jsjqaa1GaUGjRPhIbj56amsLi7StHeBtq9mmdp+LVMhVCsDJHVPaSNaxN9eMac5YlNa6HDJ4zsDcqau+LSQSHq0o0q3efmy5udzagJUWV54urTW0SAJvBVCj468pYEYzp0Rgi5RezfZwp9J5Wquu2bSso39To8qpdMhB7in7jHpIKBcZDy4GXO93uLcX+ud+t+BynDHmggRu9v/ZW9cYh4Krix2mZ0ZM78i4ui92aHiQMd7PGK4ukA+MPHXqHkiivJcdoey0bCrlkK4TyjDiCkLRv15k4bsYlkZxLTVhdlT+ecko1aJTp6MomylXpFyRU8VuXMsyXA7zKporAFzmCZd5xq004VaecCdfN/mSW2nC3XSFa77GzFdAnpHVNn8hUVtPISHhuTTgXn4F98ZLHC5GVLYIqhWfzQX3d3tcH0aRMlgs8jp1it8skg8ARELCUAk0E7JS4fIVYbgSymWeu18C9CUSRKiZmr8naXY/EE7KQ9bEYzmN7VcCupwCdIX0l63Wavd+avnR9Y31WcDagot7UKp97Wp+XlHqnx13zzHNR21+KDuJlY2npX4iVYBmpZXbuJ60bScgH4A8qU80A6lwo5rWoTdATvJMZPMYxUnULAkTDeKrE68oj8s0oEwZOCQkjdAq9cUqYjNIaYwA0lAx7IrM9d2s80EMxy4vjdbe5EssMrTzcwA03yblCqYErmUlQWJtSo7aCvQ+KSTX1koScX5JjXpNJsszy9hNjq7vn4WFrqtdQrSmrpr/5vrSFat35HaArXxClnGmzwbt2ULprha1tTgqKxG3NjsFidIqUV5Jowl7Sn+pCaUkTObnzRllEjorTRqpdnH9bGuAf14nR2e2zxZdOaPRf1ubWP2eEm7OzwuGxOMQO+cCgUAgEAgEAoFAIBAIBAKBG0L8OBcIBAKBQCAQCAQCgUAgEAjcEILWGggEAoFAoEGitt3A3+6C1xoIBAKBQCDwuoJxQ35e0Fofi/hx7hxUs0h0wrr21TrMuPLNwV1basP1pxPHPIRHr5pdJ/SIKAGcu6abytOtOP9N+24EqupWLKoBZfx347WLbtZap4yaxpe8N12BppdHKpeVWhErE2pKK72nVb1U1wkEzKo5d0gDUtPSKhhyRXaaWIl4df+ghR9zUY2SC9wdr3HgEdca+3weMmYeMDfNt4cAgIQD3p4II33hQ/wAEQJ5wJc41BFXdcRURXNFyip6ejlJfZhFlwoArhJjYoAX0a4g0xhrFdWv2lamA8GmKbesteRMa4Sz6tfkzXmvcabp2336CZUJqXYNE3JDb6V/4Ip6NqCP6Sc6rQTW/9i0tkxjQTUb65LASwLNCalpczhNLnbzBuhaPtWN+1Yv0jYhmSemo8I9TdOXI6c5l4pLt2ClR7dqtyxzysph+ndcSTSIAJCKpGz1MHrD2P1Sf69hae3GadNxqlGRdF54LUZA5lupSV9mG0yTBC2M/KuJxMROy00OmMaHlFvqrBo7C4HmBJjWhq+3lw+x8m6ahL0Wj9aXnaZca4PWFgxO3DQuj/TytE3a/FFNKKgmCaNrs1gavsWr3ad9U0mOSTuLHRqyaLksJWFZMpZJJlCdctcgMV1JXzU3pr32HictgGkIJT7ey15Jy46+DgUCgdcGC8nLQKwGAk3jqJ01n8n8uY225GrxXB1frzXs1po6Eep1Rt0l1HHA1U78mquR8VKuoMxIeW04uDo7t2Msd2SBqvuE5TYhH4A06bvXRHKaXmkGhiurMoFKRjkkXF0OOOylDA92RbTjVFO4Os3RuiTUkrqG6pG+FYDMoFRxGBh5UM3UXDEOBeNQcDEs2KnG1sWwqI8n2nO38wGXqkd3N1/jTr7G2/JDvC0/xEv1Ie7lBwCAd6QZ78q3nkg7+Elxnxdc8wUmzkhUsVfn4M54wMJJdfQWXE9j0+Bbpow6J6AkeW6wNX6WNUh8FwLNQJ7kXDqIJlqaxTcht27WLP1SM6HuRC+waeCab+jXTGC9Juow7uuvasJ5LTevc3Xq3WPrB27Gt61TqxtMr7sAybQZF1JfTH0zK7Lz63hTTk4kviqx6Jm5qqKKdh0V1ZKb5AWIjp9pzaWZuxad6s2BgJplrtcmmkj9LfWvVvnK1Pq8VsIydx8AhwQ6iE/btMjs+StbnRiU1Q/JoiW5ywWZRH/bPwMtnFCZcF1GXJehaUEeyoC5puaf2LMXEYBUAaKVn9G7hFWjF+25zfpwqzdHk2nOEdJBtfycfqZ/roTpH1pyqmksetAsWnT2DOA0EjXr/sEP4409OfIN7Tbu/lZBQkqMmtpt6+uOMhXTb74g0NtFbF1CWZLMa6C1S55JdPh0DPv28G1in5tWomkKW2Zp/bzSNIXLppKBtyTix7lAIBAIBAINFYRyA3/dDKHgQCAQCAQCgdcXDNyQnxd4HEJzLhAIBAKBQCAQCAQCgUAgELghxM65c1gINCgtaktdsC/to+4jN7oDb7YVK1VCGaI4ved4g0blApAJbNuuV/HPN5REpcFSxmqbMAAgoYVjX22tVcpFWhz1wrJa0LYMcyIgpc7YKrJl+VxNmNBorZV0i3RifUnY75RrC12dk225ZrdNW1IfcsUuF9waJ0w1Y64Z8yhpzpwxD1l3eiT3V4AHqLjGs2nEJe1PlnHmBYtSVvc0ajOtf6++X6/xfxY59sn57fjU9Cw+d7iNVw4XuJ5l+iwlCUU3CQWXiJE1lHythGXMWAZuNITV3yk0zLht5VcGHcj6KSm10LVro7Zutkm3oekphStqoKP3KR209ZXj+LX+Z6FiMGsYc19wn0fjTOt2faN8Vsm0bdcm3bpdlNJ6kO3hAFZbxFfpA41KanTUFW2QPL2Xjsf1rK+lbz03+iy5dO1cKp2GSelEaHT49I2D4r5v5x3WZQLTKj1Pi2Lufd1u2dBSjaa6sFBa55qwlLS6NiWhwXrqQqlCkTB6qpR5PXCIeU3jsjJr2tJ3RpMi7Re1dZWOt/bbmNtSEU6Mo0btTjiiLxilgXSsU+p1O0VJaOWuBFYdANr8GYoglOFahapvY7QWm4zcqWN6j1FfS0lYpgxWWmujsszaBkyOTrSueGsXX3eTLshodF9bUiw9rgRent7f0m5OiyQQeHpIRehJnv4HyHwESP0RubaZF5u3W1tJOocztXsq9C/gJzYnUFV5BZZy1JnA15Y/mi08YrM7F3DrStZRCsWZwEOn+LU1UKlpqXaKmqyRhHJNKAdC2Ytdm/YVNNZujx2FrFE3VfplWw6j6HNOWDKjqOwI5YpDZuSh4n6uGFTyZByE3rcbFlwOM24NMy6U8nprOOBOnvDMcIVnhys8mx/i+eE+AOA9+R5ervfxrpzw9nTruJGfEPfrNQDgt0vFJ5Z34BPTO/Gp+W14frqLl+dLAMB1ER9xnxckYoypNqrhlDPmYRCpg9kcM2j7YE3nVFpzcn6H+XJ11PU123GjtFKjDh758CehfWY6FUqrQ1I/jemI1fqo5LZyJ6sTFSLt4yndTMCilNNF1kZAx5rSUFdUa5dck3lobQBg6XPT0x5tTKdZaKxpEhqr5ZWVzpoWBlVzZqSyjdKa9TOAOkLkgQaABwYyN0pmsxEQf2GZM6rSWjEJ5dH8gGS+rFF1E/V51HwXrGRElpqwJBk3tRAqCEtNuC4DDsuA60XG31Qy5iVjKeIDNj+Fj/3FlayKp7Q6f1/udb6rp5jq3KbN8Z6oe04xaqujcRqllXOvMzbUVleI3mZbmaSja/sZdmOo2dsTNzVpqHpuMPdisNL1eekU33SK4rul3zb6sqZlfl2jZZ/LVGxyq8RTwk1pC/N2HAWOEN53IBAIBAKBQCAQCAQCgUAgcEOInXOBQCAQCAQabkqLJBAIBAKBQCDw+oJvSFv4Mdt+A4idc4FAIBAIBAKBQCAQCAQCgcCNIXbOnYPqaZziv5+FE+Za6X+pjoJd00OEu+tO5WPc9YFRTW+BeKWFxbySFRDdOdPA8jphpmkxdP67FTTNaLx9r7HVQq9n0XbgRXS4AOGqU9loPPk6J9XZ0/dWH9VYq4mQhoSqmiNLWmtkee2ERIxpKFiK6GbVTTvlk6JgwMxXmHjC3VRwQbnpyc1ccEDBNVfMLDtEMkScZSTgQgWqHtSK3617/O/5nQCA3zq8B5+4ejuef3gHLz+8wDQNraxlFK25khJ2w9K09IZckXNFOaezAKezUUVPS45R15Sr7lbT41Cdh5Wml9Pvatp0Nu40bDehp0ub+wAdU5uxQEXKY2WzezihjTO7HtB6FAIqA9VphaguCRdq2hz5oFokpm/oy72ZQ6Jtptd6oRTTa8u9LZpG3dT1dtKJsOdWfvJ6F5b1VmOjXatt5MYhqbbMSqPSlX01SU1EyNWBwJKm6YdU1RljQqmEYvHhTcqmJpRKWErCUkTswzTRiLhpOBqKatOVJYuWhmkGAV3jwnRInM5c+6w6HSv9pfaio7YyiaLVgRPoY5eb3WCdK85srPVaNlotXqfSZ8iqiSf6bWvtlZQqcpIBVWvuZWe1+9IjqN4mZQYYKEtGXRKgOjqmqUOLjgHTmLFUfB3RtR6tcpxElwTZ2Qhnn5t8UDnTiK8DbkyLJP6iGniKoBmgAU6bC+K7VGr6j/1i9IVB18NmDzOhqjxV5e4MJQBV1/BVOliv41X1mpq5KVBtMrG72zVrpdW5tRm2hrj1v62LrOsiiz8HoGl/kWmI6jpZS0IdCBicRpWtMbrGkzvm60dVTZf5Aqo5VZPof9YsC+ms/t9hqEiZMQ4F94eCi2HBxTADAC7HPW4NM14ZLvDicAvPDLfxchF9uXvDJV4ZLvBSvYfn8j28O+/OagxvMfOC5+sV/s9ygY8v7wYA/M70Tnxyejs+c30XL02XuD/vMGvnHGshF1xoWkn1vABgYbcWFwK8lq62j/VJ0w8egFJJ/GOg6dmKz05dt8ru3/oUvu2JxY4633C1Xra1zn1/lAbUuXv1Jf6iu4h1bBQCzUCenM7ejK435x8f7BnJfFc/pHS8Wzmb9jBk/natOdGbS7MknCeACouO8MYnq5lQB0LZEeoI1J2cKiNQdqLdKBrdjOTtAAO1JpkbSwKbD2Drv2kLev3d5NqrVVZcklpFV26uGdeFUZvd4KY5dygDpmVo+oamN1dLWumn8bYfnRNGzZWTxiR34bFOHVY2hYm6LrXZE+0Tds8jpivXNBFVr48z92cH1dFsusHb5Z6739nKxVqoVRuuC8xujlnTp9TnKjvf1fxYdr76qg1UR5GXJPqB1scTtbF8qo/teZ6zan9C5jWb/t6RMKc+x3PPk1j8yacFBm7Izws8DrFzLhAIBAKBQCAQCAQCgUAgELghxI9zgUAgEAgEAoFAIBAIBAKBwA0haK3nUAg4ESIecFSCLSULUL4A+lZ/3dLMji/nqYZ2Oytlr8HST7pFfcWBU7qglu+IarahpwF+67FsP7YyUGVU3V7b6I5rhl//wn27PSx0+qn28fXjXnbZCk1KGCPUYg0EJMfdrErnsy3ZhbhRWXNi7HJpYe0PecB1HTFSwTWNGJXSsFNuRkHCQ55xQVMrXwHhmhMe1gtc84ip8QUEmSoKJzzkPX53uYvfmd4BAPj/Png3PvngWbxw/xauH+7AS/9tm4uEph9yRa7nf/M+ohAwgVhHh6c5a/8b/XS1I97OEda0FndfC1fu6S9n0Las2zhyIb1pAYhIabHUBwcJtUfGNyud06gcDCQNRV6FxgJLnvXWihaSHBBaAljaoI59e/iqnBktfDk5KiaV3h6NvuHoD2kR6oPNr0b3XlGDHGVl1T+uXWxelw1NpAgVyGiNnk7OFlaeqPeTS59Y5x2TpFk7nbEqbbUMCaX2myrL8alkzEtulFejwQq9ek0QrEwoS0JdCCgJtCRAt8+v2iNvt96jz8VK3a75cPS82bG/or4QHhlCvjUEGqWVMqtZOKaVCR2i0xWk65xtdHmTlpfMJhvFJzGGXPW+hBWLwNO6SdvU2lcHXaMfN4oXreQAVs3n6NlCO+EVY9VkA1gprezpH1oeq88RPep1RAWh3ADdIRB4mjD6nc07Qqcn2XxslCxyn9WHaSZd5zWrzatt0aC+Ztm897Im3h/bUJ/YqE6lGy+joK7kF5r9oub7Hdkj8xccxW4rh9FsZ7Pxkp+xylb+n332/syGGbZagJpvQY1+R0SN/lmXhDRU1EIoStczn6+uEgIyGFkNY3KVLCAc+BrPJqHD3k0jBmRkSihccVAe78s844Uy4NPlLj45fyl+Z3oHfuf67QCAz1zfxeeub+He9R6HaWzlA/q6MQ4Fu1yQU+0U11RRckHJCXVIYFuvC4tv6CjMbdnM4uu0saH+sbRTX7OM0rryKU6BSQbgyh883Tkm+7G65EyS7W4nUYLKQDF6JHnVCKVOK/1vtnc5l5buw/lnIU5QCqCr62b8mKQIqV/a0tP008wiX6J5UWFpR2szLbtRhcuOUHaQ91GzGdZrNiqBixSyAs2n5SqUVpr0+WVOSBN12q6XCkGfj1QI1eRfdKwvJWFSyqqN+aTPPIXl3FQyipbDKK1lSU3+xNpoBecnMUH88OZXPc4hw+q+lUTONgnatJn5e94nt+fNVMWHU7pw8902fV2931WFYt/8O96MN02fq/cF0Wiz5tM31j9q69Mu3eLasJKT5nF+nrN1TYrIyq3SBDwIpZWV1lpNrsRTo6ubQ/Zwp/PRZAeeFviG/LyQL3k8wvsOBAKBQCAQCAQCgUAgEAgEbgixcy4QCAQCgUADg452rDydfAOBQCAQCAQCryduys8LPB7x49wZtCgqG8h23WO6VaMjMTWqmh6QY/bN05w8Nc6iM53akm4UQkCoXxbBz5hllrXdQo6OcLJy6FF3dJtzrQQapd4++FYddKv3gCPaRaeOWZq9IG2n8CYizzbKImlU0xa5p7FGqNHLQIRaCEtKmKvQ+RZt4MrpKHorAEyccc0jcmXMlJDBKFqQmQdc84AHdY8HdY8Dj5hYIyFxRuWEmTMe1h1enG/h+cNdAMAnHzyLz967jesHO9TrATRbn8gO5TkzpmFAJkY6OXi0Or4JG+vA6Gx9672NFU819hG4jmDUFfc6B3+ekmNDePpNlXOpSMQ5JgC53086FtuUaPUiILHQhSphtQfd2oGNCqp3LKsmWkU8atRVVorsCbqDz3qdUC/blmrQ5uKmPyzSHNBpFICUIS2QQbygTRSjavgITo2ukQFO1CNYbdsBkHmVuVGBAQAaUdUorLZdv+qW/rlmLEUorUXp1bWkFcWInK3iShJhdEnAJFGojmhPCZ0ao+VjG1RK92z3uHFybm3fMoSlrs5YnbwJq4he27aiU/PKoUXd8pSrzjADAORUhX5OFTMBadnYKG+LK4G1PVqztAm2Llubm2kdkduPST+2WrSzRmvj9V72Vn7ScRhOVCDwWqKtDVuzREJFIpuXkPWOTC5icz1pJGd2cxaA2g6VDbF7/NqQWfyrrFGqbf4T5AaLimpr0IIuo6D01pPB6je2mbPS8tLxOlgHtIiVdUSjZDW7dNbf6HZzJRNh9Ujdrq38vpPlJFm/SCK5+uiJmSoGqrjIMy7zhMs84VYWmZKRithx9fdeqowJwmt8uc4AZpUxyXipXgIAPlfejc/Mz+JT09vwfw7P4tNXz+BzD28DAF55eIHpekCdM3hRg279PzDmsWDZL6gjYRwKcosGKetLSlV8WtXyMJkGrgCyrK3cxoYy26qqWTiqIJW+vnia9Um4sUYbiqmnHq7WODfmPU3a38PUfcJGi6zuIo3kSeDjtMt6nHq/odXJRaCtY//eIlt62YwKkRPBxtf0fogdMh+VqdFZvUyK0Vpl3Mu7X3dNcgUkkVl50vbNuUmzoBByQXsGSDOdjERrPjMRRPZkYJEUAcADoywZU+oRYTlLejlVobXWhFIJRSVOAPHlRKIkrWiXXIG144rubyW9gCHPGGljNFilhLw0yBZ0/LlL63TpkvaMrDZUJHacDVVKa8q1PSf5iLgSxTahKiW5LFmkf4pkxnXtC7VxqnW2tFJiZM2jcqfQ20CuSGiyLSfrK+m1cVMlsm9yz2QrWusgfcoDt+jbGFglS/qAaJFyXYO1+eilYwJvacSPc4FAIBAIBBqYQ3MuEAgEAoFA4IsRN+Xnhebc4xHedyAQCAQCgUAgEAgEAoFAIHBDiJ1zgUAgEAgEGhg4KRfw+ucbf1ENBAKBQCAQeD1xY37eo9VpAogf5x4N1YA4rQPXP69D0hvXX49V6npOeg17LaWN5tVKP0G1ElpZNLPGT98OcF9W02nwukj64m0ZRtO+6BpahpqVS595Fc4dkOupoGnOtQcr3y6mfeUrmESjhTIjZbnWwtKzilsUE/FwYNVF2GoEJGKMVNoLAHb6fs0DJs6YkTGrrtyDusfDusODusf9coGHZYcDSyz1Qxkwc8KhDni47HF/3uGlg2iVvPjgElcP9uCrAek6dW2qxGBklMyYxoycK8Yk+RevH0BYa1VtwG7cNP2NrO3r9WoIj9YgOXGc/DjQa7o2R8/f69cQA7Cw3plE92FTXtM9dNNBxtgpPRxfLl6fb1ptg2mC9HDkTABlAqqMTU7o4cY3WilNcsPax7XVag5mDXOu8y+Z/g4ISRNtekSaFy1ynWiKUNPJSxOQZtHmM5tRvZaKavqc0+/hJGO7qk4fAFTV66slYUldc66IbA2WkrGUhGXOoj0CSHh4r13j86oAL6o1t+jLaw9lNG21U/3ElVRfsuvA9HZX7Rne3HfObvprzuBIW077iXmj2wP5bJoi7PRXuh6mDFDTtxxyxS4XsTkFmHPemppmt70Gy3ltEhtb3LVtmuacjqVmK5z8iOlZmTaM1/T0eiQbvZ5AIPDawusl2TpsuqrNrTENOqh5S04bLakNXPmCTg/JboKb4tv5bNqjrjzE6gcU02zqWq1UCKmgafNu1/iVRmxGXxu0fF4Xkwdbc8XXk+Pc/dgTtmelnZnZ+S7i2yEzUqrqA64T4HrCj8u16VDlXHExinbcnXHCO/YP8Y7dA7x9eIhnh4d4W34IALiVDridDrigGSMKCgj36g6AaAtPnHGvXuBevcQLyx0AwGfmZ/DZ6Q4+c3UXn726jZcfXuD6odxTrgfQIYnmWPPdtT1GRr2AKtpZXbuDw06/ijY+cLfx1Nq3MiEBqObfOT8vAWv92lMcJ10buFqHA1t/qI1H1f+jRGjC1AbT194875CNkVNrtvlu6vfT9ho979O1MpnGWx30M8xPkmeMdq3WKy0AtmuvH3uqX1dHqZuttWUnftrW/xM9Z+o+oNPSS7OUu84AXxM49Qm8evbZ+q+mNef19Swv52dxpmZDak6ouaLkhHnJSCe0qplFsL/Wrq1dSur6wTMBiz63mc6uy7vZk4GBQcZyGiqA1Pyhs37Npr39M8fj9IZtzFN7X/t/RPK06O2C1b2CVIPcG0FqzxVUaNUZpk1MqmM3DPoMOC7Y5SLjmEWnGQDmRZ4HmVn8RfUte4KSNyeAsviYUi6IPveANmfWNhBdpzPbRNaHdb8ItHq5/OKPkoEN4se5QCAQCAQCDRWEEqoXgUAgEAgEAl904Bvy8+LvzI9HeN+BQCAQCAQCgUAgEAgEAoHADSF2zj0GLSw0cLzz1LawM6+2t64oZXb/EfdvnZ5sk+4HVrTTLSqAuqGlubJyovW28pYoGiW27U7PLNv3R7e93pVrFfLcJdbDpaNTwGwrf+55na4Fg5S6MGTZgjxkobXWqr8XZ6x+0acT1AhDRsVIBRdpxgVNAICRFmRUFCRc84AHdY975QIAcK9e4H7R17LDVdlh0i3P12XEVDKuy4DrZcTVPOLhtVAepusBVSmtaaJGQeSsXTImLNOAKVWwbdevqW8bf0SXrqnR0v+sW6th1FbYlnyc3wW9SecoA6MupN7RFTpWjL65pZomoWwWby3aznKhEXB6dP2Oyniq/I6iwCNQd31rOM8JNAgt4LhuLk2rZlaqtlINqqN8GI2Hjboku/wlK+i2etcGLer8pOmx0Iqy8lvyAcgHhjKZUTNQdkpB2Cu9Yul5ruYXyVb5yrKF3ufLNaHWilJT65tEjFIJpSaUJaHOCWy01iXplv8TbVuBVITOmmZq9bD2qCMLdZg39slTpTxtQukidgmlzbXtHm3UNv74dN9bY1QAlYUif4pOY9Up3TZwYqU8pG6TjdLKWkJCo9CPQ8HFMCNrx+a0MZS1208Upba49uBKQq9o7SQ2t1HO84k6Og4Eb/q/0cdWNl/sclt6KoFuQBskEPiix5G/Zp+PDekJtY3T8BRWtYPN3pqNJ6h94U6ts8QdvZWSsx2siatdY3ZyAka1c3SrRuUjNKpus1NG11RqHyde2y5y6ZotOkdvNbsHgIYqlNahIg9CVd2acmaVbXCyH0SMPFTsxgWX44zbo/hyb9td4bn9K/iS3ct41/AK3jO8grvpGgBwQQtGXTRn7r4eIH7eS+U2Xii38dn5Ll6YbgMAPjfdxueubuGl60s8vNphejgCV+LcpInEt1uos+nMlwPAlFE7kxClSt62LlcmcE1NXmHbRvDrZHL+TtV3GyOP86XYvepmzTNfnXklk0KVwEXXKnKPNdx9Py/J0/rVxk7q40nWvPVatiqb3m/+jZdOaXUegKI+ntGpvQwEoa+X7fFiQ6c035uVJkv+ucjDMyGp183QfLwD2hzy79ZOqzbZpLnND1au3NNofgIAygQeEurAKCWhZELpPGQAQn0uNYnPp35emTL4kIV+PYk/Byj9t/bba4bQWSG+NI8E3lVxyYbabI3JCRGxUDjJ+V5mL9QGHVHyz/ny56DPuaUkMHOj6hrNtV1S5RoA4KJzqugzl/dDzYfPjDQwxrHg1oXYjctxxpiKzs2Eg3uAKSWhegmRJh1CUreWfn9OYh3zJ8eX3e6lSgKBLwDx41wgEAgEAoEG0/F7+vk+9SwDgUAgEAgE3lJgvpmAEPHr5eMRtNZAIBAIBAKBQCAQCAQCgUDghhA75wKBQCAQCDQwCPVG/nYXf1ENBAKBQCAQeD1xU35eECQej/hx7gy8ntBKg2Orq7T9jK6RcCrBpvlhaXvNkA1E60E1GTQBYuHAm3Zcu07Tk7xFN2BVDtNQcOHa2ynTbMoAZ1pRi1a6Er6sqlFGRcO5u5DhJndhehir7JLTbCEga/1Mc67poDDBhABMD8FQQVhUm87UTBJVJNWeA0SHDgBmHvBSuYWXyi28uIjmyIvzLbyyXOC6jPoaMBXRnDuUAdMy4LBkTPOAZclYDnKums7D3HW7ANFEAAF8SChDxpSGpp3HAMqiegmuHwxHunw+RrmOFUrumo22mocfByfhxgsl0VBoaZaus7XqY5WgME25rmXDXcOm1cmLeLjy2kfiNW3N1UO0GkSHpI6MOlbwTvqQVMOBl3xa54TWWiYeVUPbb8dgHfRaUr2VubeRRT8HtD0Wva2qNFgRjbnhSjXMHjLydUVaKpgIdSQsl9IA8+2E5RZhYSkLZzf/oW2bVeZjoW6Ri+hgcCHUlLC4JqtMXW9uzoBqjtCcRPeubHSIrB6FQIuUn4rrywwwEWjkY1qht3mr410Tqem6Nb23jT5M7Yl0W4K1hgkBYAaBwEhA4pW206pczKhstiHJ+ABQi9MOqU4QRo2lacyNqWLMBUMSPb+UuNsXVj0TnQ8yLnUuWyG89olvJ9VxarojBtXkNN2cI50atfPstKX8EG9tGR5NIPD6wk88W9yazpJYJwbENpit0O9PnIVbX5uGUUvPNLfW60Qrl9kI1ahjwspOeq2s1f2mQZW56Yc133Krn+XqRKa/adpm23omubBpt2qCRKI1l3PFOBTk3LXZAIg+W01YTFdKMxcdYrHPF1lWvdvDAc8OV3jX8Ap+z/gi3p0f4K46Xxda+Wtm3ANwrw54qd4CAPzu8gyen5/B56Y7+Ox0Gy8c5PjL15e4d73H9fWIcj0AVxlpUj/yoHpzpbdh9zG1CVKS5YGBOqiPorpdtRLq4tYG1YHz/vqqT0+9XJ9Ql7zqYJeefw7wfqU+t9gxAsCVpRJuWQR0vXb6wi0b9aeOxo0l6BNphd6UV/XmtnpvdQR4ZNRRx+DIQO7jiBev7bXWkTMNPPtMpnHdxh8eC7+mJqe3nGYgzYw8iY+Xp4o065wsWtZE4JFQB2rawnUk1AGomVY+Hju9Oaivx+rM8UKoRcZLHWQ+FPMbVMuwcMK8ZMzzgOWgzuF1Rr5KyA8T8gFIh1729kximn57Ld+OsFyy+KAXMiyTNVhCc/QpqQPs9Sibr8Ztnj5Kd82DzRbpfGAmoMj4PErC+3ve1lTqenOmqezGn+jNFYy7BbcuJtzdSYPcHifsckFlwlRzm8eHRdqxlgQuCTyT2DnNqz2nbe0hQcZo2hx/ZAOIDW3a9ZuHl5O/FQQCiB/nAoFAIBAIODCAchOac089x0AgEAgEAoG3Fm7Oz4ufJB+H0JwLBAKBQCAQCAQCgUAgEAgEbgixc+4ctpQl/76lGLFSO7NQsZjYbbsmtz2dO7eppWe8QRxvG7B0HLWWmQANvd7Dc/d3ox9astvkjILYt8ITjvfb+7rZtmSs9t82SmvRa7BJk9G286/qpRRNzro9Wm/KVJGThqPPhFKV3ob1/aUS5pJxrWGxHyw73M973Kk73E4jrnkEAFQkFCa8VG7jhXIbz0/P4IVZaa3TLTxcRlwvA+aasZSMWWmo85IxLxnLklHmhLpksNEGldLaaA9G462y1T0NhHpIWGgAs+0vJ9Q5aVvRmjaKdX90iuAJOPqnhag/2V12zlEkzl23pvD04Wj7zanINeSpDHbP0MOKV+hw99vS03H+7DMlBieSMPNQto7STesO4B2DRkcZAcA5ybhx9IpGqU79/tZkhE4B8eHsc38BWj9HNaKq/eL6196pAMOBMTxk7O5JH4/3ZqQHE6gUgAj1ckS+vdN7BgCp2QFvVmA79Ov6JeUgsL5q7TwOZtmOX5cEnhNoSiAdn2mSsZk8JcRMjdYnLWhjt9FaR2273bqANjd5a0hc+Xsm7j6lQLW5v+XmbOkCdgmEUk8Va+PF7m6jFgxGk6iN1sqFGn2is8NZx3CnruZUMaSKhH7M6BqWv1DNSGk4mmbSUiwELCQUYqC3mdnpxEd19Haw2Umrz2rOankqtfFr68uTUkleC9xUtNZA4GniiFbk6G5GxzJT1HygE/arzV21856eeM58PhKOtsWgZuPERrLkneg4bV7biSbz4GiQrdiNQs/dTJ+w49jaxFU5WaRQKqE2DmWVtbrKopNSxS7rWplLo4DOJTd5kqWkJl9iNtnsT+WEwmmljZRdMWYwDkx4qVzg+XIXn5mfBQD8zvQOfHa6g9+9voOXDxe4N+0BAA+vd5gOI8ohAwdZP20NNZ/WUz7NztcE0EJgdYhqBeoin8nZbZQka0RLj5odX/n5p3z+DZjW7+uTOJZFaSe0/E1OQv18XYvNH5CK6Mv5mICMnTqy+GNZZRc2PmOTpnDPFK1etq553ysBPDDqKGlDfTyMLFIWLOs41fOThp3/dwpHjzN84ryN6QLUBdDhKf7dNWN8ULF7ZUG+PyNdCU2SrmdxEFIC7wfUyz3KbXneWG5leV0AZSc0V9+Wq7I0H4VBhcA1oRShrxpKIjATlpIwzwNmpV8DQHqYMdwnDA+B8SGQr+WePHGb+3WAyqvI9+VC8l2QUJXSzsmewaRRyPorockLkbNnq2cG2jz/EDXaLxKJrfT2cjVuSOVmyM0FOjWQW5uRG2uNIqrtS7kiDRW7ccHFsOByFI2ai2HBQBULJ0w1ozhbU4rKwkwJNOkcRc9nJdvi52B7ht/Wyb37uUUk4xo43i2m6bFr46ftcTFuyM97jN0LxM65QCAQCAQCgUAgEAgEAoFA4MYQO+cCgUAgEAg0yF9U4293gUAgEAgEAl9sEIZERGt9IyK870AgEAgEAoFAIBAIBAKBQOCGEDvnzmGrJwJ07SSvH2EXb7Sk2vfEoh/lw9Z7DS/jp284901LglTbq2laiPaRpKe6BlnPZS0e6/VEPbr5Nm3TG9E454+SnWucf6dz17Q5LAS7tYl+aTp1wEo/QuqCdahsqFQLMYgIiRg5sUUT73JgTJiXjCsCkhY4EWOgijHJxddVNCBGKrjmES8vt/C70118drqNFw63AAD3pz2ul6HpnJSaVNcLKDWhzBl1IfCSgNlpejmtuVX4eRItL54JyAmcGcXVjZcEmhPI6X3ZfZYOV9WVaVonvX1WujhbrYMtTB/CNN/IJWLnT91jH51mDalmRNfv6loUnBmk2h8ElZewLCqploLeV13ebgzBzQXTgKuDpj1WZNMjIUZhAg8MzoyaaaWDx2l976odKqGOa90fu36lkZddOSpWGoteSyUtjDwxxgcF4ysTACC/dAW69wCYJiBn5MsL0HJb07tEHQhlR6i7nr9v99ZOG10y05zjQiiqiSHHVCtjJqQpIUkxkCbVm7NxttW0cTor5PKtJLo6ph+5wglNo3PwennJ0jIdI9MjStTt37Z8JPaIN3ozK22SJP1vxoU5AYOJKT1at8RQTU+NgMIJrG1tZSfVy2MAKASywWbzcyGxBQv1tG0cntAjoU0frMYdabqq+dKPM5p+FeO4rV5nVADlBiJqRRSvwI3glE7Vdt4x6fQ9rTtEpuXkNLaokqyRSX0300yCu3frO6LbBbEJ3H0pO9n0nJxBceU978+pQfG3EclHszV2pU/Pac+1c3Zv0XXXNOKQwIlREzXtraz+2S4vGFJFZUJOFdPSH0HMH1tKwvU84hXNbEgVQyrIVFE44cGwxzNJhLZGWjDzgJfqLXxuuYNPzW/Dpw/PAgCeP9zFC4dL3Dtc4OE04npSfbApo85ZNFuXrgXc2vAcquhqpQTUKYlfb763NghVkgW1aZiZvpvm4fqGTo0x303WVVs/gfo6s9If9ppYgGr1eufCbkDT1pUy++eN7gvVEah7Rh0ZPDIo90Ky1akArPrTfcy7utnjUvOvGDyo3tyuds25zE2LkABgcS4rdR/4aJPPtm2A4/V2c4x9OfV5xM6nJJ/zgZEfzsgv3ge/+BIAoLxyH7yInlm6vER+5i7y22WspbffAngHThllR70Nd6b/Ji/OkPXeUAkohLokLMRN/4tI/KCyZJQpAdcZ6aEkOtwnjPeB8QEwPmAMV5JePjCoit9QB2o6c63eGeCBwAOhDqmVg4nlmfIJfCevxei1LZN7pqzESARUUDcpvn9Mf7s4rbeCrlEO50fpve17YtHEa+dkvJvvVJmajuVUMhZKWGrC1Swa4wAwzQOWSed/0xG3elEvsD3v+GcU0zvc6i/6duKNIfW67m5O2jO61fGklt3rDMbN+HlPtZJvUsTOuUAgEAgEAoFAIBAIBAKBQOCGED/OBQKBQCAQCAQCgUAgEAgEAjeEoLWeQdvqvd2iauf9rtWqVC3mRkVoW6eT0hqMhpC4b2smyNZ43fVKjvLHJNvgWffBt62wGuaaEsk5uK3eiZUqSatt3o+E34p7bluz2xl/cku+T8el26kQnXZBSXdaj4RaqW2FZr8t+kThuZKIlJeEpeQWdnxaMqaSMdUBr4wXuD1I2PNMjIdlxL35Ai8cbuGlwyXuH4RXOM0DSk0r+pzRWlm3mKMkYCZgTkLRA4TittnOvapvIaTCEqLbbwVfEpJR4SzEOHS7fgLABKrSx55eQZud0e393NZnT2uwLdntlOMYYH3/ijbr+nRLwfGUbEoQKgJL3wmdQ5PYbNvnqpQPSIh1GRe0qhd0uzhnoa6CGKRUmJQYnAk1c6O/slouZvksx7kdb9VRmiqyO+goIVZHm0OcIKHmh97PjZHZqCoQesskB+jhFfjefdQHD0GJQLduIel29WE/YLmVdE5SozhYnX0fbEOzy1jR8WgnCwFKZ6WZkGbqtNZZX8valrQ6Y3PsHJXGdtob7WHLxdyCadX/niJLShG2uSZ0a/a3rvJmJtnp78e/pzskQqoQOqueZOh4tHLA3c+k+YvdAITucLWMQpOqCbWe/huV2TijlMHsWSGlQ/VKdFrXplGdfd0yzGWuKi3DqBK+YU5R1p4S2Ki/gcBbCd4fqp1SB6BJi6yprGojdY1hndLN3mUAlcHJUeVP5bm1HUZz39C22pplVFk6nqOeetYPYv2F/YXu9WpQ4eiwhNQcB0KdEnhg1EKoNTXfDlApEl3ba5bjpRIWJKG2LhnTPOB6lsX8at7hlWmPz+3v4BO7t+OZ4Rp3svl5FTNn3C8XeGm+xMvTJV44XAIAHkx7PJxGobEtSddRoC4ZvDhaXWv/tc8F4NiPNjonsaZhTdrTIbdeeTprl4fZrlHr5Ftyjcp37KM06ZLNeop2v/qBq/WeWn629KwzRaftAdJ/A4N3FTSuHVJiAi9QmZJ0LIdSnS9rzz3ofhoGfSlVNg1V5W4YlbNck7rPwDq32jq49Utbufp6ffSssrnH5hClfm3dAWUU6icqgMOE+sp9KYdSWgGgXl2hXl0hz3Is07sx7DPmO7lTSgEstzq1VWRZ0Cm+1s5FnjOWktZ9ySRj7JCQDgnDQ/Upr4DhGsjXwHDNGK61Dacq9dT0U/E+q0ryFPG/yaSUIGu9ONJqt8xHB5rvRaWnIemhS6dYH7VnF0JlII2dfb/aBsSklGgCaZOmmdZSLL5fE1Cbf28GcJ1WWRIOai+WIpkNuSIpVXgqGVcHpbUvCVxSo7NTEcmiVi9nNzk5ivLAwCCTikFrf83Xzb9v9aQIsMJzov67wA25WhL46+ln/hRd2TctYudcIBAIBAKBQCAQCAQCgUAgcEOInXOBQCAQCAQa5C+qT/9vd2dFqQOBQCAQCAQCrwmYcTN+3lPP8c2H+HHuHE5SDeyEoxrpt/ZQQdt3oxlSj7CU+jmyi21buG0xLRb1i9Yj+RwVzd16dN6ycOy4k9HJ7KOPpmhb6i0ftxX+aGu8p1MkbanqI+HoVl4C6iJRUefBqIsVmWULcq2EUqkXiYV2ykWjVzJhybLXeJ4zDsuAh/MOd3aXuMiSWWXCdRnwYNrjwWGH68OIMiutoXRjtN3+zzXJVvI59aiMq63cvT/OUR6wAOQ3pW6jvHK/fB0RDZ3yeqo/gEb/XOXvytH76hHmb3u+hauio/G06vtT9UU/d2ont6c1s6/jOdqlyyt5+jcBnDotoDrLxYPRBrCm1CrdkLXPtk2yoj0YLPIr0CLCNsoDSf/XQWhKPR8GTxN4maVPS0HeC4U63blEmneNPisR0PS2hBW1hT31VjPkJbWIzwAalZUmpbRqdFZA6aSOQuPb1dNVLM+2A38w2gCEqqyUIx8R98iueTug/ekjb7XIr+SugY0laml5qo7QmV39mz1xFJkKHUg6phaNCKa2cmuPiAHMhJoTlkEa+CqPSGDshoJZqa6tSEar9pPbUSioolNa64lrTmE7zr29PsMoIDenbojxEAi8JXFEP/U2hUjND3eaKyDrRgXIqK0q5SB0V6HWw+hhtv4722mf2dmas0ZlY499VMutXMMRPDWw6Rf0fLb3NHOfWKOw+7bYrjdq/y3645SwpAGHzMhZDHhOQjUzulmTMgGh1IRSEsqSUQvhoOV6kC7wwngL/2couNjN2OWCMRdtdsbCCdMyiLzJnLGo5ImlwyajYe1udFbti5VUydZP8PQ65wOLT+O5kq4p/Xrl/eL2TLFpdrce2JrLm+MrOmSLGmlOuLv/C1ksaO0nGG1WytSjqTb4uq4oj7SmBvoyNf+ORQJI/TVKNp+S+B+ZNAq7zKFq91o/nvBFpe2dX1edH+IvNUp46m3ZileB5ZKwXCSMlwPybsSjUF54EQAw3LolEVshNNbltpyf7wDlsoIH7hTk5nhpngsBS14ds3ZNhUSqZCIokxtpMjsifqj5wkxCL64ZqDvCckEoe8mr7JReO4qfxQlr+8VQeivAtcuDWPRhKQtaH6cFnQKq/WHj056Tqo6BCvRfGvyYJdh/fR5amt43zNJ0lQjQaLQWDVkySCiFUOeMKY94oM+UeajIqbZxW1S+hNVACnVax4EzhavnsCRZAkACoVqEVWKx1U8438zXo1ZviNyP/i5ALt1HPrsF3jKIH+cCgUAgEAg0yHNO/CwYCAQCgUAg8MUGBt2Qnxe+5eMQmnOBQCAQCAQCgUAgEAgEAoHADSF2zgUCgUAgEGhgJpSI4hUIBAKBQCDwRQcGbsbPC0fvsYgf585gFeJcOeBN/8d0J5x22FZX6Kz2g9P7oqRaI3au0kqHgrgP4m1E5pN6XY9Akzlw/PqeltPj8NG8vd6Y1dGHnFeNB7vWwnaXrHWBaghomGo7LxoFCZwzJtWcqEzIqnXFLHpzTY+kim5IXRJ4kRDYhUTgoE4Zy5RxmAc8GHdNp6xWwmEeMB8G1CmD59Q0saQwLJodpnNl9a8bvbkFay2tbdu7dvT6JdzqSl2r4YweWNOdITSth21/eN2TU1pzgOsrwmm9GXfPagzY9Wnd302j0NrH9TcXWo3bk21SLR/TooHq7lDT3mtjTXUKT6ZDok1CqrNSh7WmSR0AHkVDgrM1HDVNDk5aljNNsmoX1VmRL/pmc1DLlxZCuUgol2I+0ziuJjyXAn54JecOM9IiIkacAR6AslN7Mlh7uH532hdsOm6FAJtDMyEdCNl0RzZ6Oab9YfXwuh0rTTsvN5KBcsGouwrsKtLYNTu4Emoh0QpJbiBudGSaVgdOaIfQ5nrLN8GFqXfaL9vxTQwmHTOAjLdiNpTWumymlVJItOF0XCUk1Cz9NQ0VQ67ISbSPcq7Io0zYuqhWCqVu23oxnCaJG4Onh/+msmeOE9blP3dZSJEEAk8Fq7WTtydOT0LTrmXSyax+iGnsNk1Xf4+tpZVAhZtunZ0TXahHl9Mtr3ojmpbpai33NtXrfrljp+z0qtRqh+2elU/qtb5U+7NyQmVgUh0rACgl4XocMKoW1KL6v0vpenNlUj9v6YUvxDgk4EFe66wBEG3WiqaPdazxub6eGKqRRu296aW59ZTP+CPWMLTVHDUb7Xy8roHarz2y49pn9jywShNunfT6rOqbPfK5+igf7rrXNk7Q8z3SDNZ24kIgIrBf6EyXzPw4XRMBrDS7uu9ofck9jU35iACkCsoJXCvY5N44ASRaakdaxVpeKlLWlj+gvjtW6zSApins/SPrykXvnybCcD1iePkS6Y4IyJWXXsI58MOHoEl9iAEoqiu83K7A7QU0VlBi0czWMc+zPGuIhq0+a/hnJdOoLqr3ZtrdLOUuO/F9ys4KIQahDoQ6AsseKBdyqlwCyyWjXDL4ooB2FXk0beEqz1pVbZG3DViP8a2eX1q0nOhdnLJo2xWbk3vnSg0Q25iBCkZqz3hdju5ofPg5pT4l2XNo6YNWtBkZRbUKy66CxophV5BzxaA6lTlVlFyx5IyagEoJpAOB1ZYkzY/hbPCJsXcWRw/sj7rucd5f4K2INy2t9UMf+hCICN/xHd/RjjEzPvjBD+JLv/RLcXl5ia/92q/Fr//6r99cIQOBQCAQeJPBorU+7Vc4qgGP8PMCgUAgEHjtcVN+Hoef91i8KX+c++hHP4of/dEfxR/6Q39odfwHf/AH8cM//MP4kR/5EXz0ox/Fe9/7Xrzvfe/DvXv3bqikgUAgEAgEAoFXg/DzAoFAIBAIvNXwpqO13r9/H9/8zd+Mf/2v/zX+8T/+x+04M+PDH/4wvvd7vxff+I3fCAD4sR/7MTz33HP4yZ/8SXzbt33bq8vIUT1X9CrQ6d98V9f6bfTU0mqkCJeebbs3KsBjt81uqKVs4bk3OLd1vlEX3Pb0Vfh4t93dbysmv2UdaFuujapa4bbJV2rxp0lDgQO6BVppjYWBgoyi25LrnEGpNvoiiI9CfUMppzR3+i8PhFKE9rqMnbdXlwSeMnCQ69Piei0L3REDA5XXFE+lEKaFQLNQGFd19m3SGZStbagI1W6FQmvK8gbEfTt525Lv+8PTF05RT05RVh6FbUE0jHejtlo/rjJBC5EOAFjckNft3tud3Gx73Y2rYX1o1FYXml1CuePRc4BYKR5CbbVC1oFRR+7h6gGAJXw6lBLCtiV+W/1tH5JSSFyxt3UiJqQlIV8L7yLfEepDffiwJ1ukYrQUUOW2e50zGl2jUXCztOeaQyTziJWfZOM3TUJpTUZrdXQUJKFUNLpLUioIAB4kvyPqCpTmsWPgsiLvC3Y74U+kxCglodocy+u/d7GOV6HE0Hpu1N63ZhJbvuzyHV16WfKwfvacLmmJ44HdqP+NNtOPC+1CxnUFwJMMjrpPYCYQMfZ5QU4VSQt/H8BsNnAhnbu9Xkf2cluYLeXq5HXu/cxcZZ+H1e8GtEECgZvA0/LzTvlJj4Sbk1t7xOfmJzXG2cn0VjaM3YknoVA5s+DXbeb1ueb/NR+QT5uTI7tjNntt97aUVi8BYPS8NBHqgVAOCfO1LETzxYi8Kxh2C4bc7W6phMpCKQOrJIHaayqdPrmlvJHJC1g7Ov+VB5Z1L6ncBfV7SemsaQHS7NYqt6YSsJLaYGsPpdZt223bVlvQpuxb+i27rRLiZ/TP7PyyR47RVlZa+892H6nv6+RtfF5+3U6zXFeJgJq6vwL18QutqMSnfOOVjAuAREBNQpXlEz6xyNKIBolFkWRUIMn1qNI5x+lT81FbGZ0fsvKT1E2s2gZNBkSx6PjIU8bw4BK7B2+X9O7da37dUbNfH0BzQVK5jSYhsqtI+4JxvyARo9SEMsvJwlnkOZiQJiAd3LOSjkkv39LyIvGbagboQutuTaE+Vd3Jq1zo/NoLnTXtC4ZdwTBU5NwTr5WkbARIDZXmqTTkyuKvs5/njtraJH8gbVkHIB+EVksLmQqJdN8I5Y0SqneyCQBRk4/xlHwvsUOOXmrznyq1vqx71rzEn0y54tbFhMtRGjenirlkPJxGXF3vMKVd012jgiYhQ/bMYPbE22pf5nXvrL8+cq56403h5wVWeNPtnPvABz6Ar//6r8fXfd3XrY7/1m/9Fj796U/j/e9/fzu23+/xNV/zNfjVX/3Vs+kdDge88sorq1cgEAgEAm9VsDrkT/sVCADh5wUCgUAg8Loi/Lw3LN5UO+d++qd/Gv/9v/93fPSjHz069+lPfxoA8Nxzz62OP/fcc/jt3/7ts2l+6EMfwvd93/e9tgUNBAKBQCAQCLwqhJ8XCAQCgUDgrYo3zc65T3ziE/j7f//v4yd+4idwcXFx9jrahLdi5qNjHt/zPd+Dl19+ub0+8YlPvGZlDgQCgUDgzQYGod7A60mYfIEvXoSfFwgEAoHA64/w8964eNPsnPvYxz6G559/Hl/1VV/VjpVS8Cu/8iv4kR/5Efzmb/4mAPnL6pd8yZe0a55//vmjv7J67Pd77Pf74xMmH+SlP5p4kuOJw/SQ7Dsf8cwfFUl5lZ/j0rNPK3HjuVMygQhq9HSvObLNa6s5YmU7pwkhWiSdc9/ClBtMt8u0HAqahgPbaHJptnDbEA0C4/Cb5kdRfj8PSTRCMgNjBQ0VSUNiU6prvRAXth0AkEQPozitD54T6DojH0g06pxOSB0AmO4Xo2scaP0sbHnTRTuh++DR9dWkXFS8wIXUP2k7HY0F1TVI/rt/B5p+WPvs8pUPmwNPNOB8GWj18bTmoOp3mZYGbd59n6t2AolwyEqbh6rq0SymTePqk9D0S0SDbq0j1hJPJPpyVt4RMm4yO91DnQ9ZdDIqaKVv1zRsNDvycwiuP10d7ZjkQUiLNMZwfYHd9bPI04zy8isAV9CoAyynnuepuWmDJ6OFiW/nXJXbvCtrnQ/JQ94qQTV2VHsjo7fTyKI/txVKBKTddhX5YsFuP2OvmnM5VcxLlq3oS5LJkpzuDFmmaw2bpjlXcaRH6OcTZ6DY5wTQIK/a+sJugmjaVZZ+fQLNHWs3m/fetoKAnCtujRPujBMA4JW81zox7tMeEwBGbnPap08bjR1WLZRz5fDfW5/7zy2h4+q82qkcCLyZ8dT9PGA9755ovpH4DUcGHSpuie4bqt0n99quK/27N5S6Hm5sC6m5fZyUUVvDnoRBpGVKTfNI89rqvJ26T99XGqNefyoT6kgoe1kHywWjXAxYLgekfUEeVeEqiUas6Q2vfFVLs5D4Ubau2HH7TrbmyblaCRUMDJsGUxtOi+iqeR+1rRNJq+d8Q7K1QPX61tq1bk3YrEGn2rqd24wHW9tIl9veAKfXPa+B1fXu5KHlZERESyuhO52m5cUAio47iO6ZCe9VZlB1zzZ+rPu6wfVH7e6NaZVxFSeKEwGZwINqm9XuWxABlBnUBM5IfL4ijUDMmo7kwZWQNHOu1PNK8LK1fUyeanetczE/pup4m3ZI07MAgGH+Eiwf/53jNgVAKQG1ggo331YS1HGBrqfHWQpVM6GmpI+VMrbzpG0/oY11qJaalbGqb2f60E1jMcuzTd0x6o7BOwb2Or92BcO+YD8u2I0LxlSRkzRUZdGbm0rGlDOWIWOZsuaVUXMCHVT/sVIrQ9K+TjOQJ+7zX33kMhLKAaC537fc2ujO2VzVjuDEojfpnrlkrDqbwD295gvXPvTrztqDsbtY8Oytazx3+x7esRdN6DEVHMqAFw638Hy+gxcrYZ5Vj3jKSG6ME/rY7XadT9vEU7bWbLAzBLyZMys78Ch7G3hL4U3z49yf/bN/Fv/rf/2v1bG/+Tf/Jv7AH/gD+If/8B/i9//+34/3vve9+MhHPoKv/MqvBABM04Rf/uVfxj/9p//0JoocCAQCgcCbDgyENkjgqSP8vEAgEAgEXn+En/fGxZvmx7m7d+/iK77iK1bHbt++jXe+853t+Hd8x3fgB37gB/DlX/7l+PIv/3L8wA/8AG7duoW/+lf/6k0UORAIBAKBQCDwBAg/LxAIBAKBwFsZb5of554E/+Af/ANcXV3h27/92/Hiiy/ij/2xP4b/+B//I+7evfuq02rb2x+1fZXdAcb6hg3tz9NjyZ8z/oGn2ln+eiMldvvdlbZg97rt/0Z/lS2+1K9D3/7MiY+31lt1fNqGur5mRScwWit0669vK9t+zP2aNMsWZKZ+b5p1m/RIqAODB6DuCXxBYOUapAxpg8RHbb8Kbe3pJEqBoFnCkxOjUTKpkm6jh9LyevtShYSIL9S2Sx/Vy/rBHfZUPtnKzq18VGjdjtut9konwCa93q9u6/qJ8bSKxr35I8gRrcIdaB83lL9GDfXjxIVNB4CaZHwhn5ggvkDEqy3qtBDSRLoVHitaK5K1IYkWgm5dz6Q0Bk3Xh70XCicDWd/b+KBOBRm0MlasSkrJ7HQYdhSPRlnh/h3Q8UMSqp5TLwgtO1C5i7Eyhv0OWApwKXpJ9WKHOqRGG/FzRig8rkMbZd3qxkqvYaGza/nkZJ+Lq7JrGPs6ylzytFYeaqMNganTYTIjDRXjfsF+t+BikE4hEqpRThVlqEJHsHmi7Wk0Ek4kVBUro5WvAslRntLsbIZRpPWzlBcgo+Zau1t+jrKyov962oCWoVH+NR3OAI9y87AruLM/4B37Kzy7u0Jhwi71CbiUhLIkLCUBS59QjSb7ONrBhu50VmrA7NmG9nA2zadId2AmVD/Rnhrir7iBR+O19PO2VMTPd4qx55A6aminKq3tiJ0iy9PWGVvnk/p9bt2CXicvWh/bvD+2HiY74crbKKPeB/X21q+Tvkq6bJlvkGZ9mZ1PQFGqWdkTltvyKrcTlktd4/cFOVekXIGduEOsBalTQiICFqCS+A6+Lb1NPpKhoe1BvWcRmY4jiYhT6azaTRL2dGU7vqa5Hn9eScnY9y112PrfH9u0+8k89LvQrU/RrtfjxcuXcOptuKInJ/HXiBhJ0/RSEx60bYtFx4ONH6NkjhDfIwElpe6fJEJNhJwZRCzUViehIT6ANAxXavnbcxCrNEgd3LOStmECwFv/272aD6nnSraEAeIEQHy5W/ndGHc78Gd+F+XePTk/iHwJ3b6FOiRH89RqXyfU/YA5AXUs4sdYMRKDhgoeRKalZkLaysY4tP4a1AdVGqu1YR3F78OuAruKtCsY9zIp9+OCi3HBxThjTAW7XBoVeOGEpSYcyoApD0JvHaQg8zxgyRmcMyollKo+b6H+nKB03HzQZ57CIAbqQFguCWmhZguICQvr/B5dPTOjkvi5lDd+ltlG6/OKVWea3eQElD2jXqqfd3fCO595gN/37OfwZbdewLtG6bORCl5ebuF38tsx1YwHhx2WvDtu9838OqKh+2u2/XWi/85Kojp7sJpHTwE35ecxn2uMgOFN/ePcL/3SL62+ExE++MEP4oMf/OCNlCcQCAQCgUAg8Nog/LxAIBAIBAJvFbypf5wLBAKBQCDw2oJBN6JFwk/xr8aBQCAQCAQCb0UwQnPujYqb4K0EAoFAIBAIBAKBQCAQCAQCAcTOufNwmk6NE35CZ2wFJYsTMfgswdxfv751q/G1EhAjR0w3nr1+X+lAbPUtvB6JaRwxeihqr1ul51kToUpd06Ou091qzlFac+WZXNZOpy5Nvn7u3AKkTKJJgST6c7uub5Uzo+aEmqVtLdx70z1LouHQQqy3k/1jk6Jw2nU9/LyVi3rdKlZ6aRsptV7BjZ4JNn1HTu/iFL1/Nc42OiNNM6vpiommhs/+pL7BqR0oxCvNOrgxQMVpY5k+iE+H+3WA6ko4LbwjsTvXng1VNAbTDKSDvtz44+K0JgqBNa/CGVxIdUNorcGSGJx5rTfn24VMJ6XPGSryXZty1ZdNv4JbU7dzdUDTSTPNj95ge1zmZzHc2YOmBTyIaS3P7FEuEmrWNixAmty4dLprvhk5AchSPySIRqLmm2Zy7e7mkG/LLFokPKqmy1hBQ1UdI73PtVMeC3Kq7dVOkWjAJG1nMi3FBFCqqCWhVpL2T10/xsbtkQ2oQCrc9HFYNSfTIDZANCBVb8jpwDBLG9j42/bxSd2lDFSwvO8r0l6M1a2LCc/urvH23UM8M15jrqnpblwMOwy5IiU3Gf3Ed3lsD/cv5wSLsB6japPIl39zn2/DQCDwGqPpCJnGFD9y+vabvpC85CsBR8vmyo453S22Ewm6MGuSG/vQ1jPgWH/N+ZhsF+t1pjXmdWXh/B9bU+yJgVXr+JQNbBpUEzeN4ar3lQvR8hXdsYQyiN3lsYJGRqYKzhUpJyxZFkceGHVKwCxawDwQSNcN00vz2rHiQwJ1x7IG2lpky1qlVX2PNOtM79Rpua7gfeytv+3b+8S127z8UOLN2nCU3kndOf9QwqvxxV58cKuV5d3k1NsR2PjrpOu5+thrB3JdjpW29OR0B7mXvc7WV6Saadr/A4MLoyA1rduj+ttHQtMjFHE6dC3tgcDqozCTuBNJytF2ZRNQs/Ovk+jzSlvovYNopomOm5RxubzA5Z0Bu3fdRX75CjTNMCExvtyh3NmDMyEtjHwlx4cHhDlnLFW0tNPgRMX02YV3FaVaX5E1p7Shtp/pywHdDy07gEcWnTnIZ1atubwr2O0WXOxUc25YsM8L9sOCXSoYnI83cMVCCYkYA1WMOWNU8btpKLjOI+bEKDygqv9VZxKNYNM8Z1a/GsiHKn5eAqhII9vzsLS3+IeV0PxTe4bbjkXA+eH22Y/rgUXrODHqDqi3CvIz8pD57rfdx//7ts/i/3P7M/iy/WfxtvxQ6sQZGRUvDrdW7XCEjW/pnwX6gcesBfbMRf07WR/7687N08BbFvHjXCAQCAQCgQb5G0P8LBgIBAKBQCDwxQYG3Yifx+FbPhZBaw0EAoFAIBAIBAKBQCAQCARuCLFz7hyU6kDMT7TLtFEI2hZW3Wps9AR/oeMKErk9s0p7A3S78JbauskPUGbihgqxqoajyfUtyKepcI0uaPfUTpNo129ojkaP24a+Nmrgiu5gVAKlEXIGMPf02MoyAHWhVXpEjJQZNbFS+rR9s9B6UxLKnm1pl0Jx2z4v12p6RuE9hQqhthpVwu96zr0/VzQJj02ynrrQtjdvd+xXrCgkAByNVcq9pi4zqJKjrPg64/SYcZTWbVlbXa2/GmVUygU3VkgpL5QBGiA04m1bbrdm6+e0yFb9fADyNZDnPt7rIOmRtn8thLpo2PbE4JIazbrVFTix1fx0GThtt5MLdYLQx51Pt12nFAhAqReDpFUvOt1BKBAJZb/H/s6AfKitrctFwnw7oY7U2oDnnplQcjftDkifKpVUW0j+54Q6E9Kk1IcKiUuPTtFp88vdT5lBieWdcCS8L8cIpSbMpXNtS02oNa0oIQBAqYIISLmipgQM3GgXKUmbsJajLhCKrpbRU698f3k7gySUJPss9yqd11Gw25jmTd8RgIGBDNSBgcuC3S1p+Dv7A57ZXeMyT0ioqDxg0Qk3lYxSk9JqqJWrN5T0DSeXmaPJr+qEE3Qn14bdRp2xRbR5f4pgvqGAEE89x8BbGux8N/0ObI6dANF6zhNYbaQ5TGYocX7+GtXRr1Vn7IWt9iu6n6NKARC5j+2tjeK4KcfWXllZvFSJUT4h/kiF80u8pAXMR3Fpa1pploZMpZ8rIyFPwLJgJXuRiLEbxcFYSkbKkvkyDai5gscEnhNKJqRB1/KBQAt1WmvmRmttchdJ62d56Wfv96zWE/WDTQrljDu1wpEf4tp2lcfWl7a1euN7H/WPK8c2r1Z2o7hWdF+iuQ8kbc3Q9QvgLIlQ1bw3Y5FY1vCVf3iiivDXQOisWf08oTD3sUE79VsGkfdg7cc6ECoSEmqXBDrly2mZemP09rLnAtsJxMRIC4lvk0/0sUl/DGh+Eg/qd0FoqPWSUC6k8PMdwuFtI3avDNjdv8RwXUFLf87jkbBcSN5ZfbzhIYS+rT5t2Ym8CCB+bcoVdSf9VYYEVj+xXifkg/jbyT8TQsud0X1H9ZOEGl4bpXU3Fuyy3Dzm0uRKFk7iX7tBtNTU1nsixqBzr4KwGwq4ij/OOylEnRllL35oHYGyE7kaQOZ0mtVnY5ExSYumveirqBNqtqv5pSzztFDza5lp/axlz47WJolFBumyYLwz4R3PCH31y555Ef/P5efwf+1ewDvyfWRN5LqOeFj3uLdc4MG8wzwPgJVPn0+bvE3C+vnR2f1GsfUDcTt/1ccj8/U8bJ141BrxeoMjIMQbFbFzLhAIBAKBQCAQCAQCgUAgELghxM65QCAQCAQCDYz4i2ogEAgEAoHAFyMYN8SQCIrEYxE/zp3Dlpqn6NtT1wP6ceN7HbHFvRutaZPmWbYT0/HW81OZcY9GaRfatvkVBdVFCmWlBbTt3xUSrqnRJXt6pP+R3nuyvdx9QN/6TsZ33dK/WgQtAiqtKBykF1GSbee+IJT6O1lUy0YV0GvJbV3Pj+kvox64KGBWzVaYc8blTLoWVe2IkuAoDkdbt41ekXgV1VP63PVTWr+v6AAtL6Pb6HG/VbyuI7X6AKtUZHstFQDFsXUKSfskbrvTydFGPJ2mR/+iTm2de+ReQPvQU2tmiebW2sIixSoto7Wrp4Ks6A501EdGDSalKzYqx4bu46nLq3EzAHWswMioJNHgAKG31oFQB8JyOWC46n1TM1D2hLLTcuoY16bWhVGoNyfpM4QVbZKrROfigdpc9lTfFtWrHXPb7anbLwKtFshaEhYIhWBKa1prWRLKnMGVhM4FCAUlV6EcEKMmtOiqdey2JxWAMlaR7zhpZDdHTziyiZlBo/FktKCZwHOSIeyjtla9kQBs5lDNDN5X5H3BxU54F5fDjESMQx1wqAMeLHu8dLgEADyY9jhMA8qchFqx6ZRGP/bG2ebpE64B3iaTH7/tIl+H47UmEAi8RuDNO4BVFL7V2sCPpyC5uS1JKa0uOQrTJkm/fjZZDl0LRXrBRa884WM1V2jjbx0Vjd0SuZK5oObzeDvWfDt99z5pO+x9D+qf2VHCTMoAOGEDrQQEpMTIiTVCuDu5W7BQ7j4dpeajkPl9noq2oSgCWDk1zdc657e6Znms6d3U6yTf1fknq0v8pVb2tLmV1999ni2NTR+x+WLuAYCdn8DaZibXgeqUSXw02bp+caUePdj5Wj7aL6DyJXOP1utprSASSuss11WjE85JfE+g5dGqaNo9WgajJLfKOF9H5Ca45VWJQUn8TvbtnlzE1syrMUNjbXO9MqHcljLO1xn5bYThIWF4QBiuhHoKAHlmaSPzb1T+JR/MxyEAWSLb77UDxwLKjDxW8FBFGkWlUurIqLuEdBAK+OqZzfe1p1kOktYwVIyDUFqzi0ZaasJcMypTkzABtI42TjYTs9T+4w0lRlVKbh0JZUegS+1fotbHwyE3OjsPQnk1yRORFLJnmi5dQqPIEhEDXBN4oS75tEj7NVq2d4myUlovKoZbC+7cPuCdtx4AAN6+e4BbecLMGS+VWziw8N0/Mz+L3756J377/tvxufu3MV8NwKQSOtqHUOowqEfJ5YHbsSPwZpJ72KRvx53DHgicQfw4FwgEAoFAoOGmNOfCYQ0EAoFAIBB4fcEIhsQbFaE5FwgEAoFAIBAIBAKBQCAQCNwQYudcIBAIBAKBhpv6i+o5hlkgEAgEAoFA4LXBTTEkOBgSj0X8OHcGTV/jUQP3tRhfpjXxJPoWHqeeYlpoZiHl+zRZuf6WZ5Oiqu67STvodYmBuqiWxAmdDK5r+v/JsjmdEvns9MLotGZJ0z/xOisE0bs60m2SepsW1lYzAQlg1QHouhePfgQ0Tb+k9fY6IKf6aBWifQvfXk6Lxd/ndT38te3d9x1UUwTS/itdlI0WidcmPFkHPwY0LdPg6NeKNhktOrxUV4SK9RG67odPb1seq2eRtNLSNW582wBSFlpUGAUAEoOYVnpip6S5GF5Hb3ORkyLhxKJb4vW8NvovTRsnsSsjAxnAwKBcgZ0cL2MCcgYooY7AcEHIcy+nhLt3/V57nU3LxQSBmm4f6fxi1d9xmiiWFlXRbvF9AohGRloAHqlr7VQGE0k3W5Xd/KpMKHPCstLG6BovrHp/TY9o4KZBx0wSzl41bGhkFBBSUq2b2nU7UtaXlTX3MnOWsVczgJGRRrkojxXMQF0SKkMMlGrOkVbIzMqRRk+Wsg5jwZBVL4UJD5cdpjJg4YT78w4vX4vm3P3rHaZpQF0yuNCx1ou3I+4YNjo553WMukHk5GwasNbL87Ik/hUIBF47fL5z6lH3+XPNZ1FNptrtr7enTeeO3XfV5j0Sz/baYRsfj07ZEL3E+0yr9dbWOCIkdG2uCnU7Tjp53b848n/Mp81AAYGGbv+r6k+x6pC2JUi10ioTsiaY9J0genScWDS2EosWsp3MXZOP9bp2ztb9Ez7pSu7Z3bJqbl+/E82w9UNXfqxVTBt/1TeWoN7L7iWV724VbctvVWesx4Yt7uq3rPyfVeLa9+ZTVB1jfDx+mm9aCJS5r7PqV5hWtNfSpapas+bTeh/at7f3eQsBiwwcPuow8y/J3e/8NrtUB+/KNxxkHnE6bn+v98j+IDHyriIPZTUgyu2MMmWUq4z5KmG4Txiu5Fy+Em24tPRkAGmTNIl7yInaS/oggVIB5YpEQMoVNasOXMrSnTWBZ0Iq4usZ6iB9YD5OawtipFQx5IqcansuKjVhqglTyZgXeZWieZUkzxLWBAkg1aojM0M1qZ+qWQ2MesFYQKJzPIq2MgDMM5Bnas8UdYRoLgNYLuVz3YsWcNrLoBl2RbQGGShLRkECq3NILHpztDjf2fzGDPXxKobdgothwaAXLZzx4nIbD8sOBQmvLBcAgN+9vovPXN3BZ+/dxtX9PfBwQJrNT7b5I2UXDWfueeb1+DqpCelOrGz01niYzTBdUjq+JPDWRfw4FwgEAoFAoIFBqOEqBgKBQCAQCHzRQX4jf/p+3qO3xwSA0JwLBAKBQCAQCAQCgUAgEAgEbgyxc+61wON+eF7R5+j4Z2OlATxRWpqGi5K+pjXocU4s255XtEGjCfQyNFpro9pxKwtXpeOVE4Wqej6jbV9e1edxVbCQ2tl9162/RjWwfEsRvsYRZdXXnQmofX/6Kmz8dluxth9INtCfKnujbJyo2zbE/Sm+A/lyePpC7v3Qturb521edk/CJkPZzk6ub33Z4egEWwqrL/uKVtvGjesTWrP1qPRhykaF9UXbvtPxcapAcmVreQ1YUz8ZSnMAmByFApvt45b+lu7gzz0CxDiiLhrdtoVNd93VqANDBTWqaUVpBdMy501aJ6jrKzqFfXd9wgVApk6N8dcqzWF4yBgOclPNhHmROV8HQh0BztaGSeZHo+m6wVGhFE4S6oLvRxb6RGt7GwBjBY/UKNBEAHT7f1XqFg+OEtPC0QM8C10ejDag6iAUhTpIOjQWDEp5GIcCZmCmAXVJx23hqflWdGvrpDQoQrMf18uIUhMqCNMy4GoecJhGAMA8C3WFF6XB1O1gQ7cljrrQj58YcJ5O5MdAs7W9L44obLA0YxdbIPBUcXLt6BIajdL/mHvMB2nvjuK3laIwW0G1ywZ0Hqy7R+my4kc1J0goc56euPVTvB1X222qCjUp9U6TSyanYWklrJdXy8eoj97+6hpESWhbrPa/7KHr0toX4UpYSkZOrBRXQlHby0CjXaJRHI/b+cj2Mrr9Zqz9FP86hVNmf3O9p6Exug+7kj2w9fxJzLdbG9i39dav2pbJS2EkFj+i0qo92sfVukirvMxPXo0d/d772e7pztiWGtyqTj3tOsh9dZR1futbkfogrU239OBWiTMN6dfgzZg3H8/Tbq3eVAkF3a+tKQGDjEFKjN1QkE0OoxLmfca0G7GMg+hzNCfcTUsnA0RFqK51sXfqPtkgn5kJKcv+JW4OIIBKSBNheAiMD4B87dpqEIpomgiz9smSM+pQUceEUhM4VRTVKFpKwmEZcD2NWA4Z9TAABzlHs/h+4o+x2AGjcg4sfu52bmVGHcXR44FQd4SitNsmW1N6O1eTgNkD5RaDLyrSRcHuUm7ajwtSYtRKOCQG1wFlTq3baQHS3KnJ1Zopo8kWAUCphIeL+HK/e30HL063UJlwXQbcm/YAgPuHPR5e7TA93AFXGWkSyqzl1Z6ZVWbFfHkkfqT8VHsmP/LxbBC2K+X/lR/Z53C4egEgds4FAoFAIBBwMP2np/36fPgO//yf/3P8vt/3+3BxcYGv+qqvwn/6T//p7LX//t//e7zvfe/Du9/9bjzzzDP46q/+avziL/7iF9BSgUAgEAgEAm8uMG7Iz/s88Fbz8+LHuUAgEAgEAm86/Lt/9+/wHd/xHfje7/1e/Nqv/Rr+1J/6U/jzf/7P4+Mf//jJ63/lV34F73vf+/ALv/AL+NjHPoY/Lpfr8wABAABJREFU82f+DP7iX/yL+LVf+7WnXPJAIBAIBAKBwKPwVvTzgtYaCAQCgUCggfH5/4XzC8v31eGHf/iH8a3f+q3423/7bwMAPvzhD+MXf/EX8S/+xb/Ahz70oaPrP/zhD6++/8AP/AB+9md/Fj//8z+Pr/zKr/w8Sx0IBAKBQCDwJsIXsJPtC8r2VTp6b0U/L36cO4OmffAoDaGVjoPjlJs2Bvx546Ozu7+nbfoMTQ/Bz5fV57WOBG9FxBLQwql7DSTTcNjoV1DV6+y4D7HOogNR8/EWSyYAo9xHxfj5x2Vc1YXQ9MNa+PitbhogGicttDpEZwpSlpXmisughfk+0TdH4e2bxpqGh/c8f9eHLQw8rdM60pw7gabb4bRYqmqCtHaqTotEZQlasTcfToXvPtI3WI2tjQ7IKcbYtq00Da9hx1lDfVtaTo9k2wZ+GJ4dv748GoIdAMoouhQ86PWl65wRrcOXn0yzbuqyLd9Kc4a6Vovp5Ww0JzhDNBUrNX2LZLdoXqZFgizzsM4JZZeRR4CXdVlPaVWcXBN9GQuAAnCiNk6oEGgG8gEYHzAuXiwYHpr4HzDdlYloWkSLdiYv2q+qc2ZacYDWf05Ii4arV63HI90icmHlS0KtDN5VkGpqtDStDyuaFmTTClkIKQOpdE0SQLTmOEsj81CRx4r9KI04DkW2w9eEJbNFu2/9BaZj3UDVaawEJJ1Y8yITz5yRUhLmJaOUhKI2pi5JJ+q5DkKzP9sx/sj+9DBdRU2HiFXrj1b9v0qXTky4L1LM84xXXnlldWy/32O/36+OTdOEj33sY/hH/+gfrY6///3vx6/+6q8+UV61Vty7dw/veMc7vrBCB96cOGObGx4x5U5q4G7vsWWJnMbQ5txWh7SlzSy2KB0XgpPauIrmr4Fp5UNuy7TSOHX2irNo71JSDSfzyWYC5+4HeT01dv5k023drBdsGnapr/PVtGXNhzJd2SVhmcQ+J/N5NLlaUnuhkKxPPq/qGpK466KZFhXrmqbH6UT/HGm9negb35YtHTuf5Lhv3/bOWOu6wd0P6WavN7sqm+ka8roobL4uu0zNPyPV+jszqLd+I5n+3Lm66mulids6xxJc31IzgIFUY9n5eTunO+h8ftOYFm1GBsGNeyurb+9T5dR363+q1LXKFtHoBcTvaBrLGaCFUHUcojKqTruSK2quGLWyeaggYlQmlCmhDsnpkW3ayusxO1+cvG5f0/iV/mWm9qyDKWF4SNi9BFx8Drj8XMF4XxymNFfUXcJ8J+P67QnXB0nvUDNmAActRimp6WMuJWGaBizXI/AgIz9MyFfqx07i/xIDnEWruPXXBaOODB5ZdOhsbmbxI2sGMDLqQr3d1YekgqYHXLWd6o5RdxXYV4z7BRc76ZRbuxk5VSwlg5mw5Lx+Fivqm5q+sJ0zu8OEWhKu57FFH713uJC614TDPGCa5OeOZcrgKQNTAk0kz5qWlfWjPfuYz4w+b1bPf6dsCfqU8HrnJzVK270MkGgu3sBvZTeC8PMejaC1BgKBQCAQaLgxzTkQfuZnfgbPPvvs6nXqr6Of/exnUUrBc889tzr+3HPP4dOf/vQT1fOHfuiH8ODBA/yVv/JXXotmCwQCgUAgEHjDg3Fzft4v/MIvhJ/3CMTOuUAgEAgEAm8I/OW//JfxL//lv1wd2/411YM2oRCZ+ejYKfzUT/0UPvjBD+Jnf/Zn8Z73vOfzK2wgEAgEAoFA4InxF/7CX8BP/MRPrI6Fn9cRP869StgW9LMMI4ZsJ99sd11RTFcn+sfVGbdF+uR2bnZ7fn1yLXQzralWSsOic3nZ8cQtTDq5UNK2Hbdt102dWUDFKAyuaLZvnND2Zx5f48pi24n11rQAde6Uh2pVNeqXFaSybIdPBAYJ9RV96ziS41ha+krTkC30ukd5uyX5RP82Gq5uT260PNuZTu5eVxeqjgaSXHsQGv2xbXu3vDZ5nxo67d1RX0kHS6NttnqdqtBx2qxjoH+mVaGOrrV8ffJMICGVnKUhWFtWtUBVqQ51kEZY0WRArd14Q/EhhlKaN/Vze8MtTLynaVIRKiQxWrh7KYgyKDKEfuPKwVW2nZNRGkY5kXNFGiqWXQWPCTUT8ql6u23x22PY0mkMVWgXjYIyE/KBMFwB+5cZF5+dkF9+2C4fnr0F4j2QhNpqFNU6Uhu7dQCQHX2ZhfqRDtQoDtJurrzaXzRoepXAVGV87LTPGr3KpiiBmFdzm412v4gNWUsDoM3FlLjRhne5oFTClHKjaTQwder4ZmyyS4+ZGq11XjJqJZSShLZfkruXur1tduG4M30fWrv2A5sLtmhSA0JpleSNS0H9klP1eUq4Sc25cRzxzDPPPPbad73rXcg5H/319Pnnnz/6K+sW/+7f/Tt867d+K37mZ34GX/d1X/eFFDnwZsYpmws438v5aJ6GuJXu8Mb7rO1n9Tf00HZJ9nNe6XlsNE0vZ0IAq4QJZzinTKlTRN1snfJTzSaa/VffhNX3o6R+Vxb/hIprA7fmA1CaHk77BubnOMkTy5NY1rWkPl69zqgA5kpISh801JKE7mdSJwt16QVfNk23FdVJXTTqrS+8fdysx+anNn/1lP9zsu+0wZ1PJnmQ2vlzztDpw006gbhL2Gyv3/iajQ6ty8nZ8gJrP9T7r358+iJb2vbZrtk+w5D0d3Wfi9Ga90JtZZOxMFRpI14IhAQeKsgSPEHrXtW/dtkVYjSaYlqANBHSDKSp01pT6WOhJilL3em5mbAsCaUCyybbcXA6HGTtoV81TSpAKgxOJ/pq6/+Z385CQeVKqAdplHw/Y/ci4dZnGHd/Z8L+k68An3tRrr8+gC4vcPGOt2H/3rsYrnZa3wRaMuaZcJgzpl1p86iWBJ4S0sOM4X7C+ADI6jYOh+7z8SC04+XC6kVYbikjPLHIzgBChQYDmcRHHpSiCwBF/evS5Ubac9/AQsMnRkqMXZY23ecFOXV/2s9/m7vN1rhx7cd3LUJfNT8PED+1LBl1IXAxiZcNNX7l/vW5w/bM4cf1aj7gNFb2RNrpyG89l8a59eh1Qvh5b1wErTUQCAQCgcCbCrvdDl/1VV+Fj3zkI6vjH/nIR/An/sSfOHvfT/3UT+Fv/I2/gZ/8yZ/E13/917/exQwEAoFAIBAIvEq8Vf282DkXCAQCgUCggf1OjTcwvvM7vxN/7a/9NfyRP/JH8NVf/dX40R/9UXz84x/H3/k7fwcA8D3f8z345Cc/iR//8R8HIA7bt3zLt+Cf/bN/hj/+x/94+2vs5eUlnn322RurRyAQCAQCgcBTw035eY/YDHsKb0U/L36cewROjllPdzh1zmhR28GX+HjL6mbLM6cT22b9dnkr1Ib+0JIgVwSlOKxoCNQjOK22uztKWYsCBqNvQOmElgn3oilFg4yyYKPJIlNBtne3SD0ZSEPP86gJjRVQjfKgERQPnSLJvNn1qxGZwEnydFFSfb0BNCoE0CkP7CmckDajLX3AbjNapZaTt/tOfURc23btoki2KKBGG2b0TtMt+Z4q+lgqG+GI5tnSfcSNjd68Ooi+7b7RkJVOoRHX6HHlWdEt3Jjd3GOUVh+ttY5A2QmFukd/62PV6NUASZ03VBYZiMdloar049r730eXa1vldbykIvdKpFYpYxvfRdJbKKEMWaJOAUi5IueKYmV087gV6VR/OnpDowHRejxuo9CmiZAPwPAQGO8tyC8+BCndAaViOCzYj2/DckEou9QjBQ9WBtJ2J6EYaGZJI8Dm605xMOZGHdApVNa8WdqzLezEgLWT0UtYts17dhVlbsEGkqcaWR0tUip61D4i0ZY4FemufW4RmLE6QQmNUlCU1lCrREXj4rn57p10rPuIiC0jX4hNYXxFT4GO3ylxo8RxxZp69RaJzvqF4Ju+6Zvwuc99Dt///d+PT33qU/iKr/gK/MIv/AK+7Mu+DADwqU99Ch//+Mfb9f/qX/0rLMuCD3zgA/jABz7Qjv/1v/7X8W//7b992sUP3DQale/0WuWpjOw+P/bhYmNPuk/Wzx0xmvyyVtHCg3MyK7ouZ4vMuvJP+jr92EcuX+cWGbMJUkgxEkm07TWbsdMZC4FN1sTTv1YR3527avdXoRka/U/coAzeEUolpNwXBovSijkBMyEt1KiLZi+NfnqKdkabdWUb2ds3lKeynaK1buUxzsGXo/lNj6Ks8ab/N2WTlcc5pL5ubXyKjMRRRNWjNNWxb/IK1NsvufGO3g72fODngi/3SoKh+bnqP4ydNlp3LjI78VpqpGp0V5ZEun+ibWj9WAlQhilVar5io5Zq5NW0oEVpzVOXLrGon8SiysEJ4EmbYjJqa8ZSCIv78aLuyEVW37Sx8+GP27uPJc5o0ZUpQemhEErrnEFX4kSN9wkXLwK3PzVj/1ufw/L/+9/rNO/dA57/Xewe/l+g8m4tyx5UE1JJmA+Eus+oRiOvQJ4Iw0PC8ED9x4eSd54AUiqu+OPU5WaMlmpjIx8PrtX4BkAgHR9y40oGykWorZVQ1FBUEDK6z9faFIA987Zx5uert6cVqIVatFZPh2cbN1Z0kn5gArhyfzbknt+jn6+ODp+4aF3Wbb24Qp41n7ZmyZsQb0U/L36cCwQCgUAg8KbEt3/7t+Pbv/3bT57bOmK/9Eu/9PoXKBAIBAKBQCDwmuCt5ufFj3OBQCAQCAQaGP0v0IFAIBAIBAKBLx4I6eTp+3kcvuVjEQEhAoFAIBAIBAKBQCAQCAQCgRtC7Jx7EpzQITl7jWlgbPntqtlwpAVi2kKk4bepHz6bF3CkdXCqPKfCxD9WJ4O4649U4dy3UPBMK10RAqMO1HRPOHe9rKZ7RgzOqgEwqoZBdZokq7y7HkhagKqhzzEkcBb9qJNaD5XARcpIG40uwOlouDal2st5svke0a7WlyaCZWU36YCVxoLXBEksL9NtcBp4XlJwnQ9w8o8Mp3RyNno4pzVMtsJcPb2us2JaJHose92RU+XbCEGcSHd7T9MlMW0L0yHJDCyiD5Fml0wlVDhtthPVOqosk2rNQUO7W1rrS7zOIlRzbq2Foh8XABXIROAhoezkpjzovNW+rZmaPhvb3DAtm3S6/KZneKRjCEhbWNlnaZe0MNLMoGkGX11LXqUgXeyRr2bkw4g8oWmHmB4LINqPdSe6c3JSdFjytejOmTaL6cUQq2SP1xVp8jcMqBYJa/rkxOEeOY+A1ViVfpK+qiWhmC4k2/uJdORPf9K/bhhy5tYn1rdV06tzAi8JXLRSiZv2Sytb0r/tsc+XQLVftxrXqzLRE8rFbS7irotylPCj9IpeBzBEF/Cp44naLRB4DeHWqMdqqjIAombXV+f8125au/6vaXtt9MLO5uk1xFZmQTToWG1vWzNYbO9Kd+5RfqR3Mv15a4uk59KJpRVQnSb17wr6mlcg+qNurW9rnvmgtetg2XFx/VSDymfIBF6SrH0LgWZa6Qc3bdxN+b1mVdOWtXbaaoR5V2xV7vW6wJWwlbft53mtX7gtz6tAk6Fya0xbX4+Et9y71+k6tQj5cW5JqPYZZwJ4LbF6UsvP5+vz9GW1NlQfz7SFOaPpzVm/WF72DNH8EkN21VG9uaYfrH6dvael9zMV8WuouDK6uqFq9zLA6muKb2X+UsKMweTtMAHIQxV/RH0E09O2enVd5H682rlB/EPT0qNcQZlBJFppPBOGg9RreADs7jF2L0/gF1460fia/gsvYXjmNgBgd3tA2UnDp4lQ9uuBmibx8YYrYLhiDAerMzdNvJpFb65pzo0A7xjYVdCuglQL0rT3uEJvdHNyoa4bvmDt01RGIkLNCcuQcRgloyFV1IFQakKtqmXstL9XUnQ2N4Gu823jjak9e3Mh1cSk/lyo9yOx6hiqc6sGh+054YQ9BE5PqSOcmf+tTvbbQKVmB2/K72HQzfh5gccids4FAoFAIBAIBAKBQCAQCAQCN4TYORcIBAKBQKCDXSTep5ltaJEEAoFAIBAIvK5gxo34eYHHI36cewxW4/Ycfc/HmVcaVNvia9tpiR0F0BK3+6E0v04BteNH2Wk653atr+5zlIejkPCPqqdPx79v70lotLb23SeolA2jO9QdUCqQynr3veVhlMVGbZ11e/II1CWBR89H1NsKwUKtyz5lVwajCRKDodTclpkyLM61Ibed92cpL4264mkQRxQ3d61/nchrRcX16RldAp6Gwevt3ZbsluLwauyutn/bT6tURaFb0un6be9vnx3Fw+i/RpFAp92sxmfutG9PQyGbU4kklPuGCtToDqdYHBW65X5Na4HLe8Uk5E7rbGkvvXpU5EPdEZZJBnbZVeShyFb/zGu6ruWlVAHfhp1GrG088Hovs6NsGgU66ZZ7TkDZJ/DtC9Azd6V88wxcXqDuB9QdCZ3CU54axRcr6jWT1DktQuto7aR0kqq0FDaqErAZCyxzq7MQGs2h0dsNSmunimOqEWldF0IthKVo++ZyXrSWhR7Q0kqu33T8UapKy5eTXIXWSoWabWjTymhMSn3wKyRbY6Gn3T7bBUZp3Y7Fx9jSRp92Ju5pU1kDgbcamsyIn5/OlslF/WKuEGtBJybmKV+ird8ktim7RdnkEsjW2FdRcFtXbc0GhFqaoLZ4TWk7RU1s9p+toDBuaT9P6Ovlds1NQglra5hb84jQ5U6cD2jXAmjSIgBAC4EywIVVoqSXnwvJ+UKgiZBmWq1dAIkUh/ONrUbNpqofYPme5OmuGsen7w6bTX4EDW1FGX1SutqJ/lmlBzR5hjYGzTndOrHeBzz3/OL8Mqh/VzOQ/Prj/d9HlO9Ueb1/t/J57JlB099KjQglkVGJ1uPN2rx0yiRgFFQS+qr5N3WdJpLzvSDtyOoHGYU1FS2TUWa1qYx+CQAlcXuGIBJ/jUf5XneEOsvzDRXnWw76/GI+1MggfY5JQxV/Q6mYpNTtVq+qkkL73dm2prt3UHfdSUmLSJMwCY3Vz7VUVLZkUh9Xx43QWIUGu1wCyy15AcByi1H3DOwr0lD6GLQfdUoCZgLNqUuvLDZfu6/ZxkYiVAY4JdQx4zBI2XOqYJbgBEtJ0h5PSiE1bnLLRN9Ui4UqredCYnmOIPtTYPev21it6L7cFt4+2qGtf7d9VtTnYTA6Pb2S+MlW/BuitgbemIgf5wKBQCAQCDQwbkhzLhAIBAKBQCDwOuNmNOfid8jHIzTnAoFAIBAIBAKBQCAQCAQCgRtC7JwLBAKBQCDQwDekORcIBAKBQCAQeH3BwM34eeFbPhbx49wTwGtYPPZa5aqf1X1gAluceHIJqy6Hheb2YcyPNFD0Hnb3tsOWlmoZtFDw6UQals+jKub0JrY6Ve3cqTRrv9/CctNOdSCmtfwFoNoUGV1zyTSYANACoADIdNQWpinS6uE4/0wn9DjQ68Gajx3bgjdte1YDirYaXDjRKOj9srnurOaA6Xac65/N2OBKvfpbGZJtGif0EnibHqnOiWnFbffZntNJaHpzXX/E0utjepNm4iNtk1YH1a45mx/TsV4X3D322R1n1SFpujmrNuhp+XZseiYH0Rgpk9xU5tQvtHmsYz5pmnXUuqa1PgVnBg/yjoFlfLT8uiaFabOAAR6A+Rbh+p0DiO9gvCWaJGkuWG6POLxzh8OzCfMd0XlsZT/0OlBxdUyn27ZmKXfdufJbMZqWHTXNlBbCXnXyqLqw9G6eUTl9vOviEbgklCKZzGoU2Q2MlU1mp23ixwwAStzHnzsnbSspELgFImC9p82t7BqEdY6dGmdWjpPzWI3TGdvR2qGqPorllfuYCgQCrxM2PsUj/SG2C045DGi+X1s3/GWJ1Yat57Vp7a58NLU/3c86tgWk/oTZDFa9XvMZyF//KI01b7MYKxt0Fv6crXl+rTTtYF8/LWPTnvV1MX+PCcS8buMqtpoWQlpopQl7zgc9hUdqWG39PJf2qg1NP5DOp3fWp36En3cub++DNldm5dcca201HbqT64063glgL4icZN3jvNXzw+l0Nv3vfTlKbq3d+HT9flpr//l1uxJQeT1+CLo+Ov8B6Hpz7nmhyScOOO4/qI+h+rp5lnfTt6bKoALkScZ03gH1IBUru4SSM1Lm5rtV1ZwreykTk2pqWxl2QNkDZc+ouwrsKtIohU9DBRFQ1c+D08vjBMyXhMO79iB+L4a3PQM8uNKTDOx34NsXmN92ieltIwBgupsx36L+vFW630jc9fWIRd+y7NRuZPm8XADlFkR37rbUq15UYF9Aua76lQsBSwKmJDqQ+gJMLw9dW9jNBx4AEIk/OSUU1fO7zmPz70pNqheHJ4d7zvDg5pNtJizZPTIhWQ2UTS3xD/lY+86nt8qeV/OF3Od1gdy9ppNs4/qcfQi8JRG01kAgEAgEAoFAIBAIBAKBQOCGEDvnAoFAIBAINDBuJiBE/NE4EAgEAoFA4PUFc/h5b1TEj3NPgCcK6azXMahtz1+d8Fu72x5fOUds11CjobKnQW1pFEbDICgVwnHDfL6JO/2sUSM228kteT8/t1vNrWzbLfS2ld3udSHMyZ+3rd+Of0AL4LecC61VQrono7f59Cr1bfgets2dN+llPkHloNW70VtP0hA8pSGduN0dBxtdgzW9nthqS/c5G7jpwqNyPAq+75Ry8dhbzlErjFqaXGGIVlSU0+Un/7Yu04lLWbfHt3QhW+slDwYlWs2X1Xb1DdXD5hBAR9vNG4XY6ESuzhLinsGDbmsf1plJqHl9uXHYKJQLkBa5ti4JNTG4pk59SXoua90Gpayn9fZ3zmiUVgwslEqtF7P2pQ/pTkDZAXgGqANhvj1ifDBomRl1JByeIUxvg9BaB7kxT86eVK1/7m2fAPDs+kHbyGgZRt/wlCcqABYCLzoZ9BwtqVFHhN6KPu+1TRsFxfqfsaZNVzRaaykJROxorZZQ769G/XWyAHYtUW9TAJ2aWtWmVaG2yiXUqK2UjfKg47tkTesM5cLq5sehp6OdWUiIuFPsfTtV6jTnR8ypQCDweWJLuTtJ4TMbI7aAmUErzYQT93kfauUL9mu9b8Yqd3C0hhIfrX/9s9oib+z8KV+O7f1bf8+qw+dtG23T8zIDidrTRCUAQ18vV3XefvZ016M2dLZdJRKatISVI0HW5yfw0Vf+hL7MzeZNn4ifwmu/x9tmS2PTHjJGtsedz3WqnM6nOekjnvBNpdx8+vyqwqeusXHj0ldfjKi3gVGkW7bepaaeDLtXy9Z99mmwLzttymDvp45tin+Kes1bPz2Zn8OrNKgKjTXNQD0A+QAk9Rvy7MZ/Vcqr0jXrIQmVlWvzRZqvNDLKTuRRuPjj6j/tGbwXSmsaxPlJmVUOBOBCSKW3R9kDh2cJdTfg6l23kebbICeHVAegjNRkRwD11zJWzyVWl1ScYlCmPi+tjDuhs5YLoFwqBRcAj0pnrYTKEB8XAC8EOiSkQ0I6EPIkbQVs5qj1v5MHacOyUkuvLAkTZWEvl3Q0T87K8pi9YiiTe/uw4K6xMUMQDn6GG2PWUFY24GjgbfP02IxxcgbYPrMO/ub7bu3CDfxIFnjjIn6cCwQCgUAg0KHObiAQCAQCgUDgiw/h570xEZpzgUAgEAgEAoFAIBAIBAKBwA0hds4FAoFAIBBoYBBq8GgDgUAgEAgEvuhwU35ebNZ7POLHuXNwkkFtIHlxhSM9M6z1hk5x5lWAbKUHQiRc+I1uF7kEVlx6Xl+7oqkz9dDR2/OWbgtXv67rke7c5typMNXtvGqtdaGJVlXANB9gOgzCuU8nZicnqSwnx8sHtH14pd/mNdpS8WWxxNbtcqSzdkYvw/RHTBvNtDiO0id0fUC49vO6JC6fJ8EJCRPVFNwU+0l0ZLbnTp3yUjVat5X2Cx2fP5I+9O1q16fNd18Wy4chmmde60XrKlovtD5H67KtyljRJVS2ZSHJh03LTsEDo+4YbFpqbtxQJUnSdCx0LFZ0HRZigFRzDguBU+q6ISvdRylDzRCNO69hQ/LdtO8o+8lr7eF0M7Qt6l50QXCXME1APsg5mglIoh0y32XUy9rb8NAHL5WuMwJo++TedlYE0zOpI4NHuQ8610TDhJAIqJSA0icnzQRaSPTmthpBLn0QUP3e7eRsRSXRHgGwlISUVMuHILp82zFm/dS+e5EZOc+mOVKp2yiQDkYtezVNQNH/o8SomhknBjiJ3g05Bcyt5lN1eZsmlOmOPMYWkL/X8Q2ObH0gEPjC8ShBYaY150eXYlYtSFrpvW3vc76QafCe03PzRTHz73SImJ3u3BP4E4/TmzNf9KRGLG8+r+rlkqrUtN5EU6rrrCKryasQTWDfhD6vlT+lNl3LRVshYD6TJvU1mrfazHC+q8uXTafO8nbaas0HMu0u1RK2IjL19eJVmeMzxrsNlY2ub9PLPXEbE1QHbHNi9SxwfK/vb+J+AbM+5CQ68vHOjle73b+sPX0ayb0A8WmapNhxIZsGb+aut9p8BFadWNcnVXweqw47H6IO4ufxwGuOWBG94HQgpEzgLLpzAMCD+jmtnVR/GECaE+oBqJVELq84fzLJvVXTsLauO6BeVPC+gsaKNFbkoXdcZfFzTDfb5kPZy73T2wHOJP7j0PNqzq7zT813bXrdG93utKDpNgJuzKsvKPrC6/aiSuBJG6ISoHVOCyFN2oYzkCeIjjhc+sm1i5V9UH9yYBkLZu/U3yNi1EpdX1j7wetDOneq+8ZqWxno93qb63xDSnZcxxD1+jID5LUQLR0rin/eOWWLH/ndns+dIT7xLB5/Ew0A8eNcIBAIBAIBh5WT+7QzDgQCgUAgEAi8fuAb8vPiF8jHIjTnAoFAIBAIBAKBQCAQCAQCgRtC7Jw7h+1Wf2BFGQUcA227dXZL9SOsb2zbYvt9W3bEiibpKFlUNB/j1vl7fL7bQjqagKeZtXwSH++891QA2+lracBoZrw+j761GlmuYbelvTJQZ+rbq09QL/jET8ZGMdyGxaZCLUY4bSNwe5req92R4bZSdzoAt3OrMtKmO072w+PzOZu/4wC3rfRbyo3PY1sel56V72i8Ga0icaPrkttDzkp5WN3Xwpj3drHDp+uq6WQdwkanBBrdoZU/s4R8BzoFZUWhcJQ/ECgzmGlFB2/9ZJSL2scqD0pp3VWl0ih1sWTURZkZfvxAxldaXP2MTrCQULGLoxT4JtJ29ZQLa3NkBmehT4L0HTLfV1Rym2dZqRK7CgyMhQE6SNnTpFv7d4xyq4L2pd1eU8ailFuqSmu90DQHBi0klB3q9IQ6uj4i2cPfaBILkIvSSpDAhTttwNFZt4zPRoNKrm2AZn946MeMtlOq8JDaX/h8/1u5bM5txrwPY2/3N4qZa1fHUZUvBFBi5Nw5T+zqIIML/YCOy0a9sjP5EfPBZ2npOhsiDCpX56f4x0ZmQr2Bv6hy/EU18BRxJNmha6MxllZLbCUgcTvOwJpuinU6LQN7b/TWE9c234Z7XqR+FmFrfI7TPqrY+fo2f8P5M15q4VEGy/s4Kz8y+ZNoVNPmn3nfaFseuPJs0lnd4+QI+jH0tqty/0nZj5UfRUptc+uP952UysoZnV4K19+vkYnydFb/auU45RPavUCrw7Y8KymeLU74600OR+u9klbwGfrxac8mmqb5h4BIeDTGcJY6Ga2xDugUQrc+m+QIZ1YaJAMDt2OAjKWWfXXX2yTUPqtj92t4V0HDxuEtCXUmMCUdd9T80DQpjVXHBhMaTZNmLWdN6k/2tb5RUrM2laZXR5a6jIw0VORc18t9TZ0uWrvTXi4AHoUSi8sF4+WC/U4cs5wqSk2Yl4xlyiizZMZTEkmR4udJ96GpArSQyAA538z6p9FZGSKRAgAz9cfX6v0/EprsAqQZ62c5m0NZpVFGoO7kZN31vuWBW/+DO124PVc4m2S+6dFYV/qu7QCjo8nv4GwQs0tK7SwAzadnfvS87ymzq/fN89imnGuqrUtvVZlH297XA4wb8vMe0U0BQeycCwQCgUAgEAgEAoFAIBAIBG4IsXMuEAgEAoHACvHXzUAgEAgEAoEvQnD4eW9UxI9z5+C317utwZ4S6OmOnXaJ9Z5y2nz25/zW2FP32Zbv2ilUVF10l7Y/2m1dtnTsnN8byS6t7RbkFbXjybe5evptY0lU2wpOsn3ZR11igAcCz2vam9HgTrB1HZWCJMpUoVUUok4vXtMuGiXY1b+9e8rjKdDxNdtm2VIiGJBIPCf6chWlbJXHJjLpil6he6+3EbQehe14e8J7jGKBhEatlHPU6YeOydcCo/moZ60zaf3d30Nuy3/ubehpNkxCkahGNQA6JdTo1z5P0sihvt1tDng6iyuXpdcipCoVos6MlAHWMeYD7JG2w3acUiFgSdIWNr88BcVThj1dpUVkO+5cIp031u42PjJQxwrcLsh7oTmUgzRUuc7AInOOdgWDngeAhQl1SqiLlLHuNJorAB4raElYNLM0W/m0D6y8tUcuy5O0MY0y5su+96VF01r1k4Mc50Z9kJu0X/Scp/JzJVSNWnsUec/6wfJ81DzZUBFWc3Jll+VgSoyUGDV17orRVn3/r7LcUjI2WJeRcDSv2V8n9m4VcTAQCLx2sDVi6/8YN9BHAKX+nTRi65Yef6Q0YT6Jlzs4ojN1u9CWgsamJw3Yrb5g2jqRrz08k36lEqHUNgBdvkHbaiX/4emWZpsd/c9TYU/aUCuH93m938vr+7z9h/WLL7MV09PkEkmfaEXX9Fp7rddrsgTpvCF+lKSHdPR6nbQ1sNNa3Vh7EmzHbisIjtchrQ+1unLPSstCiXp9ff+Zr+f9U78G+3ZSV8h8vTqgy3lkdlIW6IUxyZEWrRVCs0T3R42Ky0ztXJs8ei8yt3O8q6CRQblKGnpLBYROmhk8EqqPXJsAXvp49fI1aaEWGbbV1VOAnS/v64uM7uvBuSGVRLrDIh9bHfS9XhakOzPu3L3GO249xN3doWV1XQbcO1zg3vUe19cjAKAgg1PqUemp50kEsNHM54RUAFqs7V0VFvHnvG97KuqyVYR0TEjba3Ku3+sOqHsWnxUARm5+NzkZF0mPVH6kfe3vj5sP/rnrceaxUVA3th3qd4PWtO9TecD5uKtrjt/Z/Lzq0rBrvD00Hzg9rgKBtwKe6Me5P/yH//CrSpSI8HM/93P4Pb/n93xehQoEAoFAIBAIPB2EnxcIBAKBQCBws3iiH+f+x//4H/iu7/ou3Llz57HXMjP+yT/5JzgcDo+9NhAIBAKBwBsLrDv3Am8dhJ8XCAQCgcBbA4zw896oeGJa63d/93fjPe95zxNd+0M/9EOfd4ECgUAgEAgEAk8X4ecFAoFAIBAI3Bye6Me53/qt38K73/3uJ070N37jN/ClX/qln3eh3ghgr/XkOOZg5aM7vZFVlHvl6/djfMxDNxAaD32rI9d04Cx/0xHwnPrND95NE6TpPbG84NIx/YiN/kGvOIEb6f9EPk4vibciBE0jpGsRrMJPq9ZXHRg5de0SKzsVOq+vxiS6FExO0w4rrbqTOCVi54p0JCxgfcE40jpY6QpusW1fd/yR2nZ2jddEQc+brQ+bjsS2vMfJtbSaIMsTwDRWnDZGKxcAC2d+JGGimhlsWnBYa4S0CwFYyHoe0HQqeKtJ1rReqI3dCuoaZTauTWdEtdzIZCQ0Uxsfq3ZZaen1SUmJ15oomboWnu+7gj5nyeVVGVyw0oZseWr/W9m9tl6rqxmZzbiB1pUTA5l6+XaMYVew34s4nO1dKZUAJHBSvbTcE6RcwQOjjtJQdcfAhTRSGiu4VFQeUMqJwcoQncdCINWcS5POvUXPg1DH3idmI1uXbLVqTF/H64pYv9gxPVgrgfzkIDfWfBmP7KtPC8fwc8PZaDJtUWKkVJHUVj1xbPNH2QegV7a6v1quRJtwXB9iPPFcfk1A8RfVtxjein7eWc2uU3C+jzkIXE0XqydyrM20mdePSt/5SlTVx3rctD8SIX48TNOyZfzEWk16fwFQzdc94WM1n4bXGlZqW/16sCoPW7ui+zx2j6vmqivsfvM5T6xfq+JtdZ+wcgecdrSUZ73GbNb4rUOER4ynbbGcb9g0ab0Gb8tzc++5fnqC7ifnf1g7cWIZvyf80KbZV83lcePTrYf+vpVOs2nqZfdd/TCq3cfjpscnvhhnp0dm1+vwoMpdVy2t+/ZR+nvtHr/Wqk5c1SfhRDLsjsYp9LnGdNqyS9u3gfrBfKYfa6XmRtRKojtnboq7rw4M7CqGfcGt3Yzb44SLLM5XBeG6DKhMKCWt6kUE0blLorWXVH8v5QpmoJaEOmfUQwIdJDNaxK+jRZ6t0tL95/aZ1+Vb6STmln0/lyG6xqPUA6Y5l0XH9xSaj3bkx+m4IFppG/Yb7f5j//tJcOq5y/I9e8/Gbhxlu7L51njUx1U7dyKvp+p23ZCf9zRd2TcpnujHuS/7si97VYn+3t/7ez+vwgQCgUAgEAgEni7CzwsEAoFAIBC4WXxe0Vpfeukl/Nf/+l/x/PPPo9a6Ovct3/Itr0nBAoFAIBAIPH0wA/UG/qL6yGi7gaeK8PMCgUAgEPjixI35eU93e+CbEq/6x7mf//mfxzd/8zfjwYMHuHv37opuRERfNE6bbPU+c1Ipfn4/NSvNrYV1t+N+K7ynswFtq3MLSY++bRi6tbvRUo3+WftW9BXt1aXX6HIubDmt8sJq62wPCw6gnKCrbi9sCW6+brclW55+6y8xkKhtifZ0h0ZVPZU9o9EcSCl2jyvitnxHLNz17naBUXKBvo17s7W9f1nneS6PFXXG6LlWp1UhXV504ruvzCmqzIaacnqLP5281k6taQ3cqIFHY82ncarOp0BAzdLPne65mRP2OWlYeqtvgry27dJoEVj3nVFMzwxlqtYPVqlOoWCfj69P1stsjrZ2X29XF+p2r4vMY0uTcXJd4nXjEjFY6ZuNqgBtv6EijwW7sYAZmGfJrFhZeJ0OIHSLmh19d+CWZh4LOCcsSwXvCKzUjUY517qlWV6Afl6AVKyOaNQu1v6q1oaO8tzHEh/3ebNd6/blSquxYG3j0ezbI3/ccR3qbbHZaE2Ha7+WlKpiBfJz/ZjK0MuwOmfzyl+n5TBKilFbjilxRicKJkDg6eGt4+etaU2rSbi1U942wea5zd9z/KZHYLvGbNNe+XYbo0j6mZxhaWs14eQaY1VTe2frhNFBz5bR1amtryYv0mw2rdfiLbb+1daXyLIeU9GyJ6z9va1PZsk6yQir3+oHfu517mXvvlprj03b2zpAzu6KbAx6vTfttO3DVd3bM8DmGnK+0Il7Pd32FB75XO3WNRtQzKzUVp8oHd8HdDqxXsEV/Zlo287bZFZz5ozPs73XrrPPqZ8jYs2fjttQy2PPLz3NBEYFclrNJTaJjkrdT/TzcOvfuTxWr5UsB63HNG3vI9SSQAkozVY4SiE5XxhQamr336aaUdUvm0rGvcMF7l3tMV0PqJPwSnlJ0s1ZfKQ0MIadUGGHLIO/lISZgMLSDgBaWzSfbgLyJMVIC2TMs/h4ZZTjdSc+Lg/6nrnTW+25c6zAyECuSIM5k71NPA2V1UEiYtcm3PtE++XcH+/4CYZYv1gTPZEYmWSK035azUFvRzb1OZsXkUiYVIDcQ+dJX/WcDQm85fCkKjoN3/Vd34W/9bf+Fu7du4eXXnoJL774Ynu98MILr0cZA4FAIBAIPCUwoBFbn+4r8MZA+HmBQCAQCHzxIvy8Ny5e9Y9zn/zkJ/H3/t7fw61bt16P8pzFhz70IfzRP/pHcffuXbznPe/BN3zDN+A3f/M3V9cwMz74wQ/iS7/0S3F5eYmv/dqvxa//+q8/1XIGAoFAIBAIvFkRfl4gEAgEAoHA08er/nHuz/25P4f/9t/+2+tRlkfil3/5l/GBD3wA/+W//Bd85CMfwbIseP/7348HDx60a37wB38QP/zDP4wf+ZEfwUc/+lG8973vxfve9z7cu3fvqZc3EAgEAoE3JZRy87RfgTcGws8LBAKBQOCLGEovDj/vjYcn0pz7uZ/7ufb567/+6/Hd3/3d+I3f+A38wT/4BzGO4+rav/SX/tJrW0LFf/gP/2H1/d/8m3+D97znPfjYxz6GP/2n/zSYGR/+8Ifxvd/7vfjGb/xGAMCP/diP4bnnnsNP/uRP4tu+7dtOpns4HHA4HNr3V155RT6olsXJEOZneOGnddeE2970SYibTskqiY1WAXuNrdp56qvrtjoVTr8AGpK8pVdJ+e7rS60uK50N00HacO+PK7w+dVYrzh8ntFDbnKFCWe46K9/mZ2Oqqm/FGva79OMtXR/CnXCsx/Go7bSmrbHRDjOdNEtzpaG3/Wnb19W1r9ci8To1ZNoH7rqVnsqpsWdYxY8/cc2230wvASdw1C5nGuoxNvWozzZ9zwTRPhtEQ6aN8RP5MKGFq7dr2WmXtWbTMcqAaBm6KXBOc46qzsNCqrFIfdyoLhsnWmtLtPKja/R4vQnX7zLvdA4lBg/6bholfu5ZEgzQRoiHiPt9VrHEQGIkktdSE6rN10I6L1TLbDt1TdOFJR3TUkuJUVFBA6umnR5fVENTNX9S6ZpzeZLPnKVv6gjwSmcPrb5Nc29bhnNCauQaU9uXtUmJpNyU1pecTGPVvmfy2ma5sUM+C9K+YKKNrdcKPSoPZ/cfhZXcSmz/DzxFvCX9PPWVPFZrzBl7bXO+LQGPmqt+LV7Z47VvsLJXW1PRdPDcGkIAgVvepOsfabq0TcN8AKMWbe3X9nJyRd/aI/ODVIdsnR5Uj4u6ju1R4uv0muZwE3mjbpPburb2CwD1CzKa/te2Kiu9OdOwq+h6aqd8J82ImMVvduu814eG+3j0rODyP+UHyUl0jTNy333ZT5Vt4wMd6yCiN4RLozXNmf72WnxHZbdyVqsvmdOyrot+Ns1Edm3X8qh9XV8912yeSc7CzyfftwQpk2/EmmS8uDlOlYBFNRPrcf9YXc4WwfdVu0h9HHs22PSN6Y3VQivdPgBNU3hlQ7IUiivhah4AXLRT18uAh9c7zFcD6vUAmm1ck9PBI589cpKOYwZSrijkJpHOvbQA+QCkQ9ecyxNARdKsIzUfv0LGfNkz6o7BTsOYs/pnmUGpip+5eZbh2vV2V+2aNt8B8Z3MtlkSW1vs/DbeTqIjQ7gpy9El5mweX+ufD9dldC/L15/3t6zs7jqtk8+tgbcknujHuW/4hm84Ovb93//9R8eICKWUo+OvB15++WUAwDve8Q4AwG/91m/h05/+NN7//ve3a/b7Pb7ma74Gv/qrv3rWafvQhz6E7/u+73v9CxwIBAKBQCDwBkT4eYFAIBAIBAI3iyeitdZan+j1tBw2ZsZ3fud34k/+yT+Jr/iKrwAAfPrTnwYAPPfcc6trn3vuuXbuFL7ne74HL7/8cnt94hOfeP0KHggEAoHAGxwM3BDdIf5sfFMIPy8QCAQCgbcKbka+JIJCPB5PtHPO48d//MfxTd/0Tdjv96vj0zThp3/6p/Et3/Itr1nhzuHv/t2/i//5P/8n/vN//s9H52izhVVCh593+Pf7/VFdANmyS45Gd3Se3PZUrD/LAX8xNtu23ZZXTqDaKXRsW4OVvmb32/m2rVZpfi19/550a3HuhRJaqyuH2xrf6IhMul9Z73PUhKMdvglrOsip/binaBUk5a4jQKuw55u0Gatt/bSQhrEnCfe96DmlGFo9Wps0qsCxFdge8vRS2+pu5bAw4VbG1RZ6/P/Ze/Nwy46yXPz9qtbe53RnImEeQxDJgES4RFDkkvggBEUZxItALmAIEYgoIYT8VC6D3gAqQwARgkwCAnIZAsiFQBAIhAvyQMIVFZmCNwHDEMjU6T5n71X1/f6o6ataa58+p9Pdp9P9vc9zeu+9hqqvvpq+tbret5qlyyNtpdAWRF3KZc0s7hXLujNNglG2e5dpQtZbTCItE4++IF/ab6p7Ft9rQ4e2V5AUDHGstl2267hc3FMpYqKgIG6XTjxcnk4cKdkyH9HZGrpiuB6g7NgFHVYyOaJPiQDuCbDIFE/EbeBDO6rpi2wCxZnyEvYRpxEKzSbek6iyhdo5buKAHrvG+nYG0DuDeW/h5yFh6g3IEThySrynUl2xjaf3H3L88pleEKgJbMNvjmMNeQQqeR+p5Yjf5wx2gOlCn3TSdiPKnMqPQh/gRGNKZWwoxFVZ44ROxKEpiLEnUZ3TGDXqskijGIyTotgQzStdy0wwxGDjy/XpT1Z99K2kBFWUjDzejlAdWptGHbDGOYViD+CAifPaOShngDWpSSMJie8Lrknjhoi9FlH4Mj1xUTrJNiPon0bQscZiEskJW+vpSMxrLOmli/w0cowpxs+WwD7OJW25ZPjng4xCloxIdqLEvJTi3nIqx6GcZGjGIMbnZENVJl5wr6DKpfsGcZiM6ePvKiyIc0l1rImbeFEssQZ2Rn3L8impnhPlUYZIY212LDZECe9ZlteUOIKTrEPKm+ubyScnCgfJ+Hed5VqETLH2lNsae4A7ArsYT4r5Xpqwsyx5pL6q+Cad4xQzyYbNJTCJNOlR44lGlsoQXG+xMpuEOM+HC+ZzC7faASsGZmYq+RVmyvRj9oCPtvTOgAjwSQalqWdKcZ6gtwKAnTGMS0Vi0LTYzxbgCYOXPDBhwAZDTKSxkhxHkvRKkmhq/WTkAwri/ekc8jPN2u1jJy998qDB5XmICVQ5oslb3Jcp8lwnl07m8aCi8TbPJI19o+8NdrEPKPYvbHhDiFNPPTVTDSRuuOEGnHrqqbvFqLXwB3/wB/jwhz+MT3/607jTne6Uj9/udrcDgMH/nv7oRz8a/C+rQqFQKBSKxeBN+FPsG9A4T6FQKBSK/RebEeNpnLc+bPjl3KL/ofze976Hww47bLcYtSjfZz7zmfjABz6AT33qUzjqqKOq80cddRRud7vb4aKLLsrHZrMZLr74YjzgAQ/YY3YpFAqFQqFQ7C/QOE+hUCgUCoVi72PdtNb73Oc+ICIQER784Aej68qtzjl897vfxcMe9rA9YiQA/P7v/z7e9a534UMf+hAOOeSQ/D+nhx12GLZs2QIiwplnnomXvOQl+Nmf/Vn87M/+LF7ykpdg69ateMITnrDH7FIoFAqFYn/CZm15r/+rurnQOE+hUCgUigMDmxHnKXaOdb+cSzt5ffWrX8XJJ5+Mgw8+OJ+bTqe4613visc85jG73cCE17/+9QCAk046qTr+1re+Fb/7u78LADjnnHOwY8cOnHHGGbjmmmtw//vfH5/4xCdwyCGHbDg/jjoWaLeBBrLmB6ftqtfQSwqJIWpcca1t0WoeSU0HqTnmqOizJT2FUd0iyoIaRZdpAV9eaJuxRd5dvdU64awdMOzALO1vtpjOGiCtnVE7wHcAdag1sVDOy7KCo8YcU9a/MkKT2ttyb9Zsk3oeI3bnIskyAEGbQ9jBFpX+Wdp6nSHujXoDoxp6TfnTFvNVnsleU9dLZZvcfj6fb8QPuJSr1aPLbdDwuFNa7RRxPPuyWWdbNHOi/kbH0TYO+ncuaEDkYsQ+RR1K3dJ4mtQJLSCHgXRD0dyJ3w1VGiCcdCNI/G40NiC2c0/6jMwMTDx4bsF9yFfqrIQxIZVnpAxRPyRXiRX3LNCWkRotLOoy13tbX0zwzmCGDn1vwPPQQGkWxwkC2Idrkv6K782g/Ckv9qJiLYNTPTKK1iMHPZI01hnHMH3wgZmHPklibGIDIGrvVfqXaUxrtOaSXiILnczc1mM9cdScq0SDZB9u6julUTRWNhCEjFxLi/SpUttMbaW1Y0wncZ2oxguFYg/jQIvzgOG8BqD02bX6XgqaUGSl2q6d57N0qRzO27Sre6l0fm5PctZzYjkvxnmn0gcbi11FEVO+o9fGk5Xu3NgVzZiXfBf0vBjMRfsKqOPlSp7LxXkkxnltPJljsqxdG2KKHJus5U9icFwJmusqXSLH6xy3jsT9a5S5junEjQ2PS2qcyRh5zP9VnNrmjeHxlDcFBbhQvhQ3Zn3q0mYr4b1Fc6iIp9gCfhLbXRfSTM2TkqYdAG8QYs3crsRDResfGVula02c51PfknO9YbApeZFF1ogl8bwAxN8u3uepxBYGQZc3+UrojjFivGMw0C+r2gUBsCJeiYXN7XYsvvVU+yLZGrWASVQNAMAR3NyAuUNPgI/PF9wbYMWGeK+nSiObwEFrz4X4z81LPmQ4x1JVPC3Hi1TEqBFoeoaZIz4HUdAJTnan/tgxzMTlGI9EW2MPeGfy8ws7ym0jXlLcZGPMKcUh00kTY3vT2J5cP6ajuWjMSn2SW4fH9IhD+4hjRh5rKepU5wvL3MHZRq6eO3KGchW67AtyfNA4TyGw7pdzL3zhC+Gcw5FHHomTTz4Zt7/97fekXQPwOrb3ICK86EUvwote9KI9b5BCoVAoFPsr1v8O8eadpyJD4zyFQqFQKA4ANP95oNh3sCHNOWstnv70p2NlZWVP2aNQKBQKhUKh2ARonKdQKBQKhUKxOVj3yrmEe93rXrj88ssHQr37Hagsma+W16Y1tc2K2GqZbksdYIrLqFFoWQjLsXOS3CzNtxzogS5SOQX9ixuqLQnKI5tomOG4jLm5LtPH4i2JdpfKU9G/In2MSvrSP7KMkvJW0TfkUl1GXJrM4C4sjc+0Qo9M68y0ukSh6wlwgcpKfaS4imXjI7rVlW2ceAzC9kApEPQLuZI6lTPZkpauCz/L6s9MxDGag/hOHOvcyIZT7ss0B8Rl5Hl5OCpaSUW39hhSThLNE3WdkEemYqe886dYri+3QM+0VRPsZuHssJ18tMcyMAmZkQHgGUxh+3aWS/zTsnDPo8vbQYUCyYkm3JtAT0hpmEjbjtcb60M7sqbUlQ3L0BOtEmIb9txfUhImpJG+O0fgVQO2yDTR5Hc29bL27O8qQXFMLHffKUTbC/2CMoMz+4kBJMoqA/1qB6wGZySKA9tIa+jF/704E+jxLNtVKIAXdGy2DETqSuySwV/JhmbMI1f+KrZMogW0y/wlT8dTNXZVn80x9hTaIEVK16DtUqGbiPuZCexNuF8O44vABGKG5yFLQvaTUaoplb/qfGvXoN1QzLdJLtE1NkCD3W1IeSsOSBwocR6bSMMSIc/worVSKDcWmigN70kUqIZOtlZeabxlGZOJeYDEnJ2ypZQuIcx5Ii1Oc+AGxxNJfx0rV7pIxkEpn0QLy2FDQ3mUaVOM8ZJMQit14icITywtg21sbBUmkwkxSA5jTYzfvLi+knlh4as2seSQBWPjyBguh/mxuWHhXMJrnJOfgzmzprZWl+SAQiSXYnJDgboa428TKZ6J0sodF1qr5SBbESuSmQFXYnnyKDG6tNUIaQhZduLybBBlMFKcnPonMcPDgDqfA2WPOPUnWY2mXaR6bGVXAATZFReoimnzG3IhlmAZ7zTxX4nZS+WGeDTK23hZ4FK8kCZVz2TJAYMu6QnsAIIJshwo8TDNDWgeKa2u7kNMkXrqCHAEnzueBRkf6Z8Ivk5xdsfwk/Cc5btSRmk79UGKKMkJ5ee9GHqBkOvLmEhlTxRaT+A++ZeiVEt9D1P0YYrRBQ09jSNpXKl8Feso1337MLgoholttq1jynWb/mo6vPySn8NQrg/xrhgoqXwdytOgerZbx6Lx3Q7GZmkLa2y5M2x4t9YXv/jFOPvss/GRj3wEV111Fa6//vrqT6FQKBQKhUJx84TGeQqFQqFQKBR7HxteOZd26nrEIx6R/7cBQHgLTQTn3KJbFQqFQqFQKBT7MDTOUygUCoVCodj72PDLuU9/+tN7wo59DmzEjqctbaDdfSWdBDDYjSeCnNgtaEBrQj6ermEbqQBpCXSzE1G+Ra6g9WENLac85LJ8sYSWRT4+0gQkJa1adr0zMAJNwYmdfGT+kMt2Y0ZxebjvIn0hppPs4q7e/ZR9rAYXKK3VzpAGICv8ICkEYol/PpYMSkv1G7ph3o01LYm3omoJSPQzubtRpsaO0CvyEum0m5CkqLS+orxav24bkiZDCM5IbUmco7gbVFpyT20+frzpZbpmWmZelSPWl2X4SPmrzLKcqZDURWqoDbtCwQA8F44yDOrKOnKeU6CsRttgIp1h4sOydrmD5zzQMrOvY/mN9ZECATguO416R4X2k5bwU6IHRCpG2l3JMLquNHrfG/CU4XuCgaDryN25FiHtgCrrv915d3BPuJA9Cl2XueyALNtMpEf4ngBY8MzAzsI5M08UCY47lQnfzynTTrItqQ+Bcvujzou2G6iziZIg72WiuCsvQJ5hvOj/PrTF0FQkP6Qtczmc6fpNPvkHC/rMesFll1eWfWhgh6DXJi4vh/HKM+V+nem5La2p+ZnbHBL1QdxTUTJKnQ5oLYKqshk7tjJvDs1CsW/gQInz8i6A7XwLLB4vRn9TM2Y1SP0/jx91n26lFvKYH2OGKt5JU38aT6RNkeLPkaZIbXJmZCzJ80sz9+ebgn3ki50VhXCs3ImmyGG310Qp9ESjAws5wDIBfYzz5qXMMi7Kh6h8YYT5v6JIphsJeV7l1mA5hKd5N0l1yPhZhFqUP0caB5fLKyrwAhT674ILNno85ccAKMqQyOPp3tQGZfzKAHUcqyac8Ibz3JbprlG6hLsoPyJ1SWLb8Kmd5F3SGxtjf2PZ71L8HGmBZLiO8VKVWQ6SHVn+hYC5Cf1CtM9wMWeZHJ74GHui3k20J8CY4gtDYB/iGhbFS0WU/Xd0t8/8LCCvEXUQ42J5jFNVSF9xeHJJVFUA+XkIfXneSpIjQPSfj3UYKbswkf7rPAzC4EEGIOvBU2EWGzhHgb5qAW9jHGuKkUFWKMWaCM9hLviQuxJrMpd4i32kDifbXWknaOM96bfGp/Ka0fYfYz1aNI6nnXSjo5g4tk+qduuVeY4+08m4XoTX6VlisX3xU8gQZVZ0pau04P49hc2K8zS23Ck2/HLuxBNP3BN2KBQKhUKhUCg2GRrnKRQKhUKhUOx9bPjlHABce+21ePOb34yvf/3rICIcd9xxeMpTnoLDDjtsd9unUCgUCoVir2JzhIIV+w40zlMoFAqFYv+Fxnn7Jja8IcSXv/xl/MzP/AzOO+88/PSnP8XVV1+NV77ylfiZn/kZXHrppXvCRoVCoVAoFArFXoDGeQqFQqFQKBR7HxteOffsZz8bj3jEI/DGN74RXRdu7/seT33qU3HmmWfis5/97G43clMg9OYq2QATBIAILLYKp1p3SEgRJE0AtpHjLnU9BjpFnLXEgp4DAl9/zD4hJiL1koKkR8iHkmZEMkfoTmSNDZu2/6ZQHi80QRIXfoQHz01Zqy3jYzJZ/yxdmswhDtuwG8p2ECNrvPmOsy5d8CGCrkFfrpUaeXI7beYmr1xgyAMDrY9KIyTpbBhE7ZZiR94intq0otYLoZIQgBHno49Y5jXmT/k7atxVEPVX6fwlvZB0g+Gs75A1axrbZZqpvUvdBo56bewo6MaM2AIb2q2JeiTWhi3b+1lyQLHHTh1s5wEG+pmFn9mQT28AwzCdx2Sph7UePjphvtKF79mnpbGR5Zyfd1S0+Gzop0kLgk3ZvJvTqEehX5JlTLrgSCKGcwaziQV3YfVQ0ZwTOiltvSzSUBjT0BhoDnJpr7mPkhClGabDUS+D5gaUtOZcrK94X6X1MTdFc0Omgdgcou/JAOzDhd5YeGdhhMaa1N/ztsg1JZ0gIGjf8ZRDWxtovXH1Vfa7Mj4MXQYUbZbR/+lr3FVuouyr9vqcr9BPKuNJ0iMRuiMU2tFAi0QWK2XVCotIeZo0vCaNwcYHVZqbpc2RfKA4IHGgxXl1nNIMRGN9MPfZ4Vguj1c/xzSGKcU+XOtlyb7vqYxXaf5OWlBisKyST/FL24WlpqyYW7Ku5aLxhlE0UCHGySotcXOlDxV153JCpezZLAc4RA0rERPmMiPoDcMA3oi4h8I/nCaPKqaOhTKo9Fw5B3gljax3muLONjYX1lM7pUmMjuHJz019rEdfatF52bBE2yh6hAjtptHIpdgOSR5nBjoDjoKryRdkhN2WwZOgBwwIrd8c29aGcmwf7KnRey3PJqbVN27sJJPyijp0AIwFvDG5Lh2ZqBNogD7oxVUxkwW486AJw6QYL6bH3oT7CeC4TiU8C0UHRt3cMRmzFMenPstjcV7lECBp5uZ+nsWrMWxQub+J5z8nYvlU19zWeehDoHh9jodDftYGTWHbAc7anCx7As8ZbClqK8c0Y39Iz7GmD+mZnmBXAbdK8BMDdAyfY/LoyxR3yT6Q+xxX7Z9STB+fP7IOckK8lpvDOW5Mz66yr4rYbtAnPYE8Z9/n58Z2/GgaaPVst56+nOaRpHkng9QcZ6YENiHY0zhvn8WGX859+ctfrgI2AOi6Dueccw5OOOGE3WqcQqFQKBQKhWLvQeM8hUKhUCgUir2PDdNaDz30UFxxxRWD41deeSUOOeSQ3WKUQqFQKBSKzQEDecfWvfmn2DegcZ5CoVAoFPsvNi3O01hvp9jwyrnf+Z3fwWmnnYaXv/zleMADHgAiwiWXXILnPve5ePzjH78nbNwcjK30zEtxeWR97QKkpbUgcDfeIuUK9bykf2fLpKVJaYk/I2y7zWI5bqZkNWaZ8pmWsRsXNpTOy66Zh0v8q8wxTvFK58Ze/TIKlcRwfj3McUkyWwY6Dlu1x227vTegPmwdzi5s1Z6SXsD6G+QpqWsDU4UPE3W13uZdVpCgdCQY0S6IKvqC9B+tMTDl+mjqa7B0nWJ+eZt7Qa+U6crV0hDNIOUvljLnldYVFSWfDZQbG5eaN3kl2i9RpCkAmU5NhsGOc3p24jGd9tiyNAcRY0c3wQqF/dx9pOnYqcPy0hxLXQ8XnXIjgNXeAL2tadeI/YQAQqQqiC3J29Xakq7BsQ0SAcbE5f4ATFz6Tx0HKoekGmXfI/QN4Qu5pf0uY41Ji6sKDMawI5g55X7StlvyVFEhyEeab/INy8RDHXcTl6t/RoBfNYXqISjRgX4e1vhzpGamPmR6wPcEWATqgB0pY2p0TTvMY8oalJdF/iHZdlP5OI4tY8v35TGuj5EH2APMlMfi1NYScp9MzhyrP1mmNG+kNmUgpBEwSHvDFCiFYjfhwInzOI+JCZzHgCbOa/u26KDEw2Oj98ghL85HmR43Qg+kKIWSaKGZUskoNE0pT5CMoTDWj1HyFo4jUsZkzPaqnIuvycdTGJpiI4R5I9NyTbnZewIR4HwYe8mVtCuJkiYegi9zWZEMWVAHTTiX5zIZh6Z4bZTLKK5pLsGC72OSJPmyNj7m+nwdtC2AbDNiTh9pSlW6NKhnn6mtFAP6NK8n6ZIgtVNivEQ9JQKIfJizEWIoYzjKYYQ6TVIUaT4Nf6iu8d7ARxkKZuR4MhUtUVthy6TJDHiYQkXPzz8RMXYl4zOV13Y+0lpj3gzwJOZDBO7jHJ38np+HUPvMIz/8EHb+LJLbZ06jiS1lTJbySGORiC3Il5h/IPFDBDgO/ayR87DWYzJx6KwDM2Ee/TgD0M8JbMyw6xjAd5FSLlxi+iBjYmeAnxF8Z3LszRxj8VbTCABMrJ/YpjjJOJnYpmK7guc6PM0x1Fi/CWlmemvKtqLVDvsr+yh54im33Z2F8Av7s7BvcEGsd1oPfZRaQxUHKjb8cu7lL385iAhPetKT0PdBBGwymeAZz3gG/vzP/3y3G6hQKBQKhWIvYo0XxXs8X8WmQ+M8hUKhUCj2c2jMtU9iwy/nptMpXv3qV+OlL30pvvOd74CZcfe73x1bt27dE/YpFAqFQqFQKPYSNM5TKBQKhUKh2PvY8Mu5hK1bt+Je97rX7rRFoVAoFArFpoMwuivuHgYv5NwpNgMa5ykUCoVCsR+CNc7bV7Hhl3M33ngj/vzP/xz/+I//iB/96Efw3lfnL7/88t1m3KZC8L7LVtWFdC+3VG63la+2W87aBDvNpmhaIfDvWSQ0oKEnarqnrFuUdUtG9NWyppjUAQEC5z9qH6XspJZWztxwTaiv5QwGeeX8RnTnsoyL0A/IW7JTsClonEX0QYOOe4KfRHMbbY6s1ye1Q4SvKs0BJhA4a72QA8w8JGjmQe8k6blU9cZoNOnENbnMUe9F6JNkrbN4v7Q7+yPl19qf7M7O5qgZsvZq5Nx0Rttk0WGQ9lf+kmYa5C3ZWba1rIcR9D580r4xVHS+GiGU6aTHwUursOQxMT5PDKsx367zWJ70OGi6irkPYmXz3mKW2gOj0ndjb8Dko9CoaJRJgwaxf7TtUOhHSn1HSz5ozlkPtjZo5iW3GA5+SEUSefF6pCIGehVr3LAozZS3B8gRyBGM0EtEMivptaQ6cdFnQi8nTZBBIyRosSxP57BCf2NlR5fTlm3Xx5mDXdG7yeNh1Awiv6CNpn40djLZXrXJMBYShI6JuDdrkhjRTaTuSNRfWagRNGJfClqynhwQtXVE2jEz4qIJVdqdSC6Vp7E9jbVyWB3TnExNTXe8V+wtHDBxXkTqg9WmJASEgbjRhpJxkTy3DnpQNTaLOT5pUeXuzyVrEplyH8cxW+4Z03/L+kxNnJRtGEOjqZnLnwwT6Q20lXY2+cnrTYnxcjztQ7DoPcM5qmJmcnH8s/FPjPNS54vjvDKQukrxX5oLRXzMZiTmlWN1WzZZ3U3dy3QHsVbMq2ojKWbdmaYcmvhtDbTXDXRR0dgQ7QjPGwwywcfxcKW3xo5AsdH6OOETEcgyjPXoYruedA7Lkx4T62BNGDecj/dFnyWtufS7dwYzZzGbd3BswEwlnqSgSZyn3ahJl8siYyX57NO0ZakdS0DQozMeZCk3APYEsgj6aTFmkPH7wNm+ZNZq0o7fVNpaK4/Xpj3Qk0vtTbZfMWbkNkgh3mNbdJGTlvLydI7lLsgU7JgHoT3nDHrqwv0u/gkfsiW4+LzjhX4wOYD68OzEc4K3JpbLD8ad/JyXxrGk+Rx12Mn4ojc3BmLARM3kSpy3+CuPGZXPhN8q/zafY5Aa4+nalPZat5I0rLlv0U1jbUdxQGPDL+ee+tSn4uKLL8YTn/hE3P72t8/ioQqFQqFQKBSKmzc0zlMoFAqFQqHY+9jwy7mPfexj+N//+3/jl3/5l/eEPQqFQqFQKDYT4n97FQceNM5TKBQKhWI/h8Z5+yQ2/HLu8MMPxxFHHLEnbNk3MaA5YEgpjEuQ8xJlapbeSsi1yg1dguNW0ul3ReNqk/BhqTqJ5fqZ7uYlrXCkSJKaFSkG8AD1YWlwofEWGlembLa0srGyRupGWrIvGZmVDYIqm2ipmeJJXFE905beeXlwqgtJMTWcl+TnpeieCiUvLZNngA2BfOCMUU8w85jVTKSZqACJvpboeon2KpfPx7Ik+hmbYgfb6CYX0iRfqAq5fDGbRBesXOpr/3KkIVBzvGXZoK1nUbcDOnX640QxqTHYJlzQCLgnsDXwiQ4Z257vbaDhpDr2HkTAku2xtZujMx4zFyrMOQPnDIgYE+uw3PUwkVJq45bv8ATq48J4F2kSjgEYsAfYmUyzTDTORN/MtOlou/xkpkyzIAKs8TCW0duwlD4jtjM2jEznjXbBcEUBGaWTZH+P02Sy76IdEH24pBcqg2N/pT60x1ye1I9i+5BUU0kBaUHE6KzD1ukcExsS7J3Bqg1b1CeaaoKPFKOUbqIblYKM8QtigXMnkQYg96PczlieRKHQto5L45NFoYWnquBI8WAsphTI5EQ/AMePPOZwGGMSlUS0I1qUfkwvUcyq6m7Hw7aPobhKodibONDivHZMrChR8pyc89v+vibXKZ4nLnTWFOvFeXSMCpXHGRFEJQo9oRkbuMRSJGKQgQ07w4CaF+2mMoClsUzGbaNpr0njKr4ItEoPPwFoyYDEYJnmN46USznXsMUgxpQ0tCSBYRyK/Es7HVnKdD3KcassU/SriM1zBtUcFiRSxspcyRXk7zx+fOy+5rsEVY1yjSbIFKirCM8H+VkDaCi68bsnwKUYIpKrpQ9inMEdw3ceQNzVuSNY47F1MsOy7WGIC32VDTxT/kt0V6DLMibeE7wzIhZq/M6Aj/EfPIUYc26CrY1sDMf6bWNoisFykKoQ9WDSpB9iOvYks63TkLEUJwN5XXUJpFgOZYwR7TK1UYqyRWOSHOk5INVdLrsnkOMc9yRfdNZjuetx8HS1smO7mYai90HWR/YVJsBNwv3eUn6+8tP4rCL7nchfUvZD7BOfDXI/Qxz/RBuMskzM8flV9tf0xRBY1kQT1ydar/RTTn8sfMxxYtPWRm6k2twaeYxsM8XaQVzz/NxON4oDF2PT95r4n//zf+IFL3gBtm/fvifsUSgUCoVCsYkILyVpr/8p9g1onKdQKBQKxf6LpNW91+M8fQO5U2x45dwrXvEKfOc738Ftb3tb3PWud8VkMqnOX3rppbvNOIVCoVAoFArF3oPGeQqFQqFQKBR7Hxt+OfeoRz1qD5ihUCgUCoVin8BaFA7Ffg+N8xQKhUKh2M+hcd4+iQ2/nHvhC1+4ruve/e534xGPeAQOOuigDRu1T4FpVExosLW15LoDNadd/g3Sjx8GgWQsNTic4Lq3NjFX28QDkW8ftdDSctXK4EbvAkDZ0t4lEREI7axwgA1nfZF2m3bOpP2hiUmfaay81XUQWkuJtz+ie8KG4btwIvOxndA9saE8qVxhK/SgLQHf6FFEW8gHnTkTZRhs0pyzyDpbWY5iHrTpTB/yk75I5c26LPmmaHssg2w3clvxpG+S7E96NLmOZZUMdA3WoIOleqaou9a0mXyN0G2oNOeatJPOXdbCyOU0SSIitCcG2FHQvUj6MI7g4/1T4+AtoTNJWCLklXRIPBcduGQXknZgT7kdwBl49uCsPRLbh0PQUASCJgooaJKltFJjbspnjUdnPYz1oRxJgyTamHVoqGxTT8lPY9UwVldCQyW3/9wuYn0l/QyhG1cl6ShqJQbduWwIMRD7dKVm4ZNGCsXBQVR5LNOkczh4uoqpCSI/s2mHG6yvtIuSvWwBL0URCPBxcY2P/ZCjVuRAR21EmqPS3wFKHUHouhgDzjp/4rrky5h3uBZ5LONUz9l4DJH0ElHqh/0I1TL3v7I0f6QZVddnvUNKCSTbY12sh825UNROodj9OKDiPDHult+otaCA8XFD3JLlg9bqpmL+lrq4A52kpDcF5PG6JBDHSqp1w7IuHBDnrQUDy8h8wlUhFl9b5i4qMltrxbeL0PocUYfKAn7CUWcuxhqu3JL05nKc1MwZVXwV44Ucx8V5kpyY+2yYMyhrFVPWOE7arVkni0TebX35WB6mWpuqirNinY89J4xhneN9rmbiUv40RbVzqifAF93CfCrOjyzjZEcwfdTRy7EzlY9UH5bBSwQX7Z13PmvJdcajIx/iLwDGM2beZs25PgYXzht4H2M/Z+DnBoP5PxaWvegbPcHEOLPV+0v1BktAh6IrBmRtMTKcNa4BlF2pU/OkWuNxvS8y1lRoaMpT1ZmIUShp6DWac6ltIoUPyUEORVc7+ojiMyR7AhFjGvWeDTH6WEe1pnPbP4LOnJsA3JX4yk/KX+6Lqb48g0T74ioQRa3/jGJfvjY+gyTbg5Yg5bJXTdoIX0s/Sl/LcTHfx0Xzc71oY2Y09VyNgXX5qkPi+vDYwKotrBhgw5pz68XTnvY0/PCHP9xTySsUCoVCodgjaJ+699af4uYEjfMUCoVCobg5QuO8fRV77OUcj20JqFAoFAqFQqG42UPjPIVCoVAoFIrdhw3TWg8YpHWmee0+MFiGL2hNaSl7pgcsokKMvDTOVDnDoEjzI6qXzg7on23eVWKFBlFtQy62bc5LaNPyXsNo6VqQNNCRfBeG5WnJeypXs8w408DkS/SWdiuNTEuTTaCoeWFj3rE70Vq7eMJyoLxGWmCiOKRrMzzBuEBnBQC7GvIzNtBX/bwYZOaRAuvikvnKP3HpdLM8OdNdmcL1bV1RsSdsS18XPdEaeZGfJIVCIi3Hb9sNMGBLVPZ6qleAt0vEU/1LqkNpTDGNSBFwVC3JZ28w7y16bzLNQebre0KPDjumHZa7LrfdTNH2FJa4gzNlFZbAbIKf5iYfp57KNQj9oKr37EcGEWd67ZLtwUyw1mNuORTJy3s4+yd3cUJNy2Zqlruv7wG2osqj/j5GDw+0BdGuE+WnC7RWau9jArxoi9k34dMaxtZujq1d6AwrroOdOvhJoJMbK7rkBPAdcvvKVAsAfsrgCYc+mMaVtr0ucgklagMVioaL/d1wKJuk/Cd6ixhDizOFTxt6UbYl9ttMQqio+IHmw6bpECnL1K5bqjJauoPos4SakssEThIFC/yxadiM9y76rkexNxFpZZLmN6Alcn1t/DqW1JrU1hALlHGS0rwPBhkxjo3dmF6CyklnLJMUT3hgbFChFM9WY7AYv8b632BAy6FLlBSJc6uMNdv7m9+UqGsQ4ybHeJUozC3xXPJNoLVy5cPs6xjjtTIv5MKfmSPTWs28xM1skgxDNK0TsaQBfEfwSWoizX8GZZ4R7DVGlFHxI5WY4m8R762JNcb9nbbBWtAi38PS7wQhXxKvjzIaiHNrkAYJci4yzsh5R9/5KcBkwF1w4nzusdpbrLqu0FqjsTNvMXcWc2/hvME8Uit7F2JD7yjM7Z7AfTgX6rXYZwStNdWvlK0p/i2UZBBgYp2ZKF0SMgbYhtgzlIuDBExVB1zKzG083jg5P/eIRr8gpku3yP4hnymLlEuJf3KetsSzWV7FEKhnmD7GyT0D8xiTO4PeRaox+UhvDc5ZmvS4sUvPgc0ziQXcNPz5aZEuYRviP+5CrBeo3qVhpmeAAXKTC2XipGqTyhg/Scq5VGNe038kNXUsrszxaXMi0oJbyZXhWLWgI7Z1XD+Ej9+zAINn4b0Njbn2SeyxlXMKhUKhUCgUCoVCoVAoFAqFYm3oyzmFQqFQKBQKhUKhUCgUCoVik6C01kWIS4oB1DSmUdoBMmWsXaacz8vv1VJoxGXEXO1sSMYDzhZKlKBA1GlTk9b4GtVEk+Vm+WzaOYfb3UGjrVxWKpc8qt9Dp3BcFp2oDmXXsdaoOr3RpeIy3Uxl4LzzUrYv7qwFsVsrAcCcxjc6jH4lTkv3w2EzA4gZfhJ3LurL8mozB+w8LKP3Eywu1xiEn0i0q8wysRypFFzdknZrgqBxpB3a8q6X7fLvkTzbZdPtDpOZJcMolMFUPJF+9qNHoBumNscAJ0ppzrtcCwBwBOcMVvoJVvo5ejZ5xyg3N/AzC3aMlekEK5MenXXFXuLMQuS44xgQbY3L4QPFIdowD3RlAHCSApM+E03ABLrDJOa11AXuy6SbYtV4sDEYLG1PlMlMEU90hpYOgbJbr2AOVVu0So7KgnGDm/SYCg1AJuEjHYc6D9N5+GpL4fp69nXCieIyNQ6HdGHr4tlShx8tz3HD8hL8koGTVTop1J80puSdkjvAd5x3jR3SnIotg02t0jGmiqIcKj/Wuy000ERlynRbU7IIhi6gGGH8fOVrj7BznJUcYOQ6LTfVbq7zasfr4el6N7oFdu5tjM1jCsX+hrQj9tjOfc14LcerrADS9NGxDU8z0uCb8koxVwxE2FAVG+RJmuoxtJUUydOJvG/A1ypFIjlgNuYNdvccobMCJZ4M5cGoL0rCGJ/bZPrCt0wIu42nGC8HYHF8NzycklMsghH/xzgqxXh2HiRLMpvTIsuJeBO+sxUUvkSr9QjxJXEpe94BlGOcUwfI1fTe0tdEzDWgqkbbZBNYLwq1degHpJ2BCYISWGymdA0QYyrK1NHKhjQlG2TJGB9jL98brM4m2GYYzpsQuyVaa28xcxa9s0WuBIDnICHhnQlSEs2usXnnUtfEeb62jcXcnGNrw7DW511JpxOHqXWZRs1McDZJsqD0Ny5tSjqxek5pvg8orcCgY63FgJRpU3NN7ipxh2EkKmqqrzkquq9hKlIjqwbzeYeZCw19anocPAlx3sFLq7h+eRluS4d+C8HMUWjeJtJat0Rq66TEeGnX4kQ1r/rfgnED4ELDFTuyUi/qd6zpDnzNVbpZmsBzfd3Yp/jOHMffaBS3lP8Fz7clnVSYOOTmcyK2bmNdkQ6N2bY3sVlxnsaWO8UeWzl35JFHYjKZ7KnkFQqFQqFQKBSbBI3zFAqFQqFQKHYfNrxy7sorrwQR4U53uhMA4Etf+hLe9a534bjjjsPv/d7v5ev+5V/+ZfdZqVAoFAqFYu9h4VIYxf4OjfMUCoVCodjPoXHePokNr5x7whOegE9/+tMAgB/84Ad4yEMegi996Uv4kz/5E/zZn/3ZbjdQoVAoFAqFQrF3oHGeQqFQKBQKxd7HhlfO/cu//Avud7/7AQD+1//6X/i5n/s5fP7zn8cnPvEJPP3pT8cLXvCC3W7kpiBtyw4M+dFyu22UayhrKCwgVOfDrWBGSZcE4Z7E1txJO4BkOlxsibcvRtbt4Co9GAalY1LvAsjaUAM7xel8XNzPBkGbI2kSSJ2Wyh4hpkFCC6OFlM2KOmFebsHthQ1R94o6jpoSTRrRvrzFOopuBQCYnvMx44Q2CYJmCfVC5yJJoiX9LlFOKVmwqNqRpC2i3iC3+lyxbIM0ciOg4ZbjrfbVIE9a8xrylHXvGLFaKOq+tDo2lT5N0+6lJkvSzHCEfm6xYz7BjXaKng1WZmEI8nMLWjGABeaTDjumHbbSMD0mQtpqPdzIYFDUPSk6JamOWOrNJU00E+0yDGM9Jp3DchcEabZ2cxhiTDoHsgxvhGbiwGei7VZ+qXUvBjo+UpZGfB/T6si3if5aNFFEOimv2O9s58GOxpPjoNmSdVqYwI7gmdAZh0MnK/nSww86CDcevIT5qoG3JvuXrdAcIUQ9oOhfy0EPpQu2Sj0ndsk/tEDSJdUvgEaPJOvJ5X9Qy/aZpr6Tj1L2QrMSKO1ygFQnnsAeWY8PQBgrUx1IcRspDLSzcSxVio9aLVKDr9WzWZTWngaj1sJTHFA4YOI8Rq0V1s45I/pQWUJKDPPrXnwwpjOU9OZiHAAAMEIUqbp2JE4byWNgTzR6ED/Wp9eE1EgKY2DMy4rfqL9nH47oPYEJ7GVgVgxPc0p1vSlpV1LLjBDXpgkl3ZdCTKqTKfFbjPUshXkJAHVhWGYfy2tRtM9EjE8c445kvqdi/87qZY25oaraOKcMtGpzckPtPYhLB9pmHILxpHO6c53UJu4RbYSjNp/vuOiPpawcYT632I4pVucdDDH6KPzrnIGLunKA7At1v6v0u9IcLnSFTR8vFXKw6d4cJ8QYhTqG6Tymk3DTlskcS7aHB8H2DO+DTUDQyxs8i0g72jGh9RmNVSRK/1vzGQ217wfjREzShNiKJz6MGTkWNlkfsTzTxP7UGcx3dLhx6xSzLRYT8tgy3R5uY4OV+QQ/nlvMeAqQgZkVs7iLunPLDO5ijNfF2MUI/UWJpqw5RkOxD67WFTZ9qNsc18qYN+tNAlnzsXUfp/QbW9o+19ob+3Q4VfQRx5Db/1p9WR5k8QcM284ajw57BRrn7bPY8Mq5+XyOpaUlAMAnP/lJPOIRjwAAHHPMMbjqqqt2r3UKhUKhUCgUir0GjfMUCoVCoVAo9j42/HLunve8J84//3x87nOfw0UXXYSHPexhAID//M//xC1vecvdbqBCoVAoFIq9DN6Ev/0MF154IS655JL8+6//+q9x73vfG094whNwzTXXbKJla0PjPIVCoVAo9nNonLdPYsO01r/4i7/Aox/9aLzsZS/Dk5/8ZPz8z/88AODDH/5wpkHsF2DKdDZecy1yfU/YH3zsnLhGXBCoAjxceiuRtqtHXLYrl6SPswLK8vpmOW/Zzl0sv5ZUiybNygYqlMecRvwMtIx4baJnpKXumWbQruEth/IyduGHQocVlJN0T2y53Isl04RMoSPjAWuivQ2vQdJHYnkzHZKlD+tziFvGp22xsws9AQ5xa/BImUi3RPqeXG1NbZ1FX3FcJg6U5d3kYz229BZhX0W3qT0s/Ns2hjUg/Z0+41L/fMoEmwbtKV6f2gkx8lbv5AE/N1hZneBG4+BBmM9jRc4MzNyAHcPPLea9hetctB0V5SfRMoqtsV2YQvGuQAi0i4mPthdfGMuw1mNqQ17LNtBbp9bBWA9vpB/W575h/snYYQKZJjRGtZTL+6t+B7G+Xlwe25KxvowpI20uw4l66Q28JxhiHGwDrXWLmeGGg5Zw/WHLuLY36Lsu0xBkmqkNZGqLDfQHMuWvQqJzSpdkqlDqXyT6V6RoMAIdfWyCJ2T6Q/BZMg65/RVqP2qaSZOW7P/sCT7eb0yQHfCRypHZJj4mYZp8xiDGjTKWy0GnlGeULqK4WeG5z30u/uIv/gIA8LWvfQ3Pec5zcNZZZ+FTn/oUzjrrLLz1rW/dZAvHcaDEeXl+TXO8afmAzfVpbEqUQjEsr0kLXSu+SwmTGFQMylgo027TYHFImj02Z1GkwNHaplQ2o8R9xFTHTXHMzTFMO0dlO9bB3Robi01T+FimijaLGAtwjD8Z4MIlzOfZiilTJsexjIluF2Nhphj3yTgvxR0u5gfkdpMkNciV+0TRsnSJlH+o5rkmnieTYpyRmtpAKDd676L5k4KNFOcxthz8lp+DkOdXbwHuGDxheAvAArKx+rnBzFPwJQMcYw12BvAUaLWG8zOCsT4/P1CMH7Ncj0GRronfZTskX2zzHeAnsZ1E+4z16LogXwIAS7bHlskcPjaEmbOY9TbmxaFN+0Azr/1EQ7+NgUa+y2eUpq7DdbFSZT9v+1HTlynGOzm95D8hu1NkSAz6JYuV1Qlm3mLJ9LjldBsA4PBuO5btHNOuxw8mh2J1ugyzPSRm5lR82RVaK7pQR2RQSTFlpPKOlTU9qPryjE0OQb7E5dBMXF4HsqN0UjkOS6cv6iepItr+MHa9lF5a0PdyPJjOp/KvRXcfa07VQ7ziQMaGX86ddNJJuPrqq3H99dfj8MMPz8d/7/d+D1u3bt2txikUCoVCodjL2KwgcT97F/nd734Xxx13HADg/e9/P37jN34DL3nJS3DppZfi13/91zfZusXQOE+hUCgUiv0ZmxXn6QvInWHDtFYAYGZ85StfwRve8AbccMMNAIDpdKpBm0KhUCgUCgVCXLR9exDe/uQnP4mHPvShAIAjjjgC119//WaatlNonKdQKBQKhUKxd7HhlXP/7//9PzzsYQ/DFVdcgdXVVTzkIQ/BIYccgr/8y7/EysoKzj///D1hp0KhUCgUCsXNBg984ANx1lln4Zd/+ZfxpS99Ce95z3sAAN/85jdxpzvdaZOtWwyN8xQKhUKhUCj2Pjb8cu5Zz3oWTjjhBPzf//t/K2HgRz/60XjqU5+6W43bTIzpQCBqTlAWRSvHs97XGC0n60SNHQ/aCkm/JG3jzN6ELduTnlPSyRBZryVHRFy0IsIN8buptSNGDRaaHK1UQNn6PKVZBAKqLcyN0B0joVmxAJy0OIogU9Eqi9ocVZopL6JaAiDZnq7N2k1Cc8Qg62NljTKhRxLO17oW0k4IDToAIBfqj3qqdBOkUWw46JIMtEjCn7cAulL+sNV90qSSBow5b+SYKNO6kdp8o20BxHpPujiofTPmp1H7HAHOoO/D1u2eCW4eb+4J1AOwBO8I3ptqi29KOjNj/cgUrTJ2SW8k9CU28fuEYaLmnOl81IIAbOcwMQ5dFOfoyIc/62Bs0B/BmI4dWj/J8jZGVvuvi2tJVu5wTBnLS+qhJf3DReNA1rsQN8o+mLUUEdpu7wwMiubcMs2xuqXD9Ycsw3vCtsky/GrQZsHcgHsK2oiI/Sn1KctZu4UMRw28cJv3BM+Aj20h5z+qTSK/B/GaSm9QnIKp+zWimUknEmjarNAIqfpk0qNLbvME9ibe44MsjEFT3yi6c81YM9oHpT6KmGfk+CrHrM1iAKjc3U3Ha1/7Wpxxxhl43/veh9e//vW44x3vCAD42Mc+ljdZ2BdxoMR5Sde10qgEVY2fBuNQuCbrzu0uyL5uOOSwVh+McVE1gLTaSVW8hlrbap1xQ9bJaue7qFHGSetzJG4Yfi9pyi9Zm3ZnY86CcnEKvrnEg0nHlX3QIqP4tGMcwA7wTCAf9JJz7Bp14dJ8UsEjz3dIMZ7QbSVHQ725OCdx1GirtPJQxvsU48r4b1CXg7lxpA02zaFyHS9wb5oITYxP0zzuCNwBnhlEVGmBBf2xGLemOCn7icBswE78Tn5KWsoU44Q4OTPVfa44JTgpx+smzL8U0yYf0s+awzbEegDAUw+aetipw6RzWVd4YkO850GwFPR5c3PKmmYMRvNsAemAxodZw2ykHNLHOxswRP+orkx65uI3+1j/yU2izWTdufjbzACaGcznFjNn0RmH20+uBQAcYldwx6VrcOulbfj69La4Yvlw3HDdFgCAv7EDzcUzkrQv6UzGeClrz8kYMz3TpnL70PfCNSO+KMNrFSdnXW4SMZrwRXJvFc9JjXSZXRrLUp+TSck+J553xuxsy1oSQdE55tRGkfX11tKg3utY4/lBsbnY8Mu5Sy65BJ///OcxnU6r40ceeSS+//3v7zbDFAqFQqFQKG6uuMtd7oKPfOQjg+PnnXfeJlizfmicp1AoFAqFQrE2/vmf/xnHH3/86LkPfvCDeNSjHrXhNDesOee9h3NucPx73/seDjnkkA0boFAoFAqFYh8Cb9LffoZLL70UX/va1/LvD33oQ3jUox6FP/mTP8FsNttEy9aGxnkKhUKhUOzn0DjvJuPkk0/G5ZdfPjj+/ve/H6eccsoupbnhl3MPechD8KpXvSr/JiJs27YNL3zhC/fp3cc2jLEG1CzXrb6n1b3tfS1FQN4X6Vh5CW3Kl+vryjUYbCM/hrK8mSItK9Aj8upikV5r62Apv1ySTPV9xHGpLteXMjXX5j+ulxM3eVefHLemTzQBL6gVpskn+S0bFbf4bukWyYeJsipsy7t7dwQ/IfgOgQ5pxXWS7kClvqkPW46bOWB6wM7CMnIzA+xq/JtRtbV58Xfcnrxj8MSX7cpFHgvb1giG7S/cWGh2XMoryjJ2D7V1kuw1HKgaRlSjrC9HkeJBYXm3+GNH8L3BrLeY9xbeGXhnCqUlLgn3THBs4GSDHGv7xCDLoIkHljw4/vklhpsy/IThOwZNPbqpQzd1mE57TJZ6dEsOXedgDcNQ+Bs6tGnXCe1Ekz8JG5qIZP+o7g0ZjtZ5ahNxuXy7nJ+Z4COllQStE4RADbDc5BvS8d4EqgcYFozD7Hbcfnod7nzQNbjtITfg0EN3YHLQHJOD5sCSC21W0sdje6JIcyET+qExDGs9rPXoJg5m4kETjjTu4uPKr9I3sZ7bfpzvk5SWWL5QRo4+oDImcrpHpOebCpa0CY40axd9Gm2RdAmKdSFuGfa7MXCqv2ZiUZ7BfoOnPe1p+OY3vwkAuPzyy/G4xz0OW7duxXvf+16cc845m2zdYhwwcd4YFvQ/OYYM+q3AWPxTSWzkC0cyiHIA+R4p57Ag/hzlvueYhSvq2UIalqR3NfNalZdIYxhPLghUaHjf4Drh2zWHv3ZuSOUy5TPNQ4lS6mMcx5Pw5y3gJoCfAH4SqZvxL1E1vcVA2oRckN4wqwS7w8BuN+i2U/6zKzHu60XxTKB/priOJ1y+N/OMnPcrP7RxxCL/tPPjusHFl0bM6ZbzvArDdbtOWVU2BtvZEbg34LkBZgaYEyj+wSFQgdN8meJCls8qVJfRxPg4xXZbPFz6W2b4LSHe4ynDT8t1WA6U1um0x/JkjiXbY8n26EwIiDxCjMkc4k3PI3kvcJesp4WxIAAiDJmR3KYh+m/bB0SsRymudhRlYIKv87Ek3xFjMfmclMYujrH1hByO6LbhiG4bfmbyI/zClu/ivx7yDTzglpfjmFv9CEfcchuOuOU2mENn8Ft8iKloxD4K8Z7pgq/t1GGy1GOy3GO6ZY7Jco9uqYeZOJiJA2yI1wfjhYgf2ca+GOM43yG2xdCPYDnIlljUsdpIPeVnkDXqaJch63Xk+Z1l/oso++1cobhZ4hnPeAYe/OAH46qrrsrH3vOe9+BJT3oS/vZv/3aX0twwrfW8887Dr/zKr+C4447DysoKnvCEJ+Bb3/oWbnWrW+Hd7373LhmhUCgUCoViH8Jmid3tR/jmN7+Je9/73gCA9773vXjQgx6Ed73rXfj85z+Pxz3ucdULsH0JGucpFAqFQrEfI70kVtwkvOAFL8BPfvIT/Oqv/io+97nP4cILL8RTn/pUvOMd78BjHvOYXUpzwy/n7nCHO+CrX/0q3v3ud+PSSy+F9x6nnXYaTjnlFGzZsmWXjFAoFAqFQqHYn8DM8D4safjkJz+J3/iN3wAA3PnOd8bVV1+9maatCY3zFAqFQqFQKHaOV7/61XjiE5+IX/zFX8T3v/99vPvd78YjH/nIXU5vwy/nAGDLli14ylOegqc85Sm7nPE+jwVLxBdu3pLoUmkp68gOVQDqpa0Ul45zuSbtsEqJNhVpCRx3HyQX05aGVMtrG4qY3N4ViLRMLrsrteVp2REelS/GaBntDlWDJbqDHSnDLlkQFM9ClYw7J6WlwEDe5WZsWX1VNpml8QDZsmQ6LfUGik850U0o+9dHuoObotAhxG6P3gSXyk3S0g6tZl7orIlK6G347ieo6BYpvUzF6zyoY1FPi5dqV/Uq3Br8Jeq18VXaAar4kYtf10Jaoi3zSjaKJeN5b6seZQcpuZybEHZr8gTv4m6scrc2SX2Jy++BklbeRctQuS4tqZ84MBNc3JLNMxXOfscwXaA3AMDydJ6pDNZ4LHfzTHUAAt2BBc2gYt94Gja3VNaxJfMsxob1QPpjrWsSbbVlEEXqAntT9S8g9jEDYMJgh7KDWkzDM2HFTTBPnQHAVrOKW05uxA1bljF3NlM7XW/gegPqY/0mahGQ65GIQcaDIq0ViMv9O4LvPbylfE/axW3EFcOdy1Ie8ZNNLLfYMTbs4Esh+UwhySkPx2SRV0ozOIXymJx3v07XpJ/Z0AVjflUocUmk9fBYX9/s/8xsqVSKXcIJJ5yAc889F7/6q7+Kiy++GK9//esBAN/97ndx29vedpOtWxsHRJwHMR8CzZzJQDuBivmA5XeIuVV8ZqxFWxJjTkk77O4e0l0wgeR5tQ2+UprNOFcNdCKvaiykulDy2pFs1oXB+FoSKnNmiiN2YeCL8XCqxxw7x108k299iqEn0SaDXKY05bERcV+i66YpJVEyGSHe61HvGprun9TpccfgaZAsISrxJJEJc0qcK+UcNbqzahNXtHVQ+ZbbnUblc4Eo1MCXCLtwAmWn+jzPidvS7qHRZrbivsaOUfo2NfN6jFsquqeI8bJEDUTdAvC9iZTOmGbHoGmolG65x5blOQ5ammHLZIat3TwUixieCTNnsTKfYHXewfVxR3YXd0GVcWtDOZVxV97nNfki3tQ+JxLV4UHGmnEeCj2aSxsjFx5t2FGJPZKdsb15X55pgPA8U0wleBjYGCDewqziEAMcRD8GAGx3U2zvJwCAlVmH7b0FnAX64vcQx3N4xCKGsR62C+l11sOasAuu9wa9M3CxT/YMeLbhOS/1WQCIMkQcHZd3gAYKpTXGdxXV3AMA5bG4jYfzuIymzQ86x8jvtSjO1HxW95LwE8WdWuPl1RjK9T3p2N6WNdmMOG8/iC0//OEPD4496lGPwsUXX4zHP/7xIKJ8zSMe8YgNp79LL+fe8Y534A1veAMuv/xyfOELX8CRRx6J8847D3e7291u0ptChUKhUCgUiv0Br3rVq3DKKafggx/8IJ73vOfh7ne/OwDgfe97Hx7wgAdssnVrQ+M8hUKhUCgUihpr7cD6lre8BW95y1sAAEQ0urnWzrDhDSFe//rX46yzzsKv/dqv4ZprrsmZHn744fusfopCoVAoFIoNgDfhbz/D8ccfj6997Wu47rrr8MIXvjAff9nLXoa3ve1tm2jZ2tA4T6FQKBSK/RibEePtJ3Ge935df7vyYg7YhZdzf/VXf4U3vvGNeN7znoeuKwvvTjjhBHzta1/bJSMUCoVCoVAoDgQsLy9jMplsthkLoXGeQqFQKBQKxd7Hhmmt3/3ud3Gf+9xncHxpaQk33njjbjFqn4PUPmq0IRIqnTcWN8lk0jbhvtzMhkFGXiv0jZLGluVK52RMTyLcykMtJZms3GZ+REdC7uid7092pIuNvFHQ4xstkdE35EYcb31I8XyUBmChsQCZR9a1khx9+V0kSVyyEPZxykvohGTNOQBuCXDLgFsKugdZc8rG66IOX7LP9PEzac7NhRaJBXzSn5s0/o2ag7AAdUGfa0zXak0VlrV0bAw3Gdbn86mdybzINFJfiP4joGgOCo2O1E2Iy/1JW4uZ4lbjpQ0EzUEKuhL5OuTrjQlbsPuoccFRW4w6hp04TCbB4bNogvOA9za0pYmHnXhsnYazBy+tZt0RQ4yt3RzTWIkehN4bzJ0VGiiiXEJArupDqd5YHBO3rgtSbiL7BcN2na5LPpZ6Pul2rg+wYXAH8ISBiQc6yu3SxP+jcb3BtvkUV88PBgAsmXm+f2p6bJnM0UXtOFqkiSjKknT7CEHnJf1wnoMfYxuv4EcafDW2RvEWOSabMuQmPRKSw8uiOolCh8So9WBMqQj2KJqXnsbtjpdnjaKxcon6qHWWOIwnsZ6T5kp1+yJf7Uls1v9w7if/q5pgjAEtEqoFdvl/Vfc0Dpg4L8UFQmerGtfHwMhxSnWxGKYH83zKR2oKifmXogZutoMJDA56Wq3JaQoaHSe5SreauheUZzD+Vd/FQNvcn+eg7I9FscYudGqR3YjKa3Vd/szCtQuuS1q/XRhyOcUtYt5gE67ztlxPUruVo9ZcH+M9oTnHFPXqxJIHtnHOXfIwNgZMTsQP3oTnAjGP53PS9gUuqPUSufrexgDrQ+3DHH8yBT8k7SyEcngf/MksfGhjTF7VjSxP1A2T2tcpayFwl/1hADIeJsbIAOBdyMwbBpwJ+rmGQROP6ZYQtxy8dRWHLe/ALZZWsLWbwUQnznyH7f0Eq67Dam8xn1v4edScSzq6UnNO2pf8IIoGlP6THw/lY0oOhlGnmebYNapoNP7nGJM4gNHUuQX8UmiHUi886R4aAube4vr5Mn7qQpz3E38dDK0AACbU4+BuJevzTTpXxjapEd5TmNcsV3EeAFjj0dmgORfkAAku3SsHSOGLwRAh+ySh6M3ZOhbmGL/lvr+eAU/aseiEj/Us9eOa5CqNR/FdapFCxI9rDoN7W2dOYj+LufYWXvOa16z72j/8wz/ccPobfjl31FFH4atf/SqOPPLI6vjHPvYxHHfccRs2QKFQKBQKhWJ/wwUXXFD9ns/nuOyyy/C2t70Nf/qnf7pJVu0cGucpFAqFQqFQDHHeeedVv3/84x9j+/btuMUtbgEAuPbaa7F161bc5ja32Tsv55773Ofi93//97GysgJmxpe+9CW8+93vxktf+lK86U1v2rABCoVCoVAoFPsbxjZO+O3f/m3c8573xHve8x6cdtppm2DVzqFxnkKhUCgUCsUQ3/3ud/P3d73rXXjd616HN7/5zTj66KMBAN/4xjdw+umn42lPe9oupb/hl3Onnnoq+r7HOeecg+3bt+MJT3gC7njHO+LVr341Hve4x+2SETcbLFh62i5JHyxdTp9paXC1bTIKbVVQXhkUqGMEkOWyTDouZx6za0hLpdrmuM12TUElsI/0LUlbHSlLtYy3OoiyVB3IS9XJU6AykjieljOn5b5pxbAJy5YzXS5tZy5tNyIPwbao6K4LwC11QVAgmCKNAQAs0G8JtFa/lGyJ99m4PXnMU25tDgS6g/wDAHbp3pB2puCh1FfaKp7EEvGB7ZIisGZB6/uopQHLtid9OZJuYA82S7olhUKcI440ESSajKBetxQNIFJam/q1DO6CHyRtMm3Vjs4D07DVPcdt29MW7tNJpKXGNP3cwE9M6GKdx2TS46BIa73V8nYs23mmtnbGwcZ2veo69N7AMcF7qp3vRQHG+rzwUVuN1PqvOtmk0yK315H7RLuGoKsjLfXPtIbo34mHmXiAAZ/oNT5c5+cG1+zYiiuXDg++8B0MMXa4Cbb3S1jpOzhB8YSnTLtiw2X5v4m0Fg7tmVHqhTncO6AMpyL6uolKn6Q2FmhA5WDp15IyxrkeBi6XlJmEQb9JtCcq/d8RYOPFLXsi9QE0VKOUIEZ+++QmwYNZhAV9dM9hpBHvrXwPANz//vfH6aefvtlmLMSBEucNYjeJts+lOW9kvM5U03QJl/Sr9BYhjTkxwRwPpjRlfulYM6cMxp12zliDXr0utLYke9ZJz8s2yTlqkEekFYv4oboslXEtGlim4iLyV8Nfmid8hziON2kObEUe18ONgcZK80hpFXEeyfSdMNowuPMwnYedOBAVSqYDAY7BPQO2cW6UnylxrTRwvLiSujvQdJAY4xAOAjzU9cQhzpVSM2yCeWluR5eeQyjItaTyy/qK/Y3SXJ3m+vSdBU0ySecYhuk8jGWYKFVDwjaPKDdhGZPlHoccFCiatzvoBtxx63U4Ynojls0cKz5ofF4734KZPxTMhHlv0c8seB4aBM0N0FMl97PIfdz2h51M4QuxqO+k+C4NA2uNUwBgY4wnjUnPhgagiQeIceNsiu9vPwxfs3cCANzol3Dr7gZYePzEHYwfzQ7Ftn4KAJj3NsR1LsZ6KVnL8IYinZjA1sDHGKaP7ZuI4b2Bc6bEmq6kRSJ+hEeIJ+M4Sh5Zakj6IkkAFGmZ1IZE0DjmKDnuSKmYMf0ZEWeSL20+PbuzfNYcxJFNXCtiwzG9hPYRfUQ9YM9jM+K8vV7IPYvnP//5eN/73pdfzAHA0UcfjfPOOw+//du/jVNOOWXDaW7o5Vzf93jnO9+J3/zN38Tpp5+Oq6++Gt573OY2t9lwxgqFQqFQKBQHEnbs2IG/+qu/wp3udKfNNmUUGucpFAqFQqFQ7BxXXXUV5vP54LhzDj/84Q93Kc0NvZzrug7PeMYz8PWvfx0AcKtb3WqXMlUoFAqFQrFvQurWK3Ydhx9+eLUhBDPjhhtuwNatW/F3f/d3m2jZYmicp1AoFArF/g2N83YPHvzgB+P000/Hm9/8Ztz3vvcFEeHLX/4ynva0p+FXf/VXdynNDdNa73//++Oyyy4bCAUrFAqFQqFQKAJe9apXVb+NMbj1rW+N+9///jj88MM3x6h1QOM8hUKhUCgUirXxlre8BU9+8pNxv/vdD5NJoM/3fY+TTz55lzV6N/xy7owzzsBznvMcfO9738N973tfHHTQQdX5448/fpcMuTmBOfLRJVdcbJ8+qleQ/vPcU9B4AkCGguaQYXDi20cOfpYviTprlLTgGh2IxUYSmLlIPVDQIyDB3S/pFGEDbrXbvCDFj2it5J9WSH00aUtNDPJc8pNaC1EvgQyiHl2TR9JIk5pSsWDeRv9LWQ6mrF0R/Cf16mrNKBDAXSmHWwbcVg+/7IP2QRSk8x1gOgB9rTdBcbdx6oPdpkfWoYMHyAq9Dl/OUdIZiZpqZDjrbOSiS50E+VvqXozqVXDR+EPRrZDI9dXWeaONwCKvZB8MZS2uVpuFgXrbdVuuYxN0Q0L7FLZHrQzugr5I2o49FJ3BE4JfNpgDQbMi2mwm4Vobf1sT7iHLoKRLN/FYnvY4fHkHAOB2y9fj0G4HJsZh7i0cDHa4MKA6JngQnDfZxkr7jKnWHEl+yj7DTvqlKPOiupNJZm2MJo30VbT7rKUo5GPYlkrhjkEdw05c6B9xf3vuQ136mcW127bgOwgrZa5ePghT49CzwWrf4YbZElZmwU9+bkFzyvXMok7YEQgMjoIpzAQXdUg8E/q5BfcGNDdZc4SiBp2URaq6ehwvyHEYK8R4W/mz8jUt/kkis6pOYr+J5ynqcQJxDGZpFPL95BHHm2Hlrykn54PfBpc049Pe15zDfqcLshl48pOfvNkm7BIOqDhPaA9xO86utw9wHPNy4Lb2teGziavkmLRozGeEmMymCaIxcCxWw/CyNVHdG2xiw7UG8KIxV9qQBJWasYxoZEzk+hpQ0VkezLk7GweTC4RulEzfd8iabnl+zCeLzhT5aH6K16SmcNadE/OrCbGu6UT8EwMvMgzb+VC0WBjvCN6GukzzXy5C1JuTMUbl/3is/pTHFwUWwq6cH4s2W+qLKWq5yUlZ+DbrK6Y5MmnFcZzPkn6gERrCBiATY934HQhZELVtOX5QiBmz37xprgsxgZ06bN2yitsctA0AcPdDfoy7bfkxbtddB0Me17mtAID/R7fCdfMtOS3vgs4cgKA3l/SwFyGVG9yGGLsObj5TuYhCO5AZDWKDOHaZEPem+KXSbU7JO8K2G5fwH/0R+OlK8MflW26FW0x3YMn2WHUdrl49CD/cdggAYHVlCswMTE/h+SY1dw7PrjAGMIDvGeHhLZTBxTryLvjXzeO53gBzCrFjTzCRCUg9lX5GgO8oPCuiPD9U+qDywXbgEzGWp2da+XwodRBHxklOWnhJGy/Z5Upe7fA11DCm8c81Ltk0aJx3k3HrW98aH/3oR/HNb34T//7v/w5mxrHHHot73OMeu5zmhl/O/c7v/A4AVFvDEsUXQURwrt2tYO/jda97HV72spfhqquuwj3veU+86lWvwn/9r/91s81SKBQKhUJxgGH79u244oorMJvNquP76ksujfMUCoVCoVAo1od73OMeN+mFnMSGX87J7WP3RbznPe/BmWeeide97nX45V/+ZbzhDW/Ar/3ar+Hf/u3fcJe73GWzzVMoFAqFQnEA4Mc//jFOPfVUfOxjHxs9vy+85BqDxnkKhUKhUCgUQ5x11lnrvvaVr3zlhtPf8Mu5fV2D5JWvfCVOO+00PPWpTwUQNF8+/vGP4/Wvfz1e+tKXrj8hrhli5TgFWoFYxj3Y2r1Zol8txWexZNqEJcjEcZm/J1Aflv8yc9j6GmE5d6YexiXracl9tRezXB7rwzLcTA2Iy8vZxCXk+TpB3Us0uLw8PfmgUCNzsdI9Xhy3wo5MAZS2h7Sy7TJNw2FJdjroGtqwpHaJJecVZVWyPCRtlhJNQPgC5Vo2QNxlHW4K9Ad78ME97NSFZdkxPxdpeDbem+2TNIhMXU3L+AVNwoW886L8HjlttMv6o29HKTKJztKuh25oAYkyHb4zKFEDObpQsANyHY1QZSgv42awKW2DI10DnoZLs7lcU+UhGT2yuHE5PkVa66RzmNrw4DqxLlNcyTDc3OaydhOHSedgycODyip3w4EuQozJUo+Dl1Zxi+l2AMDtlq7D4d2NmFKPFT/Bdr+EnyLQtm50S4OyS/9Lynp294CL2Thj3dQo+Z0G9VnyF+vqqfi4UD0jpZuQ+yQzgI5BxsOYUAgffcrGhHFnxWAVS7h6FngE1063wFofxp9ITZ2vxClj1YD60E+DC3iEkl/q2SP1IQs/s8BqpMVmWmtbduEP0bc8COwEg8KI8cXUaawpdkslm8Gp2DfysOplo0UZh1JbS20i10mTcaLBtKydNL/IMXqzKQ43Q2x0BdXFF1+Ms846C//6r/+KO9zhDjjnnHPw9Kc/fY/YduaZZ+Kaa67BF7/4RfzKr/wKLrjgAvzwhz/Eueeei1e84hV7JM/dgQMmzgOqcZfaMVj2643wj2QoJOONKDcCxHFlNMhcI714eRiTOFLu4xia6Vpp3ioJ84AS2RRnLRZfGrsaGpiUK6li4HwNi/g3xSHIn20MsFAKJkkkJAesZahIJ8VcWXoh0uN8B/gpg7vwB8M5pqQ+UO7MjGBnADwy9S7QWMMn9YCdc6G8cYpvCNwBLi6QNTPA9wT2YU42xue5ixLdM/qHqzhi+NwwDJpR11v7HLJepJBFzkOpUIbicwoizXV4b3lOEOalv1TGFIdahrEM2zkYw7AxBumsg42yLiamlGIGZoKPEiO9s/GYKDaFZ4fptMfhW3bgzluvBQD87JYf4rjl7+PW9kZ4JvzABKrmDW4LDuoOyxIoso9Tej6T8cgitPO1rBbpw8ZXG+UxhjhFFhjIlGGUuI8sA9bDdPFP0FqdM/C9gZ9buB0d5jdMcaMN1N4fdIehW3LoOgcihvMlznM7OphVEyitThYwPrcmSrM38H20J1K0g3QKAZI27AKdNVFaKR43URIo0MNDs4tVvfYQyfVn69pMaR2RNRqto5RWotIzytiQnnWZsLZWiWJPYF+L8y677LLq91e+8hU453D00UcDAL75zW/CWov73ve+u5T+hl/OffjDHx49TkRYXl7G3e9+dxx11FG7ZMxNxWw2w1e+8hX80R/9UXX8oQ99KP7P//k/o/esrq5idXU1/77++uv3qI0KhUKhUOzTWOvF5h7ERt9NbnQF1Xe/+138+q//Ok4//XT83d/9HT7/+c/jjDPOwK1vfWs85jGP2T2FEPjUpz6FD33oQ/iFX/gFGGNw5JFH4iEPeQgOPfRQvPSlL8XDH/7w3Z7n7oDGeQqFQqFQ7MfQOG+X8elPfzp/f+UrX4lDDjkEb3vb2/JGX9dccw1OPfXUXZba2PDLuUc96lFZe0RC6pE88IEPxAc/+MG9vhvZ1VdfDeccbnvb21bHb3vb2+IHP/jB6D0vfelL8ad/+qd7wzyFQqFQKBS7CRtdQXX++efjLne5S95F9dhjj8WXv/xlvPzlL98jL+duvPFG3OY2twEAHHHEEfjxj3+Me9zjHrjXve6FSy+9dLfnt7ugcZ5CoVAoFIrNxr4e573iFa/AJz7xiSoWOvzww3HuuefioQ99KJ7znOdsOE2z80tqXHTRRfiFX/gFXHTRRbjuuutw3XXX4aKLLsL97nc/fOQjH8FnP/tZ/OQnP8HZZ5+9YWN2F6hZe52CyTH88R//cS7HddddhyuvvHJvmKhQKBQKhaLBfD7H9ddfX/3JVU8JaQXVQx/60Or4WiuovvCFLwyuP/nkk/HlL38Z8/l89xUi4uijj8Y3vvENAMC9731vvOENb8D3v/99nH/++bj97W+/2/PbXdA4T6FQKBQKxZ7A/hTnXX/99fjhD384OP6jH/0IN9xwwy6lueGVc8961rPwN3/zN3jAAx6Qjz34wQ/G8vIyfu/3fg//+q//ile96lV4ylOesksG3RTc6la3grV28L+nP/rRjwb/y5qwtLSEpaWl0XMD3Sche1HpErTyX/I/m1s9DqFvwIyiaZU07JKGBQiwBNioJeJLokXjiCrtgWyfJ6CP6ccaZhs13WR+QNk2OulOWGQ+Pcut6Cny92VB5TkrJD/SJV6UH1FnJIvbycKEtCmeS/lKbbnsw1a3gVDrycXj3gWND052W6q072S6lebcFobf6jA9aI7ptMe8t5ilNOcEPw9lNn2px9Aemr+shSC03lwsQp/OATRF1rQKOixCm8EBxgHelrzgEXQcqOTT1v9aqJYwiy3YBxpaiM1A1l0yGuV6Jgr6XOKU1FUkcOkOUucBqaxRiyTrZnjYqDm33IVBdGs3h58QbNRLm1mb/dRZj856WMOVTogxDEw8bOdw0PIMhy/twC2j5txhdjtuYbfDwmNCDg4GVtzsWTii0g+jUd0QFtoeA32QFjvRhSHpwzGtDUbUYKOc3+BmH+uFpR5JGANM0rhpEiYP0NwAcwPeHsQ+ZlGTh2zRjOGoEUKzoL+Y+j8YWX+OCaE/ilU3SfPI9wTMDGhGMPNxbZdWtk9quiUdIU4zl9S3kRpLXO7LUkhiCB7Ns4IYp6KTg5YKgYjhhX5iul82k6FOZGwblZ1U6861dZlE8dI9e5t/sEFtnN2TJ/De974Xv/Vbv1UdfuELX4gXvehF1bFdWUH1gx/8YPT6vu9x9dVX7/YXZmeeeSauuuoqAKEMJ598Mt75zndiOp3ib//2b3drXrsTB0ycN9DxEr/FOJtO3dQuGHSa0jgZAsCx94lZdjN+VprFUeuJCICTMyzVY4Ucn0iOP+maBf27nRuES1p3ralbt8Y5TuNqoxM3ChlcjJksYupqmJS6URS05gDAL3v4ZQ8sO9hpCKKSXqqfW/AOC8DA9AQT4zag6M0F7TnO8VkqEHkCE8OuErqU15Tglwz8xMJ1PjxxiTmePeVYN2kSpyIRLRiCx3yfXSQSaH3azEtcuVQEBVRfzzFGZouocYh1Leuo21tM0gS9ua5zmE4clrsQDC93cyx1PabGwcQK7H3IZMV1WOknmPUW3hv0MhMCyDK6qcPBy6u45ZbtuMPytQCAI6dX4472BhxhCSvscCOvAAC2mlV05GCinveiuJkW+JClX9K9JtzAZnF6xTHis01f9of4/ELNqdae3OCjvh9Zhu08TNQKBgDvYxtfsbA7DMwq5bbLBPgJY2UpaTAWu0zUhxvoEaYbmfNn6kPsgmM46suFZ5nYyjyitjpC/Jied5M2ZBpfpC659Fnrp+b74Hko1ZURfpLPIWMDevYpld9Y4P+NoI3x9gksGmT2MBj46Ec/imc84xnV4ZtrnPfoRz8ap556Kl7xilfgF3/xFwEAX/ziF/Hc5z53EMuuFxt+Ofed73wHhx566OD4oYceissvvxwA8LM/+7O4+uqrd8mgm4LpdIr73ve+uOiii/DoRz86H7/ooovwyEc+cq/bo1AoFAqFYv34b//tv+H888+vji38DzRgQyuoFl0/dnx34JRTTsnf73Of++A//uM/8O///u+4y13uglvd6la7Pb/dBY3zFAqFQqFQ7An8+q//Ov7u7/6uOnZzjfPOP/98nH322fjv//2/55V5XdfhtNNOw8te9rJdSnPDL+fue9/74rnPfS7e/va349a3vjUA4Mc//jHOOecc/MIv/AIA4Fvf+hbudKc77ZJBNxVnnXUWnvjEJ+KEE07AL/3SL+Fv/uZvcMUVV+yx3dgUCoVCodivMPa/+nsJk8lk9MVQi11ZQXW7291u9Pqu63DLW95y141eJ7Zu3Yr/8l/+yx7P56ZC4zyFQqFQKPZzaJx3k7F169a8m+x3vvMdMDPufve746CDDtrlNDf8cu7Nb34zHvnIR+JOd7oT7nznO4OIcMUVV+Bud7sbPvShDwEAtm3bhuc///m7bNRNwe/8zu/gJz/5Cf7sz/4MV111FX7u534OH/3oR3HkkUfuvkwExQoQS2njyvBq9+zEjsrnxRLhnFB8m8vIy3+ZA3WLAJAJy8GBsgK1ohfEJeZ5q2gudIycVVzWS3Hrck4XS/qoCcuyM5Uj0TElvU5SsiKFk9v8KwqvXC5fqGItPSJTbqPtJOluYuXtgO5qwhb0mVqYyu0Tj4PBdmS5fkrXRkprvN9t8bBbexxy0Aq2TOZY6TtcH9OczQxcT4WymZZkC1tzPeffYsl1pOQlKh95wE8IriewJ3hfChq2Go/U1tgWQp6JukKRCt2US6yBb8W82wfusiSfa5qCoIWE/52IyVOhQlR5GQaj1Flank4c/Fvb13ALJS0AYVm+IYYlxtZIaz10GugIXcxgh5nARcrDxDhMu1ARni2sCdcY60GGsTyd49ClFdxiugMH25DOspnDwsPBYM4Wq36COQcq59yHT0OR8pAov9JWaT9Cm2ypreMUn2Zdu6yP9H2M5tMuvfdiDDHiFoNCJ2j6IlsxhngK40u60QfqgV2luF085fS4Y3AH+I4DbSJ1JUFByIVOjSNREgStJdFh2BsgUiXIifI23Cnpw0yPifnK8YGZgTh2VH5vfbnGf5bJMaxa4k8cnVDSJAq0EerKuMKGanquZAqsgwdHqS6qiUPaEc3YsELs/o1dWUH1S7/0S/iHf/iH6tgnPvEJnHDCCZhMJrvdxrPOOmv0uNz19JGPfCSOOOKI3Z73TcEBFee1Y0OK0eI4W+Ih1OM+1mAEjVGhYixUhqjwO1EYR9OgEN+QHAvT3OooSiikWI9Babhq56Ak+0CUx8kqzzj2kB8xZsGwtAiDayppGB6/SI7XMSZeFwWsikeCryQbjSnEz94Cfhou9ssedFCP5a0zbFmaw5LP8/72lSlmNIV3BD8jmJnIw4t5r41fGQAzjCPwjGG7cKLbDvjOwFvAGQZPEg82UGhpZmDmlGmGecqycTq1qGKLgT8HPlzgJ1rwPd034msyHJ8JKM8/WSajid9YxnYDORCRJoV0O+ux3PU4ZCnEZAdPZji4W8VB3Som5OFA2OHCeLy9X8L18yVcj2XMvYVxpjyyWA9jGVuWZjh0eQW3nN6IW3VB4+kgs4oJMRwDcwZWOKS3whP4WBCiEHP69IxgOMautLYvEx3WlPs4xiHU1hdToXHL2K1q82P5pCBq3JQQNwxtoxG/MxPggpxIdyOhuxGwSd6LAe4IbonglgC/xJkCntnOhFw+ILUFzs+VrRHsKMik9JE+K8bQLPvTNhEZZw1i4UVtvozR6Z4kKyNvC8+wZXzh7Foa2E8x3oINbSFTuSu5m9a/C8bw9WD0WUGRcHOI8xIOOuggHH/88bj++utx0UUX4ZhjjsExxxyzS2lt+OXc0Ucfja9//ev4+Mc/jm9+85tgZhxzzDF4yEMeAmPCgPeoRz1ql4zZXTjjjDNwxhlnbKoNCoVCoVDcbLHz94qbjp2toPrjP/5jfP/738fb3/52AMDTn/50vPa1r8VZZ52F008/HV/4whfw5je/Ge9+97v3iH2XXXYZLr30UjjncPTRR4OZ8a1vfQvWWhxzzDF43eteh+c85zm45JJLcNxxx+0RG3YFGucpFAqFQrEfY60X+vsQ9vU477GPfSwe9KAH4ZnPfCZ27NiBE044Af/xH/8BZsbf//3f79IOsRt+OQeE//V92MMehpNOOglLS0t7hMOrUCgUCoVCsQg7W0F11VVX4YorrsjXH3XUUfjoRz+KZz/72fjrv/5r3OEOd8BrXvOaXQqe1oO0Ku6tb31rpnBcf/31OO200/DABz4Qp59+Op7whCfg2c9+Nj7+8Y/vERt2FRrnKRQKhUKh2Ezs63HeZz/7WTzvec8DAFxwwQVgZlx77bV429vehnPPPXfvvJzz3uPFL34xzj//fPzwhz/EN7/5TdztbnfD85//fNz1rnfFaaedtmEj9lkk+kD8mWNTjtTGinqGsgR44datI0uR4zJoljuRAmHHxbhVDxkPiv9b7UeWwEZGHjK/Ni2/r3YaC4mbLizpZUHJTbuqctzpJ6/edXGpsKewxDeVUxYt0dmIyxLv7IehrQOXmPJJJu74064Kj8vrx+7nuCtk2nE070DlqdSJjeSRdH+i78YdLP0SCvV1i8fScqBCHjSZYbudYN4HB/erFn5GcC5wCTPLLObj45JtP0Ghs5q4S1iiA/iw21fyvZ8CZk7wzgSW6jzcZ+cEOwOoR6AVpl0y086t0cfUtKVq07lqaTjlPAcwyMv55RZU5AW9sNoGqfF/2jkuH2xpyYIysJCuUhtmiNFFimrYwcuj9xZLtofzBhzPddZhYhyYCc6bvKTfmrCD69bpHIctreCgbhVL0fEz7nCDX8aMO2xzy7iu34JtLgiRzrzNu7UaE5woNgYuvhS+L3Ru4SKxM1S6Jaygbxv3mC+k71DtNJX7pMhb0spzf3Xl/mwPhTHF+0CjzuNDpFtTH3efE5QVNgQ/AWga2mFFL5dlXkS1aY9H+/L4NNYWMndL2GG5tKt2bEljl6B9sqRNSBpJSp857rIc/FDouhz6cd6ODWJX7tgurAd3BJ6Em/yEYT0VPyx4hzFwkbCHmLPNozfu5d1aN2Nz2F3FWiuoxnZEPfHEE3HppZfuYasCXvayl+Giiy6qtFUOPfRQvOhFL8JDH/pQPOtZz8ILXvACPPShD90r9qwXB0ycN6D4CfpVM37scn8YoxGm9KIkR/wq6KuRMhYpcXneSNumx2GGvaBlpeNyzpZGpGMp3RivSTaiVCFZV7lGxrsxdn77Xrfs/i7Syo4Rf9X5BTYg3muir5LcQIyTGCEG80txIF92WNoyx2FbV3DY8g505LHiwqPQxDhcx8BqT/BzAs8oS4qwA7wP7nMmybokHwpZDy4xnl0F7EqULzEWbqkUhOYGZtXA7oixnqS1doB3BO4YvqNadmQwp44F1iN+a9tEMx+GSqrT4Ph8AkMxfgsJshlcui5IOQ1rfI7xtnYzHDJZwaHdCibk4Jmw1Qb6mSVGzwYzZzF3Fs6aIskBYNI5bJ3Oceg00WJD8DNni2v9BDeAcb1fwg/6WwAArukPwo1uCh+dQzJ2sCjPQ7TA1Sk0MJyfi9jGNNr+IGKPPJZU8/6C+Imo0N2btj/cpbeuf2YKcR6Qd4b2faSYzglmHtpltxKzcuEZ0vThu2MCoi6/n4TxYiCpQfGZK/lO2inL7EcMTjGjTFf6hcbKiMVI9+Zn8lSv6XSMHXOaJb5MdpB8djVB0iZQ5E0O/8igri/5coCLr2vpqqFPsqPG6MdjZd+DWCt036PYhTz35Tjvuuuuy9IkF154IR7zmMdg69atePjDH47nPve5u5TmhlVszj33XPzt3/4t/vIv/xLT6TQfv9e97oU3velNu2SEQqFQKBQKxf6E6667Dj/60Y8Gx3/84x/j+uuvBwDc4ha3wGw229umrQmN8xQKhUKhUCjWxp3vfGd84QtfwI033ogLL7ww/2frNddcg+Xl5V1Kc8Mv597+9rfjb/7mb3DKKafAWpuPH3/88fj3f//3XTJCoVAoFArFPgTehL/9DI985CPxlKc8BRdccAG+973v4fvf/z4uuOACnHbaaVmz7Utf+hLucY97bK6hDTTOUygUCoViP8ZmxHj7YZx35pln4pRTTsGd7nQn3OEOd8BJJ50EINBd73Wve+1SmhumtX7/+9/H3e9+98Fx7z3m8/kuGaFQKBQKhUKxP+ENb3gDnv3sZ+Nxj3sc+r4HAHRdhyc/+ck477zzAADHHHPMPrcaTeM8hUKhUCgUirVxxhln4H73ux+uvPLKatOsu93tbjj33HN3Kc0Nv5y75z3vic997nODLevf+9734j73uc8uGXGzQ9L2aCQ9WGiGVJCaIPITCFt5ExetD1f48lnDQvL5m23p85bW0QYwRx2leIstWZJl2M7Be4Kfx0WTnkCOyjbZhksZCMg6T6bw8/M5UZbqnOFcjoVImidC8ISIsz5ATgfI21pXGhDpXLIlkecbH1Pc4lzWS9KnYjAwidoJXbiBpg5bluY4aDLDwZMZOuOxYx5oPSvLE8zmFj7pfplYV1Hfi7pgK1PQb0h+cpOgQ0cMwJV6tTPArQJmxcCvGvAEoNXgRLNKMKtRD4IBkxYvmKJtwLJdJD/lH8iaFo3byzHRpthw0VHM94TfzLygXUefU0q01usRZojr4/EFwgrMBC/+FiFpy3UUdEs8U+xL4bw1jEnnsGUyw9ZuhiXTYx73h9+GZTgQtrslbHNLuLFfwg4X9E1W3AS93/mC4jEtM5a6iNXFyA5hiDphAie9vkVlbftko+XHFkVzMvVRT2DX3Je0UBhgFzTnOPZR4ylvRU9Scw4AbKxeQ/m3tK1tgzXW+C+yWK6qbTBAQneo1fIzPhYjaWoCwYcUtDJrrReqPwemURz7Yl+Nl3kXxkNYzlKaWV+PQx628yAC5kvBQF4leDciUNPaMnoOoh1RfVz6d00/K/ZVHHzwwXjjG9+I8847D5dffjmYGT/zMz+Dgw8+OF9z73vfe/MMXIADOs5r/4d/rFvvqjbQiJgSeRrOHSmejFqwac4nqYUVx8JKB0wYTWI84qS5JDSz8hy9xtC1EO3Yv1YCUtgo3eM5at8lA6m+ftFc2kDOH2nuyFpixCAbCuctwFFzrltyWF6a45ClFRw6WcXU9pi58ig0cxb9zMLPDNzc5EyYQhyWdE9JGEAu6LXm+TPJSrmg78UdAcaEeSKZ3FPQm1sJunSm0Zxz06BVBw9wx2U+NEUvcLQNZqE/+ayAWmdLXi6fZQbigLEwWYNrJL8W7Xwl+hL7MFf2zmDubI61+qj166POtiGGicLYHTlMTY+pdZhYh74r2sJEjKXO4eDpKrZ2M0zIYYVDLPcTdwhWeArHhGvdQbhqfgsAwA9WD8W2+RLmzhadx6Q5bYKfQ3xR4lmIn0VvrY5RFunNcgqCR1YNLdKpZcMhDjEMTsKJ0r/5QlF3cZxIPgYIHP3LzoRnsqTZiyYNL+Kq9rl2pC/yoI+O9H/DYBMCu0rqkCn0feLcV03Mi7xon3L8jbq8pfxtpZRyDO9r2jyFf7JOsRWpdcGh1DFgYxxoow/nMTaU2WZ9btHthA1St7S1o/29N7XmFLsX3/rWt3DCCSfghBNOqI4//OEP3+U0N/xy7oUvfCGe+MQn4vvf/z689/jABz6Ab3zjG3j729+Oj3zkI7tsiEKhUCgUin0AIw8Sey3f/RAHH3wwjj/+eFx//fX45Cc/iWOOOQbHHHPMZpu1EBrnKRQKhUKxn2M/jbn2Jo4++mjc/va3x4knnogTTzwRJ510Eo4++uiblOaGNed+8zd/E+95z3vw0Y9+FESEF7zgBfj617+Of/iHf8BDHvKQm2SMQqFQKBQKxf6Axz72sXjta18LANixYwdOOOEEPPaxj8W97nUvvP/9799k6xZD4zyFQqFQKBSKtXHVVVfh5S9/OQ499FCcd955OPbYY3H7298ej3vc43D++efvUpobXjkHACeffDJOPvnkXcrwZoW8HDkuIRdLVavL0lLxtEx/sI52JN2EtPw70qcKXQtha2igouvVGaJaEp2XQicbmbLNTIC1DNMuUU5LcDlQKMgyWFLnOF2TjEzL6UfKl2mocRmzX8MHKZ34etjkcpR7sgttXEYu/ZrOteVJFASPTHUjy/VyYrEFOMODbKT1IlDWbKRKdsZhyoQtk7CT3vLSBP3MwrlQ2ZlOmOjHnmAihdXOijl+EmgKFGkPJp4zDrBxW3O3YsCOYCLd2MzDH7ngRhOps5hHymJMmzsudkj6CBLlRfh7lJsa6iDRfDO1VdzG8seA9hCXvXOhPFSrzmU+JM4toGOwA1xvsNpbrESqyUqknG7rp1jpJ5g5C5vKaUfSQegznfFY7npMo/O2+0BP3uaWsOo77HBT7HCTQGWNDXHFdXBs1qTUpj4h6cGcCm65UBjk9cIx3CzFX/QfV4k2RFW9Ur1E3iDXf6a3e4ASySfRNVLeHOmsXizRl5QDqrNCzJp86FOlPS30jkAYpwLVQvw/EEW6g2gHTDUdgA1yn0w+YAsgUcp9TircYuQPgEgaTzXNBnF8cIFaRE6U1SF0uLRyTPYHH6jT1nhY4+GmoUx+akG9qMiq7qminVQ87+b4wKVi7M70m72IDVPdFAN89rOfxfOe9zwAwAUXXABmxrXXXou3ve1tOPfcc/GYxzxmky1cjAMmzpMY9NEyr+UxPn1WVKkFnUXSOXMi4rsYm6R8RKCvlrGrSFYwaK25SdLkSOYXBttcHDmXp+l7hHo1mj4E1S2Nuzsbm6p5gwFT083IyB9c4ooWY8alWNKiUHcRxniOUgQ8YdAkTBq285gYV2I806OLgXfPJsQYWzrs6A1634GjfpCfhLmC2jpEjOtizJbprUCmSFIP2BUK81a0z8wJdhbiPztDNQ+xQ44xiBEon5MUe7c+HfETifoBioTEWtILC9twmYPa8HunaOJ69oDvDXpjsWM2CXE/QvzvmbDqOyyZPv8GgB1uit6HIMeaEJsnWqslxvJkjmUb6nDOFtf1WwEA8xgYrfoJruu34KfzgwAA18y24vrZEnpnAqXX+PhQEJ9dKPQTI+iIgHi0E35JJyvpodavKY21pDbG7k0h0iJns/gDwJ5CHO8JHonOGm92Jd7iLjyTuBhDmcjc9kkiRbYTkyi8wgnSZkakRVeDTWgrBqCOYz+s7c604fxsHe2rw8Tw6YXf5dgW7UvyQiXt+NsjSkZR7cPUnm2MMyHS4/AMbGwwkj3Bpzi0M+A51TGhzDfVcYobk7+iZEyO21MZU5+Tz0OZB7v3oHHeTcdtb3tbPP7xj8fjH/94AMC3v/1tnHvuuXjnO9+J9773vXj605++4TR36eWcQqFQKBQKhWIxrrvuOhxxxBEAgAsvvBCPecxjsHXrVjz84Q/Hc5/73E22TqFQKBQKhUKxq9i2bRsuueQSfOYzn8HFF1+Mr371qzj22GPxB3/wBzjxxBN3Kc11vZw7/PDDy0qEneCnP/3pLhmiUCgUCoViH4Bcna3YZdz5znfGF77wBRxxxBG48MIL8fd///cAgGuuuQbLy8ubbF0NjfMUCoVCoThAIFd07tV896/Y8vDDD8cRRxyBJz7xifgf/+N/4IEPfCAOO+ywm5Tmul7OvepVr8rff/KTn+Dcc8/FySefjF/6pV8CAHzhC1/Axz/+cTz/+c+/ScYoFAqFQqFQ7A8488wzccopp+Dggw/GkUceiZNOOglAoLve61732lzjGmicp1AoFAqFQrF+PPzhD8cll1yCd7zjHbjyyitxxRVX4KSTTsKxxx67y2mu6+Xck5/85Pz9MY95DP7sz/4Mz3zmM/OxP/zDP8RrX/tafPKTn8Szn/3sXTZmXwNx1FkSmkOZI95y76P2Bhuq9ajkNc2xoCMkBZ8gtmrm8W2vxbVSrynnkb77WpsJCNoK1nrACWJ/1J4Kmm6A6XzWKfCGM4efq22so30oXHq5RTuZOt/K5soBKI6inVwnNQ9k2YUeArmi2ceIohEGgI1aLslAw+WeLuh7kE3aEeEz6V10xmG56wEAy5Meq8t91HTowF3SNih6HaYnmFWCX6XsJt8B3HHWt0p6dHBBi8TMALMa9AGzHl0ftRZkmYGsW5fK7omKNkvWFYH4H5HiTE5bvzf1BQr+IFCu18rXbf1geIxNo41R6SiIfJrKTf7mUBgABD9nrM4m2DZbCsWK11y/uowbV6foncGkC06wpgMRw7FB7wy80Dk0xDAxv1XfYdWH4W7mO9zYT7Hign5dLzTm5s5i7iy8p6CDke0Gsj5QOuSb89G/xBw0PrIPRT3Ir9zUwaJVK+0YIfo1C22ekDcAR1m/KOlbDDQrW92MOHaRqf9Ti5vfWX9l0F9HNGsY8I7AbMBZByT4kG1T3tGxIZ6ycazJY5sYJzm2XeOjXmbStuHSxg1i3Ug/UtD4TP0pVaUL4zf7cDMJDRP2Jf3OenTT0AZXpx5+TqCe0DYZbv3e6BFWGjZSbiTpryQNkk3QItFdvG46zjjjDNzvfvfDlVdeiYc85CEwUb/qbne7G84999xNtq7GgRrnAajb+qKuVsVZccxdMGRXx9trWk1fihpNKHN50rBKWl8DIdDW5sbOoFPMZQ5DiUcg0s7HUCSQxjSVUxJVckJvbuEc0eolJ3FNLvfmAosi5jgm+SLdzSn+bpwq5wpTDEhzLHU+6Noh+MaDwtzvLXwW9AWmxuHg6SpWljs4ZzAD4CZBu8zNqehZieIAYd4w8xDH2VmJ48iF/I0DuAes1OaN8R+5EOsJM+Bj6JrbgAEoamvl+T61i0HcxWX+lO3UlLrgYShWx2zCp2M6i61EXTWPQbbb2k8AwTuDfgYwE1z058xZ3DidYku3HPTjTOkkngkzb7HSd/BMIa5LmnPGY0lcv+o7XBM1567pt0Zt4Qm2zZexrQ+awzvmE2yfTzFzNvcPavpz1ggTcVLWgVwE6b+15s5Bh8uuWf+cm/XKRL+JfYOFzUnrl1O3s+F5xC0VW30fr+3is0p6ThjY3ZQ19kNyseiio3Jsh2yR5Pyq+5Judo6tUnuRsbGMhdI1BkEjMKEzYPaANyUmT/71McYTaaRysEF4tk9vQBpNPTI+6LNbwMVz3jDYGPDcRH1kOTCJeN8jP4dmHXlfqitXPzfPAJsFjfNuMj74wQ8CAP75n/8ZF198Mf7xH/8RL3rRi0BEOOmkkzJjYiPYsObcxz/+cfzFX/zF4PjJJ5+MP/qjP9qwAQqFQqFQKBT7G771rW/hhBNOwAknnFAdf/jDH75JFq0PGucpFAqFQqFQrA/HH388nHOYz+dYXV3FhRdeiA984AO7lNbY+/E1cctb3hIXXHDB4PgHP/hB3PKWt9wlIxQKhUKhUOwbaBfs7a2//Q1HH3007njHO+IJT3gC3vCGN+Ab3/jGZpu0Lmicp1AoFArFfgyN83YLzjvvPDzykY/EEUccgfvd735497vfjaOPPhoXXHABrr766l1Kc8Mr5/70T/8Up512Gj7zmc9kLZIvfvGLuPDCC/GmN71pl4zY55GWPnNaRjyypJ64LM0NF+dz3C5brqhs5Z5AoUpZUqST0iC9YldjZ8zLxHTajmAMwxofqX+xTB5hWX0X7zWcWRfZbmFX7ZdwnA2VNbrR1rCFvFjqmxIUvqupC2kpMsoS4PTqOFIj2KPQ8YQPyYi1wTFPAsetxeM66mRjTi8tY4/XCL96UEV17GLhp12P5ekc7AlzAGwD3SFsxx7Sc72BtwbxVFjyHbcoJ8vwPSHuCg8T6Q52FbArBM8A9cJnaXV68wqdEt2Z45LxydCfxe+Sb4JAfY3UwlRflOgpJtQlCXpFqBtg4ZL7fI4xoGVucBDmvCzdYD7rsG0l0FqdD1veb59NMZt18J7g43J9awJ1x3OkqbhyPKFngx1ugj46frubYtt8itW+w9zbXM/BBsLcDymyqax5WToXCjVEO03+zXeK5f+LZiUSTTMfS8v/czqifcfl+qmfcUMbSPaF4yLhVIecuqsot0FNe07Xi/JJqkE7HozSIDyBXfhL9rOLviFUNNMyVhQ/Fbp27PuifBWlxjBMxzDWw8f6dy4aTATuYv/uYnu3HG2K458vZSUxxuR+ligKPYG9gfcG1LlCk+rieJd80NSlrPqWCjTA6Nwi/hQ3K1x11VX41Kc+hYsvvhjnnXcenvGMZ+C2t70tTjzxRJx00kl4+tOfvtkmjuKAifPaPpXG6jyONueTdMTO0pTxWvrd3JgpXYbDmE48nDIzRXGNTMVNAzqhvIwXDCHt3N7aydFGRqF/pTKNhMPVfesds7j53t4nE4t01XIt1RRPERvG01UMxZ7QO4NV12F7P4EhxtQEbl9nHJZtj0Omq3DeAAT0kzAB+N6UeTrHxhTPEfzMwEwNeAfl+M+slhjbzEMdZKmJJH9DIT70Is7OD7IuUmKFxE1FIR34SXwaLvOy4RLnMkCg9YVnVH/mx5GxvOU9MRYqFSXiWiZ4b+GdgZsHA+fzDttXpphO+iAZYXymrhbpE8qxmo3URmvCtSlGn/kOsyhfssNNsL0Psd6OfoLVeTg+9xbOGTgf0uOxRprGAOH37EspU5LiGuaKltn6I/TLNkZuAwVxKMUg3ByXyYpYrtjMMW6k4X0GYMvw0xj7pXboYjoG4K6JAZlAnkN6MmBJdFrmEo9K2ZDcH3kYn6YYa8QF+Zh0U4wVyTLIepiuBJ/sGR4WzJyp4EmWyfQhFjcOldRUosd6QStO93BvAMPwxoAoUOFNKpdlOM+gKP1UxcCyDtqyiJg89F0xhsrb2vFLcbPBi1/8YjzpSU/C6aefjgc96EE49NBDAYRx4corr8y/N4INv5z73d/9XRx77LF4zWtegw984ANgZhx33HH4/Oc/j/vf//4bNkChUCgUCsU+hg2+XFcMcdvb3haPf/zj8fjHPx4A8O1vfxvnnnsu3vnOd+K9733vPvtyTuM8hUKhUCj2c2icd5Px05/+FH/0R3+E29zmNoPjRx11FJxzC+5cjA2/nAOA+9///njnO9+5K7cqFAqFQqFQ7PfYtm0bLrnkEnzmM5/BxRdfjK9+9as49thj8Qd/8Ac48cQTN9u8NaFxnkKhUCgUCsXaoJHV7du2bcPy8vIupbeul3PXX3/9hpbl3XDDDTjkkEN2ySCFQqFQKBSKmzsOP/xwHHHEEXjiE5+I//E//gce+MAH4rDDDttss0ahcZ5CoVAoFArFznHWWWcBCC/mnv/852Pr1q35nHMO//RP/4R73/veu5T2ul7OHX744bjqqqsGS/YW4Y53vCO++tWv4m53u9suGbVPQEp1Ja660HxoJDBqqvmI9kDWHao0MZI+iOTyizyFZgBl/QWIhBoDDUd9JMpaSkk/LN1iTNRby9pRJHQVgm5TFiNImko8svI16X6IbaPHtlyX294zc8X7T1pyVdmTM6WuQ3MNeaq3NDcIgh0gSME8IgA2Ca20eg9teeIHE5w36L1B7221bfuS7THrOvQTB+8JLiUXte2IGN4GRQEfhRaop6yZAFDWn0ugHrCzoDsHUCXRkbTp2I75IF4mKyblk33Y1Bpx0JQD1/p0SesgJ1jrgzDzYo2RrK0z7tsxicZwedQRqYQXAHIEsIEzjBUbxPRc1F6czTq4ma3a1A5i9J0JWnG91I9z8By0A2euQ+8tVlwY7rbNp7hxtoSVvhvoyhExvDdBbyZpTQrdluQEkhoWsa0G3bGoKEFNuSqdmJGyr1drImlE+tQueNgIPEWNxlbIp5wf3Vo+/hXdS2S9lFHI8QnIw0bV6jwFjcOkBZm0PWI7pdZEjqm1bZIQfNrqqERtHTtxuZ8CgCMTtE5sPNYxELWDYJo0gGosz184aKlkDUYKukJ9b2CMlXcDlosunoQpeplhzmjKvDPkOQJ7V4ukbVZ7Md/9CQ9/+MNxySWX4B3veAeuvPJKXHHFFTjppJNw7LHHbrZpAxyQcZ7Q4QKQ59YQ2wzHydHvDeq5FWKOFHMzSp5VPCOG6TTctTFj1sds4rJRjbxslPjMeZR5qGi4UX1tssVTpRGa7GBZvkXaXWPaWjkvGh4HgXhEfy9ek+tG3JN05VjoBw/0n+OHcwbz3mJ13mG7mWBqHUyc9IL+nMOWyRxzb8EMrFKIQ/ykma8B+Dif+d7AWwsPgJzJ2sHGhBgPDBgPsAO4E8U3gJ+E74ZQ61iJGLqKN8b8IiHnixTDG47zc4yDPVe+z5LB7aOFeN5gEqcWPOOkc1nHOJehjj+YATiC7030H6M3HjPbgQzDWp81XQ0F3a/w6WFNickNGCYa0rOBd5Q157bNp7hutoztsylW513WI+ak9TiY9OuwLfUnqW/I6USjbr/w0YI46PslvbkRv6W05WfbH1u5t9F7S6bR3+34FeJ/7gDvS0VTEw9RfMYCALh0Xfwc5B19KXR7c/3H/iifcVn0WxLja9b+FUNJ0qpjixC/WQ87cbCdz1ml5zAHBhsD3xMQdQxhAZoHDfEkPZ7KlyTSk4459cJ1ZOAR4lZji2NYPOeSQajTKn6l+FxD5Tm0iicx9F+6Jmp+I45jewuDx4e9mO/+gMsuuwwAwMz42te+hul0ms9Np1P8/M//PM4+++xdSntdL+eYGW9605tw8MEHryvR+Xy+S8YoFAqFQqFQ7A/44Ac/CAD453/+Z1x88cX4x3/8R7zoRS8CEeGkk07C3//932+ugQIa5ykUCoVCoVDsHJ/+9KcBAKeeeipe/epX79LGD4uwrpdzd7nLXfDGN75x3Yne7na3w2Qy2WWjFAqFQqFQbCL2k//d3Bdw/PHHwzmH+XyO1dVVXHjhhfjABz6w2WZV0DhPoVAoFIoDCBrn3WS89a1v3e1pruvl3H/8x3/s9oz3deQV99QexOLGvBPaUUVtTdc36zuHDIEmUWopiSh0MoNCwYtL4SFoe0QMazyIBCUrXxOWoBviTF9Ya9fvemto1NcTl2XtgrrWsizbojET2Nc7cgMo25CzGfg/52PiEm2xbJoJYcvrbsjTyEuUGaJiwndmBForG3QoW7p3xmNiHSadQ+8M2Mdl8nH5PhFg4OE7AttkD2oai7TdAXYelrt3ksKaTOuCj3za3rxySvFNZqEm6kKiLPimXIkqM0KRI+K4El4sXefmr0VFPYRoy1R9lOtHPptl4UiUFWfg4vJ05i7QjVcteB7opi76dJWBPjrPu9pJvTeYOYsVU2gOALBtdQnbZ1PM5zbTWo2kf8S0yjL2uCSfxLL15B9Ztuj/sSXbYfv2Zmk/eOgj6QpJB8hL8qmqeyYAqc34RElIbKIhDQdxSX9FaSFU1MmqraVjY1QKQX/g1OGCkZkCw54ClbVvfBYpNmkL+1TULBeQlvkDYMuR+jW0hy3DdB6ddYGtI2nKxICN908Ypkscf8CzzWWtaOOlCHFsRKbiEjP8jNCvdjCGCy1G+jf5OKVjytjATOOskJFxNviBS7tac+JR7Ks477zz8JnPfAaf+9zncMMNN+De9743TjzxRDztaU/Dgx70oM02r8KBGOflgaeluEm5j+ZUggwb1k4/3bCTa1vaU7Qrj89jyadxCiK+WpRPMz1XJxKHVvgi02TbOSHdlQftkTyl36ppTsRnklK1UDtB5JGNQaGNeSom22h+jofjnB5pfpnO6IN0ycxZzL3FzFlMTZgbDDl0xmFqHKa2x1Jn8zjfO1OP+UAWAWcmoOc8N2Umcw+YOWD6OF93gIvvs3kSpEu4Ayh9pikqtj2OVLe13LMIVbtJ/ltUV/mGkcZDiPREGmk75dax+4Yxj8iTqZjiASabKZAuUXAR0iDLge4a53pE9pg1PtBZQeh9kDXZ1oeT168u44aVJaysTtDPbIkPOaYpKNAL53JRtkrmQ/4BdSw8cE65jxK9dWdIfUNUx8I2MHp8xN/RzhDzEJLqiQFy7JjzTv3LxXstAWYB1RyRsi3KxTYWun2Yy+lTFT+mPpzCVu4AP42x+MQDUw879bH+C/c7t0licOdDHU/DeT83gDUwMwBEMH3Jv4rzXOMvbwDH8TlODlKobqyqkZDHmPi1lJVSvxqvwNyeUnsc85nigMMu7daqUCgUCoViP4W+C9wtePGLX4wnPelJOP300/GgBz0o0x6YGVdeeeVupUEoFAqFQqFQrBsa5+2T0JdzCoVCoVAoFLsZP/3pT/FHf/RHg00WfvrTn+Koo46Cc27BnQqFQqFQKBSKAw36cm4Rqp2G4qfcIXNkpWvGgjfRG9mhJFO80u+1VkKnZbCRVpdXp8udVPMSZq52NZR2EYUdR/N5Ksv0Fy31zr9NsYMsg0GBZit9JXcCy8vC5brt+hqW5crXNhlTWJ7OvqETeAI7RMpuWssvqXU0XocU6GrMhN4bwAR6ZII1Pv/1mXIY6baJ6tb6yyPv+kgeeWcg0zPsKsPMiz1+KZpoC+UufQ/lkr5DvQzaiGO5/QiKCgTVYaRORzl3zOWzOZWWoAPrW6k/wBr0G/bIO3kBgRbBvQHNTaQbhnPOEXzaUcmXZfTMwGrXYaWLO76ywY5Z+L5tZQmz1QnczOSCUFwqbyyDjB+nObSUhNScTKCCB5pE6IO5TjyV342vKpdmClHDPWrGILlrG0ykDxhRuUBob6m9jI1NibKVyxHLRRyou/LytGntWFuJNlPsT5y5t6L8DMBR2a2Vo82pP7NMsNjDlKgRcTxhBnec6eLpHGygvFjD8LHfZl9wHIMmDDt16Kah4zET5o5Ceh2D+5I3S7tj2coYSjBzAzczmJsuU3bkmBV2Agu7DVa+qOq23Fa1lTHEiSDTcPYS2qF5b+a7v4FGBsdt27ZheXl5E6xRSPDY+JrGx7zDcrxmGHo0iQ2vWZ8RwGAuFLtAsoh7MjWu4vaLm+Uupi3tKo/j8aQoO4Or3RN3ap/hvBN1umRDKzB2ci2P2Q5g4XwYg5GgVhBjAMQ5DemaYix7yruy9xz+AKBDordy/ss2MeXd4PP0J6iyQY4DMHMKVDoAdhXotgN2Fil6HYG2hHOOAV4qu7VigkJrdSXW81F2YWRz0ZF2kz55eDzf1zSOtOMm87BNp5igjdebMW1ncwXlWLmm+I3Smpmq3yziAdd5uKmFb2JyQ2HX1p4Nts1CEH3DyhK275iiX5mAZ6bM4wR4y6COc9xXFYRSTEf1zpmG8472sCLmA1D3rSrBZhDZCRZcN9YfRi+VsTpD7I7a+lTUSarfXBci5skPE7E/2WFFS4mjfCDt7swyYdTPeCImYkO5TGwZXtBaecnDdB7GFomhXEQOUjPdxAETRGmkUE43N/ATC28tYAk8i23ODWPrQicnsCOwY2COUF6bbGxiePE7+Yjio2CWV6LYXhggzyXmS+dSn0r0dVNkpfYKcvy+l7EZed7MoC/nFAqFQqFQKHYTzjrrLADhxdzzn/98bN26NZ9zzuGf/umfcO9733uTrFMoFAqFQqFQ7IvQl3MKhUKhUCgUuwmXXXYZgLAa5Wtf+xqm02k+N51O8fM///M4++yzN8s8hUKhUCgUCsU+iF16Ofe5z30Ob3jDG/Cd73wH73vf+3DHO94R73jHO3DUUUfhgQ984O62UaFQKBQKheJmgU9/+tMAgFNPPRWvfvWrb5YbP2icp1AoFAqFQrF3seGXc+9///vxxCc+Eaeccgouu+wyrK6uAgBuuOEGvOQlL8FHP/rR3W7kpmFMU0Ry98f0nEa41AONujY9NOk214zqX8n0kjkmaUeVfKVeEiGeFiTzdpfo6rzQqai2EZdmSN580kkxDPbpd7G9kpdrOPtJ521012qpl9EaYIJOGBPDkRCISHp7Y373VMm00IhWxNxbzOLW7EmPpPcGngmmuZZ9cAI7oVclChr0Q8JW3mYGmKhvYHqgW2GAOercGMzjvW4J4CmK5lyrMxK1L9hyrYmTdR7iIVnOZJ5pTghUvk71GbUrWumkXO858+HX+obyyQhaEYt154oh3pnoRwL14RM9t5eF313UdmFg1nW40UwxcxbOG6ysBs252UoHv9oB86gTYxkcTsGzh+lMkNrLwnqiXLIfpOZmAFgAhmGsh2eTdSPIUNDmMcP+UHwBocMxMra0Y0PSiIk25Ly8vGbMpyjaIFL/cQ2dk0G2zaVpjGmToNw2aKhrEdspE2rtu1Su2K6pCyep8yGZGcF3DAOqdDsAwHkK+kEzG9KYh7bCXdAQ7KY9liZ9vNbATQxc1DYhOQumdEXhSbRb6gGamaBVJ/Xp0nU+tOt6fOGof9Q4OOqRcPxsx6t8fMTvipsH3vrWt262CbuEAyvOo3q8THpzWTdIzINJM2sjmjlp2OfhWDiQo5Jj8tjkTfEfGQemUz7qfo7EUACifl06xM01BEYwhlp75G8jzMvxBhbGrrs0bgm9vWJfiG3zMTk2x9iETdC6KnKt4Z5W+yrFmp4JvTOYOYvehoLN0MEQZ225NK8AgHMGzkkRMmR9Kz83wNzA9EFvzobugm4HMN3m0e0Iem5uQjBR43QeNVG5C7pybACy0XYHyLjDdyg6q2v5VPqcZGMbabBy3gLCnCU1wmQ+SQ+LROyxoImG2GlRiBnr0SDoyLaxsgcQY7zc/1KMYADfMfolD7cU6sF7gvOElfkE1ng4X7SFd6xM0O+YACsWZl76eNCh9TEGoaDnKvTXEJ+j2EZ703021oHlWFcs4hCunquK9m3jn7W051qfLXrOFHH3QPtbpJF1EIGioempbhYjCPG+yEtoOVc2FLOzzuOYTYODol1zHk+4xEMdh+eaqDlHk6grzqEP9j1VmnMmxt2d9eisy2PEvLeYTTrMDcNTl4+bOYZ6ojLG8wC5UP/sAY4adRQ13ZE0pqtnpRjnJb3npH1tENt6KX/+mp5/RZq1NqTiQIbZ+SU1zj33XJx//vl44xvfiMlkko8/4AEPwKWXXrpbjVMoFAqFQrGXwZv0p9gnoHGeQqFQKBT7OTTO2yex4Zdz3/jGN/CgBz1ocPzQQw/FtddeuztsUigUCoVCoVBsAjTOUygUCoVCodj72DCt9fa3vz2+/e1v4653vWt1/JJLLsHd7na33WXX5iPTv1C2p2+WeY9+X5geCh1OHq6WlKN+qxxpEPXS7zXySEv75bVjq9lbGke6nRjWeHBaa5yWT7d8xnyDXEM/TKssGRZLvFO+cVtyuRQcHJZhh2S5JG3SjaPrpSsbM/sjUsSy7wh5eTwLyorcHjvBeYO5s9jRT2DA8IleyYHikH7ncnkC92mdfzEp+yJRWufxr4/F6hl2xqC5h52bSA800S7AT5CpbXmFe2pHpv7LPk10k7Rmu63nuK33gA5aUaeTE+t6q5Kiod8G2703yXGkCjJHEk2kl+Q82raW6QzBv4nSSnOABL0k9VM2AE9CZo6BuQm0B9t5sKdMefSrFrRqQJFewgywLXXK3Dgt+T75LC5vT7ZzpLSSXJYuqCWlTmJmbfvh1F4bh6bTjLz9e6B7JL+g3s49No4BVUokmNv+YKwRXyWdqEp7MQbU/bZ9pDYgtoyvCiny5kQTjjQe0zE8PLgzgWrgxA2e4OcGM+rgnYFfDXVMKzb4KVEZiNHZSJMlhjEd+kRRsVTlX9E6hD8S3YEcwbshzTvTcpDGAwATAhtRz5WPki+AdizN/TNSNkCRVrEXsZMq3zPQ/1XdJ3CgxHlp3KJM/xLSGhWVdNGY2mCNMCV/pmQZYsBpx+TxOSjHkJFGlePUdAcjy2wM0wt5tRR7YhQ5jPVSqoiruYdoDdMXpblmLCsHSy5zJwHDwCNdEoKvUk+Bjkc+UHazHTEucM4E+RLXYXsfBnxvCYYYM28xT399mFP6mYXvTe2n5PueQHMCzUKsZ2fheLfCmNzoMbnRgXqGnxiYmB5gwJYqWmuea5LMAWJVWggZjXZuHQm2hAvSZ6ZuLmrIMfYZ1Jecm5rYoMotxzMxWOQYbxAPpXkMDyic7EMQR55g5sGfQIiZ07W+I/gpwS0HZ6zODearHbqpi3I6BDePlNfVDlg1oV6cqLPGniw7kc6ZEBeELiPmZMOZ1poprULKR/o30TxTzFutGhqR8ii/hcslqtiaR8ciis87iWqd40ogPMNmG9Y/oC1i8GdJG069buz8ghtTzAOulgeFds5ApA+TLal6Z6K8TSpLSdxZj265R2c9ptblOG9qXXyeBXpPYB8lTxhB8mQk/h2wwJmyHZyfDSirFGQ6r0npifrOjkDpL4RKGiA9fy701x7GzijOis3DhlfOPe1pT8OznvUs/NM//ROICP/5n/+Jd77znTj77LNxxhln7AkbFQqFQqFQKBR7ARrnKRQKhUKhUOx9bHjl3DnnnIPrrrsOv/Irv4KVlRU86EEPwtLSEs4++2w885nP3BM2KhQKhUKh2FtoV0IqDihonKdQKBQKxX4OjfP2SWz45RwAvPjFL8bznvc8/Nu//Ru89zjuuONw8MEH727bFAqFQqFQKBR7GRrnKRQKhUKhUOxd7NLLOQDYunUrTjjhhN1py76HViOg0ksqvPJW541GuOwZSasDqHUrFmkMSF2unaHVu2rKwgAch63HKx04cS+R1JzgQRoLtRDWIs37kWNJs0D6wANwKFt3j2k6cdFWyElJzYixfMCV7gV5AqIGBQH1NuEctEhWexu0CajOyyPozjGL7bwdgeYm2J/cILaBD1pVAPXhs9I3cAy76oFVD6CD78J9bomyZhYbjLaPrDeXtu0WmhoL64K43Ed1uy3nqSQj/FIZQcjaduyp0SXhWmim0thBbItU6w0K+1I9s/Rh1PoiB5g5Zd0+ctG/HlGnL7VrA8dA3xOc5VAfScNkFvTm0j2j/l3gu6D3QfGeUrCFcj1tO2+Sy/lKraOEqK9BQOgXQNFSjPUXdBvlPUJLhQHv0/ekOTI0pOhs1OfWGnayjl6yc73/+xbHv7C9vLgvlguEoAPXedguGG87B2Zb6y5GTTeaEXxnwc6Ae4LZEXRFzGo47wng2F99UyBK8iAD/Rvksa4a1qqxatgfgNi/PUBRx847Ct8ZWesv68BkzZHx9sGErGNIhMXaTXsK+j+qBzz2+zgvxR11CJDHhqKPhDKWp59teLTR/pnikTQnShs4KRuhaBIBRbuUGjtTWYSuFFdxlzCuMZwh5h45JqcxcCyZViprTHRqPWJGbb7r8eFOrsl6winBpKeX4jVPYEdwxmA2tzBUdiPuvUFnPHpvMOs7zHsLN49atXMLzEyIHRtbyQNmbmD6EJtQnK9ND5gZw+5wMKs9uDMgF/Jj08FPLNwEMBMEPdUoR8e2xGFVzIamnS1qdASQaXzVTFkyidGqkvFCU+95/pexQ2oEnuJcxznWG7NvkFf8JA9QT1m3z8yiTrMP/vETgl2JcfIKwU8t5tOgBxdi6tivotZc1u5LvqXgX5Lza9KIo6gx1oXWw774JmjRxXghdtqkA0sUYppwIYNdKSCnud9TfB5oYuOxepG6Zc24s3CcyfUVbWqf87jJdy2Iel7U58Ox8OxFMs3W3tFn4LqI6dk66WaH54p4zplcryluz89XhuGnBj0IxjLcxGAaO5+xDr03MJazTrQs00D/NxZhGIenk3Ec8aHSSJQt3ENFHzq1waQlLWNJqWWadaN58Ky513Cg5Hkzw7pezv3Wb/3WuhP8wAc+sMvGKBQKhUKhUCj2LjTOUygUCoVCodhcrOvl3GGHHZa/MzMuuOACHHbYYfl/VL/yla/g2muv3VBwp1AoFAqFYt+D7uJ14EHjPIVCoVAoDhBsUpy3t0kgN0es6+XcW9/61vz9//v//j889rGPxfnnnw9rwzph5xzOOOMMHHrooXvGyk1Eu6yf0xL5kXWZ9e7vgmsg141LikK73XY8X90++IHqOrmtNoFBRJl611Jc2QdKpvOmLLtOK/4JMHGpumltJa4oiZVZMo9mmTCNHU+2m7BVtqQ2sicYueQ72yEzxUL/F6PqnwM6WFxenukhgkLiHcF7wry3mQY7RitmsSabXNj2nXrKZctFELRW0wtKGwBvCbAE8gyae3QETKYhr/lWi/6gsfKJrwZlOXjOMK6Tb0zOS/NTfVnONAkS/wLCflHflKgyot3lbeRbiguNN9l6C3SufJhNSOvjOVAbMhI9IdIMkh/NPPyRC/5IdBKmsGbcR/oy0nJzINCLIxU30UMTJSG3Rw7tcbTtUswr0SXyqncCce2T7O9Mgyl0aMrOQqFWtfnFZfHJ9kKxL8v/S/9I44zs9HJJfrpsvfwhoJ25S/0PLxujQWc6R3OKEme07eKJqttxprXK8SXTw3PGBMCCLcM4ynRWO6NIXwH8nDCfWxjjoysIrjeBshLTl65hIFNQZZlHmn45IToYcWmHieLAsT2To4VtaoBIdyXTOkmh2P04IOO8dqIiBgwV2YCdDZMV134BFsZBPMy/PY8Qm3BKP9IbySDY2SSaJTsMACtOCCr9kD7azhn154DauhHspjErS5eQmD8Q5vlBfCdj8ExBE3EyEbwzMUa1WAGy5IHrDKzx8EyYOYveGbh5DA5WDWi1SGJUsbyYm6SMS65ez6C5A81dfujyUwO3RHBTAz8J9ZqmSo70yZB4jPXGHgPaeDxdn30U21ArpVPNOcm37YQ3nAAlvXqUVh1v4xg/UZL/WNTeUhYc226kLKaYGSgxnom/vQF8ZCLbFYKfELgDvB33ERsGdwDbmNnEB+qq4QXSKuEeiullqmET27f3lMK3ATFqSms7nQ/ipmGaVZKDeH8EOxu4ZMwSO1B6TB1QWRfIbuwSomxO6b/leB6bmEC9KdIlPkjZUEMZBwC2BLfMcATMbYcdpnQ+Ig7Pcem5Q/h94bAk23Pyw0C/ACUuTx02jdVMgEN51kj1LvyaQ/JIqQ7yJclm7H35EsU+CbPzS2q85S1vwdlnn50DNgCw1uKss87CW97ylt1qnEKhUCgUCoVi70HjPIVCoVAoFIq9jw2/nOv7Hl//+tcHx7/+9a/Dez9yh0KhUCgUipsVeBP+FPsENM5TKBQKhWI/h8Z5+yQ2vFvrqaeeiqc85Sn49re/jV/8xV8EAHzxi1/En//5n+PUU0/d7QZuGhYsd0aiO8gdvpiqXVlGlzVXaTRLzMUyW5avS4nD8vARGhTbwDXgkaXWHO2UOzwBgPdhJ1LvTKbkSToZiGGI4dMS3XbHVEknbegfLYg4LNs1nHeukcvlMzUjnUr0t9h5mYrtVK8crn0nlwFX9GEqlNx2eX6uo5QRZyoCU/ARmbK7a6I8MIfl2IYYnsUuuhwoa2YWdxm1wva4w2jaxRHxPBCW5rsJoTME4z3MKmBXwkk7NxUFrl0Cn+qdZR1R066q+4pvcr20dOHkz7T7K1B2ER022XJgrH3KHe5EHpyypeH5TJVglLaQbEj9K6adm5IPVBLTo/qvBmtC4mYe2kGiF2fjDeLOuMMl+5nOylTvNJxovdQwC3yiK47srDziY2p8Ao5pjE1aXiyPj8mlfs2WhzuyRbPTMeI6ncqudvcu0Qaqz1QpA7qDuFe2g1TPoPFdaAV1uOqTiH2nY5D11U5o7AjoQ33aWbmeOOTBXRgPTdyRl1w0aQ74VQM36bAifOBnFtSbAXOeEXyddnAd0IbGxvfGF5J2DQegT1TXOBak3QQTzWaMxkDlL41foxQchWIP4ICJ8xLkMBTHurHYKlPu0jggJkJJnRzPgyNvqeTV3iPHoWIXg0yKQULcxJG2StXF8bsnsGum3iZ2qjZTl/PxCCr5EillkTMP1NLKU5IKV9HimsxG4oBF5wq1NcSeAML4mqRmmvEx0HGpUFtFGEoEsCP0Ffc3+KKzHsyE1XkH15sSv84NzCrBzsI4PqD/iXE/x3gd4KcEnhiwpUBtnYWt5u0Oi8l2g36Z4aaBmll2ZCXAcomlDArNVZRvIZr5OtMIubS/HOd5qus1O4NGnz2AYEuYJzGsu9w3eFDdgzghzckx/pe0z9a38IHaahDmdQDg1UBnTTvdhrgoJtkh0F0niNTWWN4mvgjxinw2EPkuLFv6LRw0ViHi+rJbex3zjEL4OXzKczy4rs5zrUFojfxSSCjHhiZWLfEkSmNpyyHqP8uEpHRMCnhjtjJ9H/okzUOcR7Nw0s4oSNdESmuilAOR3swENgbedFgB0PehAZBhuN7AzSw47qQcbqKd1zNSvxPj80jcXl+MMjdUu7U2ecjP9llsV+pOsV9iwy/nXv7yl+N2t7sdzjvvPFx11VUAgNvf/vY455xz8JznPGe3G6hQKBQKhWIvgsefNfZGvorNh8Z5CoVCoVDsx9isOE+xU2z45ZwxBueccw7OOeccXH/99QCwfwkEKxQKhUKhUByg0DhPoVAoFAqFYu9jwy/nJDRYUygUCoViP4T+j6oCGucpFAqFQrFfQhkS+yQ2/HLuqKOOAq2x1+/ll19+kwzaZ7CoiIknTig6TlHTYlTsMFHshcRT1lCLhHwWOgssuPlZBkFoJbGnIA+QtClMw9tPeikGlfZZuNdg3tuwjbzUoFqgbUTESLtQD2CCdoNP/H+xNjbrkcQy5PL6pOMCkGWQ8ZUWRtZpSvZETSYyDPaUJMeKZhqKbkaLSiclps9JZy/qj7ERQgtCQ4I9hT8T9OZcb4rvDcNaX/mJY/HNPNazp7Ctu3BL1iKgoIUBAG5KcMsEPzUwqwbkGeRiuZy4Z0zWgkQZWw3DUYcIfyTNmnR9pSWIrN1G4HC0p9JepL8X5Bf0BEV7SG076uHAjtdZcCKKRkel2xC+swU8cz7HJhbLI2iSpH7Rx/affOiFHUmXJMnNSI0NT7lvc9L8k13Fi7+kRUMctG8cBa0YWWg5LiwaN6XGXaO3kus/6+UF+7L9jf5I2pY991np+zEtl/R1PZNlpZtRHBPavEg/5pX1BVtJDamFI++J5eKJh514WBMK7bwB+6AZYvrYz1y8P+k4ujg+uMZkRzAzA38j4CZlMKQ+aJtA6DpK24eaUg2a40nfMosvpbHGRV0eLu1mNM2xYxROlPligS0KxW7GgRPncZlLEeOL1JdbPa000VcCdfLcgjzkOZmXiAkH6VU2ipNRay6Pt2NjVIpvkj5bkxY18dpgYGltTbGc4aKl22rWVhpzaW6WmqgjhWvj1mRvO0dUadfn2CDqX42kH2/jLKhVjue4mwDXF905ZkIfY7DeGfjehDgAgPGA6alo3LKIr+Ocm/SwfDzupgS3ZOCWLcysC7bGucHMPczMw84M7Bzw8xIbko3m5nht53FXbk/Ch2M6pURca8+tc16RsXx6xsgxfZtPbps8bm/yf9LSdZQ1mUMcwPA2npuEeZ1jnGGShjMAzEPMl593rPDhNE7v01hP6XnCFpvCc4HoQzHuIx9jA4+iEYcU26ZwjnO8RxydvyiQSnGFzKvpQq3eW9GIxlD7UqKJ43ZZtmxkjMp2RXvTD5L9KV2U7B3LPz+jBN+T4eoZgT2BOehsmznB7DDoVuKtMxHziTgRCHVBDjCrBBgD7yaYTdJJBB3DnmK/TW0NRRtyxFZu/ZDHmrqyRp/NPFXpJ7+wuKhNn6p658VtSHFAYcMv584888zq93w+x2WXXYYLL7wQz33uc3eXXQqFQqFQKDYDTeCpOLCgcZ5CoVAoFPsxNM7bZ7Hhl3PPetazRo//9V//Nb785S/fZIMUCoVCoVAoFJsDjfMUCoVCoVAo9j5ukuacxK/92q/hj//4j/HWt751dyW5uRCMtoqW11LDgLzElfz4itREday3lE9pxrWtabmz3Do7Lad14qa0xDpSDQbLnTnQu9hGemaiEFJYEu49wQsql6RwDJa3S6qWPAYAcdm5WdSCKCxbDkuBW9oEA5YzbTUnnLZSB2rqavJbc3k+Vxc/HDeJVlEKWrYwH65l5uwm4RvE5dbR/76PHMoJwVhf6sdyvfTbh/zH/VKoEG4J6JcJbtnArhhg7gsNtqUBtu1K0B0kXVru7C6XoZfEGFWjTmVnilQVcc4AlO5Py7SrLd1HbJJlTFUv0gjL/8W55n5KS72T/UDelhw20mpMaMeAWN6e6NVN+QP9FBXdkQzgjHBBpEsACFQuCn2OWspjtIV8OGf6VKywbN45AllUtJuQfqBU53acl/+LccNT8bH0JQfKR7Y/jhFsudDrRXljdplmg6b+qG0f6XOt1fRxKT7TYnoNyfvTxTHfAbOK5HVNPoZBXaGOA7EPRhqqmQeKQ6YGxXbkgIqGlodpHygP5EyhIKVu4Eu5B/Qy3zbOYZnbuaDQe8pFxLEtpTRlRmNZpGO5L46bsafRDBEKBYD9M84bHErjQdv+5Xw6GLswTmvLc+DIPS3kuJP6fhMzJokPSnROM8Jj4zCXEErsxjFepBQ3ivLlNFOeKQZNsVCSwbCo6GlFkgQhn5b+NWL/oMiiuCk2KfTJ4qxMxQTHOVrmsYZf5XAsP8X8yh5wLkqXMOVyOWfgnclxYztPJLmMnE0uP8AxLvbTEOPZLQZm1sFykS5JdhvHmdZJTZtiQWnlJqZsaXXrmS+kHyElOETBBjGkyLDQeFOwuSDDLMlSd6SSP8ocHK+X0im+K3Way5nmakYVDyUaIXNkOMtYXBZFtrX0TBZtTDE+pbjPUZEukSGPKc9UTJTjfI4UXho84DX1JMvc1J+kN7KUnpFUb9Rp1TFv7B85barz5dqXrW+qsEzGSjKvLD20RvAiny2oLheZ8NxnrK+eVzxMMMkRaEawq4DdEc6ZWaCUZ78I+zjG8UFSyMCsMjhp20jbR+LbAY24LcoYTXdB20rxe5Yu8c1NMq1q7OL6t/zcC9A4b9/FolcIG8b73vc+HHHEEbsrOYVCoVAoFArFPgKN8xQKhUKhUCj2HDa8cu4+97lPJRTMzPjBD36AH//4x3jd6163W41TKBQKhUKxlzHyv+uKAwca5ykUCoVCsZ9jM+I8jS13ig2/nHvkIx9ZBW3GGNz61rfGSSedhGOOOWa3GqdQKBQKhUKh2HvQOE+hUCgUCoVi72PDL+de9KIX7QEz9kEYLm93k16To5qLn44njvnI2+CkkdBqNyQkTTNyQhsEQmui0SrKGghJa6zipxfOP1uCj3ohMi/nTNBayOUc2pSlKAiVjhOxoNJT0A5gudV40gETchbhgPiMegEUNekg9CfyNvNNviAUnYqUlPg58C+i74y4V1yTi1oJZQlEv1JM2/dRjyR+emKQQdCdA+A7BncMPwk6ZGE7d+FPT2GbdzfUL3BLhH7JwC5ZWCBvH88G8HFr+KBxEY/b4KOBJkXjm4HuhmwzC7TKwkkvdPoA9qnSqLqWKiGNRiTBBF0RqekGyL6Q0mqFG6JtPvzIWi9JbyL6ggFQ9C9bCsmnJElei+p+KsXK2hvkEbZYN0lzJrSJoCERdCSkf8gDFHXPUrqGAe7iVu2TWmMll9vTUEcs6pNR0lBhqfXB0fagN2f64v+ityH0RWThpZRM8r0ruhetbkbSvUu6HH5kTMh9Uv5epzZG1eaNKJuU25CanPEv9XnvDGhuYOZRe88XDRIPgHpkrT+pRRLSBewMwKwZP4zoQ2M6eiz8UpVZGD0ydKQxOV/ig4ZRTktoMI1qnlTn9L8XFZuDAyXOG/RBOV5ieC7raMlxIUH2Vzk1NnPnuCExTogXUVCMC9m387VhwIq5VIynVf5SAy/ryKa0ZJpp7KXKHykOSBrGkBq+O0OlNSXyWs/tJJ0XbsoxHJpTMTSp5sEFkNq8g3kmapg5oe/MKQZIvw3AE4ZnylpXi+CT5twEcFOCWzLot4RKIx/92hlwR/CWciwn5y820e8p/Kra1zon30WQYUpyHtOoZvFoObP/ShupNHyjBhszog5bM8e2MUvqW7GayXLpYunZh8vPpDmXw1BK/sJALy3HevkZi0BGPKuI5y84gnEhJqQ+xBsyX7ahTgEAlgCf+hVyern8iyD8VHT5gqH5tujPhTFCE1tXJ2Vonp9R03Ea3JP6T05SaveKmLWSJiyPJCLr9Y0NROmv6A8mXWHTE2zUnDOzcL2dF7uYgv9THaT6JgZohvIsKt2R+5JIZ4Gmr/R//qw04lLZpTNE8WV9NnYMtS+5OcaQ2p2KAxsb1pyz1uJHP/rR4PhPfvITWGt3i1EKhUKhUCg2EbwJf4p9AhrnKRQKhUKxH2MzYjyN89aFDb+c43a1S8Tq6iqm0+lNNkihUCgUCoVCsTnQOE+hUCgUCoVi72PdtNbXvOY1AAAiwpve9CYcfPDB+ZxzDp/97Gf3Ly2SvJy10OvgGMaEJctMhfKUqGeBGibXUkfI5eOJbinP+UiXk0uF09JiJrATy3Xjcu683JlQqGscl2nnJbycl/KCGOwpUDSbpfqItAVqlyVTWVI/OGUAWAb6cJI8wadl444aWqtYls5xVbBhGMP5HviwtJx8tH2MpyBXxqel5p7APlB1K/8BNR2kXW48tlw8nYpLrgf2z8P6abYGgIOJW6qbiYNfNvCewJHWmrZbT3klOjK5kq83gFsC+q2EbtUEKutSaBxuSuAJ4CcMnogt7BHaWqG0Dm3nEddJnyTaa37+ShUcqcYVrTW2QYp045xsWpIt0qiW5BuAW+pPbOvMHOuqrQCO99ZLu8mLqsvtNd6Rfsfl62m5u5sCflrsM4y8xD930UhprcyYxDwidSnTyBH7eY9MrzR9TM8Cfk6AizQYy3W9RPpCojgOlrcvokkh2BwoFiK5Dk36hRpSnMb5/pxXWjI/tqf8AvpKtcyfZDsUJqR+l/s5L25/MhMffYbULwjkA1XeOwLHinFzA5oHH5Cri04I9Wgc4DrUtFaOdexqGjJT8KGfBPqRpHFUJsbxvKK1EIashWp8R1WX5CtP1TQVk/qXTKMZNxJlbREFf09hL2eXoEzezcWBF+fFOUfEUHALqHwJor8vZK8tGiNG0q3kFpI0CHGYo02TFIXYKcR5FOK2dM8aJgPhvjSOS0pZtjfPTckGee7/Z+/dYy1LrvLwb9U+59x7u3umZzztp/B4AgkGxxCICWYgEgEltoMBiSSOLKMJBjIEIctBhDysJMIoOKPINj8SR4kd/iAE+CNCSAmxwTgSjhSEbbDNIwkwCoktG9tDjD2eRz/uPXvX+v1Ra1Wtql373Nt2d99+rE8695yzH1Wr3mufu76v1E0wc1met6ifuV3rrgY6KWq9cCL5skyebJNVu41dM9eNSrkBiF8ovo7Ug0q9pHdTnkiJAgcAm4hpIMS19A8jZWOpk2GLfDyOyQ8Z9wlhDACt8joU14TxIGDcJ0yb5Auq/xLXSSqFjQyERaUqMjuprtXCBQSpT/3etJ/1C5v7ytpl+k+bDROI9bxZv04KMYfEh+YVEE1d81DWckuvZFl/1QeI+uwTU5vkZTmG/AxG4hcqrZVGQtim62lCTWsdJE1KvoaVG2Ip87H93S7vUqZSNVTJDHEQJ719rum11dK5k9CftWpt27Y+yjH3w2ZlxlryeyHUZoAREMcIjmliy+NuFOmSo1T3YZt8OqD4/+rfTxtDLVY/T3w8bTfNOw4Ayz2Fqqs2mmeByncu5Wn9tXw+lsemY9HItbT5FEor7KR6w+A+182JE/849//9f/8fAICZ8fa3v72iNmw2GzzwwAN4+9vffu0tdDgcDofD4XBcV7if53A4HA6Hw3F6ODGt9SMf+Qg+8pGP4Bu/8RvxO7/zO/n7Rz7yETz66KP4lV/5Fbz0pS+9LkZ+9KMfxfd+7/fiT/2pP4WDgwN8yZd8CX7kR34ER0dH1XUf+9jH8G3f9m04e/YsLly4gNe//vWzaxwOh8PhcBwDPoWX41Thfp7D4XA4HHcATsPHcz/vRLjq3Vrf+973Xg87duIP/uAPEGPEO97xDvzpP/2n8T//5//Eww8/jIsXL+Itb3kLgES5eOUrX4lnPvOZ+LVf+zV85jOfwXd913eBmfG2t73thtvscDgcDofDcavB/TyHw+FwOByOG48T/Tj3Qz/0Q/hn/+yf4ezZs/ihH/qhndf++I//+DUxzOIVr3gFXvGKV+TvX/zFX4xHH30U//bf/tvstL3nPe/B7/3e7+HjH/84nve85wEA3vrWt+K1r30t3vSmN+Huu+/upn14eIjDw8P8/cknnwQAcCiaDFnfAKLZtEr8cNX6yHpzquW2wNFPvHmj7Sb6HllvzuoniD5I3mp7MkR4uVe3ty8ZyHtg8MAzLSXVr2OrqaI2tdeio3NU8fIl/cBFO0E152IAxyn/Sl62WKd8gEKtcZflGuwv67u0DlQHIhLilPLMGmlq38AmzVpXg3saALZ4Un5mKu06yZl1+j4E6Rh7wNEU0q7qEyXNsTXncvEQQDFVMI0mT9G7GA4I26OAYZU0SABgPBANkr2kOadagwAQshbC/F8QCzreRV9h4T4VUKDACEMqF0cV8EL9voTcr5NOC4FEt6vNq/O51asgc041Z8z5rAMDKlulr0RnDqXuVPMraQmVogJpzCZ9GMr1FoGi6ab9d0w3hFE0SUb5bNtE5oAYAWo3M9S+F5H6hlpu+kGWzWmHeSxp23piQhqzQKU5WekuMoyGkVxgY6WP0RJp7Zn1OS3ASXSF2nkoFn0XoOj3xZGAbcC0LZXIRwFhFN3DTl9Kcy+q8c8Dp2tFxzJsUXT7CIic+kxeAamXJtXaPu180QiWqC4KAle6dblN5L3o4ukkZtIy9cV0sqq9HrjREneO08ed6OeRaHqpviWx6geT8fsSuvqb5li1vlZ6QprAjsLbNa57rfEZQ5qXkn9T7iKjJTyLUDC2Zd9Lp58JoJn+a1NuXaOsT6z3cPLDdmmgzYrCO66H+INm/Wdd/HUNuNq5qWqTWluXwIjZ1yHRxZVLA4NU32odofpclV4vxKceCXQUwEdloYgTMInfQBwwbUq/mjaE8YCwPQeMZ4FpH5j2ZC1Zc34GKJVi8jxp+VuNKxa/FmZxYUbWnTNrUal/Y4Lp1xSwbMdSlAyl+uaZ/u28/1W6ZwPAMfl1tDbpmvVU863WLU5rP4suOADEVfLR7fKtPh6NhHDU6JdlnwLAJunfUcTipjm9clCvHTVvq4Vs63zXeOqd42POd+xKlxunsZnX8px2Ut+/tWdKWuJWzy4GKr6r6rZvA8JhwHBI2VfL/jUjawnyClkvWNNTrXL184K9L6bHNxpQ9Nd7ZpvpNT9n6AXtZ0Zq0JnIuU3YVMMJ/WPVo6Zwsn51LbD0OHjd83Xf8lic6Me53/qt38J2uwUAfPjDH965kN8oPPHEE3jGM56Rv7/vfe/Di1/84uywAcDLX/5yHB4e4kMf+hC+6Zu+qZvOI488gh/90R+97vY6HA6Hw+Fw3IxwP8/hcDgcDofjdHGiH+csxeG//bf/dr1sOTH+z//5P3jb296Gt771rfnYY489hmc/+9nVdffeey82mw0ee+yxxbTe8IY3VP8lfvLJJ/H85z//2hvtcDgcDsetAv/v5h0F9/McDofD4biD4H7eTYkTbwih+J7v+R489dRTs+MXL17E93zP91xVWm984xtBRDtfH/zgB6t7PvnJT+IVr3gFXvWqV+Fv/+2/XZ3r/aeXmXf+B3hvbw9333139QKQaZ7chiNL2DdFCbHPL2rCqSm/SuR2oo+GISIMsYSv2i25LT1Ct7Tmko9G0nLg+TbXmkZA2oZ9KC8ghd5jCinMWDOisl270kwDMQJxinTv0F1TWaSOmi3J9cUlZrqUqbpXaAWGP1VFuIs9JHbk4239RkrlUgpK4PQa9PpUYdzSIWy4MubnyLza+gWAEBjr1YT1asL+ZovNwRZ0ZgTOTqCzI4YzWwxntljJsemA0xbgsg24vqZ9YHsAHJ0LOLor4Ogc4egcYTwAxgMG70dgfwI2EdhE8IoRV6XeC0Wk2NaG9XfpLeacrXcKErFt450rikmTHgoFJG9PHliopqmP6vGWuj1Dr51tGdvr9DClkPUotNa4SZTWuImIG06vlVAjhnI/xUSnHI6AcEjptZUwfDPOM41VKK2Zxm6pGxGFVpT7nQmDZ1N+e+C44JScNmqaVejfn2mdbRvHclDp9ZbqVF3b9Ak243yW0aLNVOjgmqfaxgBNhDAV+kg4SlSGcETAUQAfDflFhwHhqNBSlD6a56bWZsj5oVBelB6sL5qQ+3E7x5NQMVKbl7rfGYpPXOYe21WFApNtD0jU5sFcxzRL/0RUCIfjOuFO8fOg/lEzgeiYpbG8gpkL5jR08bHynIp6bm6/Xw2Mv5SlRgYGqayJzM8Vy16pjw29MPs0VH+ubFyy1czrrPO7fm7mRsppNL7UrnqYrftkymHeO7bOy946CdavkbJnH7TJVutK5vOwnhDWEzZntzhz1xXcfc8l3HPfRdxz30Xcde8l3HXvJRzccwXD3VvwXSOmg4hpn9NrL1ExxzPA0TnC4d0BV+5Nr8N7CIfngaO7ge05YDobEffTizcxyeeYNS4/TygVsFnzdqJp465/K3WV09X2tjRaPVn5eaUNKuq3fdevub8Zv95eZ/tqJONTcfbfpg3EPwa2Zxmjvs6k+o6r9GJKY3g4AoYrwHCZMFwmrC4RwhXxKUZ5iU8QRhS/ZCy+gvX50jOY9uV0YFaPvXpv66MZn+oDzNrV+mknafBdPvYSRCpm1pZUXVLbZ/rEzF+RZzMaCbQl0JG8rgSESwPoYnqFS/K6HDBcFkrrdl7+LF2jfl1+tkVNa9byG/fbpjOrf53nxeerfPv2Plsnu+q3kn456QA9QbqOOwpX/ePcT//0T+Py5cuz45cvX8Z/+A//4arSet3rXoff//3f3/l68YtfnK//5Cc/iW/6pm/Cgw8+iH/37/5dldZznvOc2X9OH3/8cWy329l/Wh0Oh8PhcDgcc7if53A4HA6Hw3HjceLdWp988kkwM5gZTz31FPb39/O5aZrwS7/0S3jWs551VZlfuHABFy5cONG1n/jEJ/BN3/RNeMlLXoKf+qmfQgj174oPPvgg3vSmN+FTn/oUnvvc5wJI4sF7e3t4yUteclV2ORwOh8Nxx2IWIeu4E+B+nsPhcDgcdwDcz7tpceIf5+65555MQfjSL/3S2Xkium6Cu5/85Cfxl/7SX8L999+Pt7zlLfj0pz+dzz3nOc8BALzsZS/Di170Ijz00EN485vfjM9+9rP44R/+YTz88MOLO3gdB7ahrMBiyOnOaGPWGyXGtrcDk4TX2jyqnZqaMH0W2uZst1ZFYPAKs93GdDdVmN1aWW0yPnDkJpY5cEVRK8clL6p3NWRD8bX0SBbqhdIzCNgdDq4R7SGCAiGKnbO8SApCyOXgQXfjamgRwCwEm7hzTOi0Fb1T22RghMDYW42ljGIzR0IYIla64ykDh9hg3Aqd+KgpZyCM0k5hpLwL0XgWiPsM7EXQEAslUNqO2/bIdsuHXp+UsnTZP1qpZHYx0/ul/urd5AjV1rDEaRvZfD7tCEZcKrelNqf8vsA4bhPyHs0uTnHNwJrT7sRj2dEVMPQEoShVDJiVlheGqi20mIYKqTtOteHoFVVI+0ymwVJJ5JgQ+S6FQJMwtKE5d6Q/pihCaL2GkgGkndNMmS1NYLYDod3Jrc1Gi8UA6y5nOi6tTZHSHLSlvEtrGKVLrWQcHBYjgtJOdDgHlPmy6qOmKvKOqDtoD7li6jqiiEJntfVhmi7tICjjJE9UKDuzaT3JbsFs6rCiHhMX6o7IDDgcp4U7z89Tv0y+NjvwVVRz9H2FcjFmc2u5mebzZXUvz9dHnUsMP0t3WeWIvIOhpf5pPukyaubDsu6QMYeU0kbJl7LMUTtv2fpgxuLO8LoDbvYlWn9XE6IyoXKbATr3LCHXd9Mw1mex87W5lMSP1R3qI0JJJTCGzYTNJi1SB3tbHKy32F9tsRmSTsEou7xe2m7w1JU9XAobjJEQxdeeRCKDSXwTs57ETaK8TgeJAotNzBI0RKmNKQIQGRrrz2f6LgDSOjzGlbKuVn4s0XfbnmaNW1ondVnnIa1fVV8gnl0/83Fyv5obncum9N0pfWdCoTTKk6uV7aGJEKj4xlmORPw23a0zrlO9xjUhrpqHgp5fo6cyrZLLc9NCGfW5Jo1B6XC72kf75ELetYSJea6p0uj4D9SU72phfLoZdV0PdfLNjxO6S260x2lml1KKaTRJGbeoorVSfQ6BwYEy7dn2Y7235QhmaQJ9DsjmkEgipXmBjb+ucyGDpH2bAcWoxuWu+px9Rukzi8/EjjsKJ/5x7r3vfS+YGd/8zd+MX/iFX6h20NpsNnjBC15Q7aB1LfGe97wHf/iHf4g//MM/xBd90RdV53TBHYYB73rXu/ADP/AD+IZv+AYcHBzgNa95Dd7ylrdcF5scDofD4bhd8QX+bO64BeF+nsPhcDgcdwbcz7s5ceIf577xG78RAPCRj3wEz3/+82d0g+uJ1772tXjta1977HX3338/3vnOd15/gxwOh8PhcDhuI7if53A4HA6Hw3F6OPGPc4oXvOAFAIBLly7hYx/7GI6Oap7eV37lV14byxwOh8PhcJwOToNd4YyOmwLu5zkcDofDcZvD/bybElf949ynP/1pfPd3fzd++Zd/uXt+mqYv2KibAcxz+j6AWlfAajPY860wCdc8epVZYOXxRyrbN1sdCKDL9c/adSHphynHnqNJf5BtsVUvS7WzYtJmWNKSiNzqRxiOv9VSES0UDkU6RLVPkh6J8PJVmw5IugOi03C1UmNp23u539ofk5YDM2oNCPs50kx/bxbLm9urbIseVDNFdf1WSWtiWE3YrEfsrZMWyYpUX44wRcIQGIPRnBtXE6b1gLgKs76S9DJSGWhMOiQAMB4w4n7EsJpAAyOKCXEVwCOZvlfrwFT1yjSXnNhV7wSEYLeFbzQVZpoYVrgG5aReF5F1bADVwdmBjmxMTi8XpLFB5TcCwCsUDZFV0iLJ0hC9dMVGItElAWS8cO73s34quicQTZhin7GRjOaI1cPhpgKz7krS+zkxqvKYNtghL0KRklalmqhaHCapohNSvjMgupLmGtTXAc25iUABKT/Iu9FtI5ZrRgKJ5hxNSNew6I4MpRA0UtYGVN2YPD+22nPGmKxRE5Lm4Ewfphor+p40UsKEojFogocoJh1FNlqEWk5NU/V4sn2aRqOXAtseuV+XeShrAurxz1c3xuG4Stwpfl72RYyGUaXNddyQs9pH+n1prZELd0oKmXRUn9euJ8lV0PWJ6nVH1oL81eip6vzCosM2yzOvRZT9HTbJzsvTLAi23sTns7azakuZz7UN1q9c8A+Nb5qz7+khN/4rsfG19SDD6ApzljANFPN1YRWxXk84s59+mD67OcJd60OcWW2xGUZEJhzF8gi1nQYcbVcYVxG8TotG3KRnAQ6liLqGTRtG3GPwhoFNBIZoNIMpaZmqPq51G2Lrd3XKrWXPOlZA0htm6QNU1blq/lWaWbbOWv8xcPI3xa+otBl7S9VCX+Kmvck8D1mfLNddQNadAwBeMzCkdZQB8GQykDTCCFSaegRMA3K9smokAkW7bJWq3mrOxnU6nnyKZq444TzRzg9G6nnuG/d83R6qZ02qEzPnKv+u6VM7TV+4vutTtZA2UL3z7A81F2etX0bWiTNDq6sbZ/MteoDIz0rEQBxKe5XEANVwzFrG1i9mIELGbODFaq8rA8vtszQWms/5mdnhwHJ3X8QP/uAP4vHHH8f73/9+HBwc4N3vfjd++qd/Gn/mz/wZ/OIv/uL1sNHhcDgcDscNgt2M5Ea+HDcH3M9zOBwOh+P2hft5Ny+uOnLuV3/1V/Gf//N/xl/4C38BIQS84AUvwF/5K38Fd999Nx555BG88pWvvB52OhwOh8PhcDiuM9zPczgcDofD4bjxuOof5y5evIhnPetZAIBnPOMZ+PSnP40v/dIvxVd8xVfgwx/+8DU38NRg6KAzauACCoWtIIfp5nBmrhLkSAgmbHgptLlKlhKVKlNaqxBmFsprk14kQMKL2xD0TFFlQoyUaQctvXUGQqa8EVO+gSYCIs2olJneZqOwlyq1CRMmyQsBiVKmYcgTgYlzuDhlipkcY8iW9E2svbYVl6+ar7WJiHOavEqfwypivZqwNwitNUSMHHA0DYjCWYiZ4kslg4ELFRKQsGkN4050Og3ljnsMWkeEVUQInLeHp4EreuLVYE41qOuDhNJ6EvIcc90lKrqedHoKAHrsJ21borocVYg81+lpJsyJEqlh8noqNKHvO/49k2mHlc2dd6X5aP8VKoTmR01b8lJ6maqi9db0w12G6nbvmm8+Z75kGso8MaWaK+2cdQv5pgMRY06tF4oEN2XI6ZpxWHUl1nlJKBYBiXoCmbeUthIXmqmd8zLnqFAUMvV2lM8EtHNGS3fgpThxO8+oXZOkzcg0pKj5TgQMAAl/ojtiuLyrfW1zzQYQN8caCswNh/+H847FHePncZoTZ5QtS1lT6HTc8fP0nhnsVKtzmnFRSmZcp2HymFGdjM9GZn2qDJGlK69dEeBIyZdp3Qf9Yte8Hsy6QTJXcUWPlHelCZLYTshU2hiDSauPWfbttepH23NaVlswXYMST82shcnXZSaEkBaSIa9P4lcExmqYsL8ZcbDeAgAOVlvsr0asQnJqIgeMUp7tNGCMAVHtUZ9xYMQ9gMWvS/IbxZ/kTQStGTTEqp3jFIyTgno9/HzmZaG0Ko2XmcF2QazWoh35NE2h63nXJO3rIm8CoKzlmlbuO5T9MmqpkCovQWWo2HFS+XNLdrRlUN9AKaoq8aEdGwCJv6fneEj+OQ/IskLHNob2S0rSJcct59nPY5HPUPsjLbQRze/F/Jilcqov2M2YevehplLrdcx9Bq36/+1YBNI47PiM+j0OqVojodCaYfw47bJ2ytG+Ie1jL6nuUfPEBppKX7N+PcRlZaHE2ryK+hFVZcwRYT0/7iSQcjBo+Zn4esH9vJsSV01rfeELX4hHH30UAPBVX/VVeMc73oFPfOITePvb347nPve519xAh8PhcDgcDseNgft5DofD4XA4HDceVx0594M/+IP41Kc+BQD4kR/5Ebz85S/Hz/3cz2Gz2eDf//t/f63tczgcDofD4XDcILif53A4HA6Hw3HjcdU/zn3nd35n/vzVX/3V+OhHP4o/+IM/wP33348LFy5cU+McDofD4XDcYJyAseO4feF+nsPhcDgctzncz7spcdU/zrU4c+YM/vyf//PXwpabCkmbTbStdugi1TcZCYwlvYaZnobhq/fAlAj4lS5Ik6zRleJAOcGklSbM5ZFE60m0ojSNQQ1I908xlO3qY6jz3QWjY8AjgQcCrVDpqSTBC9HbYCR9Drttu0kLlfad0RWBJKF5ie4KD5w0zrLmnEmLmzbsCszUx5ipbMlt9ENAjGEVsQ4RmyGJIgQwAqVXjISRQ84+MmHcDkVrwxQZAxctrJC0D1TfijdJ00J1Y7IOS2BgQKX3Vds9l7LK9SH6YSIXURdftEhUdw5otF967b9Up6oJo3o4Vk9H2yNi3g5ZRFGS13q3hkTKehHZhl19VPsQNXoVXMqd8pL3gcsW8SHZoG2SlXO0fiY77jp558w6tppT2Y62PXtzDJcXR0pVHLEM7cPRdPPFuUaus/Wk9dbqiIiGT6XDgfocSOpy4DR2bD6Sl62DXO/ZTpOwasSEYicgs9uEuVaKQsZW1gS01/TmXtVYmYomSa7DYHRKRMMJQKUVlPVv1GxtG9X6o1jmKBVX0Wu5Hpc2be6cczhuFG5XPw8TgQIlHUkg+3t5SJvBnLU3qf5cQde7pbXIpm31iTo+SL6NCa2qF4mWJzPn9TEvkzqPyxqWyglgSIZn7bkqE+x+SLM2m7IScfE5G/vI1EOlo6RzmZ3jexp+vbWvPUSodMJ6dqd51fgWMdUBRHfO1kUIMS39IekKb4YJa9GYW1FEZMJRXGGMAVemFS5uNwCApw/3cPlwje2VFXgbim9A4lMM5TNEcw6rpDUXVjH5rkClSXzVqBae2g+2enN6Ivs+lcPYpGmrtvUHxWdh8FyTTO5NmtCo87K+jvVryRyIlH08q4VL0fQdzcP4RHWayZ/WKs3asWvRjltz0v0L5t5AiIHT80ujwcsDp/tUO7vFjm6Y7JIykukbxl+o1n/1Q/RZaIeG8syNVt92wXec+YC99m3Tb/wkluPRznf22YvFiEYLmtj0cTN/ck5UtH3V97LHh3J90eZr7AqlnbNfnh/G5F4qPhyNdV4smuaRABrTMyzrg2BANVgqH1U+53TyRfJ9V79QP1vWgxuuOee4KXGiH+d+6Id+6MQJ/viP//jnbYzD4XA4HI7Tx47nAcdtCPfzHA6Hw+G4Q9D+c/oG5uvYjRP9OPdbv/VbJ0qMlnZ5cjgcDofD4XDclHA/z+FwOBwOh+N0caIf59773vdebztuPkwd6pWGP7dh1ErtWqIzADns19IG7ZbX3TjkXb8uGwpDTTlINoQhplDZzM1EpmshmtBfKVeQvGOkvB18HX7M8/D3Dp0NEGqIhLMDhm4hlEGCbGUfTR69UN5Z+ZWjYOh1Nmx+MPt0a+g8B0NRMedy/dm46vTOWgdCXbNhxkQskenzxpkiYYoB0xgy5Y0jgacAbIOhthZaGweAAiOGRKFmQ6ENNg+7Z3fQUHxa7m96rVQ+h9I3u/S4kGjBVROf8L8b1DAaMjtVto+f07C12k29BsmwF2Jvxl3eBl37GpdrLEsaSmMxVAdLPdWw/ExnlZmQB6Tw/LyfuxkrOgZ0LCm9NZZ2m80NbeGZkPnSVaXML12CpXEcx6Qo+Ra2QamT+XxDsTmsvE8ts3bDllZtqCqZnqHh+oEbGpU0VHtIKd52btOPhETn1u+G/hP02qrzFoM5UKHEAonipX0oYkYtVcpDkLkyn1NK60RCa9UCd2hdduhGlD6sdQWUuZBoTs2xaREQp5BkBm4UFmy5Ifk6TgV3op/HU3IeglLoJixLmej6IvPhzGXJtLX63Gx+rqhQSxc1t8g91Pow4g8AAIL1JyVJndsIad2JVMtEAELxRHVv9d4eVwhFL81hzYWtr2g/V/5qk56emt1jK3Rh/dyBTG0FwMyZXsdBkrPJE2MI6UXE+b6RA+JEGGPA4bTCxaMNLh+uAQCHh2tMhyvwUQBtqZK80DUQQ/LraKWaDLIuUikvt/6oLR93PqPTD5fqwDyf0BJ326I7BjqGBYDzQ1BxGbLsA0r5KFChsBKKZAync5VL2/gaHMranGmNEcUB1faVZTIOADbIMj4VrXXDiGuR27B+4ZR8URrSXFDRWgn5GWZWd+q7LqzfVRr5uUj884Xpptyww9Ejzs+RvccF65PVaZo63NV/pF4XqbByv32+KP6N2B3ItHMqb5ZDad1jbWPjL2U71Ydr5xbrS5q5t+pHXH9XSmtoaa2kfUryGwEadN4AKA9UzN+P810aqnlzUgZJb2G5znCf66bEDfT2HQ6Hw+FwOBwOh8PhcDgcDofFF7whhMPhcDgcjtsHGpTjcDgcDofD4bjNwKfj593g2MBbEh4553A4HA6Hw+FwOBwOh8PhcJwSPHJuATQRiNN23na3dwbmvza3egKtXobRIQmBUUl+8DEc8yYv1TyhHNpg7mdkwYewikmKQXQfoko9TPIl697pPSmJyFT00sS2XK4lTTyxw+oc8JS0KJLmUxE3oIErnQmr55a14xa0FZI2W62lQgRgSloe6YC8GS2GvlaKETRotdtEL2MiwjSFVBYgadBR0qObYsAoGlCBGFMMiKI3Nx0NReslEjCm12y7eULRnSNUWhY0lDqymlhFw4uShkxP28VoSVRaX821lebEUqhMq/fS5rUETTNwfT+l9CjWlzO0T1OxSfXgAmqNuUhVnWQdCjJFiKjqO/XBMpCzxKP29ZXUt2iQpL6omoCSBpX7rc4FW0ELprwlerdaevWpbc8o+kG2DvW8Xit1ONOpbMRzZjohS2ibt9UpsWPSzDWLkjVMoMhJ44Xa+yWNRttO9URyOU0fIW0jrYfAWdOHWYZB05/sGOhplWRtuXYuV02bSV5cqpCnchyiPZfy4KT31KsPRta8ydWXNaLSHEV5Hm+mJZNWmitx43DSvuNw3MKgkUAg0Cj+hOhJ2vnEapWeRBIo69LZA717Wt2ibmIdmzUt1XRS32dK+po0mXu1HAFJby4m34HNnDQzrudTaDla23r+haydEH9OfeZ5Qep7rV+cfNeSb+Wr2HXP6nZRk06bZ1XfJLrHARERQX3SpMaGyMbPC9IBxhUiCNtpwKWjNS4fbrC9nB6h4uEAOgoI6udpVoGzL8MDJ7/OrOVA8jVV246jqUQjnlVplVkBMlOHes2iFLG2C2q/u18/xyCbaRaqWOowr6sTiVaXrJWDeOVGdw4QH2tg8ETZH55lqWtgpKQbC+1fnM9nfT8AcU3gAVlbOKqPt0r+Hq+42NE+Y0H9ztppyGO70TRWn89qFB6HWX+19Xo9YNb0Y6Ol7HXyqnXrOt3E9gmYTmjnTPHlZ1NJ6erFV8v+tbyrHxdajcu+Hdkda3ywrDmn/txophNIswaAVroeSL9p0mjrM9eV6dfl2aoew4uGqw7yjYT7eTclPHLO4XA4HA6Hw+FwOBwOh8PhOCV45JzD4XA4HI4KrkXicDgcDofDcfthxhy5UfBovWPhP84tgCIhWCod5v2pprYaOlwbPsz1DdSOhhy328TyKj1ulrG9d06ho8AIAyMQIw4pODIq/SAKXcyGziqFT9KKSiPTkG5KdAm021gDhYYaTDi3hHy322VT4ETByFStue0atlyFvAuNN23X3YShM5Jduj241nHgQkddQhPOnm1gynUQx1Coj5FABMSJcDQNOJzS8BkoYooBUxRawkTgMdU7TVQocA3trdB4U5k4FmMy/SAGINRx4KR1ZEPHF2BD9Ouw7jpcH2CpZ0OT6FGubV/V7eOJQQ1nkEBCqy20g6rNYp1uZqtUdBX5HND0raZ8wZip55T6kPtwoTvo9QzkrdF5sPVkYtwBE3LPzWftc6jbwY5Z2+Zy3NITF6mh5gImKhTfHCbfpxPVY6Ommts8WOcXa2P7uYfuvNa5JhYaSlU/SpFoQ/elHfWaTB8F8lb3mdIwIMkDLrMAAOxzSURBVFFJpYxhwQ6di3lg8ECZnkaNLS1LiCy1NQIYajv0nB5P8yQvtqHWVTZZ7QgyMoT7RZHmYwXaVji+bRwOx9VhIhBRPdconb2Z1yu66lX8ijyjGXaoZXmusteoP9hxPMlIK6jfwEGOU5nXK6mRCLNuE2Y8eUPBmheib/PsXqBQWo2cSZtPprvqIeMHAaj8g8qf7iSX67eRdZi3XXNc1+IYMLHxzQMABAwhYgqEcUoT/UQBUww4HAdcOVpje2WFeJjO0ZUBYVv6UaZCqz8RzMuUXH3gIsFSr8m1j0j5FMkFJ2RQdmmiFapnkM65pu6qscBGmgFI9Fbjp9FU1rXkF3LxCayPF6TPZJkSynm1bmH2H+LcXvXlQLq+prRV+oYHTmt3sP5cUz6lX1ra9iwjM4aybyc2m3ZkOw5biG0zXyo/A12jRd+2a5tkM2za+2aUzZPAUlt7c0o79TTfrZSA9Xm5TY9LXjpWcpu2fq3tQ8aPC+rPodwbRiCqD6rPkVampQOdh9p1wkqZzOahxhflaKntjjsZTmt1OBwOh8PhcDgcDofD4XA4TgkeOedwOBwOh6PAI/UcDofD4XA4bl+4n3dTwn+cW4ClMHFLKQOamPy0q2NF4WxpbQY59FkppjZkeCEU90TQSFpKlNYQIsIQ5Vixi6IJu24y4EiIky0wSnh14P7un2TC7/VQlB3B7O60Qku1dAcN4bX0vna3M6JClZjRaiPSLmRcwoj1nYhL6XaElcPSFcWmKLRUnkyYcUxxyxwDpingaBRaa4jYxkR50LDkEnYv99mw9Wwjm92ipJ7sDl1MQlkJMwYKhwVqg/1S0U64vO3YTRRATSGtThiqAivvx/aH5rOG6y9RJWyYfI+6Z8ywVERqrolDuU7vDxNKu0k+lmpSdhBuimrr6bjw8qb/l9uptFf7HqkOoWcNx+9wBnp9pqWWL7QjNfWZdzorGS8zJo5LM6fROQ+kPp+pyL0J0Lws20LLKed0N1SlmYFkKAUUmi8n+nqmoWVjkkE8IFNa7Y63O2FpD2aHrooOEQmcd4zjuv+YiTDXmc7ztqLMGEZzqjJH5qST7gLncDhOhjzG1Q8xu0jPqK3te4ul+Q6o5uHZmtCeh2Fr5bV4nm6iYFLxp3Re1DmoSp9k7eys21ImlQ7JxZv5CvUkW9FwTSFIfD6VSqlMMVnXu1Qa/25xXZKTx02DjVZE9icrTq6sT1PtXzCJL0kR4xQqmY8AxsQB23HANAbwGEDiJwalQ+vzgrXR7tRKHftt5fT6hrSn9TFma12+rl8lvKva8npMtQ/W5QfWeSV2NDfUTcrf1day4zqnz6EpJEHkWsQMs15nXzr7BQBZh3CgWX0DyBIlTKn+M08scEWbtOMfQv22shuGvVs+qGyPzhuEspun+IDZ5igOopUZmdVnnUdPUaZLR22lS3agHQI7cZxvmPPm/qW7fBXxo2a+vN7WtH9uL+vDW3sYyZfiup8vFlX8sTzXG98ss3FjGtPR7Nxtfws48XM5ocju6Dw0s186DYuD67RWB/zHOYfD4XA4HC1O6oA6HA6Hw+FwOG4tuJ93U8I15xwOh8PhcDgcDofD4XA4HI5TgkfOORwOh8PhyLgqCsy1hP8X1+FwOBwOh+P6wv28mxb+49wCVO8IMPT5Vuup1WSg5hp7rf064+13dCR0m+5Wp0B49YlbT7WGibWfGENgjFZAJedpL0TZ1lxsY6O/kKWwRLeBbF3s0iXIXH4rMtLqzaEUuuXZWy0qbvRJTHG6WmUze/oc/tk26ppXJEQROeCRSl9g0UKIwDgFHE1J7Ixi0iHJ22BXWjGmDoGkdRZUmwVFh4BQ11W2h4DI1dbsej2HXZogHV2Sqg80nTnrh+zQO5hptph2qfTmSjFavbjqvTqW6o0jau09m6bRiGh157IumLbViKx5l8dW1iLhWjvCtI+1BbFopdgqWJBrLMciAG2brOMiumgolUZz0Z6ceDWujdaG1T2hyKkPNPWpenmqgVNuNO0f5/eVQi6U64QLatL+qMd9XZiOBJBtQ7V/TN+DavQZDZJ8X0j6NWw0YqpyyLzFKwKrNqFqIS51dTFXNUl6xSajRZK1KIdSXm5056rqDeYEGb2cxiYybc0xgKMHujsc1xLElPWHAFQDtdKbs8d2oePLVS7YgkZU1q/Sk1m3086nSJpxeg8BbDUu1S8Qu1ufSfPM+mA9p4rI6LEmTSlYn6adDHv6YbbQnfx3olqTGt2ulDAoljIzFf2qbuP0tIrN+scmHT1JMo8TseibpTMTgBgJMYaky9zxpVUrS9cCXjF4VfTmSDWGjS2chbY69aHtGwB9cOBQa6JVqPypZuHZtebBLNPWB0k1gp5oHYlPmfTWqGjEcf5z/Hi5Sqj/pz5BVNtUo4xQ+i/k2MBF27kUr+gKR1Q+Pi30JULSr8v6vbZfGv/S9guOVHxW1bOz84FkNdO3tMj21JNT++y380eWjv9mn2vbx4GrQZ6f8txkH96avNX3U825ph+T8XWtbF/yrwDVECxzaFbeRgTVVEC9bmG+zX5e64vaNNp6a+vG9KmsrWnq09Zr0Z3DHPI8XPmVjjsa/uOcw+FwOByOGlfppDscDofD4XA4bhG4n3dTwv8V73A4HA6Hw+FwOBwOh8PhcJwSPHJuATRZ+pG+NyG1Cj24FMLdDWOHoUB2brH0gyo2lnPIeo4e71ABMj1xKXS5yYw0Cj6GTGvNIdkEIHChYdrsTFhwFY5LlHgAQ6EQUnMfRwJLODm1VMXqWkKMUl9aZ7q9tYaYz25K9+Vo/LbhJCQ/XWqoJhOV7dFZwt1ttDYzOBImobKmojK244Bp0n3ga4pCVe+2DslQHaRSLK1UaY/cozwY+9tyl2u4av98vkdP6SRRotQ7fdvQritat7VPTeyElc/sQmnL3O8bowo9oKlfU6elHdO1OYzc0B144Ex5VRpzVa4pXaf55PMyFgiMxcHEqf/kYHsGyFAQaCLkzecNJTVXow3/FxoEk2k+HUvRjM9e/ba0C1OH7bwyowjvQEvJqikGJo2Fea0b72/ytZST3K2mmtXRjidbP1VdyLzFgRBXDB5kXguobW3uU2oBNfkpZSlfNxVjbZqWntIqH9hxS4HTGNtV5yzJRuQ574aAuaLQORy3JXprzTVIs/bZOi80VKqeH8dyonduQcqiospbn6/lbS3M+ZmapRc28hyWTqYnOEL8suJ7Fmpjxz8r7k5F3bcTKMcmr2peLxM+6bGO/5jX+4ZKSkJlzL6aqR8OAFYREcBEjECc/Dokf2yKAdHaY+f5QWyxshmDUFoDI6wiLN04S8iQqYwqXQaF5C8Qo0hlRFtxc+Q1HlSeNTqSKbvuTzcVU45bCjLFWm/QNmrX7JnZpX/Vbd7JxJ5T/1/yKnmXtubAqU0Cz2nmhs5K2n+BGaWwppomvy6txyRtKf1GKaumbaHX6Utt75StUB5NHRqkRwGqvu+i4M4zsIkh0y9LYvZ738Zj0z2B/2f9VUvh1PfKjzKhQ63baOc1420jorQBTcUO68/ZupvNGWbenLmoLOPoJAtG9Sy0+/oic7WQ8XVEqoMb7+fRiTvYnQuPnHM4HA6Hw+FwOBwOh8PhcDhOCf7jnMPhcDgcDofD4XA4HA6Hw3FKcFqrw+FwOByOGs48cDgcDofD4bg94X7eTQn/cW4JjV4VgLJVNzCXTrCwUhb6OetvkNEOovnA6OmOzI6j1ugwyS3y262egLWn0lQQ/rvqI1gdEdVXUL0kYjCb7eQjVZpIBKmvWNtJlb4ddfOa1QUn7QyOtKxNJ3WienHJACr2Wd20wGDV0APAkSs7yOiaVVItAcCQ8ogTYUtDPjdNAXEMc+2TLIqCogMTtA6lPszW78r/56bt2Yp2EKp7sn1Z18LUQav1oelGXFXcbJZVNHoxqV2S5sNMl872W9OOZct4ru2Ta8n2B6v9F0VDIrePKWozTnNeog/CAeCBk9YckHVIEClp0xl7yYhxqDZJlRfkfDMetZlVfyefzvo2qLXtgGRdrgupQ6sDZ7Q3cnpWP0XnKAsZbiT5VRoqQfsVV7ottr8wFa0PIyu0EzO9PGC3zIbp2zM9N5Nntt1UUzUXA5UOZrUNvak7GpLeHA/mWFN3lWSNtBdY+47cN8jL5AekNqdIYj/XCfZWirw28ExHhk2ls36XuZJjJy2Hw/EFIfk28iUYDaBWAugqxOmqS5f8uJw5N+sPZM239xa/oNXrybpXxubid3byy3O1TpK14SQ3ZUlZe5/VzgKS3lMEKPKsjFY/t+RR0rbvmlY+1quz1gdWNNqr1lXK+rK2QWTdT3pjtUPPgcGb5G9OQCXtlnxeY5f1o4srKLp1ejxpztGQ/E0KZkE29ZP0p7lkmG1KxzjUS8qi9BV3XpKX2k5L/bi9p3f+KlBpwRpdM310sb4JR0oarlN6n+mBtX6shfEl1dcDkNrd+EtWVxqiNUcjJX3xpl+rn05mDCWfI1U8qa9HxV/jgKR9Z3WjRSu2Kw+tbWjml0qbb2G5b32tkmD/+n4itR3HaQ33bMg6mZHS2LB+aU54AXJv669RxKy9WPPbZUwounPVoO34hPlYLMdaPzT7ok0RSHyxuQ0ojWkbu9dvzXxGkWp/8kZrCztuWviPcw6Hw+FwODJ6YskOh8PhcDgcjtsDp+LnuW95LFxzzuFwOBwOx22Nxx9/HA899BDOnz+P8+fP46GHHsLnPve5xeu32y3+4T/8h/iKr/gKnD17Fs973vPwt/7W38InP/nJG2e0w+FwOBwOh+NY3C5+nkfOLcFSykL5nOlwM7qAvBODyWyprVRYQ9fKYbEaVkudCGAb7tyxLW+tbWPHmzDc2AkrrigPYm8+p7RQE2IMljLLa0an7Gz9nLdy19DnfMLYJxyMHgsshYfX0cmF6tCpLA1pN9EeDJLw5ULZ05+ieWDQSi+u06ORSqj7JJQyDZNfAzwREAlxCpiMGdMYwJNQbzU/a5+tnMZ2MvSIbEsUyhujplK09ZjrUtq1zTPTdUyMuGz7XrglhsaCho7S2m/yzCHoO/opmObb1C9RFJTy3Ya8t9ve27qQvlJRIm16lj6b6YmcqQmQOm4ppzl/QyEgzUfNb//7w9rnCl2x2rZ9avp1pEy7YSQ6BLVlaELleSjlTFTK2ghtj87wLpRWvdCG11dUHfM5J9rQKfQ6k0bJqH2VQnEELLPHUkbSi6usNd+cTG5rNvcXqrP2mVyewKndBwYHSTVgXnZDechtb/NDqvu0BtQ0C5pSO1JEocCaOtzF7thJJxG7mIXqM+26+DrgNvuP6mte8xr80R/9Ed797ncDAL7v+74PDz30EP7Lf/kv3esvXbqED3/4w/in//Sf4s/9uT+Hxx9/HD/4gz+Ib//2b8cHP/jB62eo48aimdcraltvfbPHKwpTj7uGPHkdF6FQ0dplMV5UKdE1wFLj1R0kFhpkWQis/6mUPAqmYJ1yUKAk+ZHXn8Y3ND4XN36ZZWjOK4SytEl1preW9GDW6h7Fr6I1DknCBIQyf05AGAl0ROl9Qq6nuCLEiREjwMSYTL2o7xuNT6l5EVOiNLbH1dcIDAoRIXAlXQBqScrIaeSPlGwpoRRp4V2UOcjU5ZIXc5JJ2LmCHOfHgau6TukV37FQQ+uEqq/qN0J85dyfCBgJYUKWL6nyCvXnak3OL5EukbqvfDWRGwHEx58INMpnS32UelAKq/adXA9k1n4mIBbnsKKo5nGMeX829cGBjdRLOafPmtnnsffosF7yvTroziO76M3HIftIUgdZwqjY2qMlV5IitHDtLK/S9xrWcDktdHyuEjNzrnmeIOljQdvdtpv6oerrVX03TVpa99Xck7Pkes2wbdcWUsqVD2ufv5F+143O7wbgdvHz/Mc5h8PhcDgcty1+//d/H+9+97vx/ve/Hy996UsBAD/5kz+JBx98EI8++ihe+MIXzu45f/48/ut//a/Vsbe97W342q/9WnzsYx/D/ffff0NsdzgcDofD4XAs43by8/zHOYfD4XA4HAU7onauN7bbLZ588snq2N7eHvb29j7vNN/3vvfh/Pnz2WEDgK/7uq/D+fPn8eu//utdp62HJ554AkSEe+655/O2xeFwOBwOh+O04X7eHDeDn+eacw6Hw+FwOG4K/PzP/3zWC9HXI4888gWl+dhjj+FZz3rW7PiznvUsPPbYYydK48qVK/hH/+gf4TWveQ3uvvvuL8geh8PhcDgcjjsRv/RLv+R+3g545NwCrH5A1i5QLbSsO7f8k3PWgmKqP1u9Okueb/VL2q+NboNuX12dUz2rJe0IQtIxqPY4lyRFP4IjZS0LyoIAEM0MoznHSDpZuq0fGX2T1t6ZHbZyO+eW9O3sNWT0DawuRBYPQaVpoWUHRAdE02cGghEXYIBGYDgSLRIga1VFTrpVcRUQQ6O/EalofeQyot/WvSKpplg5kMtgtV6K4EF190Kipcx523ajf1Npvix9ppKXSj/ka5hEd47n+jKqU9LTAYtNWijHszaP0TBR/b+81TiQ/60QRWsk/5vBauKY/suqm4hSJ1ooiqWt23qoNNtg9EZacLmemUBZ203rgYreShYM4qIzElS3pZN0KOXLupfG/qqvte3Y+Z62bzfiHU1ydea2LJ1+ZvKktu5E54UjSv8w+nUs5dZy8YBaD64D1RdBqxGl+TUaICRtn9NH6jMhmuKYeqKmDay+TRQdkixlaK6jCcCAuV5jXeyZHgkRF60ia7f0G44hz/dY0hi6Xjil/6i+6lWvwtvf/vbq2NJ/U9/4xjfiR3/0R3em95u/+ZsAAOqIYDFz93iL7XaLV7/61Ygx4t/8m39z7PWOWwTNep11Ka0OkZ5rxm6tJ7SQrvgE7dxYX2uErHbN3xA/QTXhqPXljC/WsSmv+XlukXR0Lm3LoJO0+rvAbJ3tipseB1kzloadekLaFgSTv13fe/cOXLRl1xE0sPhWRduNRgImQtgShqPk7ynCCpimtDCJ1G0xW9KymnGq28eD8YGM36VzPNG8vMxk2kMurnyvklbS05L2Yoi/bdbwbmVQcfLMusizjoFZv67uQee7OHAsx8muT7LuW73d7K8j2dz6W8m/Ex049fX0EtM/W21aznqyyHpz5Xou/mRMWtI5ry2y3mDbl3iXD2LmBdXOy3lRKee8rkwZmuHZ1af9fJb6XfOMnqv0q8v4OvHoNRemegU4ApiojDDbh4DyzAkAzIgDzaOC1I9s71VEvYQqje5Kiy+w6G6XvJgoP1rn5xB9JjEa2FZXXnWF1derbTDjrq1vtafSqeeikdyWTdtDP0fRP7yR2sKdNeZG5fst3/It+Nmf/dnqsPt5Bf7jnMPhcDgcjpsC6/X6xP+xfN3rXodXv/rVO6954IEH8Lu/+7v44z/+49m5T3/603j2s5+98/7tdou/+Tf/Jj7ykY/gV3/1Vz1qzuFwOBwOh+PzhPt5u+E/zjkcDofD4bjlcOHCBVy4cOHY6x588EE88cQT+I3f+A187dd+LQDgAx/4AJ544gl8/dd//eJ96rD97//9v/He974X99133zWz3eFwOBwOh8OxjDvRz/Mf544BKyUOJkTVbAUNdCL6zTkeuAqDRqRC5Yoo1FG9tQo/n6NsW295FwKlg5ao3iqRvNt9J7yWowQlKwUP5V7WkHwTmq9R+JmSFxgYKJcz59UDUyqDpR5a5hwhUWgzXa8O37d0OHsPgJqHYKkXgYGVHBgYYRVBgYXGW9eH0hxplKyVJhHk+JaAIaCOhi/1xm39Aoka2GmyKkzcsBC0Tar2ADKFlzRMms09VYdM4dfVNt5VDDjyd6UtsrZLCwn7JltP2geXwqKZcn8nS3cgpK3u7Tb05nqlIGSaIuowdO0SuYsODF4jb0mPqfTBXOxcBqUD6djQMHIYmgXVA7r9fhLYOqlouij1AOlXDKHAUAl9t/cZMyDlsPloqH/JuICatlFGFJsQegA1HbQtR0RNZVqqmpZOIWlqe2YqRyz3gszYEnpyppS03VDHfHdsmf6hdczlJIUkLcCDHAw0S2tWDqXQDI2Nep+pi9Q/lb7LuZ5nyHQM0w/NfFwNPaZEb5gS9YkmANMsxeuGxTJc73yvU7pf/uVfjle84hV4+OGH8Y53vAMA8H3f93341m/91kok+Mu+7MvwyCOP4Du+4zswjiP+xt/4G/jwhz+Md77znZimKeuWPOMZz8Bms7lO1jpuFLSPF6qZoWahPleNU7Oe5Gv0NVtn9VXP6fa6vDxbl0epg1yPi0STLHPIvFBtomYd1Lnf0EaZudC1SC9KCdEg+Q/ij1QTJGofQ4ulUggd2YR838zmcpCkDpV2y4EKtbWZl6r2U190lRYBWjFoKH5e5pppW09A2AK0NemMkPWZAAqVmgBxFL9UT3OhmqoNS7IGDMRI4ntIvUcCTyJdEJt7rS8g/iuBclqki6T1oTprI/I9lGm0tDCxZz+/g9J/is/IoOI7GA4wTerzzBOrKKSGYql+WKb2GR+AtelUnkJoh4CMQUKRNun4BohpHc3+jlJnldJqq6P1s+y6vOB7AOKDsTlgy9jekCm+zXCr7qvzmjWZjgNbh3auae/ZQa9nKlTRPA+2vmfPDRZ/nqI+a8jN4mcp456BJCUkeYEYkRpqa74Q+dnRyo4QQ56X5RqlvNt5WJvA+Ks848+i9C9bNUa6JK7SO9pyx+y5deu6rAvIvmbVLw0dVu2z9O9kG81+E7ieyC7pbYLbyc/zDSEcDofD4XDc1vi5n/s5fMVXfAVe9rKX4WUvexm+8iu/Ej/zMz9TXfPoo4/iiSeeAAD80R/9EX7xF38Rf/RHf4Sv+qqvwnOf+9z8+vVf//XTKILD4XA4HA6Ho4Pbxc/zyDmHw+FwOBw1bqP/qALpv6CtAHELNrvkPPDAA9V3h8PhcDgcjtsGt5mLc7v4ef7j3HGY0askLFnprTB9W0ORze40FZuQqdpBlAwNkkp8dEKkxd1KlTYK+8rplGRmNEXiROnimorAEvYNoAr/rkKrrY3Wlp4dbTxmLAayhkDLrrBKJyQJi6+onS2Wws9tG1UFoxy3ywPn0OowRIQh6oaodTi3fK8S1fZSqutA4C2BpaBp11eTQEPRYE51nFPUa2MKz+ZMASnpKKWVp5oGYuubZMdYrmLRzefGlmpjtxmotI+F7g4aUuj+zl3nzPG082ihjWp5pYLTRdSE5E9U0Qzybq1KPdXwb9vXBlR0c0vLyDujRm76Tgkv1x2ntI+mU6Xf1NTg+p2bw93KFZsrCoJSkqxZbZ8DTJ/iQp/glBGBc5cp0f8kFE+qaaUw95oyl3moV5hc/FI37Q55LZOj6Q9V6H/bVwKDh5IZr1h2a+XZrqRKO2CZW2fjnY2ttu/kMnGzg5ahLWg57GezU1cMAK/KfZYZZafsTL0OUl/NDm0z2qqeIk47PweuO6+0EU9lB68buouXw3EnoKG1nYhRZAZ/tTNkNS+Z9y69s4HIRJR5PlFDldq6aIedNqwv1N7GQg0Vmny6RMoAylS0ekFJiZP6usbPURkJ7vGixN8BxP78HZm+mW0wvvGMr1pOps/HtI3uyK5+HoWY5EuIwRQwKQW0oUASo9o9NJD4FUfin4WQTQRi3omVApeHukFW5dirC6lA9S20jaNQWieRVjF1QOKnl0Xa1E/Qa9Gvkx5PTfohSx+zzwWkPo6sQVn+w66hOQ35bP3ZLF8i6Vk/bmaKydeMjbx+2rFY7eRu1vBQ+2RLYzbbn2VRFvJqHhkytVJ9jWp8zWncuSyQsbRwblYFtn64vpbFj2jpplWaIg1kaZfFF6vnHOujzaj8rHVtdlztoTMVZZmUttur3VnCSepexzUxIgq1daYeQ7XN3NRFrkK7k29uq1JACom+X9Wf+HhaHOvX8Upeg0k71yWX51U7r5vKsPRrAIDItehkSczlWZvRlfKxu0c77lz4j3MOh8PhcDgKmh92HQ6Hw+FwOBy3CU7Jz/N/Mx8P15xzOBwOh8PhcDgcDofD4XA4TgkeOedwOBwOh6PGaehweLSew+FwOBwOx3UGu593k8J/nNuBmdaUOb4rLJMJZevoaC4W7aDM9Vf9uZ5uwqJWSSLjU6Si99GJf2SmJAURTRpUc/QzIgGT6GpMlLW+SpZLGhYiizG7jvJXjgRSHY6YNBmSDhiJNkXRIskaYaLBVun2qX5EzxStBy7lYk7HWOtrYFBIohg0MEKobbUaMizbaQe12fQD1fTikYq+n8m36L8UQwkEtjpnKPeR6hBq8YzmTLXVtiJo5SPfo1qAuk153qq9q0di3q1oFgMcTf8otZv0+mJql56mhrm0vKuG4ERGz0XtQ9Y2yWXLW9sXnROriUaix6DJtBphCMm2om8nuiek+iL2proT2bS1avLlRnNkSduETZtbfclZnWgIedXGC6uUuS6NddNWkn7W4DDl0GuyBls33aI/VNnaK59otth0rxrV9vHSNxvdN1ZtDjT1D9S6ltYuwOjJmM+5nCjlCqJpJ3nlNhBtOTJVoXMAkPRHor3P6ktq8lpHEakfN/NU249mMBo3VRtOlIVR0lrhZACH41pC58mdQ8uuNVS/l0XKXN9oSS3OxU3GWb/JppHTOtnYJ2NfdYekQeDsh+X1RfRLSdblak1qdKAqnSq71jGy3hoRiS9DxXZdu7Mfl3yBnBUl62aCWFcLO89S8o2IAISYdNwAxIHBgRFXhLhC8hlMOVWDjsbkT/Aoa9aQKomIQUF8L/EjedJ8CXa9U9k45pDqh0xenPxgjij602I8s/G0SBIKxh+WslU6pXrtAljqve9yMIio1hW0vmrPdVKfRn0t8SesH7foLzS+kPX5Zuul9ulWb65JTwSkjX538aFntmuaNk8AUL9EdZZVc9nWgU2jPdSZS6ye2kxbramLPL6mZAvLmGybub1vlmHjQ8++Y25T9r56jab9tu9Cd65nYDCZZO05AJMkyIwoBQ5yrqdfrH58+kLSbvW8mzUTUcYQwOCJsj+nPl2Mkp+aYc+t07Ofas5V0sGdZxPFTANRn/8HTjqYlMZ0qz1OjKy1rc8pri3sAPzHOYfD4XA4HAaLPyg4HA6Hw+FwOG5puJ9388I15xwOh8PhcDgcDofD4XA4HI5TgkfO7YKGUjfh1TkWOnOhyi1M9TuGmqqEyYQoV7Qr1GHDTbqVWVwurbeINjHOrLQCG5crYbZ2W3akcFoGZcpmFWqeyy9hujlc38SFqx2G8lDZqmHy0ZQ9Ut4+Wm2o6tH8os8Rsu08la2nqzKX8vUqi4K8K21OaaBCKa0oxMTggcCrtNW3pTuWrbVTPbFuqw2Ubddbm1qw4TVEAiKDSWiLRP02N/0iUQ1KGmSbmJDoFsf9N4Q69FSp3ziFTNUAhLYRhNrKyd7F8tRZFLqDbqPOAIdCm7Hbkef/4Fjbl96rjPTm+hqlpiitte1f+d6O3WzSrMb/LjQh8BltuXa2y/xztsfSPqr0qaZSMxUab31ZuSQiUSWaes1zV5jfY69ry3bsf94613AAsCrtprQChb1et7rPNANDVdF2XabxUmlLGf9xIAQd1y2FRmntOkTXAK9qO0jGbKEnIFO4tYHqOQo1XdzQhjhXsuQdS/lZ1wtJH2YuuiHw/6g67gBY32U217c+ma4NQON7mevbxJfWnV3jy865Rv6As9xHuxAkv4YprdeJXkUdmj8lfwjGB7D+Jxu/Vm/lebX07M3UTEJmeKr9nO2w6w6ZOmSp6jI3lrRrHxa9UzQ/l9KhTG1Vv4YGBm8YcWJMYnMwvp2mleUuLC3SuptVXyiZUzVPC42UIX6oNQ5ziikVv64+bvI20iCzMudzdcLMBBK5mGjaokqfOK1vpu8pFdbabN/z80IsfS37fcf5BqY+Z9e1zzV5zAg12yRB0q85YN5/O75BHu+h+FNtP8q+RkujPYEvuEhtrQ0u7WfGA5k25qh9rJmjbOG/ACwyx3sndvjgM580+1Sc/R4y/HVm8ZFM/820+p6fa+cfnau0jYMQXIlLqJHh6ypllaciTxJYhrSM9YrWaimtdk7QZJf6tMyfvVM6T9Q9t8wt+fmkR7++EXA/76aER845HA6Hw+FwOBwOh8PhcDgcpwT/cc7hcDgcDofD4XA4HA6Hw+E4JTit1eFwOBwOR4FSuhwOh8PhcDgctxdOy89zKu2x8B/nFqBybZZ7XrQK0pbIWbLDaIhUW4HLsSwrFCkpa7SaI8SixdXw2Vu9k5mRalSrLwFE1f+wAy9IPu3IiFT0sKxelYg1UNYQ2GGL0eBjo1lWyRcYjQnVRevy9wlzzQ29t9XRy3k3h0QKg6S9SLazzueYEKNqzlGtSREYcSVaJbFOeJcGWdYgacsMtdt8RtJh4EiiEydbwGcbU1vR0NGHk3RVxiFr6GW9EZR7WuEwYiBQEtUyOh4cGYhhPlNL/enW8kWYDHU3avp895rqWhYdDjYHO9ctnFpCb+t4mpLeCpv6725N38s/2ERRt6O9ztavyV/767F6c+ZywGiN7LwYTV+rb1jSUsp6Hp32W9Rf0rFq2j+XqTeOTbdTjTsARTeN6rGUNRttPbV2mLot+jbo1m1lq6SfJUIHGXdstGWyHQCviplxZbRHrK7kLC8gTEDs6ZCa+HTSOQdAHEO+Vqc1atoJRoPOd9VyOK4tmJDW36xXZE9ieY5Ecz03n5vlQK/N2lOat3UQjbaczilJZ9eIGcm8lv0Fm4loOLXziE0PlOZjUlE14FiNWrJpim+nGsVZn9Ui+2nI6Vtt2V1Lfq0117eHg/HLtEymbaipK00oa86tInij2msBIMqaU7quVBqn3UoxdV4ZR2jX4axrpjaYdY1CqkRuteaCOsjiC858Xpt446Mu+OqsmsFE4gO3ZUJZl2HaSjTC5mODZn5Amx6bz9W97aHSTLkdl54d7AkyH4iTFmylY7ZgVy5n23WD8UXaOmxtwvK4aV3GmeYd6nGVqpdnadih8gUt/5JApa3X2FPBTi3qb3XmieTb1bZWRqver01PnxOlb6cTcyP6GsLo+8UmrzzvDFLmAUlHXI5HpEcgtcFqzrFoDucxZMvc1EP7nG/n70o7T/1fvd8+YuU0lyYax52KW47Wenh4iK/6qq8CEeG3f/u3q3Mf+9jH8G3f9m04e/YsLly4gNe//vU4Ojo6HUMdDofD4bgVwaf4ctzxcD/P4XA4HI7rDPfxbkrccpFz/+Af/AM873nPw+/8zu9Ux6dpwitf+Uo885nPxK/92q/hM5/5DL7ru74LzIy3ve1tp2Stw+FwOBwOh+OkcD/P4XA4HA7HnYhb6se5X/7lX8Z73vMe/MIv/AJ++Zd/uTr3nve8B7/3e7+Hj3/843je854HAHjrW9+K1772tXjTm96Eu+++++oy0/DWgXMoP/Qzp227yW61vPRrsI1HZlQ0Sctm6LCh6gM2fFY2Ze5HwqbwWQ2Dt+HwyeYOTbK3zb1cr7RGCgsFVKoDC2XXpJMpDz3aQ2xik8mk1VAl2FYU9FwJja6oHOa+TN1oQtRz5HEk8JReLX0VQ6KVcuTONux1eXJ4c4dem/NT2q+9VftNBJgaWuuQ4p0ZlLYcb7azTxQFzNvFhGPPjWyuMelRJGBC1TcSFZhTfK1SAWO5p0rPHlzgjCaaOGe6CAeUvich6LnfmPQtdWHXf11ss5CGi0PeJ8pblbNShyjRICzVyI5lbeu66qTv9XQa2jB3zVu3TNd0c3+Wwmr/MGAdd034fJey0qsT7W9tbLRQW6ipS0vrKp+5mrssXSfTSaOpazZp6fWyTbzODXmcaRk688psuhCbcjvYeaqdR5p0Kva2UrIGAscyD6CpXw7IKyOvUFEeKhureV3moAlV+2jfYtsvRsNrQaqTPKXZdmYqtLcb/B/HzjTncNwQ3Eg/TylNvODftPT4QmfUBFC+58gAMz+ddAzleVX9Gk5rhlAalQqPmHySNBd11tnshzTnTNRCdie660ZjNIkPFWSZMnoFvfkzZ9f6ObM8+r5UbW+T6IJ0SmXDgg9GgTEorZUYE1IdRwIQCPEo3RTG5OMkepv4PoGbPPom17bPTc+HyByUGxZlIZTSOvPnmsTtfZbubNd4leJZ8q9Jnw+aclSSLNY+49MSsq9RSfcsgammU3ceE9ryUgRm487Yw4Eq6nWPlpqTE2p0t010fNC8C1bJ7erjS9e1J0ieJVnGTO/adso5rm6X7LPjzibY5GV9G+vj5TbIGSC1eUSh3wOZTjprozZPU78zUxb6Q/Et52VhlaCxFHr1HQcUiachPwqU89p3h9rPs/ZTrMvfUvRZ60eepdS+0sfFH56M39fWJ3HXJ75uOG7cXSecsAvf0bhlaK1//Md/jIcffhg/8zM/gzNnzszOv+9978OLX/zi7LABwMtf/nIcHh7iQx/60GK6h4eHePLJJ6uXw+FwOBwOh+PGwf08h8PhcDgcdzJuiR/nmBmvfe1r8f3f//34mq/5mu41jz32GJ797GdXx+69915sNhs89thji2k/8sgjOH/+fH49//nPv6a2OxwOh8NxS4H5dF4uSHLHwv08h8PhcDhuIE7F1zvtQt/8ONUf5974xjeCiHa+PvjBD+Jtb3sbnnzySbzhDW/YmR516HTM3D2ueMMb3oAnnngivz7+8Y9LYhLeqhQ8ssdYdj6VV0VnW86ron/Zz3qyvda+Yn1vFbo7K3OiQbBSvmwear8mzInSSRMhTG0epdxEiQqnL8kpRbUHTpTfAfLiQge2PUztmqiE/5ptmfLH7q6IPYoDN3QGUxktFXZWPwEsVEeaJAx5srSSUq5MfRkw6w+aN9kdnlpTWxqHtZVLHaQd2KSOAyMMnOituS61zUxdxnRf2e1VbeG6mvRQj/rBqS20Pqq+Y+u33cWqolB0yk7NS/oDa/+Qdx640F3NLmW2Kas6rxpTL+gd17LB0EthYtqNnT3M2nl5eFe7i0l9KpWVJpM/16+y01nHpmbe6e4UzAuvpSLFEk6f3guvwO5Q1+6UZmkNZOozz2l2XmNzn14/yThjGWNcyjdr17YMpv5LfqV+q7lqqW5sOtrPzDxTzfFCbdBdu2b10cKU2+7mNZubWSgNW32F9JpMG7T1YSmt7tA4bkHc1H5eszuj0hl1ri1SDMbXqzKWi3Q+UqqSGa+ZGrs0fu180c6zsn5p+uonzHbvBGTnw57vVOzQuVfTpt680vg2EDkUBK7WbljaZ+t7LcxZ9Vq+4DM191TzqMzf1cv6nK3PQSy+a3mFgTGsJ9A6AnsRcY/za9pnTHuMuGbEta4T0E1djR9cG1l975VF68L4gMnHiwir8iLx+VRSpFBaKfsv3PovJt9ME5xdktKxzwaVn6dGqv+Z+z3mvp9pL+uzZz95BcS1eW3May07oK+M7zdw1/co/dOs87H4U9aHSf5F4xuo/7XYv7n5vCAV1PH97Fgtaz9lP6d6GUmTGdQnVv9OXz07bF6dcuW6Ms+KFRXT+kHmGZBn49f6beU9jPK9fTX+NZnnurKrsm3Y+atLIzZtPvOdq4Kb+jJtmdszwDxfGN9uQH1MpVNM5VZ13fi1lR2Vn4vS9urnjQSMBBpNn2ylccTek9KWHbc3TlVz7nWvex1e/epX77zmgQcewI/92I/h/e9/P/b29qpzX/M1X4Pv/M7vxE//9E/jOc95Dj7wgQ9U5x9//HFst9vZf1ot9vb2Zuk6HA6Hw3Enw7VIHNcC7uc5HA6Hw3FzofvjteOmwKn+OHfhwgVcuHDh2Ov+1b/6V/ixH/ux/P2Tn/wkXv7yl+M//sf/iJe+9KUAgAcffBBvetOb8KlPfQrPfe5zASTx4L29PbzkJS+5PgVwOBwOh8PhcHThfp7D4XA4HA7HyXBL7NZ6//33V9/PnTsHAPiSL/kSfNEXfREA4GUvexle9KIX4aGHHsKb3/xmfPazn8UP//AP4+GHH776nVodDofD4XA4HDcE7uc5HA6Hw+G403FL/Dh3EgzDgHe96134gR/4AXzDN3wDDg4O8JrXvAZvectbvqB0K/0f5bGDak0HQtYCWIoQzbojMGGkPY20KvNOOuaw2TW6pKFii0u8/MCV/knRkqLMgachnUy6JuYz9wxigChtGa1bQLcaK7ncnPSVGMBEc95+UwWqq0LgXL8mufLZ6jNV94v2hpSRjT1J+040n44Cgmx9jbzdvOH/z8QdUMcDVzocIixSmcKgQGCWvmO1CxjgKBofREn/AaL7ESICQpJbsHXJBEQGAsm9jd6JvqzZqndir2s1EyjpmeR2FDsQOB23dWEGAOVym+ykCrKGoOSZtyofNC3K+eu27Lu0tXrDpNqGvr0364HA6F9wlnHJOm47+HQcSsdLJreV2bcplavoEFndNiC9s2pPEOZaeDjGNjuG7TEz19jj1mzu6TMZ7Y9jy2XqVbXnrAlZ0jIijfWulku5SbecX5oS7fb21NRhLldbD0jaHzkdLXuQ8Rh1brFiMia/ti6qMWiGgtb5gl6N9rVsr2jM5ePavQLP68nkdUPpB72x5HCcMq65nyeDqswRZVAzqCzpLbgz3Kv5gGbHK43RfI7qe/VwpOKrRfGd9DpJP+nslfWfKS26VPkjxoas0UlgcF5vKKZ5miODrEYwmZsDpblSzY2Q9ZCr8uXbFoSTqnq20666l6zpNrbD3Gdty+sZgMCV7wJO9TghIDS+K0cpqOjo5Sch8VHy5xWDV2mxoaxppz5a6iPFNj03X3uLDh835THtBRRHjzHTm8tac4yi23pSMKSS0xdWB81CO3vQr63Pah2Icj0HU7YmvZmUrrax+tnid2c/fcl2GN+rfX6B+A9R+nWnb9S+T/FNaekhq+f3t2WA8SmNfzd7phHfXn3pXKxsVzGOzW0ngs3PaD2284yWV59nWj8v1Z/xheycZXXlbNl0rqDav+bIeU4pDwHGXs1Pnh1TWqlPUsf+3Mby+arckqwraPq7HTr2GQDmvaOb2dpmu2xeJyJyn9Z0iDn727O1QfNntRM3ficA9/NuStySP8498MAD4M4PRffffz/e+c53noJFDofD4XA4HI5rAffzHA6Hw+Fw3Gm4JX+cczgcDofDcX2wI3Dg+sL/i+twOBwOh8Nx3eEbQtyc8B/njkGmzAFVOHU62bmBm9DbllpQ3d8JLe/BRsrzPFK4vTaHv7ch5YFT9KyGlWt6MW3/rPS6HIIbuGxjHRrbNdw+J15C/GdUEP08mRBw2WJ89jBmyplDoDkke3dNIkLzaPPModCGMshMyZajADoMCEeEsC31oVttY4UUbm3rMYeGY0fbNdQGedLVfqG25PDoiQrrQOooU0iJhY1QYvI5pkSJAQwmtJo4US0khD4zEZo6qewCCq0y06Ip1xNBqDOBZTtyY7tNo02aNXQdOUybCYkiOgiVhAophIOEzStFmkse7eLR7fvH7T/eoWVraD1ToT7O6Oq2nZXqNKGOae/mJ7dE85L7SKkcU0lrRuts221HPbfXdukVluKg7d3QGkqZuT4mXyr2NKOmtPZslLmlvlFOLYXu2zm2Z59+0G3oF2jQpONK6PptPfVYPd1z9RQ3ozqUm5DHEcWmfMHaX+gfQLmuooGbNGlX4zscjmuCQp26irG2MO/Ukh7zPPoGdNIzNKrKB9VblBqmfldez3QRKHZU0gokGapBAeAJoEDF11MD2vUwJygGZxqcuTC295TC5zmuWW9t+co822kLoanNachqEiXJDwAcA3hMpy3TLPmKEMkJVH5o8e04+VarCFqJ7SEiDCx+FopsSnUfCh25ylPWBSPxwFpPgWtaL5LvxVnCpNibi2zrp9OxEkvOdCrbv3LbIZ/L1Gh7YUh1w9TIsbRQ399Sihd8ZI5aDgZ1FuFWHqMyfbZAdvyW1l+r2kf7IBUpmVlZ6v65C6RrPmBon02imq9QJxmlzATuUlu17NT9UleBHZJqU9f/yxeX8rVSIdlfB8qw4uLrUaxSM7RV5P6tdZGfQ0l9mDlqySiUMTy7sLGxeTZQaRgKqJ7zMo9Xn2fsnLPUl7Wj9crN8zro2WnnIOnpjSSQji+qxrzesOgbO+4o+I9zDofD4XA4ChiYaQg5HA6Hw+FwOG59nJaf567lsfDfaB0Oh8PhcDgcDofD4XA4HI5TgkfOORwOh8PhqOBaJA6Hw+FwOBy3Hyzb1nFzwX+cW0JstD70WI8Tf5WSQHZr6Op+S5fXrx3JoZ3yWlkvTDQNKrEj6mtBqHaU6kNZHRDh7Fdcfgi3f0kXJBdSrzGFYqN90mhAQXTNiv5ZuY/NVt3zMmOmK5frWPU/GFnPjUcCHQUMlwOGy4ThEAhbUx0rIG4I0wbgNQDRHOFQ7Dw+5rTRZpHPstl7KbTUY9HVSAlznLCYieiysOjB2S3NS4Xo944mTGNi/pzbu3RQq6uS9VTM9UU2pG6vDKuhoJ8D536m50jrVtNrbKskOU6iCSJpZ40I269F24IDA4GyHkgPM/0R1fTblXdru9mKnik3cdmank2ZudGVkbJUc8ZS5kaLQ+/r6hi1pxrdlkrHpVOeWX5qm6nfWmPN3KL1qWVVHZhWJ2WpjbO+Samnrv6h6vyNzaRqYYdmx0FpJX10Lp3NX2qDanYOJg3VmrHlsXmqPh3xXGtE9fLUmON0FR0Ox9XBapwBV+3LWVR6c9wc796gJ2k+r+9Y49I8VBJVvTAKERTComaWzjeabZSFnYOuh3Y9h/gVdpIz/hXNpvDGz2vK0ayhmkaVntF2mun2mXSyD2bSYOsjTmkipZGyrmvSVDZrK8qczAPnOZtVD3cAeJ305mhIhoWBEYaY6ptSemzKwsTJj7FrUvaT02fbcjRIW3Ks1stUHip+q95r07T1Ym6uvqI+l9uDteLmHZOMdnSuLGraQt8rX6P4V9lPNEtWGQPqX5oytOlZX8/cZrVwK206vTYY/xKlP+ckKl+Q5nloPjZdu+yq6Jm5oOr7VtfRpMFB/P5Wtzup3zWF6JSrfdfPbJpS7Wvrdal8zZis0qmMaF5NWqqjXetiItVF9iWbhFsftQczhipNY/GXclva53TJM8P6aUv1gVKGbE72MY2Pjvpzvtj4vFbrcHa861ebOVznPHvecUfDf5xzOBwOh8NRcIxD63A4HA6Hw+G4ReF+3k0L15xzOBwOh8PhcDgcDofD4XA4TgkeObcEE9aqFCpmE9bc/NrcRDsvwlIoZtSyXdtpV4kgh1tXYdtch9TX4enyFhgcqaYUCE0s0e6oUAYkPeYTRNrasHMJ0SXmEtYPORYXQnhJQ9IlbN3GGs8KavOVizSkuakQ0m3oJ8qh0OEwUVrXTwPrp4HVZSBsNWSeEDfAeABszwLTASlLQuisLDRIbugDmmdDFyAu29QzgNBsSW8pDwRg0uIEBOGgsImZzu1bUT9sfuZlccL/jti2YWnDciuDlApjWAHMqKmLloJh+jQbOiuoUEHSdTS3e1dofr6vyUeHp1J1BnlZioNyIRcGqu16VR6d69RMbZPS9+UaDYXXEHlldciN+b5j0j/Olgq9clHJrwrhR10vS5SobEhLQ7GJdSgTM7r5Aj3F1mFLA7M2aX3a7e2rYhoqhNKJlc7e7mS/q39Vp5r2au/PNukc1lAfOKDQ9Zfq1tBxKkRDu/P/cDoc1xYRwGTmJ/3TzokWJ1mjyu2dg+b2AIB5ec5rXJ9uWh2qVSURYWzN820scyhNAAKBI6f5MpSkYDUVbEaDzK1IfibF5fW0MkHmQdL50Ng2o0+2dadtEbim8okfRNsA2hKGK+nkcIUwXAZWV4BwVKRLiFMZ4wqYNsC0T5gO0rlpP714FUEDI6wmhJWhtYo/x0yJ/irxDVF9JQaIKa/x1dydfYPyPEEDgzkUv8jWxxKs79I+JGT/jZtuQeaCfPDEqCjbJp9sCjXpklnzuDyL0A7qZSt1k4tkaYGatj2neQYWGqkcs+up9i/zsaXH1vYXH6UuW7+fq1/QlsE+iymFtZKvqB4cO7Zke5rM8gkstmOX+rvwfem+nj+2lE7xeQmIXOqbMTOmJ22k+c0+N36npdBSpDSXTdLjg+kchlLe89vsZ2q+Zx/T+JrZl+/NyernDSz+nhwfSr+d+YAzO3lZuslxx8F/nHM4HA6Hw5HRPpM4HA6Hw+FwOG4fnIaf5z9BHg+ntTocDofD4XA4HA6Hw+FwOBynBI+cczgcDofDUcCcqCk3PN8bn6XD4XA4HA7HHYVT8/Pc0TsO/uPcAmpdr9SRKFLhjbcXq16G1UBo0WoHMdLW6/Z6q6UVqf+sUvHXO1oVkUxMpCXVi52h6AG0thEj6bAAsp271Tfo6FUQFz2LSlcAecf0fF4PWO2KrBHGqUwD97WX9Frd6r3VHGs1MQCojhkhlSlsRYvkUsD6KWDvc8DeE4zNUxPCUdGDGM8MODxPuR55SMlNQynzjPclOh9t+1MomnPgpPVSttmmautuUNJ9SVlQ0nyrhBcAIqr03tr6IbGNT6Lh1vtu9RyYkl6YbXpT71nTkFHpiiFK3Wm12LY6Lp65d01TzZWmQ6MJlKVYVHuEzfVXE79d9f2rgOrNGUPI6lfAaFjs0tww/Zl0vKORPGmHpL2nTdtobsw09ey81YHVgrNaerPqpPl9rdwIAHCQfm36kEo1pnqibr0kTUxkfcxsWw8M0ESgEQjgWl8mdnQf23u1nu30qmXOWqSNbUHeh1IXqkNidaD660fTR5kqHcdKM8XhcFwTkOgVmWGXx2jSNzNaUWbstpK5S3PtTA/O3JsP9ZaavM51Br2s0bw4J3T8tDZ54+clXV6jz8t1YdSnqLNIfliWiatEaOdlsX4RLehvZg1aonl+ek/gWq9O62EMCIcBq4uE1dPp1OYp8e+enLB+asJwqIK+DF4RpoMVju4acHg+4Oh8SvDoPIEHYNqkBYMGxiCac6shIkiFRybESMAQrZGIjKR91VnHW41g7VmUbsXMf+RUFxQYVbOonrP1M3IbsKy7+jzCVZNU2nP6DJDbcmGBqcoi6Rgt6aThR/3OOFtbqfhEjU8yg6mLNBbLe7mGK3+oej7T63ppL4ydE8gmVmlU4nfqGzT+atEjTgM9r+u7fHOUa9h8rozU/KM53rEBQKV33NM5nmsjNvfvGtMt1CbS/mYcTOuzmsqu9Pq48S/VH5PrrMa1zt9W3666Lxp/fKFMZkhWxymiaEWjThehTk6fMVieF5MeJUqfVE3h3rMNATzRwlzuuFPhP845HA6Hw+Eo6DjoDofD4XA4HI7bBO7n3ZRwzTmHw+FwOBwOh8PhcDgcDofjlOCRcwugWL8ACSs3Ebrzm3YkaEKRq7DniERt7aXb0NbysWqbb5sHDDVB6AOhhK7r/S2jNVPWNPQ5mntOEkHRUkwlJL9sed3wOWya9p6AOqycO6HKwZTF3p9DovuNECYgXEm/Ra8uApsngf3HI/b/ZMT6c4cIR2NKZhUw3rUHimvEYUDcAHGd0owboSxomD2XzFPzadw4MkWAiEE5vD7VJ88awJahqftdfarHdRPaCHPKV9tSaYN1LLbl19hOWd5ram2dTx2ezjm9vOV4WzzbXzWs3thQ0XU75c7UhoBZl+raZ+lJtqhRqMETpfD7BXtLxjvOWeOYC0252X5dx5dSbTVdiqmNKKT6q8L1DW2yYoZXbWiui4ZCq/e1tBE7VCteg9AuZhxUFLtsPTVjmKnfFpaaWSVLBEQu3cHQP7rdTfuilq8tY9O/M11tNHSKtly7vmue9rtcZ6mtuYxqV2juI05tfty/wTLPp2OPUjemY9K4xnCaheN2B42EMNjFAZmKpJIjFW3O+F8AkGn5DQULzXddIrPMxsyQ+mu1Ztn8OPkZHAlMARHRnFPq1jHcPJ0vW1q+rlvWBxE7ZtRWpYQZ/7WY2RZm4fMukFn0Mu2fO74rJfmCI0K4QlhdTHIlAHDwJxEHnz7C+k+eBn32SfDTF9Mt0wTa38P67ruxue8urJ51AOL0KBQHwrQhTHup4EScqaxDiIX6GYOsWepf6fydGpo6Pl6m0cVSrkzTk2rL6atLlX15VO3F0k5kfWHb5/JH43MT11IzqjUVku9SXavvrc/OzTWmbLZc+VlED9m+VqXTT6+HQjmvpUyqcdn4mPnd0nD1c+PDzNNbtqX1VfKzYsfP4miSsk5uxaXfkVFri/F1SMuG9IwDa4f1G2W8Jxp6crZyF6WS1iKzuZm3KomOpr5t3ei8wAvXtPIiFb3V+lcoflX2oyE+XqZUt+OBjvft0Slz4+NV/jRQVURLqVZKa5bdEZmmrqxOlsCRckdK5bmBft6pyaW4b3ksPHLO4XA4HA6Hw+FwOBwOh8PhOCV45JzD4XA4HI4CBnxHLYfD4XA4HI7bFO7n3ZTwH+cWUFFae32X6pBWmoUql3Mwp2wYMgChIKLhT6BKowoLNvlXNCjI/Syh8Uw11WCwRhk7TSh73g1RQ9EnCQGPKQSeLSejom506HBkz8uhiERBmJBDrrlJT8P8Z7t/2uR7UeBswtUbUEy7Ng6HUhWHwOoyY30xYv3UEYanLgNX0klarbACMO0FrM4FbI+ohBlrX2iqPdNvg+xca+va0mCWwtfbmG97qr1HKR5Vx5I3CVVnaL8y7aK8CaVhNNHfuQ3trkZKc24zAsrOapnKSnV/mN9Siqh93fbPXeHVhq2j9IUZI9fsAJbzafIl3UE277oplJiWjtCkXW9eN6dhVNfkEHU5Z+cQrqkPiZ5JoMilnQ1FtaJEKT254kuUMQXoeK3L3wvZ1/vZ7GaWxz43Q82G3Zv6nfWfHtXYzBF2CChlQFngWpylPmDpDDP6xUL5lNYakHbWo1Dv6ja7b2EIVvXBdX3MqGud+2v6TW8i34FMdaCaXuFwOK4JaATI7K5MBETZlb2iygFlJ8hqruByo50Pmh0Udfmt1q72HajP9SZDmXcSrZVhyS/Zb+rNo1xeKl+it4YJiAFCD0OiYgEityAJWx9XSz3zPa0vWU6mHWd1/ZI1oN2FtllPEkut5w9B5EPkewRoJNBIGA6B4TKwvphO7j0xYv2Zi6DHPoPxM5+pE7p0CeHiZQSO2OytsD2bGn17ljAeAdMExInATHltnvlixmyudB3I7HiPyt/JldCUWSmtuV60PzLnXT6tz6cyJSx+TE6jWRdbP5VloU0toj4HC7V1Vrx8X89vbJVQcrGi5BzY2GP8m97a3VuTGywun6y3q/NrnA0YnyuW771dVXMedj0nVJna9lQqYi6L9Q1MEQnG5zR+Uj3wF0s9p3Lbcnd2jbc25HKpnIqO/UhlJ2jbRtavMYez9JIxnUM97Gc3mR2Fqx2vmzLoiVxvce7jadtTBDChouSGEYhK0w5UtaWtkxNB8+08/1eP9p16qmi+WreW0tqM+9wnI1UyLFmKxXFHw3+cczgcDofDkbH024DD4XA4HA6H4xZH7x85jpsCrjnncDgcDofD4XA4HA6Hw+FwnBL8xzmHw+FwOBwOh8PhcDgcDofjlOC01gWQbEu9cytmq9u2JIhg9RVUe8LcztHw8SUpe+8s5JQMz5+a63M+RR+CJW0iJF2JbHd9Y6Ul1ehl8UTgodE+EL580YzqiEYwiWZdSTttFa3aECZj1TSIlPUnKv2MnmaHIpbzlQaEXh5Nnqh1BLgn6MCcdcPm+mEEnjBrp9wFILpvpG2gYgnSxkxF+6KnW2DSZKPVkDM8gWYVqbYNOOnIAEXLrJNvI6thq0HMNm1rdRNIDW1u3lUuKQPFRhSj1R9B57v099k2961mRge2X/OY+pjV8+reZ3REbDozvTPtr7HUddYBifN0ZhohE9K/SUwadkt5rWYAWX8m65FFgMaSbqs5UhVnQe+DYHRWqj4HaaumHLkyyvuiFkxjx0zDr7Fl6Viesjpt0qYPABC9uaznGShrSXW1n3b011kZdtRx79582ayvm3Wj00dUnzNMqPUEbwSOG8PXM1+H4wYhjysdmsGMWfW1VD9oQNEOUp+kHZONnzdbW4jqeTOw8YXsdcf5eOpLlMSZKWvOdXW9YNb+Zv4ioqRVTJTWR6gfAWSt4cio1n+pJI7U+I1Uz1VM1Zyv681Mx876oD0kcVyZ08XGKWk0hTG1ZYhpvuyVvZ8mA5ERJpb0kLWfMBLiGBCHVJjtOCCEKLcRotY3gBgJHJG+i5Zsttn4kLZ8fBIbCaDkyWU9Opb1TP3Usr6ktuq491XeLB24uC9Ut61Nj82NqPW8elLT9t7KKehdZ/x/lnGRu9eSm8tIGl15DHE+XGyx/rWpf/McktfcnGHr36bC2blBM8p93fh5+VmhXcd1/AbJzs41Jt3jNHQtZjrN1q9s/ZJgite8dukRz3zuthrs+SVkn7JcV2kQtvOUtavVetPjYo+OcR1WgQEeKM3fbcFmut1YrOdWY7kdu3p/1kHm6vY6jxbS74qPSsBEyb/blnmMt517ryfc57op4ZFzDofD4XA4HA6Hw+FwOBwOxynBI+ccDofD4XAYcIr6vcE4Pi7Y4XA4HA6Hw/GF4XT8PI/WOx7+49wClCJmaWxVCLkJ/eWAFOK80ON61C77WalqVfrtfTaMm5DieENzUUtpsNtwK8erDUfuhLIXSp6E6AsVldGhIZiwXiox4fl8DiGX9Cz1jkO5v4Q5m1ByPafl6tlrq6WiVvQukuRWwLRH2J4JGO5ag+IBwt46mTEQprMbTHsBcdVERGt5Y21EDm0OyBTRQkFQGmKhnOQIevm+a4v4vD28UjKVogskCgohbZMueVGOyU40CI6FNkB18yyiS7to6b/EINR0lV4hqkNVwg3Fr6FPgBhsKbkaXl9tRd/QKyzNoB1jhmoSNEg/ktDXaTZGq6La9rah6ZZeUPXX0kaWHj1LV85ZarsFU+lPhUbA5a1JO2/Hbm2jOi393EW+r1zQzoGtmbuoV917tJ5kHGVKvzGuys/eb+bh7txor5lKPonyUHa35wGpbwm1lcCF3m7qaZFS0uZv7ejU7YzK2/RNnROqOWtSyjIVqtUEh8NxDZGlOwyHhIWGhsDggROdFUif8xpGRbIC9fyaDpT32Xxs/EaKZR6q5BqUrpf9vPn92T+o8rSLRXOfTZrrczQBgQgxFCkMDlIu8TNg/TWobyNfIhkqJ4o/B/GF1H8hoFB7uTfFlrps5swisYFSxrzepZtiAMb9dGp7bsBw7xmspvuw2tuAL12WeyZgvQLddQ7xnrswnltj3E/pxVXJDxOBx4CRUgcIq4gQdFFO5Y9SZp7Ev4uG5guIT7Kw4OZ6SvXDoFSnWmf2Oq3vtl6Mr5noww3td8mv4eKwFN/9OMfQJEjiy3b9Vsv703LO02GizN1S6m7Vv3o+RWullhPlRC2HY/qHPW/Go6XncpQ8zNis+yGJf4ciiYIyj6Dx9dh8UF+uQtOdeza2ftSMmt4rl0m7+l75SurzLDUkqvrp0pjZVJHxQ/O9xterbOLaj6NOeWZzqByyfpA8egODzOPq22FHXSN33zp/zWtJHkb6c9slqvPtZ5Xw0QyNFEKSLSHQFggjgcbiwzsc/uOcw+FwOByOAsZcT8vhcDgcDofDcevD/bybFq4553A4HA6Hw+FwOBwOh8PhcJwSPHLO4XA4HA5HRqKcHENzcjgcDofD4XDccjgtP2+XjJAjwX+cW4Llm1tBgKxVIDxy/Wy2GV9Kr3uMSl4cYbYIN5dZnRIyOiRZa6JJM2u8cdlKW9NuNQ5ItEXCnOtOhn/PkeTanqDCjjLzgp5Xq1WlAgRU33siZA0GmukzlLwYcZXSm/aBcQQOYwBohWk/IByW2N64F3B0LmDaJ8Q1Kj0aq2tnjzEljQqOAIwWTfpsbaJZvbHR8uhuNR4JrBpmE5VtxkXjTvsBE4EDG+0/zHUnrga5DXY09K7TPaGKBV2uXn/XsZDrX/tfcz9JHSWdiH6BKRIwiR2qfyHacGFC3aZ2WEeq+rzd5r2riwbVktB8+zod+p7HF9X1pHqMucuoDVY3oy0ko9s/q/vacdde1kxxNuy9q+OoxhiDrAberG+odpFqEMlNlR5iT2NlB3J/6eiv6LwaGWW1o2b+AyrdnrZP9zVs+jbMdXKomgNmejR6fqrnBRpppjfnWiQOx7VFmDDTnNNxbLXn0sVc1iQdsw2yG2PHe+sv6AfNl+YnWfyyrH0nNlQ+HNdapaoBZ6WF24yruTLfiKKLaTTSOLLR6+L+olP5b7MSmvN9e1opW/FkUHkx1hdk84L6Q6lAPBCmA+Ao6wAOmPb2sLl7jdXFcwiHaQKlyOAhYNobMJ4dcHRXwNFdqQNMe0Z3biLwSIiiOccsmnzWV9FlQzWFO2WcaXVVPh4nPWemun99Pk+vqgMsnytNuJP40q2hVpNMdQJN/yRblmpNbWxv21j74FBrvVbOh7GlNX3mo6gdeW0ufaWrZWbs0i6tbZd0mmH04erMsxaZ+I3Wz1PN41YPl0NxhW158thX7Vtb9Vz0uWd6tIxaE63XVewcNi9GDaNPaPXscl6d41o1RMm/Qij2Fy1yam4w/mdOz4zr48Dl1kp3TuYuHsp16USpB1NMoymISncu36t9JqKuC5R0jtVtznMBl0lOjmedwinpzIUtIYzi40WA3c9zwH+cczgcDofD0eLzeD68JfN0OBwOh8PhuNPgPtdNCdecczgcDofD4XA4HA6Hw+FwOE4JHjm3BG5eAHZS/OTUnMJGu8OPNVRXKAqzS5QupdTFlurANItY1rw4UKFUBC1LG3Kewm41VLdKqxPeXN19glDp7mG1RcK5Z5dXfIYmozZ03lIJbNi1hlhr+oOlCgjtIQBxHbA9QxiOhpxGXAHTPmF7AMSNCZdufsq2FFRiaSNLAwFm1JNZGQIlzp2hDAASKq59J6YttwEAZvt2SFi2bh1OQcLzw6wXFWrC1YAJzEow+Tz/vdJSWu3xTh9hpboE5NFQtWUwofH5IObh551Q9VyHknfeMj3O+0t1X5UWmRD/OiQ/Uyg0XaBQkHsw97HSAFoqh45/+z3PJwyOZvw311i01d1S5dtr1T6laWQaRSzXWAbojPJq5rwqb2tbQ//o3dfFAo2jtT1EGUeDDDNLyQmGeVGGa01rAGpqrqmPnu0VtbVJr0cJTnQa6e9mvAPI1Ogwlv60SCt2OByfHxqJgjysd8yP1YXV3E9m/S/pt7QppdDOpmnj5yX6Pyc/z653zaTINi/l6dm1yd5nqYmdMi3Ot1RsomY9Z6ZCtTVzPAeu1tRch0oTJqFwNr6K1iPL2laOyStSNf9STGVmAuJa8hN/bdoDtncFXDkMCNsVwij+RBSbBiCuCdMeMG3SPeMBwCuUpXgMYJ14OaRyBa7rwdQHgESN7PmhPYkXmfdTFq0D3lRMtc4wZrRgMvXKrdfZc3DKKQbyfYtopHxY7F1w5RbSkHvl2UTlJDSt4sct16+akovFpd/Y9dr2m7beK4qjTVufwyLm7jKX/pYprXac6xpth8iu5xsCeOBMb61cipj6EBl/P6//Mp66ciltPjt8PG6+W1+4UC+bcrV5Sh9UaSQAwGDOMwED5rT8Xlqt3Qs+o/26U+pD5x0dL5qE9bPa9jL+504bbfoW9n6gorpn31GeQ4JQWmlCoreKvA6NO/J03DHwH+ccDofD4XAUMGP2j5wbk/Ep5OlwOBwOh8NxJ8H9vJsVTmt1OBwOh8PhcDgcDofD4XA4TgkeOedwOBwOh6PC57NhoMPhcDgcDofjJscu+RjHqcJ/nLsaiOZA4s/PRRYq3RF7D6NsUb/EYxfhA1WKqHQQWl2JULTa6j26Sx6aZ9ZWmAisW633BqTVAmjLzMjbZfdk4PKlWReAKlu62lJdvr6IP9l02vvaMst18y3ARa8EXPQQJE40hqR5kTRHgGkvbWWdTqbr4ipplsRN+gyIrsJx2hq7JjvRPiCxgwcpltHxqOtCNBGmojmXdCHk+sDgiUCiOQezNX1XE2WHzVX92jZWPZJOg3NV3537Fb1+3FZkR6Nlptch2hYzU7jRimjPAald8331GFnSI5nnQ7Wdzeee5lyVdk/3Q20QDZzqWh0joU1ItCz0Pquf0mqRNG25SydyVn9Gf0S1R1p9jq6GUaPbQTZfO8fYuG2bhtE8qcrQNXqeN1BsJZOvjjurt5I1SdgkoPPJVA5pmlWfadt2oW5nWp3NbRyp2Kl5jQCNZg44Tv/E4XBcNXTdqDQn9b1dk8x1FClpB6kumpkjSfWosDBPmDk5zw3N/MGBZd5Pidh5rFzUHIiyLizoHGdN4db3mq2zyxMNmxt5wRnSNajOo0lTdaC6SbQ3p0M0Gb/Srq8yH3NI2nHqr9EeMFpdWdNWOdmQ1l1de5NPyEU3NMo8jLJ8MqO0jS0SiUpuMH48IeuRITY+k1yQ7dm5zlFZ5wMnEVXVnc7rf734E5l+3fXtjd+5tEYx5m2h6Uk77ew3HX/M+iLZPNHPntVPL9mZ71XWSe0PS+bMzNuxbrfjv9UpTn1SrlnQnKv8ntm4k7YLKFqTmtUg/ZU4+SH2uZKMybP+ZPJs6kn7tM45VNWh8ZmiKVejOVdp/YktHKQ+rP86Q+lrttu1ba3tQaZd8jFTpjwnh2Jr5S/LtarPWD036DNmfsAw5sGkb8sL03a7+oxeKAOvkuiMqi+Xbg4jit7caOapXTp6jjsG/uOcw+FwOByOAgZOR4vE4XA4HA6Hw3HdcRp+nruWx8I15xwOh8PhcDgcDofD4XA4HI5TgkfOHYNqW2kNS68ocighx0xzylMOkaVZmGwOzdXPhEJLDClEnpXSpvkZqkPOO5rwXA37Z1RbgTNxorZq/jnEnxZ/xSahArCENdvtxasw7CbsPYWWS11MZfv4NuzbhqCn7aVle3at317osHL3cjk0Tcr25rrQ6xW6bTsliq9SBeIKmdZKQgVWymtcATzwPK0lSEizbqFNgcFMIOJENSWkbeSBRLkVW2esD+1DQmklU08k9cNI6WpeHClR9zjluUQ76SFTe2yIt2GXcNufOv342P+GWEqDIo8tM4ZywnLbrnByHZ9C9622nbdjsHNfZbvN046vE7V5E/Zv+3UndL+yS/u6tqmhBmiIfkt5AErYf6YqWVutHVqHEdI3+iyV1i6gzH2Z0tpQgC2dtksnbse6tVHr2cyB1/S/aWzs0rmr1yZkXnp4SOMHsekKktaMhqR0CvOuSOOq0JxaG6v2A8p4mKjQ4+L81usNu+45HLctGNV8YOlMDIhfYs4Bxf9o1+XJjFvj81TU0lCzqypYP0/pWO16VC42PhCV9KJIYBiKmtp8YqULI5OivgwRwC3dSn3PkeYUX13LpQzql7FWbPaJl9dZsuXTtV3r1/h5MzUQpaiuuHYnbPtp+fLJclFFgYtlgqZJltQhrSdJKoGrNEgcKYb6fwAiFxkKK0ti+l72mTt+Sab1qf/KBOa0uKs7DCQ/wcqPVP2r8a0q2nH5gBmqvnCMM9TQZPvXLN9Kumjn5ylzrq2rSsrHrM1tmS2sP0nI7cxGNqQtYpuXtSFLqaC2r+vv2Xll1rZcfAeTb5ZPYgDBjOWejb1iL4wp+xynN+T1Xum5lq5rJE1mbrTWQU9uhuafmUTCY8Z7R+WLWXpqlkVp/FO1L9NqKY23dl7NskZ2bo0lYfu8buV0bP3obY2aUm2+pMNs5ictJ6NaHwBk/y40/vWJ5+lrAPfzbl545JzD4XA4HA6Hw+FwOBwOh8NxSvDIOYfD4XA4HAY8/xf0DcrW4XA4HA6Hw3EdIdHRjpsP/uPcEgw9ydL2NPy8CkE2VNay400dOm9DZ3sUxryTjmZltl1kG/LcCX/O6Uaqd68ilDB3DcnPVIFSpurdQkPGJyR6XUSO+a1CjZsw9IpaG+swXsRCr+DY0L2YQLrjaFVmLu3R2FuV2dLolCZoqRO20gKBV4wovDKlQuT7dBevldAcgEIvtHY0yYIBnqjEpEYpYRVWLTfLrl6cd/Giqq8pnSN/Rl3GpfB5bsPwpW4tBWRGmzjB/Dybw6u2P4byYO9RxLq87e6+s11TbTh8VU/SD+wuqW2o9jHlK9QQSb63M28Tij/b7cqO/4WxPqc8oqZDWB7xwn0VJbM9Z6+x4f9tkh3Kgd6Xbbc7dbV0/eOa+7j+ZMus9nXm22xi2ycWYNnIlgYSJmAyY1zpAyw3FYpu6lsckHfCzVlyUwdtkcyaYcuZqPI9jgny+M+HWmqYw+G4ocjUr5gWRqUotv6N0iwBzCitecc9rueuls2lvl1Zd9Q3gOwwz4nO2Jv/GbI7q9itO8gK3ZbGOYWqK09gfNeURjpJAeCRytpR6Vok42kiQMuefcviazAlqY1cLqGJEmnNtpO+lElfQPHtJpIdDqmi3dm6JK03IMmHEKe6rPxmLnXWzLGFRtyv70xz1TzU35g59aZy1c8DpMSmLmzGbMpj+o3mx6auKIo0C6jQXfOxtkD9ss7pkPM1qtA15z7+Inq04R352ttSkVK58vXq8xofsZUvsT5Y15zG32EzvqrzTbtnc6ztvTpYyHsXrBRGonGaMaBlJQYHaWM7/nL/uro8geL3VOWSeSGIjEau35bS2vYhebyydN38HKRUU+uL5+eguo9UtGBbvvZzc4jtmCFUc9vM382yRurbJeM5UJETafzzpefiPL9Vx6Qyqn5R+mu1o69Jx/8h6ejBaa0Oh8PhcDgcDofD4XA4HA7HKcEj5xwOh8PhcBT4f3QdDofD4XA4bl+chp/nvuWx8Mg5h8PhcDgcDofD4XA4HA6H45TgkXNL6PHco+hhEM/590y13lzLpYf53suu0SLJNuixrEUiZHerE9ZoYmQ7jDQXCc+flYgvme3aull1BLTcaSt5taPRH9F89V6zdXzh2NNMv4FVY0nSZRSNkqwdEDqiaNV29FrmOv1ay6uU2Wr5UWDwUMqieiUIQBxUl8JWSqeiNH1SPZEiVMUIoFVMeh65QHV6FFjqwXQCoxG3qH2wpL/F5gLTzlYrweqdkGrdNPp8XX2vbp9v9EiOs9G2mV5m9ObyWLA6IAudNOuHtX2ttfUYrbKuxsWOfCtwsSH3ea7PLdlQaW0w5rp+Tf5ZA424bEu/lCbMu9U3yZo8jV22HPrdlGmeUUlzplsnGpWteV1Nn35Rdx4vGnFFQ6S+oLyydpzVKcr9thVR0Xo1Gi9cpznTv9uhU5TbotO/WL7UupudMu+os+sJcqFgx22OrD3VG1tRpgDjv6T3soYWbSaq16Bd41+hY1q1r6yvEbjWm2vnFvWdrN81UbYj67ONsv5bvbmenqXqNU1lXSDR02PI+tzaYLReKzvM+qM+KJlFJq0BomWns2DjT860lG0+UzOXW5/Bas4RwAOl7wNX67rVmG3rQfXxVJMMzTpp9cB0jehqitq60rqw6wqAVl+tuq21d8cal81jat3cmR0l7+Zrb7pXv7nJSw081j26yiXESG3P0ql0hXXc6ZrcamgDs3Fj/Z6kKc1Zj7CrFavpiUFZD3bBv6r0aY0bn3XW2nasPvPMBvXJ1X8p49Lcq1rgFjSf11pffqaBbrWFreac1q/WiXVVFvoPN23CQ6d9qP5etaN5r+5RG+x9ely1wm3fCKi08Cyyzyj1RKZNqna05TJ1YD/ryZn+XZUh6nFkoXmGlMZsTrqu4FPx8+hqJ4Y7EB4553A4HA6Hw+FwOBwOh8PhcJwSPHLO4XA4HA5HAS/8y9nhcDgcDofDcWuD4X7eTQr/cW4BOfS5F+7MdWTqjDLYhLtWt7cR7bugodCG7qDhr52ky0ENuwfywMtbuGvMbraP5qHGHVur6026ADKlIZfHbnfeln9GI+BuXl2ab2vL0vdeFtFcJlyLij7Z2KVh7yk0vC2EvGuYe2yODeY7p8R44NRuNpT9JJQADYeuCtR5XQ1sm2uSktdJp+lCQ10O1e7njYoOkfvpEtVGjJuNG1u/hspt86lC8BcLsnRCb+zwLGy5gYpq0aU1NcnZsayvnehck8PyK2oNCoXTUidgaA7SB1kp26ZMrRmWMmRtyeVQ+kTbB5UmsUC5OBYLdddLg4EutVdPktAdAhVblOKlcxYvcmmabHv93Ni0SD2yZWmmW24K1BsDHNKFN5bu4HDc/tB5cEb1zxeYuYHr4z36VxcNZYqrOZnLHCpU1nTuhJTWiQCleE5C/xzT5zCion9mamuPWmbmqbIml7UFsVkK7fqta7eti6b6qqpROQHj2/BJHhBZ7TP1bspEWseWvqh0t4EQB0lHqKpFwsT4F5TqvlARue4TUhjWcjTYyW7t+Td5HRUP3bRJJZ/Q+KHVWmNvMoc/L+ZY08fzsY4vuvSMc81g0q9oj+24i6jHH9W3t2uzpSv36rYqd/u9GicLdWD9NR3zxv+ayYlQfW9VfttHrP3mHDVzVqbAUievHsyYmsnDqDRJ6wcupGPTqyD5kylHT4Ioy6pwU7eNz9/69qS2RiDInBeDzA+BgMgQMao0r/bSbYuzwy2c0WXZ+JKduayStrHtHoSRq84gpzXJ4fAf5xwOh8PhcBSYh+0bnq/D4XA4HA6H4/rB/bybFv6/eIfD4XA4HA6Hw+FwOBwOh+OU4JFzDofD4XA4MhKj68b/e9N38XI4HA6Hw+G43jid3Vodx8N/nFuA3Yp6SROqcOKNkFCrV7Arjx73vk2cuLyApJVQiVGUvLIOwmS3tReePXPiw5vttSs7tZyhPrZkFivRfwcnvy3nTtGCnl6Tue1YXa6lZI0OwGyba61Kq82gsLojFnpPpFqXIZrGZABDuZFFxyVt3c5GD6xtR9uPlgpU9DOSXo3pDx1beeHU5wWrR6P6I70t7G2Gnb5W9EOoPqaXNX2h1/bt8LC6JG16ve+VSUv9OItZ9A1pNTOyrk9Px8K2W6V9Uo5V5V4aD5S0M3K/tRoe8pmsvorJK78anaVs/2QrxXzujWWTXt4KvtVdgdHSWGjPnpzTon5Tr07yWGj0TOw1Vq8Gja5KTGWp5nJ9b6Zea6/NpNKRaub0pWLoudz1lgaoltnojjocjmsDHkTjp9GIsmiX6Z36ckv5dOb1PN9bXSkZ4zN92pwQit7cSMBEWWMJWWeOiq6m1ZzT+S4XbG5Tm1fWUkJnHpT1f6k+2jlxlnb7fWEOVJnkRX/U6FQByP6Vas6phpNOnxFmsVLNv4HLRapBR9ytf9Ub7JajsbPyfXsdiyj5cFw7IVanr+o7gPh8MC/bMB17FmybofcMw/XxmU7YUjbVdf0BdVU+vebdrsmm/7VrLjV5dD+39dcpx8xvmFDp1uZMTcZ5jT+2PZq8d/j9s/Ea5HL7zFA9H5R7ej7XTC/vmDmtKkszh2WdO6Do6i3MXzbfmQ/NmM0pO7s3Gx9K5zudp0N6hVHGvIxxzs/EKLqBbTP02nDXPGbGykxjs73W1l0w9mv/dc05B/zHOYfD4XA4HBa+W6vD4XA4HA7H7Qv3825K+P/iHQ6Hw+FwOBwOh8PhcDgcjlOCR84tIFPAOhQxMNXaOMdQ6tLBpYzMJVznAfByWLRSICMVqqFQLVs6QyqPXG+3EEcnpLcNXbbXRQnBt/mbPFBRHrEQ27tUnpIPBymL5MVAooWGhQRzGHepwJbWRrHl3em5NuQ+GVHtTh/rNPN27hPl77keiVK/kfrnVfrHRNQ+MqCUg0zevaJVsejmMoLQm1G3UY/20R7LdI067Z3h95buYD8rlWSJBzS7v6RR0VHsNVX/m1fKVVOKjrlWQ8pzthow1B3DHWqK5mFD5Be2kc+fTZj8Ysh8RSfpnO+lZ77P0rX0g0x5qAd+lz7Uzn/ms6W1qpl6S6a59vofjukyvfrf0UfVbktF2EWrrigIkYCYqML5VkOR6ubVdoNdtIeTYgfFROkPM+q9w+H4glBRwLCDjgVLx2omvB56l1zt/NDOiUCX0kqj+CGj0lqNj2Ioea2fVzH4zWtmg/V3G8ojcfP5BMi0L6asd8SF3NWf6GUxURutmxya/NneElHat/Vzs8wDF8qbrovW/zM0OMTa75m5OlTfT9lX65VJzoEAFp9zoW/ldIEit9Kh3XZcxpOh6+NhXv4dbdylsnavV3+aZ5dfL1jbZyZZTQ71T5UCHqk8SwmdNUyoqK2zRM18Yp2i3Adt/epzCZM8JJhzJ5G5qQppfLQlP1CSTc+C5RTDjEuU+7IsSXN8Rp81/kmWOgnz+2Z+nqm/bAfVLq/1JXne5fO9oJQe65w3lWEXAETtxzp22Dwv9+pZylDJGth5cmGdmP0+oMfMXDmrCzsfu5/nwC0WOfeud70LL33pS3FwcIALFy7gr/21v1ad/9jHPoZv+7Zvw9mzZ3HhwgW8/vWvx9HR0SlZ63A4HA7HLQqltt7Il+OOh/t5DofD4XBcZzBOx89zX+9Y3DKRc7/wC7+Ahx9+GP/8n/9zfPM3fzOYGf/jf/yPfH6aJrzyla/EM5/5TPzar/0aPvOZz+C7vuu7wMx429vedoqWOxwOh8PhcDh2wf08h8PhcDgcdzJuiR/nxnHE3/27fxdvfvOb8b3f+735+Atf+ML8+T3veQ9+7/d+Dx//+MfxvOc9DwDw1re+Fa997Wvxpje9CXfffffVZaohq5ZOVFGkbJxweu3cZbC5BVigAfD8Gm7Os9IsdbdLDZPVnVo7O0ZSlB+sg+waasPfbeg1emHDJeSaqrhrTduEggNmtx3q18cuEECRM7UVQN5Bq+YzzE3Moc0oYdq5XczJ4ymcGoLMdV1IecKELmVEo9N1N0wgtVWMQFiXfxiQ7MZTUQtz2HMpwCI9ugmtziHjpvxoPjOVEG/7uV8HSmNo6H7WviVKa04DJU7dxMqXXbaoOVebzdYOoXdXfcqkudjHeOFzA8smOba/9kLZq3lBDtlQeHNdRR3qpdXmLwUvlB2qQ/A79ub27Q7m3bDUVd31taIy7KJ/2bGn18aODceOv871zT0tTSKX2dogu/X10sg7dQkNoh7nmFEQenkvjbWrRXf3MpuvdvkvII+rBmNOz75R+TruSJyWnzeTLjkJP/MYP6+dT046P+T5jGtKGVvpkokqSqvSWnuUVmrHsPUfzO6K6uuiV362hVu2fTY/7aJ+VWmjWYQX8llYN3Xuzz5fc8+MgiY7tFYXq0+tZdW5P5Lx86j4fY1/VlP8igRLpjIaumy1dhGKbys+J8pbXfaq/MWHL+tRfdOcolwfmNXVzLcq95yUslyn17zPYHzLmUPfXiqV1ZS5GiPUK1Pxy+1zEoig3i03jjOxjCN9lhJaaxgBGutxNvPFrN8DALrzJmm+qJ6TUluKcUQzuaFMzV7wRbSr2u8VpVTry8iPVPZqvQUgSl+tdj425dJrc3pG+sk+85TxNe+DlZxNNbbMuGp3lta+L34amzltNs/C1O8EBJJkGAh6PNiKqctbjevZ+EKWGFnyfcvzej2X9XaVtjafGk7Lz3Mci1uC1vrhD38Yn/jEJxBCwFd/9Vfjuc99Lv7qX/2r+F//63/la973vvfhxS9+cXbYAODlL385Dg8P8aEPfWgx7cPDQzz55JPVy+FwOBwOh8NxY+B+nsPhcDgcjjsdt8SPc//3//5fAMAb3/hG/JN/8k/wzne+E/feey++8Ru/EZ/97GcBAI899hie/exnV/fde++92Gw2eOyxxxbTfuSRR3D+/Pn8ev7zn3/9CuJwOBwOx80OZtApvBx3LtzPczgcDofjxoBwSn6eu3rH4lR/nHvjG98IItr5+uAHP4gYU9zlP/7H/xh//a//dbzkJS/BT/3UT4GI8PM///M5Pepw9Zi5e1zxhje8AU888UR+ffzjH7/2BXU4HA6Hw+G4w+B+nsPhcDgcDsfJcKqac6973evw6le/euc1DzzwAJ566ikAwIte9KJ8fG9vD1/8xV+Mj33sYwCA5zznOfjABz5Q3fv4449ju93O/tNqsbe3h729vdlxDuXV1+AoKPpEVtTIXN5qFFmufye9Kh/Z7jlvD215/DFpj1DWIyk6CDSh1jqp/FYqP8uasqk9lTmZKy9nsh1kdMDsNag59rt+Ie/pagBgoqIzJ9cxE0jaoqrmRpupJ/Y10wI8gf5L1h4xuhJJ069+telzSPoLcZ2+x5jqJTIjrqkqNkGFZZDLWet9fB5aH4ySZufesi05oxa46Nsw03S4GntyOka3RPtJT9sCtm6s7kqjs9aWraP9kLu+ua5Xl9rMs7SyTk3T38DgQKKrYcad0aak2MhKiE5FNadIHpVWTaNjUelNNvVUja+lNmn6eVcrrb2+nbdEjyRXaKu/cVw6swmlwQltr27ZkW9ug9C0bUeHRfOnmPRncjLaP1VDRq8Ppk8R5lokx6F3Tds/W60Xe+9J8riW8Eg2xzXAzeznAeiPZTP/KypNq4W5UmWxGtmiWR5dtFpEHQ021aDK+qtWV26HblJbttk6ZNenXXZaH5Y666e9zq6fVr8pcNZgYxse0BVq7adbzcmyTuq7PZe1sZo5Oq3RJL6yOaE+tNEby7pYVmesWQN4KK+4AlierHjFYJb1ZUCFSiu4N9VW9dBzllsHDf22aNNo61cr7ST+XZu+dR077uSiGWTej8tH61n7Cpc2sT4XeF5lBCxqynIgcABo9nxXt30YJY/R6M4ZXUctc+7njNLWoivHqm8bjO1RJhQCCOVzLjYj67KRHdOmGamtQ+Pn2DHO5nlK7+NG3zr7453njspPNenlfh/MWB445dVrW9FtTOXi/MxYnqmojDOjzRcmqcMJ6fFG69BkM5uLdK5s+mXr1rTPIVbDcvZsYOfKhb47892Mn241QFutu1Px8QD3825SnOqPcxcuXMCFCxeOve4lL3kJ9vb28Oijj+Iv/sW/CADYbrf46Ec/ihe84AUAgAcffBBvetOb8KlPfQrPfe5zASTx4L29PbzkJS+5foVwOBwOh8PhcMzgfp7D4XA4HA7HyXBL7NZ699134/u///vxIz/yI3j+85+PF7zgBXjzm98MAHjVq14FAHjZy16GF73oRXjooYfw5je/GZ/97Gfxwz/8w3j44Yevfgcvh8PhcDjuVOjW0jc+41PI03EzwP08h8PhcDhuEE7Nz3Mch1vixzkAePOb34zVaoWHHnoIly9fxktf+lL86q/+Ku69914AwDAMeNe73oUf+IEfwDd8wzfg4OAAr3nNa/CWt7zl88ovh/HuoiP0KHbohLvm+xuuQS/K/DjKQ6QShh2bkNxoQtMbylve0l23727tJS6hzgsUusLDlettAp2w652Uu11lnIVdq23p5Gzb9R3p9Wzoht23ZbYUVglrD2MKryZ9n+p7M6V1ZWitG2DaS3YzMSyNlYFM70gXU6ENZ4owdbe61nKxuZ3bcHQz7+6mF6c6Zc2PjT2W2tOL416ix3bzMeHdC3ZlKqflBjXfZ6H8ct5SBpRyYykj3TD0JkQ9h+vruwnl1zKoAVESJkr1RJp/216afkPPqI5RogbA2mHr/mrQ0oiq9HbctzRezbimtmw0r9dMvbIUoLadGztzVp25lpvrlqpE6QgAEAepZi42slBNEg2jpMVsxpuWU+kNaNp/VgigS5c1tu6kP1QFQL/+23XI4bhNcWp+npX5CGW+nDEACcn/kBN56dM5KqCi0VXUqOP8yXyDfKzW8tpn3ElB1PJY/4+ac9aOVsJllz+aF+7G7N56rOuXWfP0e3VuhtpPyukTQMRgonI6iEtr/IO2rHauBwCM5X5dr3VdCyMQtsgURn0BKFIxUD8h+XpA8vemdfL3aANEWU8iAF6z8Z/rRqv8U/M5+/L5QjLl0jpNhc59TevgBOvETt+8c3zJ9as7ermWKt7z5wnjwySZChl3Zj0mpY2qq2r9EzGBkMak3kdBxpZSHm3darmUSmqph8aW3OfUl7N+hjkeDd2ZB3R9nvxsw6Zft89w3KnL1jfVYzoPVbRWrv3CbHTJiwMV36dJVunolsad8mDwwInGq7TZwFmCKPvtOl8yp2dYoalCn6EIaVwHBgWq6eQRiEHaZEBNeW2eJypf0XwmRpGG6vXbTt22PnTtq5vvQJ2emYtyftzYvCtvhwO30I9z6/Uab3nLW3Y6Yffffz/e+c533kCrHA6Hw+FwOBxfKNzPczgcDofDcSfjlvlxzuFwOBwOxw2C0x0cDofD4XA4bk+4fMlNiSXCjsPhcDgcDofD4XA4HA6Hw+G4zvDIuSWEpBewuCV0o++1KA3V040y2nOVLlbFYbdCB2h0KVRYKb3PuOw97NBpyltEJyGCstV3oz9X61TQTIei5d/vMmeXlFaxqeibdOtllmhHA6bD6+9pPVl9A9WaC9uiQQKk92HLcoxNvSeNlKQ1R5g2wLSXDBlFJoMDEAIh2i3HrZ4E5p9JNOiqetcmUW04ey5Kf9IkGLmPIBY9CepqWCQ9FIpGxSSYTDt1XVfg/JJcJvuVkn15O3ejCaHnj9XiMdItHIqAhG5Vr58r3blGB6LVjyh6ZGl7eAwsx7n6F4YMEfDAoEHyZUacqGhhdETYsg5IW76mX/f0J2fJGV0Vq7M207OzabS6dxZcbM86K0i6iq2uZdbwMPU309gwOj40mT4H1P210fWo2iOgtn2QPDtaUFbKU9sRJDolVgvGas4Npk4aVFNvaORJtKzmvsU+a9Ljpo66aNaUWVvtyOOaQ3R3bjj8H6qOGwnr56GZJ8PuzmjnXogWGnR908PN9TDzWldzrdKWK4tinhciJc2mRmupi878MdNkqvJOBymWtYi4uS8v2FrmOv1STqNxZcqZteaW8teyGs01XT+qed7qjqG4Q7N0Zd4lM58F+Zz1g7fFxxsOgeGI0+uQEUZO6yAATJLBQIgrwrSm4uftE8I+ME3AaKtpAGgg0QDkuaukvlhMZbZre/bTciWUQuX0AuW+S1F98l6/0vfSd8o5Mr5oc7zBLr3mmd1XM5d39Pi6WFgDK30402/sffm5RvQCyegNl3EsxR5SOhxSG+ZkIjC1Pnlj38x3Ud8vv0z/b8eobX8pz0x/EPXYtMdymlZDsrqxvJPtE9Ec69RhSpsWykVVmXtzg80LbMvWHO/Ma3neDGVabPXNd+lvVu/HIOsM93zvtm2X/D7rC/fGlbVN27Dxf28Y3M+7aeGRcw6Hw+FwOBwOh8PhcDgcDscpwSPnHA6Hw+FwZBAzyDXnHA6Hw+FwOG4/uJ9308J/nFsADwDp1tFtiKsN/wXqEM0d4bM7I7d79xkqFAk9kS3VIdYhz7OQ4CbsWc/PTFiiO0TOIeqMue1VyLO9z4Y0t+WixoY2BLiTXg4l7oQaW6rDrlDZyvYmfFvpe0CisdKY3octEI4Yw1E6NxwyhqOYKK0TN/Q3EkpriktWG8MA8AhE3Ro8lrZMtEsutjMZei3NKYVqu24FDyT6R06OwSAw1X1E77NUkV6oNUVK26Dr7ZEMtbVXqc17i/bWHMbNAKVQ+JxXM4YW6TcmDLxcz2kb+DZPrdqOfS2llQeh8qwg1FYGVumdtA6CNaDYzJEyhXhpfPdsMObX5evdbNqNIX2jCYMnDfu3Y6GiGpmQeUOZyfTTWPo/IJ/l+IzG0aHNtNTwMLK8I1OlyPZpYzsL9SeugDgQeJU+A+ldz0Hbq6WhmDIm402VNWVvaSYth0L7BulcpfUL9LVzj6M5mCxORG81qMrpce4OxzVF9vN0bhD61Ekodifx5XjheHWBvmKZHAhlXc+0RwAk8gmYSOQ30jtg5tZ4jG06vynNz9L6jKGVH9b6XoRM42VLYdVrAhk/0JTF+Ijzuqgpl9lPirZsNJs/WeQLZlQ3uTdwqRegrHHDVmish4zVlXTT6krEcCViuDIhHE2g7VTorAAwEHg9YNobMB2sMI5lweGQpE1UyiFXBiefalZiXYMNpbWiL5syMVFFvUwnSZ4H1NlkWfqp+FmmbqGHNN/WF2Q63hfpoKLf2vTQaRPzDFWthT1HLfcDKW408hvG10Db7zt5zpJX36/1/wadA8qz38x3O25uOM4ftm0hx9s6zOVr69GkP7er8UGsj2dMbymlWndWxsQ+N+TrbRmyTTSvb8lxpy/c1G3lkw3lHbB+Wv25WwfWgln9Nt/R/96aPXse7dhvin38uLGPKm3a1kd33NHwH+ccDofD4XDU8P+oOhwOh8PhcNyecD/vpoT/RutwOBwOh8PhcDgcDofD4XCcEjxyzuFwOBwORwEzEP0/qg6Hw+FwOBy3HRin4+d5tN6x8B/nltDy99HRhrJ6ALvI7+39C9fONIskD6tXQZPVJSi6I+l74da3Wg9WL4mi0VFiOd4zyfDne1tcV9ct8e+XjmOe1qJMSqXXIVoGM4G6HbDaFUClq5DqD1m3JWvNbZPWXNKZSwmEw4hhG0EjJw0tqVAOBB4CmAJoRaBo9eiOsU+FN7jVHGm1H0qlsW0LBlivoZR3FifJOjaodWiOq7NKB8QU4QRVvStBTko6KcmQyrw4R1f6IFwfZ6q104DUFoRSXq3WhbR1S3seAAyMKPoWWDF4FUFrBg0RwypiGFIFU2AEYhBxo9FTxhZL3XJTx8XMotHBTIgxDRCO6Tur/XpdJDBzLlca6yLYkrUvUoJxEF2a3tboVHWhmeYITUDYppfVnAtmfBDXFWrToQgE0eYJR4wwctJr3EaEowjaSh2OERSjtBeBQ2pIXgfEdUDcDIh7AdOGMO4ng6eN6jkCcZ20SLS9kmaUVJfV6zDz90xzTtq+0i40/SjNN3P9F9U20rKfZOqZNcMOn4TbudKMOw4Ahs5NDofj80fr5x2nYaTzsn0hHT+BTF2NSACxzC8EYi7zPyHpjLV+V6y15lQTFCifs0ZU668eh56+VXuJradcd1TmKJh5N9BcG8rOab25bsGuyp/dVbaOlpbqngb18Y6A4YgxHAKry1Fe6WS4MiFc3oKORtB2BKJZTEMAr1cAM8IQEO1DrV1jQikbBy76Za29rd6c6Axn223ypo+mpV/0gaPqzokRBFAWKqOmbtq+Kz6F7cdo69YYPhPjau7ptMmCtKBau9zuVZsXrTn1Y9s+P9MVk7SzVtmArGEWByRN2zWD14y4YmAtN64jMDCGdcRqNSEEzv7fapgwhOT/BfR9wAjCFEPy64D8eYoBcSLEMSBO4vNEAo8Emgis2pHmuYGitjWnucDW39JzWFN/1fOE+mpT8vHsM0+QY2FMWsFhLPUbRkbYcn5Px/VY8u1ojKApJUhjTOMmJp+RiYwWcACvAngYwJsBcZNOTHsDpv2AcZ8w7RHGPcK0n26ZNkCUV9akW8kzxVB8ucq/tfWg+o2mz6g+tPYd3tFfc1LN3Ne/aDmdmeY81edyf3U+owPeDRwOh8PhcNzmePzxx/HQQw/h/PnzOH/+PB566CF87nOfO/H9f+fv/B0QEX7iJ37iutnocDgcDofD4bh63C5+nv8453A4HA6Ho4CR/p18w1/Xr0ivec1r8Nu//dt497vfjXe/+9347d/+bTz00EMnuvc//af/hA984AN43vOed/0MdDgcDofD4bghOA0f7zo6ebh9/DyntS5h597KhuKwdE1Op7muSQc7TqsZHGkWQp3pZIbWAA2F74T+M5pzStVKAfJdu4hRb/Ee++G6WkTKtAYJY1bKXad8M4olz9O2YcREZWtzpXzM0uuF3Wt4dyxh3JbKasO5gUTrG7aJyhqO9D3KOQZNMdFWI8CDxlETeJVe0bwACZ9foWzRbmiIZXtyKuVX+mJuK6EidELWE0WSS0VFBoKhMtg6sXnMGsNWYvPdUidbKsoCWkp1aWOh5Ea18Soexm0ovylEohcaukbgkjWbe4FCeVRKa0BFYwWAsJoypWG9mrC3GrFZpY6zDhPWw4RViAhIFFcA+T1KOSMTIsxneU0xYOSAKUoofwwYY8AUCeM0YJoKHSJGQpwCeCIgBmAqVUpINFgINbhQ1znRMU9CETKU6TAWSqt+BvR7ojjQxPUYYqRxMHEaQ9uIQcfJ4YRwOIIub0GHR8DlK+DDw3Tj0RY8TbmvhlVagmh/D9jbAw72Ec/sIZ5ZYzqTzo1nBoyG8jBtAFpLcYY0vjCg0AKkrTMFQmms5lw9DpsxE01dGlBE7oeL4+Bq/Q6TTkWVrWhjmFNeHVeF3//938e73/1uvP/978dLX/pSAMBP/uRP4sEHH8Sjjz6KF77whYv3fuITn8DrXvc6/Mqv/Ape+cpX3iiTHTcAHBp6Wh6/HZqq9auyH0WL54C+G5n9NeX16Y/S0czddho3/hoJDTJYSqvO4xPKvG5tQWMzzHlre1y4pzLe1IfOS6F8TobInKvXhHJflhgwvlw+3ru2zbOFKaeVKgGQ6XtZqkTkSYYjYHWFMRwmOutwOa1XAECHW9B2AsapPESq9MLeCry3RtxfYzy7wvbsgO3ZdG57hjAeANM+MO0lCh4A8FrKNBg/mJs+Y/3rLGNinjFE1yVL0SCZpnIv2geTPA1DacZVu+X8aOYrV754e32D7pjofN5FDzyWbq1027YubP80SzdEbmKxH4qPEMXH4zWDNxHYiwibCXt7I/Y3yek5s9ni3OYQ59ZHOLc6xNnVIc6tjgAAe7TFXhixDiPW0smiNMoEwjaucBhXOOQ1nh5TB7g8bfD0uIdL4xoXtxtcPlrjcEx+zeF2hXE7IG4DeAyIYwCN0pZB+3Py9Shy9ZvGLupxduNNf8rPO2PfzxuOEk1VZXyGw3TjcCWNjXB5C7qcfDkA4IuXwJcuIR4d5Wa8WtcHAIZVcuQ25+8Gzt+FeP4Mxrv3sb17haO7Eg/56CxhPAuM0DbmTGuNKxYfXuZxKiRvlYuhSMAkL62Xav6k2TN09zlX+1z+g/lzec574XDveuvjWWkWx1XjdvLz/Mc5h8PhcDgcBozr/R/OpXy32y2efPLJ6uje3h729vY+71Tf97734fz589lhA4Cv+7qvw/nz5/Hrv/7ri05bjBEPPfQQ/v7f//v4s3/2z37e+TscDofD4XDcNGCcjp/HcD/vGPhvtA6Hw+FwOG4K/PzP/3zWC9HXI4888gWl+dhjj+FZz3rW7PiznvUsPPbYY4v3/Yt/8S+wWq3w+te//gvK3+FwOBwOh8MB/NIv/ZL7eTvgkXPH4QTh37t2JJpREi3a0PMOdRUw4d0WEq47p5qh3qWnzVLjj02abHdAtTQ5pVPYHZIMzcGywqrdpCr6GHVDeefUx7nNNcUr7dCZwtgNRYCa+01IfLsjq92BiGSHohLinTIPYwnx1t2Jcmi47jA5kNBVU0HjisoOkwdpl8lqpyHZYZIH7ocs57D9Ory6SysBzSoqt4O2K83vm/WHhp4CQxvmoHSOVNcs7yT04ur+LiXI5i+7jeoxll3pTFvN7j0OltYgf/Kuwy0yNZDLbpchhcJjiAirmGmsALC3GbG/GnGwPsKZ1RZnVlvsDyn+/2BItIZVmLCmKdNZLRKlNWAr1NUtDxjjgC0HHMUVxjjgSLYavTKtcDQN2MYBR+MK2xiwHdO5cQqJ6joGxBGZYkkQvtCgx8wEI2NDKS9LdAelz+TxYKkOR4XuMGw5j41MX5Ud6mjkaseucJR2uQOQ6A+XLoMvX0Z8+mKmPuzEU08BFDCcO4tw1zmEu84iHO1LXhvQOIDiMCtXRJp7qp0C5d2OOR5QKM9mrkoHSjvqzl55TrOXmaG3k96z63g7F1LHnqXzN5LWelr/UQXwqle9Cm9/+9urY0v/TX3jG9+IH/3RH92Z3m/+5m8CAKjDQWHm7nEA+NCHPoR/+S//JT784Q8vXuO4xWHp4xazdbem1Ok8NKchAj1fxt6fdxUMEBqV+FxWAmTRHipvob42UprXmet3AGZNwGw379bWRekLu5yYHbIzfbCVFDA7l1aSEi2d1aTPS+1hbTPlyhReswtlpusZOutwBAyHqWCrw4hwGDEcyrp1NCUqay5bADYBGCjtKrmX1uS4t8J4MGA6GLA9Q9ieCRgP0j1KaY17wLTHiBtZawbxO7Rtbd2qD6++n/FrqnXOyILkeojit6tvo3W4JGtxXBtXW6gKwrwjxE7a3eef43y7HeMDKneiSagMitYfI++8Wm42/W6Qul8J7XEdgU2isALAem/Cwd4Rzu0d4e69K3jG3iU8Y30JAHDf5mncu7qIZwxP477V07iLruDukCQ5zoQJazA2Zi04kjY5ZMIVHvBk3MNTvI/PTWcBAJ8dz+Kz4zk8Pp7B57YHeHJ7gM8dJr/m4tEeLm9XODxaY6v0Vt3JdUw0zCRrMu8buX7NOq3U3+o5wjxD0lT7eYPSvA/T2FgdRgyXI4YrI4ZLaRCFi4fAxcvgp57G+ORTSHoq1w48pnzGz3wG+MxnsLrvPmwu3ItwdBYUdc0fwAMlavIG6ZlCO90AYM2gIYIGBtk+y0g74kYCVCIGAEbKz5SYkGSdbP9feiZtHn0qLMxXu6j5lUxTh+p/Y7D04HT98S3f8i342Z/92eqY+3kF/uOcw+FwOByOmwLr9Rp33333ia593eteh1e/+tU7r3nggQfwu7/7u/jjP/7j2blPf/rTePazn92977//9/+O//f//h/uv//+fGyaJvy9v/f38BM/8RP46Ec/eiIbHQ6Hw+FwOBwJ7ufthv8453A4HA6Ho4A5bdpxk+PChQu4cOHCsdc9+OCDeOKJJ/Abv/Eb+Nqv/VoAwAc+8AE88cQT+Pqv//ruPQ899BD+8l/+y9Wxl7/85XjooYfw3d/93V+48Q6Hw+FwOBynAcYp+XlXl+ed6Of5j3MOh8PhcDhuW3z5l385XvGKV+Dhhx/GO97xDgDA933f9+Fbv/VbK5HgL/uyL8MjjzyC7/iO78B9992H++67r0pnvV7jOc95zs5dvxwOh8PhcDgcNw63k5/nP87tQFeXwfLQWz0SzKUbuJGF6ouRzA9VmnUz3RMqOht2u+w4v36eMCrNDk2TRa+i0jaweh4ROzXnlDcPGA0oKXdVF7bYDZ9/pn1i7yMkjQ4COFClB5W1oEwaNKXvYTRaJKKxFeQzjUZXa0w3Jk2GpKdFUy0yENdBbCHwihBX6cS0Jkx7hGkP5j3do5pzqjuXNVfacqvuTE9zxFaGaJd0NVm0sxl9ml5frTVKGp2XgYs218Ci45DuoVA0HVTrhHr9GaKJofo4xgaWcup7MaKuk36ipdDcXN+9RXXDQqpkEi2SsIoYVhGrYcJmPeFgvcX+KmlfnMtac4c4Nxzh7OoQZ0LSTNsPW+yFLQZErGmqspoQEJkwIWDLAw5j2iJ+ywOuxDUO4wqHcYWjuMLhlKbdFUUchQFXphUGihimFQK0fmtRlSgCQ9yUlK1IRpA6yvMAV/2JIyEYTcrZvJHP7ZhA7PiPAEUGjTFp9qhuz9ERcHQEvnzlZHpzOe0IHkfQNAFTBGIU+9iUh3J5dkK6X9Y7smOmGT9kywWZT3pJ2jmmHatNGtU9Jt2SocnL2GixpLt0Y8DXXF/mpNleL/zcz/0cXv/61+NlL3sZAODbv/3b8a//9b+urnn00UfxxBNPXD8jHDcXduhzLeriWj+wWq/NNSeB9Qs7dnXnC1nsKttan4Ex84eyhm1VjuZ7xybVtit6XnJ8YMQVwCvRpF0xeCXztfgQqgFFofgJlW4tkLWzOPsEBI4QrShxKEV7iyYCRkIYCaS6clvKvlzYpteQJMIwHCatudUVxnCUdOYAYDiKoDEibNM7mMGDFHq1AocAXgfEdUDcGzDtJzvG/ZA0hQ8I437SmKu0hfcYcc3gFSc/Cjqvc+2LZT0w8YFUI0w06GZtIpfmc6IPTNJWLM6w1X0uHaJpS/u5+s5Fy7n1NeU49dKm0o1mczdT5ftZI8p4sdpp5VjVP3ctCmpfQKrzFQPSD4d1xN5mxN56xNm9I5zbpI5xz+YK7t1cwjM2F/Hs9ZO4sHoS962eBgA8c3ga94Qj3BMId9Me1rQCcLCcvyAi4ul4iM/Fi3giHmJfOuiaRqxpSv5d0x6BGEPYYAiMw2GF7SppDANAHEPWm1PdtPy8Fan4dvY4Sx+ZGJikHlVzMoifsTDflPlCnnv02WecgO0WfHR0Q/yB5P9FLEV0Zf1oRZC5JjDC0Jl8c/cyDwkyl6W6USdRzlmt8s4zLzDPorJN8+w9WzV6m3ptflTSsp14AbkWcD/vZoX/OOdwOBwOh+O2xjOe8YyZAHELPkYc2XXmHA6Hw+FwOG4+3C5+nv8453A4HA6Ho0AjFU8lY4fD4XA4HA7HdYP7eTct/Me5BWio6YxemC+Y0zIBQ8VE+V7CXblOagelQi43xpRjlm7abiu/RG0lytH1aRt2Kscro3vpdUJ8G2ZmRdfkQcL5lQrRy6spa5eKYU+3lLS27rim6kG3Dp/SO00NrXXLCFOisIYtMoWVIsu244WWwEGoFwOlLb0HIK4Jca20ViBuhM66Ttt9x42YsVJKKxeKg8GMijI7SebzctmlaoTmuIxe/7O0AKWyAkih4quIMESEgTGEiCC0Vv0cFqitzIQotIZCXSnHYgyyLlScnYrmYtNqjT9uPSECKEQQAWGIGELEakidY72asBkm7A0jDtbbRGMdEv3y7OoQ51ZHOAhHODMcYp9G7IVEUdgIRSEIL0WpphMHgIGIAZEDIod0DMA2Dhh5wBjTK30X6gJSfbR2p/plxMCIkYGhDNjIEawUV6VEKnUhUuq/JHVmqEwcy1zU7SESdh8HW8/a5xI9goUiDgBhoNRfDB0zVOUICCGAVivEy1fA43Zne4W9fdDZA9CZM8C5M4hn9zCeTdTg8cwK45mA8SBg2pPxtRYLB4BXZs5pqGA6p7AZX4z5WJtRvkrx5zBzr83D3tNlJrQ0NaU6oMzNs6xOje7gcNx56NJFW6qhee/6awsoY7l8T35SmUdVGgSBa0qUlaLo0F1LJif5XPsUOS21Rdf/gUGriLCKWK8n7K1HnNmkefxgfYS7N4c4tz7E+fVl3L26gruGKwCAc8MVnA2H2KMt9kUGQil9U5Z+WOFKXOOSOEpPxX08Pe7j6WkPn9uewZPbfTx5lLRBnjrcx8XDDQ4PVxivrBEvDwi62siaNBwCwxVgdQVYXU55rS5HrA4Z4TAiHE0IR0K7HSMoRlkU0iIaN+lRiNcBcRMw7Q8Y9wjjQcC4L37ePgqddU9orNnPS5RKVkqvVjHUV2EgUnlBfOqJ5B0VRXHmD1Z+G5V+INTTfE3lHxNavzH7etrnpJ0hlMAwxCL/EdL3QIwQav9P/b5gOlY0Rra+nvo5MVI+B07f9fpE10QtfZITlOJIebO8SmAMQ7JrvZqwWY/YXyVH/8z6COfWR7h7fQX3rC/h3vUlAMC9q4t4xvA07hku4b7hadwTDnGPpHeOVjgTzpT+tQMREZdi8huf5hFPReBzcR+fiwf43HQWAPCZ6RweH8/iifEAT48bHMUVRqFra50MlCRWrE9LxOAhIAq1taIAR6ELi7/HOj9ldmKZryo/OiZfqbBFjZ9HlOjcAYgDYbWS8q8CaLNG2NuAnnwa8amn0h1TLevyhSJsNggX7gPfexe2957B0T0bHN2dOPRH5wjjQRp3cZ2eqXSOUn829R9GrXeEQo9XWjxQPkcqz7bq15rnRfvsC8hQ0s+N/VWVmnnczutZ1iiUS9k84unvA6crZ+K4WXD8DORwOBwOh8PhcDgcDofD4XA4rgs8cs7hcDgcDkcBc1eQ2eFwOBwOh8Nxi8P9vJsWHjnncDgcDofD4XA4HA6Hw+FwnBI8cm4JRheElFFutviut/puPh/HGV/SDGn1S3Qr7F06cFPnnNp4fCmNrkrJJ6icQATCxFU+RRNDb6SsnWJ59jxQPtby72fCfPJ5qW7bLeUrkClDo/2U6iNpy1kduTCW71ljztoSGQimXIPoZQwkmgfybjXn9LVRjTlJSvQReCjlrrUKKbcXmsPVxT3NvRNoUHHb11SjhJC2IUcqo+qOhCFpzADAsEpaGKrRthoi1kPqHOswYRVEjwRJe85C9TRGNnojTJhiQIS8M2VdkSkSIqirVQcUDZP0uV9WKzcxhAgixhAYq5A05/aGpEWyHibsD6O8tjgYtjgQzbmDIenk7IUt9mlEyCKGwBGvcMRpytxy0pfTz1fiGlsecBhX+QUAh3ElOiMDjuKAMYasOXc0DZjk+xQDxilgG1PHiZEwRZrr8hGQB3d+mY5FVGuqNRpovbFE0s9jAMIqS+KAAyGuyryiGjmAzhOMsA2YRkYYVwiHSQguHG0wHO6Djs6CjkYMRxOwFcHHOOXxhTAAa9H62VuB99YYD1aY9leYDgLGPdH02yeMe5THVlylFyBac/oK9fxA2ocil89aXXYesfpSdg6y502as88n0KHKWn9WcyrIvBs68nZV+56SFsmpCAU7HDcQC+O90oK1mkO963clb8Zx0f1CTjD7R0H0wPQ+0QWD6tSSTe8Ezl2emxaE6YhBRt8OJPqyq4iVrP97my3ObLY4tznEPZsruG/vaTxz8zQA4NnrJ/Ds9RN4zvAEnjVcwoUh4N5w5mSVYvB4TDpgfzJFPDadwyfGe/HJ7T34+JVn4LFwHgAwxYAr2xXiFMBHAcOVgNXTqVyri8D6kr5HrC8xVpeSjzJcmRAOR9B2Am2nMp/JnIthAK8IcT0g7qV1d9ofks7cmYBxHxgPCOM+5FzSmpv2GbzhpDO3Fh9qYJDRmssQvTCaKGtdZZdiIvGraabpPNOMzn9QrQ1MlPXX2J4TzULV5sIgNq4iIFrCw1r8vCFmvTbV4gWAvVXykTZhwmYYsQkj1mJ8oOT7DcbQCcXPG3nAxCR+z6ryeUYOGGPAdir6u1NMPtDEtQ9Y1QElrbuBIgYp80rs3QwTzqy22B+2OGv0g8+vLuPccAV3hSu4Z0h97a7hMs7SEc6EI5ylLfYp5so9xIRtvFKaD4ytGHLEjEMmXOQVLsYNLvEGT8bUR5+aDpJu4rSPp6Z9XByTXuLT0waXxj1cmVa4Mq1wOK5wOCXnRf29aUq+n+rw1WVOc0DWlUNqW4oEpkZjrQUx2Igf8lCCpNjMQ3FFmDZA2COEkTBsB4SjZONwtMZweIDh8BzC4X0IV5Lm5HB5C1w5Ag4PwZevgA8PwUep3nt6dLQS33B/D3TmADjYB585QDyb6mk8t8Z4doXtmYDtWZqPu31g2gBxw+A1V2FFPKXn8ii+czmR6k3HHozvSiOl58CJQGN55qWpeZlnw+rZujP/V/O7rhnm+bdUhrn+ZsBp+HnuWh4Lj5xzOBwOh8PhcDgcDofD4XA4TgkeOedwOBwOh6OA+XT+o+pwOBwOh8PhuP5wP++mhP84twQND+/QDWchrYYSpacsczMnsyuMtQ2XjVTTSe1Wz6OhZvZCci2VM1NeWcLrkamcKT2hdY6MMMb0vtUt56dMCaAxAuMERLlxMjQBohS/G6SAIQBDAIcADJS+Q+ihsnV9vw64flfk0GxKYdoDlXDtoPRZTVuSIKpDn5fyzHQToUxaSu5AQmGVcH2h08U1JSqrjJ64BlhprQPAdqvvwdJ5ud9/GnsWbVSEkpa9Z0Z5sfeYcxyE0iI2hhBBAyca6yrRWAFgvZqwvxqxGdL29EpxAIBNGLEKEwZirGgexh5Z6KtMmf6Z6AyF1pDoD3JOvivtVT8Dc0prXBhIAYVWEoiF1hqxokTHXYUotk+ZqrEKU0VdHXnAlQhMHHAJexjMuYmD0FkJh3GFrXCXj2KiKhzFFY7ikKkbgFBXhbaqVN4pl0Woq1JWZiBKmSMTOBJiJPBEmdbAMQBRQvkj5e3ggUSPSTQsKrR3Pad0GhOar2BC6lOrxDrVcUMr5O3jSSleNsRf5qgwMWgCwphuDOMKYWSEkUEjZ3p5ykwypUQT55WOrTTOpk2ijOs7UKisPMh7KDZmynxLVZW8EhUhzQtkhG9n17dUVJUwgLmOCz3V3k/N/TmN5nuPxjCjq1JzXMd5r3wOh+MLg6Gtpu9mnrNUdQAzOpM6d22SOp8CNdVJaKyW1o52jDe2YUJ1goy0ClDm/PRZ/ETrO1bzdU3Tqoociq8yyrx7tGE8uWbE/Qjam7A52OJgP1HX7to/xL17l/GMvUt45t7TuG/9FM4PlwEA9wyXcFe4jH3aYiO+gVIetzzgyXiAp6YDfHY6iz/Z3gUA+JOjc/j0lXP4zJUzeOLSAS5e3MN0MRkyXBywepqwbyism4up0dYXI1aXJgyXRoQrW9CVEXSUqHcYR2CKyWkgAgZplNUKvFknSutmhelghelMWsu3BwHjGcL2TKLVTfvAdJBumzZA3GPENQMrBq9ipgaToSQjEtisyZnSKnQ6dZfSuUKXW5JSyP2l/a70Ve1rQl1l8e14JTRWALSKGFaMYT1hbz1isx5xsE71dLDa4tz6CGdWRzg7HOHs6hAAcG44xJnhEGfCEfYpyX2sxfgBsfKbIgcciT+05eQbXeE1DuMaV+K6yHzwGpemdeUzAagkP9QXbBEoyaesKGIj8ioritgfttgbRhyEJE+yFxItV20/Gw6xR9ts75ZXuAjgyrTC55qFe4vkr11hsZvXuBgT9fJS3ODStIfLcYOnxw0uTxtcGjeApHVlSmXaTskHBBJ1NcaQZFtUykV9OZXaUAqvfofQWPWhkZH6VPtsqH6e0jUZpZ9NVPt/xpfhoaa10pB8LNq3vqNSQEPy7abV/Dl0YnkObXw8A5bns6jSQI0s0GR9vEYWKEuXrFjmJk7PVdb3Ej+0dpy0nmS+NHWl95BSys34S/ebz00XPPbZTW8z6wLbdNH/TKbtCXxiyQTH7Q3/cc7hcDgcDkcN1yJxOBwOh8PhuP1wagwJd/SOg2vOORwOh8PhcDgcDofD4XA4HKcEj5xzOBwOh8NRkDjWp5HxKeTpcDgcDofDcQfhtPw8d/OOhf84twuN1sOS1pw9Z3XnNImsNyec8lm/zLxzo0chXPgwIunKiYxGGIHhKH0PW8ZwxJCdwxG2EeGIMWwjwlEEbSPCUdJfoO0EOhqB7QgcHgG67fWVQ8TLV8Djdlb8RprqpoWVa6EhaT3Q3h5ofw+0vw+sV8BmA96kc7xZgdcDeDUgrkN6ZX0D0Zlbif6VaMwBRhdBNBrYaM7FQTU/jO4HMNeHQ60xRSpcQ010cat7kN9rrTnVHakqwmjLZW0G/RwYITD+//bePM6Oqk7/f86puvf2mh2SDgkJixoQAYmDBkSQERBZnRkFdSSMij90MKI4o750BgRRRED8qgyIiuhXB/2N4KjIqiyyijEOATIkgZBESFhClk6671J1Pt8/armn6tZdutPp251+3q9X961b59RZqupWfW7d8zxHOwLtBBdl7Ri4jql6zLnBOVNwAp+54C/w9ciHfh4F7cV+cw6SF3cfgbeGgUbF6NhzriIaJeMGvnO66j8HAJ4K/UaUxH5zOvTEi95L5B1m+6XZn0EV+JIEyxIvR2VEPiZe5OsGBc84KGsXO8IdHviaJL1U4u0sz7yy76AcTt1e8R1UjIOK78AXFfuMAIi9RgSRv4jlK2It274jQOA5EvmRwCD2Kan6CanqcsqLJPIMsT1HEOaL09MeN5HvkLV/E/u2jndGUE7ap6T6F+SpvSiKUrHPEZD0k4v85aLPV+SFVOPllCLL5w2WBWPsO2n7xoXva7A/f7ZHVHSM7IuOQfVCb1L3gJp+J8uL/PPE+ovr0kmPKnrOETKyBJ5tCjWxnO03Z8V2yY1T1xBlX6eCzNE1K+Ebqaw0WNdiyxdJS/UaH/kLA9VYUFesWDCM/5yywC0KnLKBM+jDKfpwisH9Wg9WoIoVYLAIlEqQYglSCrzFTBgLNtxPbg4qn4PqCPy3VEcHvHwBL3X0YmNhDqTgwETxlRvGVI4KPIdtQu9j7UvobxwEvLpioMoeesoeeouDQGkrELYvamuzdmZ+xVQaurMDurMT6A7N43IupDMHvzuPSrcLr0uj0h3GIV0KXidivzmTB/xCeLxcgeQk8HNzQn/b6KSIPMHs+zMs7y8v8rhSNffkGm9DIOkrh9p7gziBDxesWFPcqs+ccg2cnIGbCz2CXR8duQoKOQ/duTJ6cmX0hN5yk9wiJrmD6HGL6NVF9DpFAECXLqFbl9ChKsjBR175cUwVxXxRrFcWBxUExz/ya9thCijp4HXABN5s2m/yjcIA0Eh4zhlRsd+chsTLQBCvRd7GFdGAn4dBFG86GFAFbFVdcFTSIy8oV8c+wrEnnnFRMi4G/TyKfg4DXg5FP0gb9HIoey5KnoOK5wQ+wqHPrvF11RvYvp6k4rqmiOUfB8R+c7GXMFCN+ax4L1if9ClP+GmKtV0U3znJ1wTpWCPTs1tlxlBJn81wd0R1RXFN6CFnXycjX86G/rpR+71oP9mem6r2eh33OeXNaadZ7Y+/t4XtURq126XiSrtp9rbV/lrxnZWW3m9Vj0EGeoSyVkIIIYQQQgghhBBC2gZHzhFCCCGkStuMggkhhBBCyC6Hcd6YhA/n6tDSyNJYL5XKnzHEN7sSS84aScEiWaslX3AqgBOMQIdTEjglgTsocIoG7qAPZzCQpOqBMtRgGRgYhGzfATMwAOP7Lfd5d0DC/srAADAwEK/XnZ3Qk3oBAKqnG9JVgOlSQF4HEtaOUIZYCOSsfl5VZayRfNUFJGfJ7sKh2iaSsjoIhzDbGpn655KKzpuhXBxjaZyEklmkJDSh3EILlJJAzgpAOcGy4xjo8NUNp6PPOz5cx6DgeCi4gYwVAPLaT8hZc8pHTgfj5CM5a1o6Gi9DwxcFIzqQGwDwxIlloZ4JZKGRxDRYp+GbQN4qoZQ1KlckkKFKKE+tt8vs0fdaBfvACWUQKpJkaBNLJCL5q92PqM6gHhVLb/2wfWnpqueHMl5fw5hA2hDLUCPpaqxtR400tHrwkJh6PR6mb6pSGGVLHGz5KKr5ksP5o+2QkM+kZTTRdcqWZGaet9Y1L16VlrzWlJ8qKJZjp6Q6kcxVISHjSctBE6Trytq36VZEfUVtuZnyc3t8eVRXJGVF0GZlEMtXVL02ZMha0/uiuj+q8o6ETIQQMnJEmtKq9t2yIYnWJV6SksP4sywJKVdifYOqYapyx8jCBAhjv3IgW3WLgFMMyskNCHIDBu52D25/CXrbILB1GwDAe+VVQJLSvaj2nY0CxasE1idWTFXTH+t1qJeqoSj/hlawgdIa6O6ETAniv8qUDlQm5VDu1Sj3aHhdgBcqXv1OwC8ApiAwOQPkBHDDlunquaKikyTc3RLJkH0VSFhjGbIlZ/VT9+usTqfOLfu+KE4krw3Oq0hmq9ygQOUaOK7Ayfko5Dzkcx46QouSrlwZXW4FPbkSup0yJuWK6Anlqz1OEV26jG5dQlcoYwWADlVBXvnIKQ9O2NAoxjNwYilrRRwUJY+iyQEIZK2RlHXAD14H/SBt0A+Wi34OZVO1Bin7Thz7RRYmJhWARDGcVgInjEM1gmU3jOlcVY1JXStP0GYV98GIgmd0HIOWQ+lqxXdQ9gPZqucHslVjSVfhK4iv4mONSGoaHst6H/dGsZQtb69uYK2LbEOi9Mi2JON8StiJmFQ5VrkNZajp2MuOTaLvGpYlR2S1U7Xyker3kji+Cb+H2FLwjJ0Ux1BR7AsE+9hXtXJea1/UxLZ2X+t9V7D2hR3rSbqMxLFoEG+GZaXtDtLWBjX7NrpfqPTBIhMZPpwjhBBCSBL+okoIIYQQshvSLoUEY8tm8Ld4QgghhBBCCCGEEELaBEfO1SMcjpqYTEULlFHJWftQOwo1UyplDVutDpmNJGqozs4azcpqyRqcEpAbDIdqDxq4Awbujgqc/jL09kGgfzsAwGzth18qjtw+2I0wg4NQnR0AQsVK3oXf6aLS46LSreF1BAfM71DwC4AfSVrtWVljOWskYa3KSWtmGkrInCNdTHJsuzQZdl3dPrWcmo01lq6GbVC6+udEM7JqgdbBrKyuE8gAcrGs1UPe8ZHXfvgaSCFcFUhdXVUVxfhhH3xJXjqMKFRCna8RBU+CGUyDmU2DvJF0NZISRDIGICkZDWQNiGcytd9LJDuK92G2ZjiSsCp7OX5NzuqaJirTiApkqtZ7CELpqo4VRLGMNZKviqqqi7Jm30pUlpS62vmSw/XDfLaU1ajqDKxRmj303tTWm9kOewg+UqdpSnrR0oyhjc7n9HD/DBlPpow1/RmqJzWQ2k0ymydB+bF6zZKWNJK6QsJNdfXzqyS4LsBuS1a9qX2YlLVK7Wy06X3eyr4fKUSCmRVHG/6gSkYRkwOQs1ZYowiyPsfp2VnTM6/Ws7FIXKfCmTwDGWsgZ9VlwClW7UvcwSDmy233kd/mwd0axHV68w7Iplfh9/fDmqiR1MGZPBmYMxOlPXtRnBHKLqdqlCcBlV7A6xb4nQboDGeNzftw8z5yYZxkxweR1NIP7St8z4EJZ42EF0ge43tQPFurJW2N7tVZB82WRKMqZTVuOLNlOBMrgEBmmzOAI3BzBk44I2vODeSsBddDh1tBV/gHAF1uGZ1OGT1uGZ26jA5dQVc4zW9BV5AP9dQVcWHCmKyoqh8MIxo+dBzjVcRB0eRQlBxKJpiddTCckXXAz6Fs3Fi+WvTceMbTku/C8x1UjIbna3h+GDOaqo1IZAmSHtATT7ZuydCVkjjGC/5QY1EStL9qhRLFkYEVSRDLmfB4SShVFWNJV6NjackqEzOhAtnyRns5fd3IypqStVblqSopUU3EgJYa0n5vx37pstNyWh3GNFJ77UrMMq2tmYE1gpmCo/NWV49JQs4aycBVstB4Bls7Po5nn7UkrEBV0uqrRL/j7dJS0zR1YtjMGAu1+6DmdKq3X+1yMupMxHlRnoy2mNF0ohIwzhujcOQcIYQQQgghhBBCCCFtgiPnCCGEEBIjIhBpx7gc/qRKCCGEELJLYZw3ZuHIOUIIIYQQQgghhBBC2gRHztVDSzytsu1vJEqqvhKheDzzGbDtVVFPw57hNxd7zoV+c25R4A4KcgOh59yAD3d7BU5/EWrbDsjWfvhbt45Qp3dfdGcn1KRJAAB/eg/KUwooT3ZR7lGodCv4gR0d/A7AzwMmX/X5CGd7Bxyp+ilYHgsJP4WGhlOhP029Hw3q+BfUlB/6EyhUveWi/EpL4C/nhFPLx55zgYeKowQ5x0dO+/F09HnHh6sCHzpXJX9FqRgHvlJwlKBsXS4i7zkjgW9cMDV9sKMib7nAb86Bb3S83g+9RnzR8I2CCdMif7fIdyTydgv2V9XIR1LeEgnPuSwfteht1nHJ8vCyfEkSy4DlKYcaXzllXxMs+42aKddTF4N6XnTxVPKWf5y9PvbekNT1xPJeS/twqNT+qest18ibI0Vdf6Vm+Zp5c8Bqu0J136frqOM30mg2+rS3SnRJT7SrXkFJy7vqch3vw6yy0p4jCV+XBvcNadSpkaZdXiSEjCImZ4C8ybwuNzv7G33ka65PRsX+Y3GMF3nNlYI/O87LbzfIbavA3TII9eo2mJdfAQB45fLQOzlBcffbB8V9p2P7XjkM7KFQmh6s96Z6cCaV0dtTxNTOAUwpFNHjBmZ/nU4FrvbhQOAjiGkG/dCrzs9hu5fHYCWHHeU8ipUcSuXQT7fsBLdo0YFfme3NpcPzyQTLNX5kqHrMiRPeI0KfOeMAyBmIK1BuGMvlDNycD9f1kc/56HADv7gOt4KC66HLraDDCf46neBkK2gPBe0hp3x06Aq0MrF/nG8USsjBRzWmAwJfOV80SsZFRRyUjIuSCb3jjBv4yfk5lH0HRd9FKfIW9h2UfQcVzwliPcvTzfga4lsevba/XBg/NbrNSeoemfAza7JhwuM5qseoILaKfduCOEPb3nKJ7ZpWkyT9vl6sYvvGhQVVPeeQ6TmXSLPbZ2rLTbQnjH/iMMuEvnMmO/yRMP6M/dYRnq9+sO8Dr0SrQCVJv/bqV59EM2q8lK16Ev2yvZQbxbx24VbRkZdj3N+M+CvqV9SwTI/lLD++NJnbSWasnWxLtQPGH+WRbPScG5Nw5BwhhBBCCCGEEEIIIW2CD+cIIYQQQgghhBBCCGkTlLXWQRBKF1EdcZqUukW5kMgTb5+STVULTa6P//zgTwcj1KHD5ehP+WFbPIHyDeAL4BvAH815l8cnzrSpwOw9UdqjBwBQnJ5DaYpGuQfwugG/E/A6g/1r8hLIXFwBHAPlBDJRIBw+31C2iuTQ+WixnpSxEfb5kzWM35o6XsXtE+hwvaMFWhs4YZqjQllrKF11dCBjtTGiUDYOdKjJ8FJjj43VqEDGGspZQxlrI/kqABhTlbIaCaQN8fT2RsfShuhzVpWThh3PkoBa+7auXLgZWdvZU7yn64vkBRmS1XoyVRuV1f60ZCIhTVUJ6UI8/D9Vly1prVZWW1V6ud6U7ol89dZn0PJhyCgjs9w6ctaasqRaZtM2tNiXmvS6Mof6ctSE1KGebDUt700XYfVtdIj0LKMM5Q5kFJG8ADnrohlebyV1Ha5uULUwUOnrkqiEPAsAlB9cu4MYLnwNZa1OJZK0Ctwi4A4YuANBPJfrD61LtmyH2bwFhnLWlnBfsx92LAj0qy/NdzHQB1RmlTF5xnbsP2UzAGB+9ybM79iE2bnN2MPdhm5VRofy4jJ8KBTFRb/pwDbTiVe9IG58xevFK5UevFruxpZyJzaXOrHdLQAABnQeFQ34OpDIGR3GD1pBOaEE0CARP8QSOkvSGsvrXIG4Bion0K4P7Rq4oaw1n/NQcD0Uch4KjocOJ2h7l1tB3vHQ6VSQDyWshfALhVaCnArOrYo48E0u7q8RhYo4qIgDzzg10tWyCWSrRc9FOZSulr1Auur5oXTV0zBeaFHia8AoiK+gfFWVjgKBvNtkyBqbXfdT8r9WXCQaFlEv7rLWWdXVpamM1a4zKtuqJ25L9D3QjvNiKxMk4j1b0lrT1nS760kxVXI5malat+hwWQPwUb2uqeBfFC8mY5lmAVWd2DUV09bEvFkS1jqxbta6mvjXlrRq67zSVhxsxWw1+y71vayepLVubFfn5BIzirJWaVOcR5rCkXOEEEIIIYQQQgghhLQJjpwjhBBCSBURYDR/wSWEEEIIIaODoD1xHkfrNYUj5wghhBBCCCGEEEIIaRMcOVcHcSSY1tz2iIDU9UZISN9TeWKvulAzL9GD6vR009aUzpEPhXEBP6+gQj+voOw8XKWgXQ1VyMPt6gQAmP7tMIODw+/0boYzbSqw10yUZvagOMNFcUqwD8uTgEoP4HULTKcBOnyoXHBQcnkfjmOCP21iXzcbCf3QIk80E3rUROsEKZ+5yM6mjlGGqmdsoWrTY1sDy3Mu7q/VXq0EjjJxug796CIiz7gozSiVSLcxVj+jZd9oGCj4odecbxT88OSNfOVsfzkAEKNgTGDYIAah51yGr1yW7w/Q2NNNVK3lRKMfZ+qlZfjB1eyWjG0zfeRqysvKW31Ne6Fk+mxk+KPU2ycN/VDqeI4kPOdSeep7r7XwK9hwTGJqyqgWo5Kr45U1XitZTavnqVeTL7VxA2++TG+SVH3VuqQmraGfXHjbEWcUf20MLmKjV1+iYkJGCS2Bt3B0rQeqp2DoEaasgQXKJH3lVOinqkzSGyq094q9hCO/Oe0Dkb2ZrgBORaArgC4LlLHuzzkN1ZGHntwN7Wio/sDbzGzdBqHPcAJ3+nSUDp6PLa8pYPtcoDwn8Ofbc+bLOHTaizi0dz0O6liP1+S2AADmuN3QiXEJufAvyWazDa/4W7DRCTznNjoD6NJlFLQHrWpHmwwqQVkJfOUATlC+eIH3GvzIqzB57RctwRCJ8PuGcoN0pQ2cnIHjGriOj3zOR94JjntHrhJ7zXU4HvKh51xeeyhoDzll4Go/9piLqIgTxHDQ8EXBMw6AwFuuIhrlyGPOD9YXfRcl30WxEqyreIG/HIDYY854gdFe7C8HAH7gtagFscdcZpxT71KfcZ+s3juV/VKb3oCGcVy973VDDVsy6qjGZwrpeM32Ca7xjDNIxoDGSqsXB6dijZa8hcPvnbbPWjouSniwWd2Ji07tS1EZ+9tqb5Z3XM1+SYfRCvX7bfUxq89ifdxtX7nIby7eJvSMjD+bsLZV4Wc1ivUS+yl4r6y0RBvilzoHLEoSQI1mnNcub2HSFI6cI4QQQgghhBBCCCGkTXDkHCGEEEKqiIzurGGEEEIIIWRUkLbFeRyt1ww+nKuHE/5Bskd9Nji3avKnhi9HY2HFkWCKdV9B+6GMNRxdryuAnwd0QUF7gFMJttFlBafswCnn4JQ7oUu9cErTw2186KIPXapAFStAqQQUS0FdA4PwdwxYmtrdD2fyZKi+PQEA5Zm9GJieQ3Gag/KkQMrqdQcHxu8yQJcPp+CjI+/FU9MDgBvKWV1lYjlpLF+FCiWsgZwzlniG64wEsk1bvhpJXpuRNfu4LTNNS1+j9/Z2Ol4n0KiV4xpR0AjkDSolcwUAnTqpDWzZbrXv0To/3hdVGSsAGBOUFMlYJZTPigmlv0ZVPwfWkH+xPh8qLQcAsoe0Z8hb0zRUXbZybOrVUUcmUVc+kU5PS1jTeepJWRvVBWQOqberS0soa+QMmdIHqZULZJRVn3q6kdayJ2QOoqptsdYrSR3+lDSihjoSjUi2ULO/VHJfZctuojwp6WrW/sqSzdqk982oyh0ImSDY0tVIthreoyIZK1CVripfJSSsURridMTlpeWu9jVJXMDXCn4O8DoUlFFQodRQ+7lw224oD9B+UJH2BMoTaE+gywa6FMR7AKCKHtTAILB9AKa/H6Zc3sU7bvRxpk2Fv2Aetu4XWLlsn6MwMNug0LcD+894AYdO+SsO7V4LADg4vwH75bosCWvvkOrqUA60MtCojZmdMH5ywgPtagPXMfBdA4iCiWJHRwN+ZHuSLENphFI5gdIC7QgcNyhPO0F5OTeQs+ZdDzkdylpdD3nto8Px4GofeR3Erjll4pjOiEIl+AITIJEtiUZFNDxxUAnPtbJxAkmr56JsHJT84Gth2XNjOWvFc+D7Gr4XxnK+gvga4gVyVmXLWq3PTSRpTUs7geTtb2dcLxradzTKN5zYr9H2WTGZLWVNSVcz16fiv/T6asNSr1E2e31KnlovzgMsKWeWrDUrFkovZyA1C+n+qUSa3WdJbRPtU0mX14h0fFdHxhvJXO18CUmrlmp5WsJ9FcpY7TQVNdZqgrLS04SdiW2voi9sO/FZILsPfDhHCCGEEIs2eZHw+SMhhBBCyK6Hcd6YhJ5zhBBCCCGEEEIIIYS0CY6cI4QQQkgVAWD48yYhhBBCyG4H47wxCx/O1UFcA3Fb9GdrphGXSF4eZIw9CWLvLcRTjsdpoa+Jil/Dqoy13geUcappfiiF96u+J1Ga9gXKB7QX+JboSlCRUxHocuBf4pR86GIFajD0MBkYBAYGYbbvgBkcbG1fjAK6sxN6+jQAgJk+Gd7UDpSm5lCarFHuDfZxpRvwugOfOdNpgE4fTiHw5ujMeyjkvcC7I/TycHXoHRJ6iGglsaecF86lbULfNd9oKCWx/5oO/edEAF9VveiAwK5AhmCokfaWq01vXoaIgg8FZY0d9kUlPOVaKyd4jbznIt+5KM1Y/Y585gDLay70lxNT9SIJlkMfH9uPL/IpyfCiSHhupD9DwE4PkW6yy2vNSlryGqmTluWzEear2b6Rr1xW01rwXqnxHbHyVtOkJm/ifVb5TXdiVoPR8r5MesxJNV1Vy6xpgcpuVkOPmrS/So3/CpL7xyoj9prL2k8Z3iMyxP0n9JwjZGSJfZ1av0dH10GlUbXw1cGfCKBc1L8n1fGBEg2Io6peRw4AJ/A3Eldiv0lxBMoJfMq0I1BaQ+nAqFhrF1AdAKaGqnQF44exi68gnoZUNFRJQ5cV3MGgIU4RcAeA3A4gt12Q7w+CxvxWD+6WIvSWfsimzfC3b295Hw0HZ9pUYOYeqOzZg8E98hicEbS9OB0oTROYaRX0Th3AnCkv4c09rwAAXte1Aa8pbMRrcpuxl9OJnLK/0vQMqx2DUsLLfhkv+h3Y6O+Jl73Aq+7FymS8UunBq+VubCl3Ylu5gMFKHgBQ8hx4vq4e9/gYB8dOJW4IQSalg3tFcBxN4DkXxaGOgeMY5LSPnOPDVSaOUSM80dBiUDZBn40yqIiGE95LNCSO3YAgBjSi4YmGZ5w4ri37wXLZD3zoKn7gRVcJfYR9o7JP5+gzIICCdd/0VdBHjfg7jsT3dYn3UV01XZ37c0Pfs4z758742MVlZBVtew5neKZlbtOIyHIsVS8UMq8jidCoJs5IxmmJa43tK6et42X5r9V4zAGpa1aqQbWndU3jlNSm1XjpSXJd4ppspaW9mTPrzWpfnetuHK/Z+e1YrYF3sEpvF/rNqfQ2DUh8N0zvEzKhGTey1pUrV+K0007DjBkzMGnSJBx55JG45557EnnWrVuHU045Bd3d3ZgxYwaWLFmC8m5oiksIIYQQsjvBOI8QQgghE5lx83DupJNOgud5+P3vf4+lS5fi0EMPxcknn4yNGzcCAHzfx0knnYQdO3bggQcewE033YRf/OIXuOCCC9rcckIIIWQcIRIMCxrtP/5sPKFhnEcIIYSMAu2K89oxCcU4Y1zIWl955RWsXr0aP/jBD3DwwQcDAC677DJcc801ePLJJzFr1izceeedeOqpp7B+/XrMnj0bAHDllVfi7LPPxqWXXopJkyYNqU7lClQuYwytPWw1mvnYeq9Sw39V/JpRRySPqjP+Ojp/BUhIJYOV9cfLZp738VDycJh5LDVUgFEQo6F8B/AK8ZToylPQFQVdCeWw5eAPAJxy8KfLArcEOCWBUw4loSUDp2Sgyz5UxUBVApmE8n3Al3Boe7TPQkmaowDHgeQcmJwDU3DgF0JJRkHDK2h4nQpeh4LfAfiFYPNo2e8QmLxAOkIdb8FA53y4eR8510ch5yHvhHINS8rqWtPPA0k5K4CELCCStUbrao4JgmOqU2m2BDY+BnUYigQ2jd8kvZlkNouoPbacNVovEsgd4nMqymuCceMSnWfRNpGkNRyyLmm5qi1pTQ/vFpU5PD7u26681sfzuEcf+KhNSLwXO3uGelNJbaK9yu6Civ7Zks6MOrPbW5un7pB+Oz1Lxolk3rqnZ6P2JDqWPFAqdYwTfU4rQaNdZ+2T6j7NbkTTj1O6X1n7CVZaWvYabZuQQtjlSG1eZKcBGfcJ+97iMqAhuy9tifMcAVyB2MGWqPBLS/XeFqfZr5kFhn+6+rkVXZWiKkegQ7sUxzVwHR/5nI8O10NnroyeXBBgTcoX0esWMSU3iBm5fkxzdgAA9nC3YbqzHXs4RUzTGlN115D6uzNUxMNmUwQAvGw0XvW7sMnvxqt+D7b4XdjudwAAtvsdGPBzGPRzCflkhFYCVxkUtIdOJ+hvp1NBr/MCepxnMcUZCP70AABgmjOAKdrHZJVDj+6o07reYfdnqwE2maDcTX4PXvVn4GWvF5sr3djsdWFrpTPoV6WA7ZU8Bip5lDwXpYobSFkB+J6G8XXVxsOWPtqkru+JmMyKoXyjoJRCBQ7gAb7WqJhAbprTPsraCfajzsV2JVpJ/JdFHL+KgidV+xXPaPii4Zvgr2LCPhmdiEeVkkCKG68wECgoHX2HCL/rOCqO+8RINXZD8rtJzb2/Gel4JTNP8m1mvqEEi6IywhepOa7KvlYk4lqx1oVlib0Nkvum1aa1INcM5KtxN+LrUnxqRh9L24ojJfWsiW0aUROvS+KcBhDa2QTrbIlz5v6LzqesNDv+GwbKjqsT7UZgMaUlqMZUrQZgAEAF3+egIEqCcx9hW6PvsnaIL42/d8XfDWNZrBpHQ6bIrmRcnAbTp0/HAQccgB/96EfYsWMHPM/Dddddh5kzZ2LhwoUAgIcffhgHHXRQHLABwAknnIBSqYSlS5fWLbtUKmHbtm2JP0IIIWSiIiIQ04Y/Pn+csDDOI4QQQkaL9sR5pDnjYuScUgp33XUXTjvtNPT29kJrjZkzZ+L222/HlClTAAAbN27EzJkzE9tNnToV+Xw+lkRk8dWvfhVf+tKXdmXzCSGEEEJIHRjnEUIIIWSi09aHcxdddFHTgOmxxx7DwoUL8fGPfxx77rkn/vCHP6CzsxPf+973cPLJJ+Oxxx5DX18fgCC4SyMimesjPv/5z+PTn/50/H7btm2YO3cutOtD5/xgpKolUVUKUFqC5XAbrQ2UAhxtoJTACdMBwAmHmUdpWgkca0ZQVweySg2J30dp1XV+Yuh6LnyvlUFOGWirPEcJXOXDgUnWhag9yRmf/GgmUij4olERB55UZ2sqGRcl46JsXBT9HMrhTE5F30XJd1Gs5FD0HVSi2aoAeBUHxtMQPwf4ChLJZH0F+Ihn5cycJS0ajm0P13YE0CYxU5kKZy/TbjSrlcBxApkIEMx2ldMGTvRnyVft4f8GKiljNVUZZzw7qzVbazRjqUgwi1W076rrq5LPuMwMSahNlpQ1/dtCQ7nrUIfCDxdbgWH1KRhybkk1w6Hn0Wyt1e2soelRefaMTnXrVQ3ThyyPaFhAC/nS8lYgMdS+Rp4aLlRnpq3mUNHI/pQMRqz0VqmZuStVQEKm2UC+mi0FyaijWQMz9lN6ti27PBXpVSNJa2p/RiP/E3Jdu9whahwazf6WmL3ManzmNmiwLrO+pEzEvsfUSpIDiYlSAuW0OHv4iCCoTkVJyPAZy3GeU/ChO71qxgw7kqRtSRD32TEfAGgdxGWOFriOj5wO4pAO10OH46HDqaDbLaNTVzDJHQQA9LhFTHYGMd3ZjmnOdkx3dmCargAA9nDy6FSFOr1xMdyZSHeGnHKxpxPUu6cDIAcAO8K/XUnr0t2KeBiUYB/2i4cBo7BN8tjid6I/lK5u8bvRbzqw1evCdr+AbV4H+r0gbcDLY3slj0Evh1LFRdl3UK4EX5N8X8P3dRDbmkDKiTAGlHD2+UzrDfueoqvnqRgJZ9AM5HFGV2WjSml44fuScqF1Va5qn3saElsh6NS5m4VtUxKFIXb8akw1dvVNMt5NSlyDdkczFEczt4YFBjJxE+0Py9bFkiYmyrNl5SNIQr4YIWpoMZ8d20abRjGKvT68V8Pat0Fi9JfsYxSyJOK/Zm2x6kvHJwlrEktWX00Ljldd6aqKlZnWddCuP9WedB+thoiEo+BT8tVqgYE01A6pVb3yMqiZtVVq09J2MNW+WdtEMlJlH5RQdht+XhPHP9x/SkfbSliXsvZhdX2c1mAmVx3NwhxVU2lmUDSCRJ5zZMzR1odz5513Hs4888yGeebPn4/f//73+M1vfoPNmzfHniLXXHMN7rrrLtx444343Oc+h1mzZuHRRx9NbLt582ZUKpWaX1ptCoUCCoV6QRAhhBBCCBkOjPMIIYQQQlqjrQ/nZsyYgRkzZjTNNzAQGMNqnTKW1RrGBE99Fy1ahEsvvRQbNmyIf2G98847USgUYr8SQgghhDRBQG8QMiIwziOEEELGGG2K84Tmwk0ZFxNCLFq0CFOnTsXixYvxP//zP1i5ciX+5V/+BWvWrMFJJ50EADj++ONx4IEH4oMf/CCWLVuG3/3ud/jMZz6Dc845Z8gzeBFCCCGEkNGBcR4hhBBCJjrjYkKIGTNm4Pbbb8cXvvAFHHvssahUKnj961+P//7v/8YhhxwCAHAcB7feeis+/vGP48gjj0RnZyfe//7344orrhhWnU7OwMn5UAmvh9CrTBs4uurnFvmMuCrwN3O1gRum5cP1rg5eC44HVwWa8ly4vqA95JQf/GkvTPPjv7wK0qvrPeTD1xx85OM0Dw4EOeXDCf3q8oj86MJ+Rd51Vl8jxbkPBSPBa/S+EvrQlcVBUXLB1O4AiiaHouTD1xxKJoeiBKfTgF+IveqiPwAoGxeecVA2Djyj4YmGF07b7oXTtkcecGmPtci3LT1NfKThj48RstPtMqoecFXPODuP7bNRz5sj9loLy8laB0RWE1W/DbtfNR50NV50iLdLrh+C/1yDrI28SVol4SWSuc7ynItfU54cdRsYl1j1p0h5fYTFVT0o7D616j83HJ+6xPbNi47bnpVexy8t9iNpUG5yg9rlbB+6ZH2ZeWrWp1rSbJel+xR9Hup4tsRptsOcbTZn2dFlVpdRXl3ShWT1uVHfgRrvu7gBtp9JVFDk35LhfxN798T+MUl/q8DfJPQVckbx10YRVO8Mowl/UZ2otCPOK3RWkO+u3gsdHfj+Rl61rjLIhT62ee3D1QZ57SPveMhrD51O4G9W0B66dBldTjl41SUAQK9TRLcuoVcPoleXMEWX0RteAybrAgoqZ7WmI/wjNgYG200JW4yHfnHQb/LYYgIfuv7QS67f70S/34HtfgHb/UC+vMMrYMDLY8DLoei7KHrBvi57DsqxT7ID39OxL7LxNWACn2TlR75yUUOqnnKpW2gN6XuqxNdz6yamJfYHk/A6n/CKzboHhGmR/zWQ9ERMvE82IWhXVlsbxKeRn7DtI5zIa8d4NbFnGLclalbVF8uLLHLwtkK+TJqGrBnp2THDMGK+9M27jkdaXe+0rDAijockfl9DKiZJxCjWiWivt33kavLa6VYdab+52sY2WJfps2d5MNZ4DirY9ufVfNVlZZVdsz71nSKryTXrUuGoAoJ+m8gXLtgHEu0LJRClYi/FeL2O9p+9nQRfshUALfF6RJ/bqIwob/QafrZ15GOvBb5veaDucug5N1YZFw/nAOBNb3oT7rjjjoZ59t57b/zmN78ZpRYRQgghhJCRgHEeIYQQQiYy40LWSgghhJBdTy6XQxnFUa/XiEEFZeRyueaZCSGEEELIkMnlciihNOr1igjKKDLOa8K4GTk32ijHwHEMtBY44VTH0XLOkj0AQM6SO1RfIymEh5wyKGgvlrR26EAKkVM+CrqCnPLRocLXOK0qXe1QFeQQlhdKXQP5qkFOSSxVzSnAgYIG4CgFDQUnlKHqcHyzk5gbO8APxyMbCHwITFieLwYV+PClggoUKhLIXAGg7DgoGhcVhHJXcVE0oWxAHJQkh6IJ14dy10ooca2IE796JmhfRTQ844RSVwcGKpa8mmia91DyGv1FabY81ZPq82bJyFN9j3ibrDR76viqDLa6PjGCOxx2LVa5tlTVlqcmJKkpmUBAMj2ZhvrS1xZIH/pqlUOULDajTntrZLqiskfQpzUYodyvRvpg5amRC9qyyqHIgBvRJG9DycUw1Hr15KbJSutsU0+62YJ8oiatFVlnOq0BzaStQVNsiahKSFsTdVhtGI5Ku7avdZYzN05mk6wOxTmktc+VJU2KZE4qljyMjvzgox/9KK6/7nuYLwvQobpGpU4AeAHPwYGDY489dtTqJBObQs5DIadi6WpO+8g5PvLaR4cbSFfzYSzX6ZTR6VQsCWsJXboMAOjWJXTpErp1Cd2qjF4dPNzuVh56NdClHPToAjTy7enoGGJQSthqKthiFLaYQIK6xXRhi9+NLX4Xtvqd2Op1YYcXpG3389he6UjIU4teGFN6gTzV9zV8z4HxFCSMG+Fb8lQfUCaMHwwCiapBcFk2gIpsUxJyuiYdURn3aCVV+VuUR0cyuXR+BdECFUldbalhmFes9zWyw8x7/TBiubr9bB6LZlqv2HLG8H2NvNOWOiIlVbTXwcpX57jUlZFmvc/aJpE/Y4e1Iplsoc661Is5rONt23bE51JUlyXJDKTEUXylrHgwjD/Cc03ZPivKOkTR+nQ8nY4zs/Z51vGMCraPXaO434rrqoti/c8IPcWKKbNIr7fzpmO4xOdMxfLVuHuhZFXZn+sobyRTVyqI3YBA6qolyKtRlcRG7Ygl6oG0VWsTXIRGgbPPPhtfvvjL6Jct6FVTRqVOAHgZG1BGEe9+97tHrc7xCEfOEUIIIQQAcNhhh2FP7IVn8OSo1emJh2fxJH78ixv5iyohhBBCyC5in332wRzsh9VYPmp1GjFYjeW4+ppvoLe3d9TqHY/w4RwhhBBCYh557n68iL+iX7aMSn1r8TQ60cNfUwkhhBBCdjHLNj2CrXgVm+TFUanvBawBAHzkIx8ZlfrGM3w4RwghhJCYefPmYS72wyo8DhmKdn4YlGQQ67AStz3060DiRQghhBBCdhnTpk3DPjhgVOI8Typ4Fk/hp7/8MdURLUDPuWFgREGFf9F7+88TDR1OT+wZB44jgVeb7wIOUAytg/xwjmajNIzSyCkPFQk82HKh31xe+SiqHHIq8D1xlEEOPhxlQt85L/ac00rghPO+OxDorDmnM/oCAD4UfDgwouCHIntfNAw0yhJ4wJXFhQmf55bFQUUC37iKOCiHywDidbbHXLTeM07gLycOKqHHXLSfon3nGR0vB2k69o3zREMsz7loWSTpH2f7ykU+cbZ3nL3e3jtZ08onfOTsdfbU3Javhr0coJD2XKhulzo8ad8GOw0ZeTBMEgYNKvFSp6omZbS2YWN/EJW93t5YVKLoeLGed5lUt6ttY4O2pNtab7uhpDUrFw32d8bhakg9T7jQnCNzl6T8N+xtMtsVm4LU6VDDkyfaNqO89KZhe5N5a8uOPVh2hiZNrrvfQh+TZr5z1f/BhsGmlied7bkiKvCGaWiosuv4y+ZHsefUmdiEFzEDs3ZZPc/iKUzHLCxatGiX1UFIFqWKC+U7VQ9ap+ptG72vEvjFxWlQMGGMEsc84qKocrHPbr/ysMVU0KUr6DAD6FCCjjDuK8BBQbnIqbEdhpekgpJ4GBAf/WHsukNc7DB59EsHdpgC+v1O9JsOAMCAyWO714HtfgE7/AJ2eHkU/eDL2ICXw6CXQ9lzUfRcVLwgNvR8Da/iwHga4ivA14AX7ntfAX7gEad8BeUHr0DoF2cAGMANYzIVWXNG/nHSJO4AkvZqtl+c5TmVfm/7U4mO0iM/qmolykTbqdgXLGqG8pVVbtIHLCjb8v9S1s0h1eaato8gmbceO1aoF7fViXnrxbUJj7nU8arZRjK2SZVZ4ytW7xzI2qYRw70VNzg2cbxqnWvxeqWS20bnSnQupvLWeM9FG9nnWapMZZ9/GZ+FVrpcd//WBpSQMOpJeEYrCT474fGPPsfBd60wZg0zi31Mw/Mjy/+wJm7Map/Vxhrvw5p9VPWhS1wLQu/I2IdOV/slOvSg0wj855zoZiMQLRBfwTgC7RhoreB7oztmannxj5jSMQ0bsBazMX+X1bMWT6MLvTj11FN3WR27Exw5RwghhJAEU6ZMwT44AKuxfJf9qrpdtmID1uLBVffukvIJIYQQQkgthUIBP/jp9/AMnoQv/i6poySDWItVuOPRW6mOaBE+nCOEEEJIDY8XH4UPDxuwdpeUvxpPYC/si/3333+XlE8IIYQQQrI544wzkEcH1mPVLin/GTyJPdCHww8/fJeUvzsytsfTtxG/4kB5DpQWeKEMQUfTHatgymMnHLruqGDZ0QZKCVxl4OhgTK6rDVxl4GoDHaa5Ong67apgXU77cJUfLIfy1Wg5kqpqVa1LQ4LXUNqq43H8iCWuQRnV9TaRFCPuqyXPSCyLhoEKXkXBRyBHDdIC6UdFIjmqAz8cA+2ZQAZrS1WDelUgUYWKpap+OO19JCXxjU5IVeN2hO+zJKrRumD0sz0mO0oL34o9/jspTU1vF69Ly1Ot9FanlQcaDeVvIgnISkuV3TJZUtY6b+PV9apQ8b/h00Au0XRdq1VEisB60tYhFTbE9Ri6GtHO31DiqjKWre2loboyPCdTGcQus1676kll67+tX1ZW2+JCGlZRt5Bdof4c8mmTlqHa0hKItS8DiYSEMhMFiT9wYsIDGKlajYYZZbkDEPyqesNN38fiM8/GTJkDZwQleK/KS9iMl7Hi5cdHrExChsLg9jzKKASyIwCOY6DCWM7RAscxyIXxmqMFruPDVQY5x4erDfJRLKcN8tqL47uC9gAAufB9YFPiI6d96PCCkNNeaE3ih7GcFefBwAnjN93gBmOsi6YvGj50GJe5iViuajXixMslE3yWPRMse6JR9l2UTRDjlY2Dsh9u4zvwfI1KmFbxHPi+hjEqeI3kqABgFMRXgWQzfI1D0UiWaqLXYLUyQC6UpyoTXj6ttBqJakZ8lOU2EJOSBdZI09JSVVXnum+HkDolgdUI5IT1pLDKSs9qV5ro3h6/NuxhUNxI3//q3fxajVfT8W/WtnZ6RhzetO7U+nRdmbF3K1LWOutb2cdDiRnsc6hmfda5kj6H6tAw5E1/FRC7AkkkZba1aeVhMVmBowIgAkmdJ7FsNdpGV9MQylZVKHFNS6YlXLavDVUZbE23Wv7mknnehsfF/gokypYNh9cCWNcSrQJJayQ7RiCFhQ5ejQZ8LVCOwAxmf2/flWit8at7bsY73n4cZss+yKvCiJW9XbZiI9Zh1TO75sHf7gpHzhFCCCEkk/e+970ooBPrRvBXVRHBKizHPliAGTNmjFi5hBBCCCGkdY455hhMxR5YgxUjWu4qLMde2Bf77rvviJa7u8OHc4QQQgjJRCmF39z/33gOT6MsxREp80WsRxlFPD7wxxEpjxBCCCGEDI/7nrwbz+NZDEj/iJT3qryIrdiEZa88MiLlTSQoa62DX3GAkhMMX43GtsZD3gUqnFkGAJQO3wPheoklr8rKq8PlSKaQWGe9AoGUIfG+3mtq7LVuZcw1qjOOxe/D8bn2+nhWMknOjhrlj2ZQjfKkZ0qNZk/NkqDastWo3IQ0VZJS02jbhCQVqCtBTb7PkI6mhtFLVpqVDjQZmi/J2Yfq56vdLosRmTVqiGPSGyYPRy/RypD6RuzMvskoJi3jrBlqDyTPobQ0NCqnQTGZZewsDcqoW34DSU7dalpR/taTyqbK2WmGee7sitnq6pIlQ0ljS5OiTNa5pkJJq6hQypq41yiIkVguYXxnl3SjFY466ihMw554FiuwAG/cqbJ88bEaT+C7N16Lzs7OEWohIcNgSx6mXIg/d3446yaUxDJFFf2ErST8OTv4TEZxX5BWjQ11zfrq/MxRPIj4ffDaLG4zqVgoeFXJGClaZ1RtvGSqafHsmcaKfUwoPTXKkpOqqlQsTq+mRXJTxwBuuBztJoTS1FiSas2gWiNRBazrY8alv9GuyVJBZklKkZIPxjLUjDxWWnq7mm2imVcVqjJXW45op9ttgpVut6umD/W1eKNxr1P1JgJqFseKtSCp7A0lrOnMdbYR6yX8F1t6tCJfbSKfbfhxrJfWapyWzpc+R+w8qfOyNj1D4po+b6M60udZOr1e+9Jl1SGOs235Z7xsr8xIR9iPUN4KO0mFx9aSryZlrdYG0bUN1XMja9ZeQaoMi2bxqy2drX63CF9TC8lri0pdM6L31esHlADF9j2WOfDAA9GHeViNJ3AwFu1UWZE6Yj4WYPr06SPUwokDR84RQgghpCH3r/gdXsAa7NjJX1X/itVwkcMHPvCBEWoZIYQQQgjZGR574UFswkZskVd2qpyNWIcKylg+SHXEcODDOUIIIYQ0ZMGCBejDfKzG8mGXUZEy1uB/cfOd/z8cp30jAQkhhBBCSJW+vj7sjddiFZZD6o2cbYIvPp7Bk7j+x9eho6NjhFs4MeDDOUIIIYQ0ZenGh/AqXhr2r6prsAKTMQ3HHXfcCLeMEEIIIYTsDI/3/xGD2IGX8cKwtl+P1cghj/e///0j3LKJAz3n6iBlDeM4SYl82geiRrufWo/IU8harklPlYlkXpXS+qu0IH6kfCcyHpCnPd/qpTXzbZMMfwdJeUcEZK2z3mfVk5Eel9bEI85Oa8nnpN6PCBmGDCPiGbezDLH8hqfScPzqdqJ/I+JblqLWm0NqF5t6rtU617VW+RDzD/dz3cKOG1VftpGm1baP5PkznP2V2MmWJ0rCZwXxBV4l/1n3mKp3iZTb/1vazJkzMQ+vxSo8jjfJ26HSN6gGDMoO/BXPYNn/LNuFLSSkddztGtrTSe+yGm+m5MWkJh3J9wZ1rrFDvY4088LK8EyKvJnSeXWWx5vtEWeVWVNHHd+mZuU06kewQfZ+srpQkz/xiqxjVbsu7QNXN93ePsNXLl1WertG3mFil1PP+6uO71ejuKXROTWES3NTmg6gqetN1yg2tvZrPT+4mvQmnnRN60xtsKtj8CzqHJfsc77BsW52jcmKBRucE8OJC+uGm42ORx2vNzt7utzo8xOsV9XPVer6I/HKVD0Z32Vr/C7tMrLa1+BcySoLYVNrF1VNWnVZwS+2P87r6enBt677Jj71/12AGdIHrVpvU1lKeA7/izt+dzu0bn9fxivcc4QQQghpice3/xGDGMBLeH5I263GE5iJvXHwwQfvopYRQgghhJCd4UMf+hAUFJ7Hs0PaLlBHTMexxx67i1o2MeDDOUIIIYS0RHd3N75z/bewGsthxDTfAMBWeRUv4wX8cf0fdnHrCCGEEELIcHFdF//5q5/gWTwFTyotbTMg2/E8nsW9y+/axa3b/aGstQ6qrKEc3XAYcN00exi8tToakVuPIQ0r3hW6vyE2omkTGqXXq6fhNmG9I1WXxZB2ZzuGwo8GIyVDbYdsMi0XHCItn/a76nM3HhhPctg2tNU+NZKq1lpZf90NqysTiwqAqoydA/BP//RPOP+cC/BXPIO98ZqGeUUEq/A49sZrMGfOnFFqISHNUR6gvaa5RqMp2bRwuxkxC40GeWqkoC0Ul0ndmDmjrgbb1M3TQPJaIzdtIEPNkscm0zO2rVtXazLUhJ5PqnnjVQrJhYQGr7b8tNJ0yDJX2/ZjKNtmWToMZfOhmtC3kD2RZVz7euwaVFrOnsUQbH2aSkJjGWhy25auZekvG2HsL9F3AJXMmpC6WnVLRn1Zdks1bWomq66XJ51WT/rf2u+do8LJJ5+MbkzCc3ga++OgpvmfwROYhb1x0EHN85LGcOQcIYQQQlrGcRz8/Nb/xBqsQEXKDfO+gg3YgX78z9ZHR6l1hBBCCCFkuCilcNdjt2EdVqEoAw3zbpVNeAUb8NjzD45S63Zv+HCOEEIIIUPixBNPRA8mYy2erpvHiMEqLMc3vn0lJk2aNIqtI4QQQgghw+VNb3oT9sBsPIMn6+YJ1BHLsTdei9mzZ49i63Zf+HCOEEIIIUNCKYW7l96OdVhd91fVF/AcAMFHP/rRUW0bIYQQQgjZOR5+9j68iPXoly2Z6S9jAwbQj//ZRnXESEHPuTooX0H5w/UmyN6umdXBeHBCGDOWW2OlHaQWHpvdk4l6XIdxYR6ah2VrFQz/frTrOOyww7An9sIzeBKvx98k0jyp4Fk8if/8xU+Ry+Xa1EJC6mMKAAoY0rVtp2OgsXYdHeZlpaXLVkPP5uwdUbfcFtdnbt/yumSbWveibZBWz4MtWkxsqzIXE29rF6xMTU6uFvojjcpvhTHzJaEOO9O+XeRXN+wmDXW7Zu3fKR/xodeZ2e9WvC+tAlTKZ87OlPQarFNVRiaV8TFt1rZ6ac29/JKdanGOrVFln332wRzsh1VYjsNwVCLNiMFqLMfV13wDvb29bWrh7gdHzhFCCCFkWDzy3P14EX+t+VV1LVaiEz1497vf3Z6GEUIIIYSQnWLZpkewDa9ik2xMrH8BawAAH/nIR9rRrN0WPpwjhBBCyLCYN28e5mI/rMLj8bqSDGIdVuK2h34NNeRpAgkhhBBCyFhg2rRp2AcHYBWWxzMqB+qIp/DTX/6Y6ogRhrLWeghGXH4w1kd7E0IISTFWrttjpR0Z/GXzo9hz6kxsko2YrmbhWTyF6ZiFRYsWtbtphNTF7zSQzjGoIyLjmrqx/i6SRVo1j4ESCNkJhngC1n6kdj5QGt1QK1mbUWP3frS8+EdM6ZiGDViL2ZiPtViJLvTi1FNPbXfTdjs4co4QQgghw2bKlCnxr6rbZSs2YC0eXHVvu5tFCCGEEEJ2kkKhgB/89Ht4Bk9iQLZjHVbijkdvpTpiF8CHc4QQQgjZKR4vPgofHv6MP2Av7Iv999+/3U0ihBBCCCEjwBlnnIE8OvAn3IsZ6MPhhx/e7ibtllDWmiLSUptisc0tIYQQQgKie1J0jxprFAoF/Pi/bsTif/gQ/vzyw+1uDiF1YZxHCCFkrDHW4zytNX597y141zGn4MHV97a7ObstSsbqGdAm/vrXv2Lu3LntbgYhhBBSw/r16zFnzpx2N4OQcQvjPEIIIWMVxnkTGz6cS2GMwQsvvIDe3t4xoaPetm0b5s6di/Xr12PSpEntbs4uY6L0E2Bfd0cmSj8B9rVdiAj6+/sxe/ZsaE1HCkKGC+O89jBR+gmwr7srE6WvE6WfwNjqK+M8AlDWWoPWekw+rZ40aVLbLxqjwUTpJ8C+7o5MlH4C7Gs7mDx5crubQMi4h3Fee5ko/QTY192VidLXidJPYOz0lXEe4WNZQgghhBBCCCGEEELaBB/OEUIIIYQQQgghhBDSJvhwboxTKBRw4YUXolAotLspu5SJ0k+Afd0dmSj9BNhXQggZSSbKdWai9BNgX3dXJkpfJ0o/gYnVVzI+4IQQhBBCCCGEEEIIIYS0CY6cI4QQQgghhBBCCCGkTfDhHCGEEEIIIYQQQgghbYIP5wghhBBCCCGEEEIIaRN8OEcIIYQQQgghhBBCSJvgw7kxwqWXXoojjjgCXV1dmDJlSmYepVTN37XXXpvIs3z5chx99NHo7OzEXnvthYsvvhhjbc6PVvq6bt06nHLKKeju7saMGTOwZMkSlMvlRJ7x0Nc08+fPrzmGn/vc5xJ5Wun7eOCaa67BPvvsg46ODixcuBB/+MMf2t2kneaiiy6qOX6zZs2K00UEF110EWbPno3Ozk4cc8wxePLJJ9vY4ta4//77ccopp2D27NlQSuGXv/xlIr2VfpVKJXziE5/AjBkz0N3djVNPPRV//etfR7EXrdGsr2effXbNMX7LW96SyDNe+koIGTswzkvCOI9x3lhkd43zgIkT6zHOI+MZPpwbI5TLZbznPe/Bxz72sYb5brjhBmzYsCH+W7x4cZy2bds2HHfccZg9ezYee+wxfOtb38IVV1yBq666alc3f0g066vv+zjppJOwY8cOPPDAA7jpppvwi1/8AhdccEGcZ7z0NYuLL744cQy/+MUvxmmt9H088LOf/Qznn38+vvCFL2DZsmU46qijcOKJJ2LdunXtbtpO8/rXvz5x/JYvXx6nXX755bjqqqvw7W9/G4899hhmzZqF4447Dv39/W1scXN27NiBQw45BN/+9rcz01vp1/nnn49bbrkFN910Ex544AFs374dJ598MnzfH61utESzvgLAO9/5zsQx/u1vf5tIHy99JYSMHRjnVWGcxzhvLLM7xnnAxIn1GOeRcY2QMcUNN9wgkydPzkwDILfcckvdba+55hqZPHmyFIvFeN1Xv/pVmT17thhjRrilO0+9vv72t78VrbU8//zz8br//M//lEKhIFu3bhWR8dfXiHnz5sk3vvGNuumt9H08cPjhh8u5556bWLdgwQL53Oc+16YWjQwXXnihHHLIIZlpxhiZNWuWXHbZZfG6YrEokydPlmuvvXaUWrjzpK8zrfRry5Ytksvl5KabborzPP/886K1lttvv33U2j5Usq6pixcvltNOO63uNuO1r4SQsQHjPMZ5jPPGLhMhzhOZOLEe4zwy3uDIuXHGeeedhxkzZuBv/uZvcO2118IYE6c9/PDDOProo1EoFOJ1J5xwAl544QU899xzbWjt8Hj44Ydx0EEHYfbs2fG6E044AaVSCUuXLo3zjNe+fu1rX8P06dNx6KGH4tJLL01IGVrp+1inXC5j6dKlOP744xPrjz/+eDz00ENtatXIsWrVKsyePRv77LMPzjzzTDz77LMAgDVr1mDjxo2JfhcKBRx99NHjut+t9Gvp0qWoVCqJPLNnz8ZBBx00Lvt+7733Ys8998RrX/tanHPOOXjppZfitN2tr4SQsQXjPMZ5Yx3GebtXnAdMvFiPcR4Zq7jtbgBpnUsuuQR/+7d/i87OTvzud7/DBRdcgFdeeSUeLr9x40bMnz8/sc3MmTPjtH322We0mzwsNm7cGLc7YurUqcjn89i4cWOcZzz29ZOf/CQOO+wwTJ06FX/84x/x+c9/HmvWrMH3vvc9AK31fazzyiuvwPf9mn7MnDlz3PShHm9+85vxox/9CK997Wvx4osv4stf/jKOOOIIPPnkk3Hfsvq9du3adjR3RGilXxs3bkQ+n8fUqVNr8oy3Y37iiSfiPe95D+bNm4c1a9bg3/7t33Dsscdi6dKlKBQKu1VfCSFjC8Z5jPPGA4zzdq84D5hYsR7jPDKW4ci5XUiWqWj6709/+lPL5X3xi1/EokWLcOihh+KCCy7AxRdfjK9//euJPEqpxHsJjXPT60eake5rVntFJLG+XX1NM5S+f+pTn8LRRx+Ngw8+GB/5yEdw7bXX4vvf/z42bdoUl9dK38cDWcdnvPUhzYknnoi///u/xxve8Aa84x3vwK233goAuPHGG+M8u2O/geH1azz2/YwzzsBJJ52Egw46CKeccgpuu+02rFy5Mj7W9RiPfSWE7ByM8xjnMc6rMh77kGYix3nAxIj1GOeRsQxHzu1CzjvvPJx55pkN86R/FRwKb3nLW7Bt2za8+OKLmDlzJmbNmlXzRD8appv+JWSkGcm+zpo1C48++mhi3ebNm1GpVOJ+tLOvaXam79HsQKtXr8b06dNb6vtYZ8aMGXAcJ/P4jJc+tEp3dzfe8IY3YNWqVTj99NMBBL8s9vX1xXnGe7+jWcoa9WvWrFkol8vYvHlz4pfGl156CUccccToNniE6evrw7x587Bq1SoAu3dfCSFDg3FeEsZ5tTDOG99MhDgPmNixHuM8MpbgyLldyIwZM7BgwYKGfx0dHcMuf9myZejo6IinqV+0aBHuv//+hLfFnXfeidmzZ+9UcNgKI9nXRYsW4YknnsCGDRvidXfeeScKhQIWLlwY52lXX9PsTN+XLVsGAPGNsJW+j3Xy+TwWLlyIu+66K7H+rrvu2u1uaqVSCStWrEBfXx/22WcfzJo1K9HvcrmM++67b1z3u5V+LVy4ELlcLpFnw4YNeOKJJ8Z13wFg06ZNWL9+ffwZ3Z37SggZGozzGOcxzqvCOG/8MpFjPcZ5ZEwx2jNQkGzWrl0ry5Ytky996UvS09Mjy5Ytk2XLlkl/f7+IiPzqV7+S7373u7J8+XJZvXq1XH/99TJp0iRZsmRJXMaWLVtk5syZ8r73vU+WL18uN998s0yaNEmuuOKKdnUrk2Z99TxPDjroIPnbv/1b+fOf/yx33323zJkzR84777y4jPHSV5uHHnpIrrrqKlm2bJk8++yz8rOf/Uxmz54tp556apynlb6PB2666SbJ5XLy/e9/X5566ik5//zzpbu7W5577rl2N22nuOCCC+Tee++VZ599Vh555BE5+eSTpbe3N+7XZZddJpMnT5abb75Zli9fLu973/ukr69Ptm3b1uaWN6a/vz/+HAKIz9O1a9eKSGv9Ovfcc2XOnDly9913y5///Gc59thj5ZBDDhHP89rVrUwa9bW/v18uuOACeeihh2TNmjVyzz33yKJFi2SvvfYal30lhIwdGOcxzhNhnDfW2V3jPJGJE+sxziPjGT6cGyMsXrxYANT83XPPPSIictttt8mhhx4qPT090tXVJQcddJBcffXVUqlUEuU8/vjjctRRR0mhUJBZs2bJRRddNOamnG/WV5EgsDvppJOks7NTpk2bJuedd54Ui8VEOeOhrzZLly6VN7/5zTJ58mTp6OiQ173udXLhhRfKjh07Evla6ft44Dvf+Y7MmzdP8vm8HHbYYXLfffe1u0k7zRlnnCF9fX2Sy+Vk9uzZ8nd/93fy5JNPxunGGLnwwgtl1qxZUigU5G1ve5ssX768jS1ujXvuuSfzM7l48WIRaa1fg4ODct5558m0adOks7NTTj75ZFm3bl0betOYRn0dGBiQ448/XvbYYw/J5XKy9957y+LFi2v6MV76SggZOzDOY5wXwThv7LK7xnkiEyfWY5xHxjNKJHRXJYQQQgghhBBCCCGEjCr0nCOEEEIIIYQQQgghpE3w4RwhhBBCCCGEEEIIIW2CD+cIIYQQQgghhBBCCGkTfDhHCCGEEEIIIYQQQkib4MM5QgghhBBCCCGEEELaBB/OEUIIIYQQQgghhBDSJvhwjhBCCCGEEEIIIYSQNsGHc4QQQgghhBBCCCGEtAk+nCMEwDHHHIPzzz9/t6r37LPPxumnn75TZcyfPx9KKSilsGXLlrr5fvjDH2LKlCk7VRepz9lnnx0fh1/+8pftbg4hhBAyrmCclw3jvLEB4zxCCMCHc4S0lZtvvhmXXHJJ/H7+/Pm4+uqr29egDC6++GJs2LABkydPbndTdnvuvffezAD5m9/8JjZs2NCeRhFCCCFkWDDOIzaM8wghjXDb3QBCJjLTpk1rdxOa0tvbi1mzZrW7GQCASqWCXC7X7maMOpMnT2bQTAghhIwzGOcNDcZ5hJCJDEfOEZLB5s2bcdZZZ2Hq1Kno6urCiSeeiFWrVsXp0fD+O+64AwcccAB6enrwzne+M/Grl+d5WLJkCaZMmYLp06fjs5/9LBYvXpyQINhyh2OOOQZr167Fpz71qXhoOwBcdNFFOPTQQxPtu/rqqzF//vz4ve/7+PSnPx3X9a//+q8QkcQ2IoLLL78c++67Lzo7O3HIIYfgv/7rv4a1f374wx9i7733RldXF9797ndj06ZNNXl+/etfY+HChejo6MC+++6LL33pS/A8L07/3//9X7z1rW9FR0cHDjzwQNx9992J4fzPPfcclFL4+c9/jmOOOQYdHR34v//3/wIAbrjhBhxwwAHo6OjAggULcM011yTqfv7553HGGWdg6tSpmD59Ok477TQ899xzcfq9996Lww8/HN3d3ZgyZQqOPPJIrF27tqW+N+vXVVddhTe84Q3o7u7G3Llz8fGPfxzbt2+P09euXYtTTjkFU6dORXd3N17/+tfjt7/9LZ577jm8/e1vBwBMnToVSimcffbZLbWJEEIIIa3DOK8xjPMY5xFCRh8+nCMkg7PPPht/+tOf8Ktf/QoPP/wwRATvete7UKlU4jwDAwO44oor8OMf/xj3338/1q1bh8985jNx+te+9jX85Cc/wQ033IAHH3wQ27Zta+gjcfPNN2POnDmxvGAow9uvvPJK/OAHP8D3v/99PPDAA3j11Vdxyy23JPJ88YtfxA033ID/+I//wJNPPolPfepT+Md//Efcd999re8YAI8++ig+9KEP4eMf/zj+8pe/4O1vfzu+/OUvJ/Lccccd+Md//EcsWbIETz31FK677jr88Ic/xKWXXgoAMMbg9NNPR1dXFx599FF897vfxRe+8IXM+j772c9iyZIlWLFiBU444QRcf/31+MIXvoBLL70UK1aswFe+8hX827/9G2688UYAwXF5+9vfjp6eHtx///144IEH4qC6XC7D8zycfvrpOProo/H444/j4Ycfxkc/+tE4SG5Es34BgNYa/+f//B888cQTuPHGG/H73/8e//qv/xqn//M//zNKpRLuv/9+LF++HF/72tfQ09ODuXPn4he/+AUA4Omnn8aGDRvwzW9+c0jHhhBCCCHNYZxXH8Z5jPMIIW1CCCFy9NFHyyc/+UkREVm5cqUAkAcffDBOf+WVV6Szs1N+/vOfi4jIDTfcIABk9erVcZ7vfOc7MnPmzPj9zJkz5etf/3r83vM82XvvveW0007LrFdEZN68efKNb3wj0bYLL7xQDjnkkMS6b3zjGzJv3rz4fV9fn1x22WXx+0qlInPmzInr2r59u3R0dMhDDz2UKOfDH/6wvO9976u7X7La8773vU/e+c53JtadccYZMnny5Pj9UUcdJV/5ylcSeX784x9LX1+fiIjcdttt4rqubNiwIU6/6667BIDccsstIiKyZs0aASBXX311opy5c+fKT3/608S6Sy65RBYtWiQiIt///vflda97nRhj4vRSqSSdnZ1yxx13yKZNmwSA3HvvvXX7XY9m/cri5z//uUyfPj1+/4Y3vEEuuuiizLz33HOPAJDNmzdnptv7hxBCCCGtwTgvG8Z5SRjnEULaCT3nCEmxYsUKuK6LN7/5zfG66dOn43Wvex1WrFgRr+vq6sJ+++0Xv+/r68NLL70EANi6dStefPFFHH744XG64zhYuHAhjDEj2t6tW7diw4YNWLRoUbzOdV286U1viiUPTz31FIrFIo477rjEtuVyGW984xuHVN+KFSvw7ne/O7Fu0aJFuP322+P3S5cuxWOPPZb4pdH3fRSLRQwMDODpp5/G3LlzEx4n9r6yedOb3hQvv/zyy1i/fj0+/OEP45xzzonXe54Xe3UsXboUq1evRm9vb6KcYrGIZ555BscffzzOPvtsnHDCCTjuuOPwjne8A+9973vR19fXtO/N+tXV1YV77rkHX/nKV/DUU09h27Zt8DwPxWIRO3bsQHd3N5YsWYKPfexjuPPOO/GOd7wDf//3f4+DDz64ad2EEEII2XkY5zWGcR7jPEJIe+DDOUJSSMrDw15vD4lPG9YqpWq2TQ+hr1d2I7TWNdvZsotWiALFW2+9FXvttVcirVAoDKmsVvpgjMGXvvQl/N3f/V1NWkdHR82+bER3d3eiXAC4/vrrE0E1EATFUZ6FCxfiJz/5SU1Ze+yxB4DAy2TJkiW4/fbb8bOf/Qxf/OIXcdddd+Etb3nLTvVr7dq1eNe73oVzzz0Xl1xyCaZNm4YHHngAH/7wh+Nj9pGPfAQnnHACbr31Vtx555346le/iiuvvBKf+MQnWtofhBBCCBk+jPMawziPcR4hpD3w4RwhKQ488EB4nodHH30URxxxBABg06ZNWLlyJQ444ICWypg8eTJmzpyJP/7xjzjqqKMABL+8LVu2rMb01yafz8P3/cS6PfbYAxs3bkwEOn/5y18SdfX19eGRRx7B2972NgDBL4xLly7FYYcdFvepUChg3bp1OProo1vqQz0OPPBAPPLII4l16feHHXYYnn76aey///6ZZSxYsADr1q3Diy++iJkzZwIAHnvssaZ1z5w5E3vttReeffZZfOADH8jMc9hhh+FnP/sZ9txzT0yaNKluWW984xvxxje+EZ///OexaNEi/PSnP20atDXr15/+9Cd4nocrr7wSWgeWnj//+c9r8s2dOxfnnnsuzj33XHz+85/H9ddfj0984hPI5/MAUHMOEEIIIWRkYJzXGMZ5jPMIIe2BD+cISfGa17wGp512Gs455xxcd9116O3txec+9znstddeOO2001ou5xOf+AS++tWvYv/998eCBQvwrW99C5s3b274S+L8+fNx//3348wzz0ShUMCMGTNwzDHH4OWXX8bll1+Of/iHf8Dtt9+O2267LRGQfPKTn8Rll12G17zmNTjggANw1VVXYcuWLXF6b28vPvOZz+BTn/oUjDF461vfim3btuGhhx5CT08PFi9e3HK/lixZgiOOOAKXX345Tj/9dNx5550JqQMA/Pu//ztOPvlkzJ07F+95z3ugtcbjjz+O5cuX48tf/jKOO+447Lfffli8eDEuv/xy9Pf3x0bBzX5pveiii7BkyRJMmjQJJ554IkqlEv70pz9h8+bN+PSnP40PfOAD+PrXv47TTjsNF198MebMmYN169bh5ptvxr/8y7+gUqngu9/9Lk499VTMnj0bTz/9NFauXImzzjqrad+b9Wu//faD53n41re+hVNOOQUPPvggrr322kQZ559/Pk488US89rWvxebNm/H73/8+/jIwb948KKXwm9/8Bu9617vQ2dmJnp6elo8NIYQQQhrDOK8xjPMY5xFC2sRom9wRMhZJG/a++uqr8sEPflAmT54snZ2dcsIJJ8jKlSvj9BtuuCFhjCsicsstt4j9kapUKnLeeefJpEmTZOrUqfLZz35W3vOe98iZZ55Zt96HH35YDj74YCkUComy/uM//kPmzp0r3d3dctZZZ8mll16aMAquVCryyU9+UiZNmiRTpkyRT3/603LWWWclTImNMfLNb35TXve610kul5M99thDTjjhBLnvvvvq7pcso2CRwIx3zpw50tnZKaeccopcccUVNfvj9ttvlyOOOEI6Oztl0qRJcvjhh8t3v/vdOH3FihVy5JFHSj6flwULFsivf/1rASC33367iFSNgpctW1ZT/09+8hM59NBDJZ/Py9SpU+Vtb3ub3HzzzXH6hg0b5KyzzpIZM2ZIoVCQfffdV8455xzZunWrbNy4UU4//XTp6+uTfD4v8+bNk3//938X3/fr7oeh9Ouqq66Svr6++Lz50Y9+lDD/Pe+882S//faTQqEge+yxh3zwgx+UV155Jd7+4osvllmzZolSShYvXpyoGzQKJoQQQoYM47xsGOfVwjiPENIulMgwzBEIIUPGGIMDDjgA733ve3HJJZe0uzktMX/+fJx//vk4//zzd3ldDz74IN761rdi9erVCQNmUkUphVtuuQWnn356u5tCCCGEEAvGeY1hnNccxnmETGx0uxtAyO7K2rVrcf3112PlypVYvnw5Pvaxj2HNmjV4//vf3+6mDYnPfvaz6OnpwdatW0e03FtuuQV33XUXnnvuOdx999346Ec/iiOPPJIBWwbnnnsuZQ+EEELIGIJxXmMY57UO4zxCCABw5Bwhu4j169fjzDPPxBNPPAERwUEHHYTLLrssNvMdD6xduzaefWrfffeNzW9Hgh/96Ee45JJLsH79esyYMQPveMc7cOWVV2L69OkjVsdQef3rX4+1a9dmpl133XV1zYl3NS+99BK2bdsGAOjr60vMbEYIIYSQ0YdxXmMY57UO4zxCCMCHc4QQEmMHqWlmzpyJ3t7eUW4RIYQQQggZCRjnEULGMnw4RwghhBBCCCGEEEJIm6DnHCGEEEIIIYQQQgghbYIP5wghhBBCCCGEEEIIaRN8OEcIIYQQQgghhBBCSJvgwzlCCCGEEEIIIYQQQtoEH84RQgghhBBCCCGEENIm+HCOEEIIIYQQQgghhJA2wYdzhBBCCCGEEEIIIYS0if8HvSeQP2NpIigAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABOcAAAK7CAYAAAC5/usHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9ebwtR1nv/XuqqtdaezhjTkISEhIEEgiBi4Ypim+I3CCDCIRBQGZRNAgCl2gAJQFFMlx9UQaVFw1qQLgy3qsoMQwqo4Dey3RRBEJCSDhJTs45e+81dVc97x81dHWvtfZwcs7eJ8nz/XzW3mv1UFVdXV399Fr1+xUxM0MQBEEQBEEQBEEQBEEQhE1HbXUBBEEQBEEQBEEQBEEQBOGuinw5JwiCIAiCIAiCIAiCIAhbhHw5JwiCIAiCIAiCIAiCIAhbhHw5JwiCIAiCIAiCIAiCIAhbhHw5JwiCIAiCIAiCIAiCIAhbhHw5JwiCIAiCIAiCIAiCIAhbhHw5JwiCIAiCIAiCIAiCIAhbhHw5JwiCIAiCIAiCIAiCIAhbhHw5JwiCIAiCIAiCIAiCIAhbhHw5dxfjs5/9LC655BLs379/Yt0jH/lIPPKRj9z0Mm0G//Ef/4FXvepVOOuss7Bz507s3r0bP/ETP4H3v//9U7ffu3cvnv/852PPnj2Yn5/H2WefjY9//OONbQ4ePIg3vvGNeOQjH4njjz8ei4uLeMADHoDLLrsMw+FwIs2yLPH6178ep556KrrdLu573/viLW95y4aOYz3lAoC/+Zu/wXOf+1w84AEPQFEUIKIN5QMAb37zm3H++efjnve8J4hozbbxkY98BOeccw62b9+OhYUF3P/+98c73vEOAMAll1wCIlrzFfP4+te/jgsuuABnn302FhYWQET41Kc+NTXfv/iLv8AznvEMnH766VBK4dRTT93Qcc4qW6/Xm9h2aWkJL3vZy3D3u98d3W4Xp512Gi6//HJYa4+6vGbV8aWXXjqx7XrbFQBcc801OPvsszE/P489e/bg+c9/Pvbu3Tux3Uba+3e+8x2cf/752LlzJxYXF3HeeefhX//1X6du+973vhcPetCD0Ov1cOKJJ+LlL385lpeX11UngiAId3YkzpM4b71InCdx3jQkzhOELYSFuxRXXHEFA+Dvfve7E+u+/vWv89e//vXNL9Qm8Ja3vIXve9/78hvf+Ea++uqr+aMf/Sg/73nPYwD8+te/vrHtcDjkM888k0866SS+6qqr+Oqrr+YnPvGJbIzhT33qU2m7r371q7xnzx5+xStewR/5yEf44x//OF9yySXc6/X4UY96FDvnGum+6EUv4m63y5dffjl/8pOf5IsuuoiJiN/4xjeu6xjWWy5m5he+8IV8n/vch5/+9KfzWWedxYdyqZ9++un8Yz/2Y/zCF76Qjz32WD7nnHNmbvumN72JlVJ8wQUX8N/93d/xNddcw29961v5LW95CzMzX3/99fy5z30uvT74wQ8yAH7pS1/aWB7b37ve9S4+4YQT+HGPexw/4QlPYAD8yU9+cmre//W//lc+88wz+dnPfjbf+9735lNOOWVDx3nxxRczAP77v//7Rlm+8IUvNLYry5If9rCH8a5du/itb30rX3311fzKV76SiYhf+tKXHnV5AeCnPvWpjXw+97nP8Q033NDYbiPt6lOf+hQbY/iJT3wiX3311XzVVVfx3e9+dz7zzDN5OBw2tl1ve9+7dy+feOKJfP/7358/8IEP8N/+7d/yIx7xCN62bRt/85vfbGx71VVXMQB+0YtexJ/4xCf4j//4j3nHjh183nnnratOBEEQ7uxInCdx3nqROE/iPInzBOHoQr6cu4uxWtB2Z+bmm2+eCKKYmR//+Mfz/Px844bztre9jQHwZz/72bSsLEs+44wz+KEPfWhatry8zMvLyxNpxjr+53/+57Tsa1/7GhMR/+7v/m5j21/8xV/kubk5vvXWW9c8hvWWi5nZWpvev+QlLzmkoC1P4/73v//MoO1LX/oSK6X4sssuW3fa3/3udxkAX3HFFWvm/dd//derBm35to9//OMPOWi7+eabV93ur/7qrxgAf+ADH2gs/6Vf+iVWSk0EGFudFwB+yUtesuZ2G2lXD3nIQ/iMM87gsizTss985jMMgN/+9renZRtp7xdeeCEXRcHXXnttWnbgwAHes2cPP/3pT0/LqqriE044gR/96Ec30nz3u9/NAPijH/3omscqCIJwZ0fivCYS581G4rwmEudJnCcIW43IWu9CXHLJJbjwwgsBIA1hz4eRt+UO1157LYgIV1xxBS677DKceuqpmJubwyMf+Uj8x3/8B8qyxEUXXYQTTzwRO3bswJOf/OSpw57f9773pWHri4uL+Omf/mn827/922YccmLPnj1Th/w/9KEPRb/fx759+9KyD33oQzj99NNx9tlnp2XGGDz72c/Gv/zLv+CGG24AACwsLGBhYWFqmgBw/fXXp2Uf/vCHwcx4wQte0Nj2BS94AQaDAf7+7/9+zWNYb7kAQKnbf2mvN423vvWt6Ha7eOlLX3q789xo3hvd9vbwmc98BkSExz72sY3lP/MzPwPnHD70oQ/dIfNab7u64YYb8MUvfhHPec5zYIxJ2/74j/84TjvttEaZNtLeP/ShD+GnfuqncMopp6Rl27dvx/nnn4//9b/+F6qqAgB8/vOfx4033jiR5tOe9jQsLi4e1joRBEG4IyJxnsR5G0HivCYS50mcJwhbjXw5dxfiRS96UbqxfvCDH8TnPvc5fO5zn8OP/diPrbrf2972NnzmM5/B2972Nrzzne/EN7/5TTzhCU/AL/zCL+Dmm2/Gn/3Zn+Hyyy/HNddcgxe96EWNfX/3d38Xz3zmM3HGGWfgf/yP/4G//Mu/xNLSEn7yJ38S3/jGN9Ysc1VV63ox8yHVySc/+Ukce+yxOO6449Kyr33ta3jgAx84sW1c9vWvf33VND/xiU8AAO5///s30jz22GNx/PHHT03za1/72pplvb3lOlL80z/9E+53v/vhAx/4AE4//XRorXHSSSfhoosuwng83pIyzWI1T5UHPOAB0Frjbne7G5773Ofiuuuua6wfj8dQSqEoisbybrcLAPjKV76yZXnN4j3veQ/m5ubQ7XZx1lln4corr5zYZr3tKrbRWdvmbXi97X0wGODb3/72zDQHgwG+853vrJp/URS4733vu65rSBAE4c6MxHmTSJx3+5E4T+I8ifMEYXMwa28i3Fk46aSTcI973AMA8KM/+qPrNlTduXMnPvzhD6dfrm655Ra8/OUvx33ve1985CMfSdt985vfxJvf/GYcPHgQ27dvx/XXX4+LL74Yv/qrv4o//MM/TNudd955uM997oPXv/71eN/73jcz32uvvRb3vOc911XGT37ykxs2OX7nO9+JT33qU/iDP/gDaK3T8ltvvRW7d++e2D4uu/XWW2em+ZWvfAWXX345nvzkJzduLrPSXFhYQKfTWTXNw1GuI8kNN9yAm2++GS972cvw27/92zjjjDPw8Y9/HJdeeimuv/56vPvd796Sck1Da9041wBwr3vdC2984xvxoz/6o+j1eviXf/kXXH755bj66qvx5S9/GXe/+90BAGeccQastfj85z+PRzziEWn/T3/60wAm638z85rGs571LDz+8Y/HySefjL179+JP//RP8cIXvhDf+c538Nu//dtpu/W2q/h/1rZ5mdbb3m+77TYw82HJ/9prr51SC4IgCHcdJM5rInHe4UHiPInzJM4ThM1BvpwT1uRxj3tcY0j5/e53PwDA4x//+MZ2cfl1112HM888Ex/72MdQVRWe+9znpiHLANDr9XDOOefgk5/85Kr5nnjiifjiF7+4rjKefvrp69ou8nd/93d4yUtegqc+9alTh+mvNuvVrHXXXnstfuZnfgYnn3wy3vnOdx5Smsw8MUtTPrT8UMq1Gvl5AXygsdF0nHNYWlrCX/3VX+EZz3gGAODcc8/FysoK3vzmN+P1r3897n3ve2+4bEeC9vECwHOe85zG53PPPRfnnnsuzj77bFx++eX4gz/4AwDAz//8z+MNb3gDfumXfglXXnklTj/9dPzd3/1deiBpyy42M69ptIPlpzzlKXjCE56ASy+9FC972ctw7LHHpnUbaVeztl3vdkdq20Np/4IgCILEeetdJ3GexHlbldc0JM4ThDsfImsV1qT9C0an01l1eZxe/oc//CEA4CEPeQiKomi83ve+9+GWW25ZNd9Op4MHPehB63otLi6u+3g+9rGP4fzzz8d5552Hd7/73ROd/THHHDP1F6voVzLtF53vfe97OPfcc2GMwcc//vGJbWalubKygvF4nLb/8z//84m6uj3lWot2Xn/+53++4TSOOeYYAMBP//RPN5ZHH41ZU6UfzTz0oQ/Faaedhs9//vNp2Z49e5KHxsMf/nDs2rULL33pS/H7v//7AJB+DT2a83r2s5+NqqrwpS99KS1bb7uK53nWtnn7W29737VrF4josOcvCIIgrB+J8zwS501H4jyJ8yTOE4TNQUbOCUeMPXv2AADe//73N0xA18uRkDt87GMfw5Oe9CScc845+MAHPpACzZwHPOAB+OpXvzqxPC4788wzG8u/973v4ZGPfCSYGZ/61Kdw0kknTU3zve99L2666aaGP0M7zSc84Qkzf0XeaLnWQzuv9dZ3zgMf+EDcdNNNE8ujP8xmGfkebph5ouwPechD8I1vfAPXXnstVlZWcJ/73Adf/vKXAQD/z//z/xz1eU07J+ttV/H/V7/6VTzucY+b2DZvf+tt73Nzc7j3ve89M/+5uTn8yI/8SEozLj/jjDPSdlVV4Zvf/Cae+cxnrqsOBEEQhMODxHnNNCXOu2MhcZ7EeYJwtHHH7E2FQyYajQ4GgyOe10//9E/DGINvf/vbePCDHzz1tRpR7rCe11lnnbVmea6++mo86UlPwiMe8Qh8+MMfTnXR5slPfjK++c1v4gtf+EJaVlUVrrrqKjzsYQ/DiSeemJZfd911eOQjHwlrLT7xiU/MDE6f+MQngogmfrF817vehbm5OTzmMY8B4H81mlVHGynXemnnFX+12ghPecpTAHgJSc5HP/pRKKXwkIc8ZMNpbjWf//zn8a1vfQsPf/jDp64/9dRTcf/73x9FUeD3fu/3cOKJJ+JpT3vaUZ/XX/7lX6Ioisb1st52dfe73x0PfehDcdVVVzUkOZ///Ofx7//+7zj//PPTsvW295j/Jz7xicasd0tLS/jgBz+In/3Zn01yn4c97GE44YQT8K53vauR5vvf/34sLy838hcEQbirInGexHk5EudNR+I8ifME4WhERs7dxYi/SvzBH/wBnve856EoCpx++unYtm3bYc/r1FNPxRve8Aa89rWvxXe+8x085jGPwa5du/DDH/4Q//Iv/4KFhQW8/vWvn7l/p9NZM7BbL5/+9KfxpCc9Cccffzxe85rX4H//7//dWH/GGWdg+/btAIAXvvCFeNvb3oanPe1puPTSS3Hcccfh7W9/O/793/8d11xzTdpn7969OPfcc3HjjTfiT//0T7F3717s3bs3rT/ppJPSr6v3v//98Qu/8Au4+OKLobXGQx7yEFx99dV4xzvegd/5nd9Z11Dt9ZYL8L/yxl9Lv/3tbwPwNzfAn5f11OuXvvSlZL568OBBMHNK4yEPeUgKUF/wghfgT/7kT3DBBRfglltuwRlnnIFrrrkGb3vb23DBBRcc0q/p/X4fH/3oRwEgyQD+8R//EbfccgsWFhYaU89/4xvfSDPC3XTTTej3+6mcZ5xxRuPXN2MMzjnnHHz84x9Py/7Lf/kvePazn4373e9+ybz3iiuuwPHHH49f//Vfb5Trta99LR7wgAfghBNOwHXXXYc/+7M/wxe+8AX87d/+Lebm5hrbblZe//iP/4hHPepReN3rXofXve51AIArrrgC3/jGN/CoRz0KJ510UjIKvvrqq3HJJZek0Q7AxtrVZZddhvPOOw9Pe9rTcMEFF2Dv3r246KKLcOaZZ+IFL3hB2m4j7f1Vr3oV/vIv/xKPf/zj8YY3vAHdbheXXnophsMhLrnkkrSd1hqXX345nvOc5+DFL34xnvnMZ+Jb3/oWfv3Xfx3nnXdeIxAUBEG4qyJxnsR5EudJnCdxniDcQWHhLserX/1qPvHEE1kpxQD4k5/8JDMzn3POOXzOOeek7b773e8yAL7iiisa+3/yk59kAPzXf/3XjeVXXnklA+AvfvGLjeUf/vCH+dxzz+Xt27dzt9vlU045hZ/61KfyNddcc0SObxoXX3wxA5j5inUQuemmm/i5z30u7969m3u9Hj/84Q/nf/iHf2hsE+th1uviiy9ubD8ej/niiy/me9zjHtzpdPi0007jP/zDP9zQcaynXMz1uZj2et7znreuvJ73vOfNTOPKK69sbHvrrbfyi1/8Yr7b3e7GRVHwaaedxldccQVba6emPatttddPe51yyimNbVc7t+1zAKDRxpmZn/GMZ/C9731vXlhY4KIo+JRTTuFf/uVf5h/84AcT5fqVX/mVdP727NnDT3nKU/grX/nK1GPYrLxiO8yP9X/+z//Jj3jEI/jYY49lYwxv27aNf/Inf5L/6q/+ampZ19uumJmvvvpqfvjDH869Xo93797Nz33uc/mHP/zhxHYbae//+Z//yU960pN4+/btPD8/z4961KP4y1/+8tRt3/Oe9/ADH/hA7nQ6fPzxx/PLXvYyXlpamrqtIAjCXRGJ8yTOWw8S50mcNw2J8wRh6yDmIE4XBEEQBEEQBEEQBEEQBGFTEc85QRAEQRAEQRAEQRAEQdgi5Ms5QRAEQRAEQRAEQRAEQdgi5Ms5QRAEQRAEQRAEQRAEQdgi5Ms5QRAEQRAEQRAEQRAEQdgi5Ms5QRAEQRAEQRAEQRAEQdgi5Ms5QRAEQRAEQRAEQRAEQdgizFYX4GjDOYcf/OAH2LZtG4hoq4sjCIIgCGBmLC0t4cQTT4RSR+fvap/5zGfw5ssegz9/7w8xPz+/1cURhKlInCcIgiAcbdwR4ryvf/3reO2rHob/7y++i2OPPXari3OnhJiZt7oQRxPf//73cfLJJ291MQRBEARhguuvvx4nnXTSVhdjAuccHvqj8/j6f4zx2l/bjd+89JatLpIgTEXiPEEQBOFo5WiN8wDgsY9awKc+O8CLfn473vLO/VtdnDslMnKuxbZt2wAAp77qdVDd3haXRhAEQRAANxri2v/+hnSPOtp473vfi723WHzwz07Az/3STfilV+7Fcccdt9XFEoQJ4jV0nxe/DlriPEEQBOEowI6G+NafHL1x3sc//nF87ktD/P1f3R2PeeYNeNlvfAv3uc99trpYdzrky7kWUeKguj3ongRtgiAIwtHD0SjDGw6HeM1vPA9v+I1j8NPnLuCRPzGHS37jNLz9yv1bXTRBmCBeQ7rbky/nBEEQhKOKozHOc87hwpc/Hq9+2S785MPn8JynbsNFr/gxfOBvlra6aHc65Mu5WVB4HUnuIIJiuoOUU7hjwkfTPehoKosg5BzFbfOtl56MnTsUnv1U/2vvpa/dg7MefR1+7aJ/x+mnn77FpROE6TgD0CFEwUdLTLQp987DkccRKOfREjcctrZwKOlsYJ9DKuehHttRcn1sGre3LR6GtnzYr4ej5Po66jjCbdvZI5v+7eE973kPbr3N4qW/sBMAcMmFx+C0s6/FZz/7Wfz4j//41hbuTsbR6TYoCIIgCMJRz759+/DGN+/DZb+1B0r5iP6+9+nguU/bhotecdYWl04QBEEQBEE4VIbDIV570Qvwht84Br2e/+ro+OMM/tuv7MKFL38UZPqCw4t8OScIgiAIwiHxO6+5Fx76oz2cd85CY/nFrzoG1/xTH5/+9Ke3qGSCIAiCIAjC7eEP3ngSjtml8fNPaXrh/bdf2YXvfK/Ehz70oS0q2Z0TkbXOYjNkre30D/cXz7cjvU2VbRxCXodcvs04rkPN40i1tw2mu+7h8YepvNPO5SEN0T8KpAXr5WiR5NxejhZ5112Co7DNfPe738Uf/fkBfO5vJ2e+PP44g1ddsAsXvvw8fPaL/aPSQ0W4a+M6AHU2sMNmxiqHwLruK7O2mbF8Is115NHYZ9r22bKpZZ6ybL3b1euOcMWvVdkzsp9ZrCnLJ7adtu969jvU/DaQ55r5rlGmDZ+u23N6D2dMvN7rZrXt19veV8lvvRyNseeWx5GHMf/bdSwMuK2uiynceuuteNMf3oa/fucJSR0RWVxQuPhVx+CiC5+BJzxhBUVRbFEp71zIyDlBEARBEDbMq1/5QDzjSdvwwDO6U9e/8pd34XvfL/H+979/k0smCIIgCIIg3B7ecNG9cfaDe3jUT85PXf/CZ26H0YQ/vuLum1yyOy/y5ZwgCIIgCBvii1/8Iv7Xx1bw+gt3z9xmYV7hkguPwat//ecxHo83sXSCIAiCIAjCofLtb38b77jqAC77rT0ztzGGcOlvHYM3/N4+HDhwYBNLd+dFvpwTBEEQBGHdMDMu/LVz8Gu/uBMnnbi6jOH5P7cdvS7hjy4/aZNKJwiCIAiCINweXv3KB+FZ52/Dmfedro6IPP6/LuD+p3dw2evuuUklu3MjnnOzUAAfqa8uZ2nK1/AC2JCWnddI70jo2jfiQ7FO343b5c+xwbxWTWM96W0Wq5zXdfuytJbl+9E6tpma7np8M9bpd0F8aD4fh5JXmyPmyXEUen1siMPlDdhiq/1GjqgHy+FM+yj6Ke1v/uZv8I3/GOPDf37CmtsaQ3jTb+7BC152E573q/uxc+fOI19AQVgHrgOg9cyxZn90iOu3up8DNnYPn+YbN9VLLhzY9HWr7dfcf2r5Vi3TrIqevnjDzIwbKW2wLk+4QGPb9oHyjPfT9l0trw22sdvnj7Ue88EN5H2ox72J19uhxNerXXMz123gmlh12az9N8iGvQTX5Z847YHhMOV/B+Zo8pz7whe+gL/9hxV88zOnrrktEeHy1+3Bued/Hxdc+H2cdJL8GHt7OIrCfUEQBEEQjmaqqsKvv/IpeN1/243t2/S69nnco+bxwDO6eNNv/cgRLp0gCIIgCIJwqDAzXvWyR+IVL96Fu5+wvnFcD35QDz/7mAX85qvOOMKlu/MjX84JgiAIgrAu/r/fvzscA7/47B3r3oeIcNlv7cFb3rkf11133REsnSAIgiAIgnCofOQjH8F/fKfEhS/ZtaH93vjqPfgfH1nG//k//+cIleyugchaZ8BHQtYah6tuYJhxPpx36vDkVSSyq8o822ll225U1pG2nzHcfNbw9an7HeK6iWX5utXKs4qcYOZ209bn3N5hyRsZnj5NNpKnsYqshFfbbsZn0PRlU7edss1aspnGIfCU7dLOs/eb2GaVPKZxKHKIdUkH1kr3MMgPDkXCsO7jnZX2IdTXUSnxWot1bn9IMpL1KISOgp/SlpeX8fr/fivedulxKIqNHehZ/6WHJz9uEa/9b2fiL//64BEqoSCsH9dhoLNKZ7RGPzU7BlifZOuQZZHrYGY/tJr9xAzZ6Gr39tXv+1Mkr1PKMRm/3A7J6jrPycy4NV8f92nFgrPizXo5rRpvrnnep5VpQ5Lf1nlpn8vwcvE9mtuuKmkmnhrPzSzjWqwWj4dMZ8XijXOU9snXTe7XOEezypGnv1rR15SJz5CnHk7Z96y819q+vfsq8tSpzXFaPc66HgBw+5oJKxvp0GRm6+0jN9I/HoplzrosemYUYs3zkK13R4GutSxL/Marno7XvWo3ti1uLPA89eQCv/L8Hbjw134cV39q5QiV8M7PURDuC4IgCIJwtHPFJafg3qcWeNJjFw5p/9+56Bh84G+W8W//9m+HuWSCIAiCIAjC7eEdv393EIAXPWv96oicV79sN774v4e4+uqrD2/B7kLIl3OCIAiCIKzKjTfeiN/7o9tw2ev2gOjQhnmecnKBl7xwJy58+U+Aeet/IRYEQRAEQRCApaUlvOG/78ObfnPPhtURkd27NF778t349Vc+Adbaw1zCuwby5ZwgCIIgCKvyugvvi8f81ALOfvDc7Urnopfuwr9+ZYSPfexjh6lkgiAIgiAIwu3hsteditN+pMDP/vShqSMiL3nBDhw46PAXb7v7YSrZXQvxnJsF8cZE7OtKcwPbBpH6TK36DM+tCY+6afr9eib4ZtnW6TW3qt/GhB/EjP24Xt/YL7OzAAPkJtNv/J+aHk8t09T90nKe7g3iWseKaR4IsytuVhNa24OgucE0X5fkQZX7VhBNbB89RqYvo+Y61do+pq1a++VlIb8+9zJplHtK/qv+R7N+Gm22zdEy+GYj1/Yh+F0A6/Ot2DQvt3Xmc7vLs9r+h+jRtxH/j8O5b73NIVbKFhr1ff3rX8dVH1jC//nEPW53Wrt2avzmy3fjwlc8Eeed14fW65vxVRAON8lbeKN9yZpeTFPWTFu0lr8SUMeCq5RjXax632kmtJZHXMo7v+dMLQtNz3qWz1gqShYwTIkfp/mJTazP019H3Dg1jbi8XY5V0py2vj42njyeNWjGbdSK97LYLPPJTvGYissJrLN1OtteAS6u0wwoAjTAyh8461BQBUAxWDEovM990Sh40ZGqD4xafndEDJ7qx0jNa4Hht2OAHYFT0Im0LHrS+WeEkGZ8XojL8+zTPvHF9fqsTFOfYxplzdZNvGkckl8xzZ8vqzemVjqt85vKRgCFzGf6MB9iTDSVGe1zwmtuVn3NXE6ztwcmr931lmcV2vU187xlz8FtH8BVPbCzgqzqTTeznWSft3DI1A033ID/909uwzXvP+mQ1RGRblfhd169Bxf9zi14xi8OMDd3+37UvashI+cEQRAEQZjJb7ziYfjFn9+Be9+zc1jS+5Xn78BK3+HKPzzxsKQnCIIgCIIgHBqv+/Uz8PjzFvCwH+sdlvR+7omLOP5Yjf/3t08+LOndlZAv5wRBEARBmMqnPvUp/PPnB/jNV+w+bGl2uwpvfM0eXHz5rej3+4ctXUEQBEEQBGH9fO1rX8N7PriE333NnsOWplKEy163B5e99TbcfPPNhy3duwIia50B0yrDVzeD1ljdiaG7edmygralrNOUCCk9aq1YTdq6mpSgNZQ/pZ+ty+WpaRkDcNn6uM7V25Pjenh6WE5xua2Xgzms57QNAMBy2h4MkGUvLYjHHOWsYX9k6+rtWpXimh9piqyV1xoSPO1rccrPY67rbG7TGPZMlMkecskDBYlq2D7fTvv3Ue7gJRFBOpMkD/U2aXmURwQpRBrVnkmD0v/sOCdkstNkr+3jBNZ3/W3SNbpWWVY93esYyj5ru3z7xuoN7j8zz3VwSGrKQ9nnCDBbgnB4tvfr1newt/d+shX3I+ccXvVrj8FFL92FPcccXvnp0392EW/+k9vw+2+4B37z0lsOa9qCsCEOY3+1Vh/S6C7a97yp5eDGv6lJH+b+drq8FlM0WNn2jAlJWiOuS/LCLOaLsdrUGC+sb69zIY5rr8viwhgL1uXgLE1O+9Tx3yHEhsyh/Aw4lx1bWJdt4+sofuYsrRkxZg5R/VIEViEo0wQoBdYE1hpsFNiEOE4ruELBGQIXBGf8CwBsh+AM4AqCK+Bf4UnQmXoZG78dG182VzBYA6QJbFxDskqKoTSDlIPK5K4qyF1plQbKTP4V3gNetsoMsFNgx/6zqwNFIl9lSZIa25mjOv4P7+u2RfXzRd7mWs8lM6140FqWH8Mq8Vgjxg3LGzF7vj+1tmk/h1Ktr5xlE9OwhJl4swpTjms9EtPmNtRYP9UqqJ3POuv49tBOL9XRrOfgsM+07dLy9DCdJUpNe6SJ7aY8x7fLtlXuJRf+2sPw4ufswI+cUhzWdB/54/P4yYfP4Q2vvg/e8s79hzXtOzMyck4QBEEQhAne+973Yu8tFi970c7DnjYR4fLXHYvL33Yb9u7de9jTFwRBEARBEGbz8Y9/HJ//8hCvffnhU0fkXPraY/DOdx/Et771rSOS/p0R+XJOEARBEIQGw+EQr/mN5+ENv3EM5uaOTKjwkw+fw7k/MYdLfuO0I5K+IAiCIAiCMIlzDhe+/PF49ct245jdR2ZyrjNO7+I5T92Gi17xY0ck/TsjIms9UhxmCdLEsOmGNKI102g2w88smWtr9zUyX2V4cjYUfEK6mg0fz6WruTwhyhaUraUGXpbAUFUtXwD8NlQxyLJ/H/exDKocyDq/rHKgKDOI763z0gNr/XvAf2b2y4LcgDmuy6QHcdsclT2s5prGIA9VpNL7tA1RvV/83E4j7tPWSVKWXzvdRvr15yhtjfkmqawO0ghNYRYvqmWtOsokvHw1ySQUwWmEdfVnv26K5DXKYePQ/Hy211T21ijvjVwzq7XZdUoTZ82qtJHZltrHM2u/idmi1sprreXrlVZMyXMqhzCU/vYOvz9k2fLtkAmvem4by6cf3JZKrTdZ1vrWS0/Gzh0Kz37qtiOaz5teuwdnPfo6/NpF/47TTz/9iOYlCDlkkewx1t74MG93GPflVe4LU7NZbbv1SldXif+URYrtYh2rGP/FzyG+UxWgKr+jKv17VTFUyVCVA5UurPPvqbQga0GlBapw8srSv68qcFUB1oHL0q+zDmwtwOH/YWCW2m+rycMErTWo2wX1uqBeD+h1AQDc7YB7Bq5XwPYMbFfB9nzAZnuEqkuwXYLtAK7jZbAA4KIctgO4QoENp5lc2TAqzSDNgOJ6xlZCPYtrjHlaleclrNSQp7KjWpZqs/cI8tT0nECpjfl1aLTFXPqc2qqr2yww2Z6n1ecsZsavDenqKtLWtnS1LYWdEjPHjdYVy6y3P1nHM+B6uD0xYX48tzvOWm+MeBi2rddNHvy05+ZG2tPqy01ZdgR5z3veg1tvs/jVF+44ovlccuExOO3sa/HZz34WP/7jP35E87ozICPnBEEQBEFI7Nu3D2988z5c9lt7oNR6I/xD47736eB5T9+Oi15x1hHNRxAEQRAEQfDqiNde9AL89kXHoNc7sl8HHX+cwX/7lV248OWPAq/msSkAkC/nBEEQBEHI+J3X3AsP/dEezjtnYVPyu/hVu3HNP/Xx6U9/elPyEwRBEARBuKvyB288CXt2azzr/COrjoj8t1/Zhe98r8SHPvShTcnvjox8OScIgiAIAgDgu9/9Lv7ozw/gst/as2l53u1Ygwsv2IULX36e/KoqCIIgCIJwhLj11lvxpj+8DZe97sirIyKLCwoXv+oYXHThM1BG2wFhKuI5N4u2R0Cbac8Pm+FJkqfRnrIZ9TLKBe7ZOo5TN7endY6fgw9Y28NuYtlaxcu95zDFcy76jlgO/8M6G7xGrPceodJBlcGPJPiPqDL4jZR+Jyor7zlSVt5zZFyCx2OfYFXBlhXAmyzknwUpkNYgrRv+cP5z5kfX6iyJNvg9uqJgT1F73VHytVOAVkDM02iwjn50GmyUf2n/H/Bec84EPzpT+88BgIs+dDrzn4veGclrrm6Hs/wcZk6xDoDaD+zttpuvSj58U/w6Mq+PqZ4gLX8QnrZvtoyACb+Q9vt0CU5b316WT9NOk5tze0G+++HwDZmxzZHwl1u1e80PeJV6bS9f04clO5D1+tSta92RYgu+p3rz7/4Yzn/cIh54RndT833FL+/CW/70AP7pn/4J55xzzqbmLdw18Z5Vh3hhT+kUGx6/t8cDamp+eUaHsPu6+v+8g23tm/nLxfUprnM+hkveXym+A6jy/nIxjtOlf6/H/qVGDnrkd1SjCmpYgUYlMBgCwxF4MAQAuMEQXJVHlcfb0QxbC+73gX5/6nrV7cEsLgBzPWBhDgDg5jtwcx1U8wa2p1D1FGzPt4mqS8GDDnCG4AqCK0JeJsR9OsZ8wYsuf46K7SUFh2j4T7e94yj4Fkb/wuhZiHz73EMu5cHp/UwacUQrXpzhDTfNF46mxYXwvnppHSYft9BaRlmf0XhGa5U1/zzRlUw53ple4bP228jFtVZcNtUvb5XlM9Kd6sc3ddtm4Q/JN+5QWKPO2vXdPCeThTnk+9EGecc73oEHP6iLn3rE/KbkF3nhM7fj9/7oNnzoQx/C05/+9E3N+46EjJwTBEEQBAEAsOzOx31+pNj0fBfmFe5+gsbS0tKm5y0IgiAIgnBXYGlpCfe5Z2fT8zWGcM97FBLnrYF8OScIgiAIgiAIgiAIgiAIW4TIWmfRGo49df1G05vCuqaMXiXNWVKFepT0pP4vSVSpvS3SGOxZw62TtAFhSvT81ZZ0ZMPQoTAxfJpcJvkLQ9H99Ohe0qrGLryC5GFsQeMKNCyB8RgYe806D4bg0QhuODp65KuzYAeuHNhaL2UFQEW4DIOclbRGmneepjQQ5uZ/x2B2gGM05ql3rbpoyWaTlFZrkPFlgTEgrcFGA0aBC7+cjYIyGs4QuFAgTUnWqgyBFcFpBisvcW1OCT9tUH9d/iSZcfVm5LglVUDz2HJCHTXkB0RJZhHXsaJadqv8ZyDIMHI5bvjs0w5pcv1x6pTva13f007jlHUNWcUaw/830nfMlDS1pQ6rSBw2Km3NyzdV1tueWn6t42nLGqZ9niVbPZR63GwZ64z7TN4Hb15RGA6b35eKZE3YUtYphfPbrhKArSLVOpSYbyKb/Ja6lpztUDNqK1yZvFwvz9fV28YwL65rxneobU1skLQOHczAQg0tdN/bkFB/BKz0wcsrsHfgkRWkNcgUPrbL7UQAH5cxe9lpWQEAuNp8/yU3GsKNhqm8AKAWF2EW5mHmeuD5LtxcAdvz8anratiugu0QXIe8tDXGV9rbm9TPTc3G42WoHOSqIe5z3tZGlX6Zsgyq4nMAh+cAH9fGfX16jInHmhgDxrhO+fjUx6WhLLq2Y4lWLHXZc1luti6LF0Hhfcw3xou5HLYR9zbXTbNYSdvmy9dimjw1X9a+RjM5eiPGbkvUp+Qxk9az40TMGv9nFjepPhSaxx8+E9fbsppMD8Sryo4b5UjrD7EjnNZJryYHnpVVdkxTt893ul1fBhwaWxXnSaS3NjJyThAEQRAEQRAEQRAEQRC2CBk5JwiCIAhCwjHDbsUoZPlBVRAEQRAE4YjC2Jo4T8K8tZGRc4IgCIIgCIIgCIIgCIKwRcjIuRlwWyuPtX2bEhvxl1uPz9IqXzOvlXXTmmE1J7qwbbRRidr/tq/BlPJw+DPhYRA9DtrTpFtAae/voCqqPQjCjsQE5xikqHlAzEDlAGuBcQnuD/ziwQBuPMYdCnYg7WfKoU4H1O0ARQEYDRjj/wNgpSa/Qo/eLcyAdYBzIOsAZ/1nwPuapFfwpMsgColy8KmzyRAGIAI5AjMBwR8ECt77gwnsAFJZ2wh+cH4K8LBNwzKv9gjxbYLTfrkPSfQlAcL/+Jl5uuccUeZpB+8/Ef1EFIFN7YvnQntzJmwTC+NLHDzpsldsd/nnlt/FurzS1vCam+ZDsh4vukY6a0Cx+vPrE9l1zrPtk6b5mqwv0yl2Glm/Mm37xrb58paPy+R6nqyzaX50U/I6dHOmI8SUk5osJjfxpzRvJ7X5dcPym6qwibBisJpsczO9fFfxkss/r7rdeq2FeOrbVbusZn+9SkatRNbndToZ+OVeVmQJLsZ4DqAKUBWgxoAqkO7FPt6rTauMY6ix79xIK79ulr/sUYrq9vz/HduAxQXv1zbfge0a2K6P5ZwJMUk8fq59dali77NcOqiRhRp5LzoalKDBCBgMwCt92JU+joSvMlt/4uyBA1DjMWjYAw3noHtdqJ6fuZs7BtwxcIUCG5U83QCk//4DN/wFyTqoikGVBVUONA7HVlqgrLx3dFkClQWHOJ6tBaoK7BhgB47PAwBAyr/XGmQMUBhQEWYXD3E0dwpf3p6B6/j6t10NFAQbniucCbFh4d87E+JDU99rnYaPAaMnXfBRA5rXzEbij+kxyTraO9fXTP6slV+DjPDf1evi54ksMj+6lN4UP7r2flM9f/O+I/jyUXifLvUQSxMjxdWI5VWYqLs8bVY8PT6eFf/l5VwHk3Uz+3xMbhuugfSnvX76/jyxPjyP6M3r+7YqztvYw8RdExk5JwiCIAiCIAiCIAiCIAhbhIycEwRBEAQhsXWzeAmCIAiCIAhHkq2K82Tc3NrIl3OziMOX1yMtWGX47JrTZK9n6O2sbXKZWBwqWyv8pm7u14UhwnE4bltytoZ8d2L67FlyuGzYNDiTtQaJq6qC9MECrvSJqZLgDEOPlZecUNZIGWG6dQtoDeg4LvqOOQCUqxIAQOh6KWuvC57reOlAxx81F0E+oAlMzbNKlkHM/n/lpa1U+Y6WgvyXLAOVBQV5q0/U+WHbMT2tARXqUHvJArT20oUiyGu1giv8i7WXZ7g0FX2QkWZTzjcPFPUU7lxLXP25rGWtqnK+vOHY4DiUG/5/O9kg+eVQdjZ+HL0C4MhLt+up2YNsoYjyBf/f7we4KF0I8oVcujD1mCYKE87JocpA28Th+22p0TTZ62qSCKbGcPu29Dy/Rht9VVw27ThWO65V+rvV+sJVZSHt91GOnD5Pbjux3WrlbJVhTYXJ4YospvWfUzJPi6bI7wRBOHRin59DvPYlvmqfMiFpnSIhnbZ7O9MsRmvsH7eNcdu6Czhlk1wGFu9zU6RiHPvT1j6NQjmq5YwMUEWgilKcp4PziBoR9AgwQw0zVDB9hWLO34zNfAHTLUCdDnSngL3tAI6EjPNw40ZD/2aJoHpdcDEPO19gvKPAeJsPJsp5QjUH2A7gOmjIJyNJDuxDQ+gxfF0NGGbIKFYcTN8H0nqlgl4egvojYKUPXunDDYLVS5CprhfS/iKgbhfU64K6XW+tkseczseVCgBbHz/m5SfrLxwfi/r8qbRevjoqgfEYGI3BoxEAwA5HKQZeD5wOyTaaver2gIVQBmOArgIKDTdXwM4Z2Hl/bFWXUM0p2A5guwTXCakVXtrKUdaq6j7Bx4I81VakLtiM98gkjGv0F1Njo4l9Wg9gU2StYAr2MPU2MfYmi8a6tNxl72MWrfczmSLfZcDH5UmSmm3bfmXL8/g23ydKWlP/pFpxXbt/atfdag/D4f2ExDQkPi2en7Qs4PrfOp7neVpjyL9n0JOrhbsed8xvNQRBEARBEARBEARBEAThToCMnBMEQRAEIcFg2DuYKbsgCIIgCIKwNsxbE+dJZLk28uXcDDhOYTNNWhAkYNPkTxuapWsjM/S08l/vbo29gwwiJZldlI2ZFdepu5glRZsoa5K2hqHCcXi19S9Veokr4N+7McGOCaZgP8NV4ffTRkEbAjRBaVXP3gRAsbvDzdiaz5ClAVBhAHTgOgY2yDxsT8F2VZJjNmbFAtJsp6qK0lB/jlQZZKJhBjCyLs28Ss41x6oTJfmCl9DWs3E54wfXxpnGXJgBNc56CmD6LKcx6ez8x/MezzUrQCnyslwCAAUV/A+Y/HYMBSJO0tW8zKwolRdAKJ+C6/hy2g7BhbZjC8B1CDaTL+Sy1jQbV0uamx9Pfix+ZfY5yAM43zbbZyrU6l7C0P2oVmqolqZIOydmrcJk/QPcKG9TrkApg2nH1pa0rqu/a5V3vevaso6ZM7JOlbmiWR/tdPKCr9ZXxbJMvGl9nnLQ65rdcSMzw2ayimg7IAGNIBxmNDf1I1Pk/Q1Wi++Aqdf4RmYNnLpjS8ZWrz/EdKeVMZOMNWZIBHz9KE4SP4rLU1+c7nr1zNIMsPWzviPKW4N1CZWU5Jp6SNBDDTPwJ6HoaxQ7OyiW52CWtsEcsxs4cBAAYPft35AMcitwgwHcdd8HrgOKHTtQnHg3FMdvAwAM9xQYkoLtArYHVAsMNxc0hl0LMg6kuTFZrasUUClgrKBGBDUwMEMfuOh+F2awgGKFUfQZRT+TvPYrqGEJGlagOBuqDXnlFiFKeXsYE4IhrcFGgwv/coX2diGAjwtjzNUOxzjEopZBVoFKv4EKcSWFWVdhLWB9XlRYHwMfgmxZdXughTnQ3BwwPwc33wUA2IUOqgWDal4HGTGh6oUYsOtfrhtmaC18JbsCYF2374bkMjbtXDKalmUSUkdpZtS4H61yWHnssqaMM3YDakocE4uYBS35sxZieR1AUXYeL9+2nDU/tiyubcSFqx1PXraWTHXa8rSvQjpezvsgoJbHKjRjQNT1lMeAkzLb2UFrM45v97UcYq66oI1ufK1YeLU+f62ZYMW+RIB8OScIgiAIQoaP1eUXVUEQBEEQhDsbWxXnSaS3NuI5JwiCIAiCIAiCIAiCIAhbhIycEwRBEAQh4cCtOfEEQRAEQRCEOwOM9tzHm5evsDry5dwsgjZ+ltZ+Tf+lCT82ntxmrXTX8BxZj8/RLA+89rTPDRn8LE1865hW9Xxq+UZ5/4LM485R8pyjihqec3YMqLGf7lx3CXbkEzIdBdNVcIWG7hjoTvCu6HT8FPDLK7DLK4fkYbHV2AMHoIYjKN4DpTVc18+nzZpgu+HVIe+PEca7+vql2s/NovacqwBdcvDzC14gVfSc43o6dWYwUebj4P1E2BCcpuQrFz3mnAGcRsN3JPdpS22i5VWWe3Oo6H1nCcrCe+WVgAp+Jb6MAFWcvExyfB5ZOU0so/eYswX8/473EwGix0h4GQTfuXBNagCaJ7ww6gyjJwcl37xYfnIAbObZNmWa+tU85yamlI/Xpar954DgFRfKMs3rsTldfau+8orLvcuYU7mjF11j28bOU8o+sWwjxiRr0O4vp/mVtPudhr8JT9ZvXsb1FKXdF+d+JK313heu3eFl5Zz2f9q2tSFoOi/RE6Xt8yMIwu2DAdTGjmjeu6Z1Z7W92vTPazC1i2wEbJN5TezDq6yf4o9cZ55ts0Zf3ehng98caQ6eXOH+HfznSE0rJMDO95nOKrAjVFX0nFOwpfegU6PgPzf068YjghkomIFGsdKBWZlDsbIdAKAPHgu91AcOLKHad9tRH+fZAweAAweg/6//vH1xEdt/5GT077ENyycYDPcQRrt9p14ZBzNvsTA/wmJ3jJ7x3nod7T3kKqcwqAoMygL9YQcAMBgWsAMD1dfQfeXrbSX40Q27MAPADBlmyNBjBzWOcZf3I57WNliHuE95j2H/OVtnUMdeE/F9HVuqMsShISZVY+dfpQON/TGpcQVdWlBlgxedrX3xAEARoLT3xCsMOMT7rmdQ9QxsT8POaVRzhHLOF6aaI9he8PTrAa7LcF2fpuswuHAgwyDtknci5XGW8+2WXbjZWgIqSv5yqiRQ8E70Ps/hf3xvQ0KujtcmyHzmWIX4M2SXx9as44vr+ghxasNLtxXncPa30VcEX7xGbB6u0RSn5n1K25MYWVrtQ5oWwkw57sb6LFZre/AlTR+1PDDb62LfQ/C+1bFvmvYsXge3dUyV4qv8uLNjz55ZOS7P01ytIlbbLi8P1+clDzOFuzby5ZwgCIIgCImt85yT0FQQBEEQBOFIwmDxFj5Kkd/iBUEQBEEQBEEQBEEQBGGLkJFzM0jTWQOgNESYaonbajSkVzwxjHeq+mlCukBpuG17KPKqXztHxcKUvBoy1nw5Z/vF7dp5tKWsYVmc3rsxDTnq93H4dSO5OIzXkZcEWgLZMFS8BNSYkrxVjwA7DkPWewQzJJieghlq6LkwhH++Az3fBS3Mw2zfBl7pwy2v+KyqcpXKOrpwoyHcdd+HqU6AwS4AAJs52I6XtbIGbCcMg4cfAp9kyg5BclkPuVcleUlBRWHIfZQ1xGHscSw31SpGHYfb+/xySUMcau/CMPxcXjsha83J2rCfip4mypwkzkHCGmWw+dT1bfmiLwuBQy/mTC1bdQXgOv49ECWtDDb+BcOp7VJsu1l5Y2YcpKtsCVSheXDtqefD8cTyN2Surespn2Y+DsFn5bdnVe8b6zhfjuz6ztOa1tdMnIhc0sAAZ/0M5+WcJm2flufMvDClz+JMNtAsx8Sus+SsmXSBG+u42e8i23Zav7dmJ55vDBBndTdNe9CovHYZppenIU1pJISG1AFMgONmGz3CMDPsLHsDQbizksdcszaJ8VG738t2aku7ZkpP25KqfHn+v71+VkatfaYuJ78fZeNUk6VBkLz6e0OeB9fWCsjSCX2YUgxqS/nD/UUZ56WtwSKDC4arCFwquA55iWvPr9NjoJr3MtfRdoIZKpihv4mbfgemvwDT3wWzfDzU0hA4uAQAcLfthxuPZxz40YFdXga+8n/R/QqwcPq9sXKf3Th4D39s/RMKjB1haBx2zA2xp9cHABzTXcZ2M0RP+Th26AqsVF0AwP5yDvtG89g3nMfBQQ+DfgeDvk9P9TXMioIeEvSAYEYKKlSPHnOSZJLjSUlikK06XcdYAGqZZZRc5lLK1DBibB8+ZXGRijFeiENVFvMl25MMn1ewUjHeqgTwMbDtAK4L2PByvShddUDXgToWpmNRGP8CgMJYaGKocMAuFNoyoaw0ykqjqjSqsU7lR0mgkYIaE/SIoILljq/HGGcDVAX7mMzWZLJew3sV4tZUv6hj2PA+Wa9ogE2sf4YDeXk517EhQvyax0HU6haSE0cW26ZrPIsB6x2a2zUTwwQbsWOa3Dn737JHSrLV8HyRjhP+PYVlSUMcn4em2Zfk54MJYAbFh3wXl6O+B7jWsRCwalw8LbacFhu364rZK/RjzLeaFPYww8CWxHmikFgbGTknCIIgCIIgCIIgCIIgCFvEHebLuVNPPRVENPF6yUteAgB4/vOfP7Hu4Q9/+BaXWhAEQRDuWMQfkzf7Jb+nChLrCYIgCMKRZaviPGFt7jCy1i9+8Yuw1qbPX/va13DeeefhaU97Wlr2mMc8BldeeWX63Ol0NrWMgiAIgiAIwqEhsZ4gCIIgCHdV7jBfzh177LGNz5deeinuda974ZxzzknLut0ujj/++A2lOxqNMBqN0ueDBw/6NyrZb0xnhvQ8eW9l/kD5dM9pw7gu8xVKvh/IPLrCV9tpamtky7NFbb17LMfUQk4teOalkm1HjKatSdT4x7zjsSr4ab5bPl5E7Kcsn+JDxmFOcLYErvwGriJQRd4vbUywpfedAwA18lOl6zmCGRHMvB/4qUcaZlBAD3tQgwWowSL0IBhDDIbg5RW4fh+cBfxHM9UPboQJZS3UHrCaT9PYK0OwaSrxvL15n4k4lXv8dYKV9w8hy3Au83rjkABQe8aFRS74y0FlnnPxc/gfp4HPy7Gq71wk9/OJfiTh5xT/vtnGp/qRqbrM0Z8DqN83/OWK0FYNgwoHKIYyDqS8Tw5Q+1NwmFrdWQUOHojQClyRv0QcTfii5P4UU8s74cmS1U+7rqg+ttj/THg9ztivMeV87mXW9tyIvhbhI4gbdd4u90SZ2/m1tk0zzbc8TGL/xS7bfJYP06xOd0q+0Rt0qv/dlHRSfzatc5/mIZX3s6nuWsYg6xnuFcse7wUIfWTLE69O0xeUY/9PALSMKxPu/ByJWG9mnEetroAn+64GjT4Qdbw1rf/JaHat7eAty5Ozz2nnDZoQzfBZWrVvTJ5KWbcX83Xe24kJ3ic4xgQu3DuZwOwToNwXk/x6YoDIwZEK+1k4KEAxnFYgTbWvVkFwBcF2vZdXNQZ08BxWYw090tBjAzPowowWoAe7AABm5QTo5RHo4Ar4wBLs/v0bq7NNpvr3/8T8zbtQLN8TAKCqHpZhMCq6WO6N4eaWAQCLeoSTOvuw26xgQfn2O3QFAGDJ9XBztQ17x9uxd7QNN/W34bbBvF+30kO5UqBcMd5zbkBZHE3QySeNkj8uABAzmOr4j/MY0ITPBt4rLfz3OzZjwEi6tvLrKvcyYyQPYgCte3uM8Th4sPngizsMLhyocNAdi6Kw6Ha8J99cUaFjKsyZEh1lYZRLHnOA95mrnMLYaYyq4PdXdlACsE7Blgo81sDQt1U1DL59I/8cokbeaw7w7VOX0b+PG57Difw4dHa9E4MVHd6h4jP85nx+/j/nf1NMkweEOTx9cdq5Xln7U2KiD6371ilxZirgKp+zZ9s8tqX4nkKihIbXHM2I75gp9Fux3JSeaYl9nA/489OoG6bp/Xsow1TPv3YcnhWJHQEc4m8FwPk+lTfRW1g4ernDyFpzxuMxrrrqKrzwhS8EZT3Rpz71KRx33HE47bTT8Iu/+IvYu3fvmmm96U1vwo4dO9Lr5JNPPpJFFwRBEISjGgfAgjf9JQg5hyvWkzhPEARBEGp4C2I8K9NBrIs75JdzH/7wh7F//348//nPT8se+9jH4t3vfjc+8YlP4Pd+7/fwxS9+ET/1Uz/V+LV0Gq9+9atx4MCB9Lr++uuPcOkFQRAEQRCE1ThcsZ7EeYIgCIIg3BG4w8hac/70T/8Uj33sY3HiiSemZT/3cz+X3p955pl48IMfjFNOOQV/+7d/i/PPP39mWt1uF91ud3KFYv/i5tDj9jThwBQZXzacllVMC9MlTHG4rGMvm2t/pRykfs2h59n7lmyOVRh6y9lw2pYcbSpJ6oXm0Nv28OJMVpaOTXu5Fmn203wDIOX85yAfpOzYGzJCR3COkozQWQWuFGxFsCVBlQo2DiMf+6nM9RgoR5TkDnqkYEYMPTQwowJ62IUe+vHlalBBDXdA90de4tofwC17ycDRLHOtfuhHAhjn0K32gKoFkDVQlULV88dtO0FWEOs1G1ZPYZp6ZTlMV9+U7uTSyDi1OxCH32cShfD1fS4lzeW0cR2ouZyzr/0bksw2rWHwqYytayylAzRktV5eEaWrXgLh5awOZBgUpBDaOGjtoBT7/8SNYe/MBOsIzik4xbDk9RqucoAKmuHUhnMJZlYH7eOK/7K6TsfRkq02jq+9bZ5GnEo+lxWHZel6XLWuOQzbRy3DjXU/y5E/dgsT8gLUstJWtXBKk1LWbTkzsnLUGwFMVPdr+fFQdpxxx0xaPXm802UUlL+h7LhSpxr+TahOGAxCOqK23Gyq/KzVDxODsvNWyyBa9wYO8gsmwIZrbxNlrQzAbsHPm/KLqpBzuGK9WXFekhAl+RHVovXYGPO+OO+DKd8/e8X0Gl4GCDOeUH1vSx1evc2GJWBT4rl1qWBbffZUq4Vp1girJZmVhYgb/Syjvt86RyAFOEvhPkZAiD9skLi60lubUAewlU9Gjb2UUEXbk1JBj32aemxghj3o4TaYwbHQ/RL64NDveHAZ7pZb4cbj9R3IJmH33YbOV/3NYIe5J5zpwBUd3FYs4AeFl2nOmzF2mAHm1RgLaoSCKijlG5AiB8sKrlConMa4a1AGDWpZaTirUFmCcxrWTbazoKTzskwXV9X3ZHbw96YsJmtY3wCN+MfLXNnHpClurNvQ1HZJresnWuaE5wloBmkHZRxMiOUKY9EtKnS0Rc+U6JoKPe0bSUdZdHQFBU5yVhcyHjuDMWtUrDCqDPql96kcjAsMRwXKoQGPNNRQQY3Cs0WQtMbnDt/+QpFDnTkNkGoeXIpPg60M60weHONrnb1Ua11az411Kdab8hyZYq08PG3ITWlSsr/aDbcd183qB/I0szz8s3Ld7trS/Wn5MFFt9xGXpUZIvs+kGIH59xQ77LB/LBRP0/e2yx3733a/uxZZvBblrKncKiXesHQi4mDllOWVP/tb+GPT2DSYtyjOk0BvTe5wX85973vfwzXXXIMPfvCDq253wgkn4JRTTsG3vvWtTSqZIAiCIAiCcHuRWE8QBEEQhLsad7gv56688kocd9xxePzjH7/qdrfeeiuuv/56nHDCCZtUMkEQBEG445MNEBeELUFiPUEQBEE4Mkicd/Ryh/pyzjmHK6+8Es973vNgTF305eVlXHLJJXjKU56CE044Addeey1e85rXYM+ePXjyk598SHml2YrC0G7Ef0kKVg9/pWhw2JYIAA3ZZ0PSFPMJUjKKetLWDF5piHAua21dTUyo0+UpI5XbcrRZhJm1po5fbstZAT97oGZwkLOSdknWqrSD0gytHIx2UMolqVo+3JyDfKsKU5Bap+Csgq0UXHyVYcdSeUnDOEhcy1CMkf+sxwQ9UtAjhhn49pFkroM56EEFGo7TDF9Y6YP7A9jllXAijj6qm2+BOnAQ3YN3Q3HMdlTbu6gW/LHZDsEZqmfMYtSyVhdmj3KcRojn0uc4+2v8n6TGKmvsmXRyollkjYyC3CENKFfZ+iT/wewZhGPZs+HlE5PJZdeUH/LP9bD/KPczDBQMaAdtvBRCR1lraoe+TbaxToGIUAFgKFDchnSSZKQZ60KdkOJGfU1IWzOJUGN2W8WpLqZdjw0pwsTKprwq1k1DPq8mr/NUt661gimbLZcm6j9JafNzmo6X/RD8XIJAzbyi9SvZWi7j5dfZzLet00F5XYHANOU4gelWAQ3JAGopWV4PaRGFGaWRpYeGVDdXRoRSeGlr+9xMk4yEBDhp5OJF0pTyKO2nsG2rMDhIkBkEIkp9qyDc2dm0WC/cQxD7J8Wh38JUWVfsG1Lfl2R4XF/DrRsuh74w9rNJ8NmymkgyMGD6PYBai6bFm+3lmFzePCZubpv3f437VbAsUUj3RgrLlAr2JcRJckmEqdYRgI/7nCNYp8COYKt6dnS2fsZMqry0lYKEFQBU4SWFqgQoyAttFdaVhHIBXupaGuhRB3o859eNdsAMjodeGUMdHAAH/Ey91c23YKupbr0VAND9whh7RveGGfSw3O/hhoN+xuK9e7bhP3Yci+MXlrCz08ecLlGEIK9kjZWqi+Wqi/2jHpZGPSwNvHR7NCxgBwY01ClWTnJMC39fdPVzBbnYZpuxF9s6JmTtwyFVeYmmMl7KCgBsfLqsKcVlfh9C226jIQWP8YoKz0bx+SHY4qgQyxntUBh/3B1t0TEVCmXRMxUMNWdkrYJ+1DGhYoWx9Z/HTmNkDYZlgWFpMCp94cuRgRtrYKSgRirY51BdVyFpp0NI0XhqphT3RClqrA+XSVajfBUIx5/bmuR9Bla/bvMZQeuF2U6t59NGTB3juxkxdiPvEFul+JVm7zARt7sZMaWbnWd6NlD+ATa2Od8fw8dR8fk4xt+OsrqgZr1NkeRPU7k2Zpmddkwz7QUoLaRss9q6pJa1kmr2g3Xe3taJLfl+XxG4UptqXyIcvdyhvpy75pprcN111+GFL3xhY7nWGl/96lfxF3/xF9i/fz9OOOEEnHvuuXjf+96Hbdu2bVFpBUEQBOGOh5+tdbVfco4MEpYKgMR6giAIgnAkYZDEeUcpd6gv5x796EeDpzgJzs3N4WMf+9gWlEgQBEEQBEE4XEisJwiCIAjCXZE71JdzgiAIgiAcWZgBJz9vCoIgCIIg3OlgbE2cJ6Hl2siXczPw/hq1nr1B8DOqrUXI+1Eh+I5wW4MOr0PXte+C3zH4WEU/uYk5sKnpCdX2Jwm7EFBbpuXpt/wMGv4B+bFm6aZpoXPfibYfSZoSvPaaU1M8vgpjvVeEctDhFVFguFBQ6xSsi55zBMsKlY0vDVv5dWwJrtKwFYFKBQpeJFRS8Jzz/nN6WHtGmKGCGTDMQMMMCphBB2rovSvUYB5qOIYZDIHhyPvPrfTDwR09HnRuPIb73vXA9wAzP4/OtkW/Ym4OKAyglZ82XKHp36UQzF8U2ChwEbw4Ohquo2A7CranYLsEFNFki+GU9wJsTDFOPu3o20A0pY2390Hw2Ug+GE3vinZz52wB5/kG74vkrZc859j7zJmwcasdRp85AMlrThM3/EkA700C5QAoaGbv9RW9hDTDunDtOl+uuLsDgYi9f1rrbpO82pLvCDc85xp+afm+jhpeHSndtldcu/6jj4lmTPW2jF4gjCxRqr1nggdc28+SyB9n2xMl9gOxD/AbB/82BjgeR1X7K/mdQ162ziv302x72020seDhmbbN65Cp0Zel42p7h3D0hmrWI2t4TyUO7QtNnxKK9intyCJr37nHSiq38g2fwY3rhjIPxuhL0vC4Y4BJIVWPamcsCMLtgXXox+JFayn5ziXa/myZ31z0B6LYpyPv08O6EKRN9ap03teq3f+2++FGmYNXl++HQ+yZ+3jFbabFf9kxNXyk8v41pEfZ/YqCjxLp2k9JaweK91Xl/eZ0XEf+Pc243zITHBNs8Buugi+Ytcq/SgVXabiS4Ma+IFSFOG/kPdR4DHDwHY6erkwEVgynCbbr01Q9hXJRQ+0qoMp5qHK3L+PwJOh+CbU0BPYf2FIPOru0BPrnf8Mx/9LDnvucgsHJ2wEA/ePmsbxrAf93291QzQOuy2CTtUNksUJFyXNYl4Si8m1LVQBVmedcbHPZMwVT9Cjjhn+Y9xMOCypAKQTP4tpTDUDjs39RWs7ZPtEv2JcfwY+b/D3dcB33GQWQ8/slb+pQV0ypvXBJ0KrpOedC22ImlE6jDNtWTqGsNMaVRlVquDI8V1QKGCugVPX9O15HCnAFwAbNWBhZm9OAMwwusmMz/jyRcf76UfV1k8POlzNdnC7GTuG5L3rnAs3/7ZgRWQySxzuhT4lp5bFW3Cd/LoxljOeMYhyUJZnqYMrzKFJsF/7b6c+tyNLz/VdsS7XHcKOe8rynHHs6/rRNFgBP8Z+L/R1N7JhlltfztNArmajH6ojxL2UPMPWmE+effdt3isKzrQIZ59uMcJenbWEuCIIgCIIgCIIgCIIgCMImISPnBEEQBEFIiFGwIAiCIAjCnZOtm/hr8/O8oyFfzs0iTe9NgJ1cPTF9tB8fGyR4mQwsbpfLs5ANsyUCwQ/nJldPB03ZvnH4eZI6uHo4cpJnqXpdHHLMIaGGLDVKGVryKf+mnkJ6qgQil84BXs6mHVQRpjs3Nk133jUVOsaiUBaFtugom4aeqyB1cCGTyqkkca2cQuUULKskdy2T5NVLHiob1gW5qysVqlKjGivQmKBGBDPw6ekhoAcEM9Qo+gqmr2GGviLNwED3C6hRFzQqQcNFmNHYH/N4DB4M4QZDcFVONoAtwvX7cP3+hvYhU0AtzEMtzAMA9MI83GIXaqEDsgZgXY/kVgRoL7lrq/MA31byJpzWK3glsJ5cB43mlOWz+uV8eHlqq7n8ISShGVwEyYBm6CJIqY2F1l7KqrVLMlbAt7m2xCa2P4UoIWSwclBMyYyctQM778vArKK61xeR4Kc/15zJQ8JK5WUnSTaluR6uHuSYcXr1JOdlAmyYWt0ivKjOq92XoN6tliRl8nnU25ILp8VhIoHYt7RlrSnduEusfwUvQTEMMrVWIQ3bZwBO+fK7mBb57i7Lh3KZDddps84kD7EdUpAa61rWQyo7Tg7tL+u4KMh4qaJUjoZshYKkRtX14IJMJ0nFWpI2irKLhv40yIrspGzEp0VJ3s15kUP/zaHfjdLWej/AwUFBwfEUWYQgCLeLZF+Sy8rQ6m/rrevAy3FL2kX1xc3Z9kDqm8g/CdXS1YqC5DD8DxYDwGRf3Egu3hOTlBOACjJCFddxWl/fBDI5IXG4D4W0Q7yLIL8iBVCwIYmflXb+FdLJ77Nt6xJNDkb5lwKnmK9NlCBW4eZeOYXSaYwrg2FlMC41ytI/plRjjWqkYUcKaqSgBwQ98unoYX16UrzekpaxJlhFcB3/2c4p0I4O6Nh56NEOqOHdoZcG/phvW4L94V6wnRL8H0HcaAh87d/R+Zr/3MnWqfl5qJ07gG0LftuFLux8AdfV3qKkq+CCPYkrAGfCS9eSUgAptmIVVIGZ3JCSrQZAzM37GXtpLBN7iSuFeBHZfTv+j3LXhvQTE5JXZyhIQOtLyh9saJ9tD54M6xSggMrWArAkl3ZqtmS6UnCVSrEVV0HOCviYwBBcrBCDZmyn8mPzsQgXDCq8HFEXvr1o4+NQo22Sd+dltM5Lcyur4Gz2LFP5GJPjw1uj/qnx3NkmyVnbz4qujkum7Z8kqyqPsUOcHWJvZLFQis1Cf8WxnEhhVS2nbvdpsavN48loVxPrVGNC+pzL8+uNQywXjm9Czpv1wxOxbLDK8ddC9ryeN7csvdXqPaZBMT7VDOggmXYMZRwcExScbwdZOQgMpXw/GCXEYl8iAPLlnCAIgiAIGVv1i+rsb+4FQRAEQRCEw8FWKSSEtRHPOUEQBEEQBEEQBEEQBEHYImTknCAIgiAICQYl2ffm5isIgiAIgiAcSZghcd5Rinw5NwsKU8krTr4KDQ8QxqQnSNKoZ8ZQ0TsrecFxS7kT/IsmvOCaWvc4/XkqR9w0+o80yh68ILJp0RGLFr1GWtv7DcJU5u2LNZYr+M1R8AOIfnOmsDDGolNY9Iw3kuqZEnNFiZ6u0FEWHVUlz5FC1T4elgmOVfIccUyonIYDeS86rh8S82U2eJMAQGk1xlYnf5JyaFCN/Do1UNB9BTMAyhXvRVf0fXrFioKZ09DDAnpYQA0t1DgYYZUWNC6hR2NgPIZbXtmw19vRAlcl7IEDwIEDAAC9cyeU3enXaQXXUVBV7VWyGrnfXKOVuNaC5GFXbw/GzLY3cX9Ivjre9yJOTQ8AVDio4O9hjEOn8OesMBaF8j4fihh64gINniThi4fcplErAM4BSiE3mcxvIt6uTTXLbMMxcfMYkk+e8V5zpLz3REpC1WXj4KnoLIERTNba3nBcX/dp2vvcby2Uh4IXUfJII/aednG6d0UNu7RG5U+5YyYvkswHBIaBgkHan4fYHyQPPafgrANDef+8uI5DwUNfFrsBsvVxxXqk6EeC+ngn+p/My4UdZV4t3v8t+ZHY8BlNDxQEL7h4XA7k6wuxP0byHqRkaFTXee45mjxJgsfLhGGjYyB67WSLQf6LMCaGI/LNL6tLIu/xQwoN3xpBEA4D0VvYRe8sTn3F1Bgv9J+s4T2rUiwU/Ss59a+5zypZAiwF/6fQF4V+iYIPHVXNGK/hE4Xs/pL3h5mnly9/WK+pXhc9jDSF+y/X8WF+LyMkDz5SDBWOLXrNRQ8to32lxHutIYdCWxjl0AmdevSaM8Fr2JCDouhHx8GHzs30oatYY2QNhrZAv/JByUrZwcq4g+VhF6NhgfHAQPX9geu+gukDpu/vcQb1OSXHUBX7+42t/WFzTzpnFNADoLwvr+oW0PNz4H23we67baKMW8E0v2GCt/mNtl3muGMBAHzMLtidcxjv6KBc1KjmCVXP14fteP+32pMQ9b0s+s1ZQMW2mdok115eLt6/wv2XYlujZnuMXnPBf5ZNffuNj0rJQ9EwEPyDqXAwnfhcUaFrvHc14J8ftGq2nSr6UrMCnIKFj/X8qz7EFB9Eb3DAe3xpX5lOhWPLfNBiRTPBX+95HKQddHgG0tolz+3CWGjiVM74zAIAVShX9L+zpQYHzzmuCFQpUJX5qEU/vPykZ3XfXOcDqeQLR/H6p0bMEmnEdybznIuewvF4M49kCnUbPZJRErj0O1LwwEwldnWcl/vSIXplxnIowAXvwTzWZ1P3R2nbWB8uxGWxQYX2CqDhs9eut+TLqX05vJ8e1fUxrV7T9VHXYyMcJHj/6dD/x/JDM5xV/r/yvnLxWIjCtoxQvwj+d5PZC3c95Ms5QRAEQRASjK3ynBMEQRAEQRCOJFsV58lsrWsjnnOCIAiCIAiCIAiCIAiCsEXIyLkZpGmRXRjODYAdvKzBZbJV1NIHcmHILBNcGjJfS5zSXmnIdK0PpDC0O0ki4rI4yjUfkuxaI2+nDFWOZZk8sPiaoWHLx37n+wR5oR/m7A9YGeenDDcWvU6FuaLEfDEGAMybEvNmjAUzxpwq0dUVTBhzrFFrRSy8TLUM4+Djexfkrq71DbvNxkI7jsPEFcbWYOw0+lWB5XEX/bGXQgyGHYz7Baq+8dKHFUK54tMwfS9xNQOFoq+hhw565Muoxg409jJXGpVQcz2o5TlfhgMHwVU5pXLvGHC/D1qYB1U9kOPJ4dnZ/8mdMX1a8SCzifLW2PYoV1aHdpeGzgcJTmNdPtRde7kBGwcqGDpIBkzHoigsep0SPVOhZ/y56GiLjvLymkiSRLOXRFesaml0KAgFycEsaWt6R0FhkIbAq3TM+eUOIE2pHmUBynhpEACoMEyfw/XmwvVATvm6inLMXAKVyzHzfBBkC/Glvdw0lwEQGGzJ/1qlGFDUTCNIIbKuyhPkKVH6maQGhQMZl67/eFypzi3ArMA2H/ufScW4dTyhP4t9HbnJLij2QVF2BXi5FakoCwhld61jC3rf1EdHCW3chuuN/TT3Xr7K3Gq7wCoXRcgjuzbacjhyBGZuyGxc8Dvg0M8RuySZIeXSvYDInzPaxJ/SHAh2C367E+GusKmQ71OSfD3I7kHs3zOafTCi9MlLmFhHaZzvh6MVA9oydM5kU5nMlEPn5RB+KY9djJ8u2cv+WhKqOs0p0tcoK3P1+1hGtr4fJxXk/MEmAKhjTf/eS1rj/TbK9Qpj0dEWXe1tJLomWJZob1tiyMEEDVsR3utMvqpDIQ1ZaDgUyqIgC0UORYoN/fYaLsSGCkP2jykjV+BANYf95Rz2j+dx63Ae+/s+JlvpdzFYLqCXDcwSoVgmFCuhKlcAM1AwAwddMlQZ7h+VA1kGHINceF+Fe/G4AioL2sxO9zBQ7b0ZAKCWlmHucXe4QsH2FJgoWZa4DmC7Qdqa3yfhJYhUAary7UWV+QgOAjE3nz/acU+w6Umrw/OGl01625S6HAzXZbgOAz0L1bEwXd8O5rpjzBUV5ooxFosxerpCT/s4zyib2pINNjjRFmdoC4ytxtAajKzBuDIYq2B/ExxriABHCi4FBeSvResDPIr2PvEAonQ3XNu5rUaMgUgxVBZzWafAxLBBwlpZhcqG5xWrYSsFVypwqYGSgGAroywlSet06WRdjlzm3oC5PmlRhul8MNPoRqjuA6KsmKOs2LCXsxsH3YonAS8ttZWGqwgMnQI2dgARNeOg7Pk45dsqd5RCs2FwxwFF6JdC3jF/jlLacGwMFfII8Vfoq1WFup3ytLxCPKZ9QZL0P6/TtiS2dUwxL9QhqbcLoPq+kMfOziiQcWnjKHGlLE/KrFo2A5Y476jljnXnEQRBEARBEARBEARBEIQ7EfLlnCAIgiAIgiAIgiAIgiBsESJrnYEfSusAo5LkIclT44yDmXSpIW3Nhrw615wBk5HJHVQ2VjbOaplJznKZK1APcaZW3u0ZWSnOOMQz5GFh9tXJSVnb457rfZjQkOgB8LMUZZLWxc4Ii0HWumhG2G6GWDAjzKsx5vUoSRfifyDKWE0ypSxZo3TGy6pYNaZ5jrMzxVk4gwgwbVuyxsAWWLFdLJU9AMD+cQ8HRz0cHPQw6HcwXCmg+/47abOsUPYJuk8oBlH6EGb/Grkgcy2gRh3ofgEq/InURsPdth9uPJ5SWUc/1OkARQEuNJxRcEG66Fdicpg8UCuwZ8j2kvxaNWU4uaSVM5kkEOSYVP+P0kW/rpZQx9mwup0wE3BRYqEzxkIxTvJpAOiqKslqAN+2Rs53cWNnkvS5IoWx05lMVAHKTZG2Arm8NaUbftMgcn4YexhSn44J/hr0w9b9bKZR+gDU7ZiI4eBlDwCSzDXOaFrP2gpMDLHPZ1oLcoAoNSXdlFh4JYrvx4hqmUaSsgYJfX7u0+xrYUg+tyUPmaQ1nzWNmdIsVBPkMo3sfWpTmN79xInBWIV6zWUB5K1lmRQco9YXRIlqlneqvpAfxxlss104yiCmyXai9jZ9rsuXZn8jNC6fpvyHGmkrBtj7IIDZ69AchzrWKklliAAo15jh90jD2SzZm4roHYRNRGkvJadwQ/MzOCovM1PNWIuqTCYFePlevEQU4AyF/jJKXsM6Db+jAYBaMscdgnNIM0tTPtugpeaMrdMu/QlJYWt16KNSHxRnAJ/wYMjuAS5Is1BLyQpj0TUV5jol5kyJ+WAjMW/GmNNlsi3pUoki3H8V/GzpKiu4Rrz/uSRfLciiRyUKCvd2VaJHJTpUoaAgiw03QQeFMWv0uYv9dh77qkX8sNwOALhxuAM3Dbbh5pVFHFiaw/hgB3rJn4DiIKE4SOgsKxQrDp3lEL8OCKZfQZUWNK5ApQXGwa5kNAaGI7jllemVe5RD3S5cr4Nq3qBcVCgXCJVXAMP2/DNJPlNrkmxnt81o01A/23A9g2i7CaV4geBMJl01QUbbCZLWrpeyAv49eha6a9HtjbHQHWN7bwgA2NkdYnsxwHYzxHYzxLweoRfaSGwrFj7mH7kCS9bH+3n8368K9HWBYZjtd6gMykqjJA1LjOgTwSpIWmMQ1Hi2ovS8RCEGSPGH8tLP+DznHPn7OZCsOVywUHGWYEvfHtkqcEmgUoFKmrjuY2yUJMExJtYIs0KHZfH8tSSncNkxxKBKhWPJJZ7BYoY1p5ly47OdMgxd+FlxjXZQuVWMU7BxdmvW0+1L8vbTjqVa7+NxIsabupYOt+NZ5yjNsusq1bRpydNlNPpPn1izmpgoBGHN5cjK05DrOr89MyX7FcT/Daup+r7gn3coxdDOUJLssgnHqsKzQZS1ts/nEYQhcd7RioycEwRBEARBEARBEARBEIQtQkbOCYIgCIKQYCCNZt7cfLfgV1xBEARBEIS7EBLnHb3IyDlBEARBEARBEARBEARB2CJk5NwMtHFA4eAa3kJeiM7BC4qD7r7hCxI8Gzjq0a3XqjvO7aOCL4Fxte9c9DSI/gLkde3Rf4DCFOdANk10TC/LD1k+0NTwkePoNaeQfBRyGtOH5xB7ewbNIF37Emjt0O1U6JoK88UY24sRdnQGAIBtZohdpo9teohteoAulegp7+fRyTznLFPwjvBNsWSNkjUsK1ioCT28IoaG834mLeG6A2HoCgy5wHLwoDhQzWF/OYd98wu4bXEOBwY9rPS7AIBxv8B4xcD0CeMBwfQJZujz0wOFYsAwA4YZOpiehu75MqrCQGkN3HLrHcp3Ts3PAwBo907w9nnY+QK2q7xXTsu3gXK/s5y4LveSAJKdVvS44fa6zL/MRS8ew97DQYX2pepElWYozdDGoigsep0Sc4VvP9s6IyyaMXZ0BljQI8xpv7ynyoYPYek0+q4DwHuRDKgDZQuMScPlfjs2eq8xHAAigo4Hr5T3A8sPJ/YHDnBK1QcOgFD7kZAO09FrhiJu+HYA3rsjecwh9CeOQj9CzfrN6hE61GHwgEPHX5OqCD5w1JyO3WXpe3+/8JmyY4keG7FO0vmCz8vUPiCkvdccKZ7Iq/bPQ5ZwVn6a/p4w2e3MIuaXe9tx6KOij47v49CYpr6ZyGTx0vKsz8/9WeJ/UgQGN7xUvA8Jh18EM+Oe3PMk+fdQvSAVRMG3vngSogdW7TvHm+hFEn08BeHOjDIO1LEplnNKeV+nsYI3QSJwCFdUiMNi/AUgv3yhjPedc4X32UrrjAueoMHHOHp6hQ6EmXzfzPB+UZi8F0z4YIaOa6qfU1ze2i/5oub9WyRPP2wcvUSNdugWFRZijFf4GG97McSi9q95NW54x+kQpwHeGwzwsV5O3KYI/nIA0CPvOddTFRaoRI8ceqEvVQA0ESwzSjCGTNgf7u/77Dxuqnbi++Pd+N7gGNzQ34Ebl70f3f4D8xge6MAc0OgcVOgc9OXpLDE6BzWKZQOzUkL1SygbA3fysbla503pKMGceAIAoLrHcRgc38Nwl8J4O8H2AOvDXu+DRfXziqqyZ4vSf1ZlfM9QyQ/N+85FWGXeWtFz0dT+coDP03XC/y7DdR0w5xOMXnOLvTF2zfWxu9vHno73+Dums4w9Zgk7dB/b9RDzNEKPfJynyXmPaWgMucCSncOS8/H+vmoRB6o5dFQFo+YafriOvb9vfKHVPin4iSHEDhGKnnPRA1bV8UeMf1IcErJzjmCdgrMEVym4SoGrkE+poDKvObKoA5EQEkTPSv+qPcqQe7KlMmZ+b87Hs2RDP2K9j51PNiQe+50YgwUPO8qOm5QLMauPW6ldH6uNfDosYUrstGKcF54LVB3PkuL6mSH4fza8jqf1cdPI+0Pl67jtyU7s65JdzIMyL/rsWT1+BxB3rMI5LAnOEKhgOBvqvwg+zoU3N1XR515vorfwFsV5Yjm3NhJ9C4IgCIIgCIIgCIIgCMIWIV/OCYIgCIKQYBAc1Ka/DuUX1be//e245z3viV6vh7POOgv//M//vK79PvOZz8AYgwc96EGHkKsgCIIgCMIdk62K81YdeTmDu1qcJ7LWGSjtoAoLp+phqJYUmPyU7orrYa2c5ActiSu8JCwMZvafszy8dDXqYJvDkZX1w8r1GNBDQI/8Z8D/90PMkaRuLpxJVwCuqoew22xaZ1L1EGmK0tYcDtIK4sZI6Si3JeWS3BAACmPR0RbzxRiLxRiLxRDbjJ8KfZfpY7dZ9rJWNcCCak6FrkMGFoSSTTKlLFljzMZLW6HgWkNuFbkga2WoKbrLkjWG3MFQ+3H1S6aHA2YeO4sB9nfnsK+7gNvm/JzyBxd66C92MO4XqAYG5UDB9IOsdQiUfYIZ+Fcxr1Asez1m0TUwhYYyGrhlH1y/P1GOownV7UHt3gns2AYAsIs92IUCtqfhuspP9Z0p7cgBsGhKXfK+tC1pnUYmG2TKJJKG01TiKBygfHuKU4jrMKSbFMNoh8JY9EyFudDGAGB7x7ez7WaIRT3CvB4B8JIYRQzHvk0NlYEK166O092znzrckIMLY+CJ2EtMUcsyc9lrlC+wqssG+OteGZf2idsCSPKHJA1oyT9tll8tAUWasr09Mz1r1HIHw+CCQZ0w7X1hYQoLY2yY9j6TcjhCZRVYEZzi6dLRMKw/U+fWsgqVSSminCPILKnVCJi9cIK5lVgrLw59FsVLO5NBT5QvqhbasquYXJK4ItgOZBquIOFlxWFdKFLepeRSWI0ks05y61zempKvpa113pnkQRE4yH+irUHjmolFtCHBrINmqmVVsb5BCO1PxABt3ve+9+HlL3853v72t+MnfuIn8Cd/8id47GMfi2984xu4xz3uMXO/AwcO4LnPfS4e9ahH4Yc//OEmllg4mig6Frpbpj7cOgVbKVit4TSDSNdy0CBDgwtSwCz8YAW4sC5+Zl2vp2AJogub4ieiJIIHO4JzBI73hWCbwrmvSp1bkntFud0EnO0frQZsJpUNfVIu32dVS8go3LcALyPs6grzpsS2YoidhY939hTL2KH72Kn72KYHWKBxkrUW1IzNSlZJPuWgYFtyqmh14iWuDj2qUBCjIKAbbhQFFLpkoJWCgoKDQxk0xyOzhP3FbdjX/T5umt+OH2zfhe8OjwUAXHvMMbh+eSf2HtiG/sEuhgd8bFgcIHQOaHQOanQPGhTLHZgVHziblTlQfwy1sADV74P7A9jl5cl6Pkow97onxifvwv7jvcx3uFOhXABsL0hMc4meq58vchkrkElZK4Asg1yQXeZQkOqhvnfmcm7bqZ8/XBewPYbtMrhnoXoWnTmf2UJvjB29AXb3Bjims4JjO0s4rnMQAHC8OYDdehk79QDbaYx5xSiyg4iy5r7T2E9j9FyZ1lkQRlxgYAsYVTSkrUCQtwKtuM0fF4UbtcpiHUU+LtXKx1Y6xIExpowxp2UfawFAZTUcM5iVvwatAlUhvypeg6hv/9m9PkpZfZznQCaUxcTnL9e85hmp73AV+Tginesg98xl7rkFSxZzwnGKjdgpOMeINk65XDRKdq1VqU9p25cgZpd1XxOxVJsg66dWn8Xkr3UiHydyu7ujKMulFCOxDseqMfEME+NPH+OFWDfWZ3hGJlX3r/WBk7ePsuTT16EeNUAlebsD+OsrdX/hPXvlKlzsdxFuFaQAbQHtpcTaOMBsnqz1jsJdMc6TkXOCIAiCICQY5B+gN/m10V9Uf//3fx+/8Au/gBe96EW43/3uhze/+c04+eST8Ud/9Eer7vfiF78Yz3rWs3D22WffjloSBEEQBEG448HAlsR5G/2Z+a4Y58mXc4IgCIIgHBWUZYmDBw82XqPRaGK78XiML3/5y3j0ox/dWP7oRz8an/3sZ2emf+WVV+Lb3/42Lr744sNedkEQBEEQBGE2Euetjnw5JwiCIAhCwst01Ka/GMBf//VfY8eOHY3Xm970poky3nLLLbDW4m53u1tj+d3udjfcdNNNU4/rW9/6Fi666CK8+93vhjHi6iEIgiAIwl2PrYvzCB/96EclzluFO2apN4HCOGhjYZWD1XGqbQVLfoJ4B2SGC0FnHrX1fqwoAEC5XCPf9p1TgA26dkegiqDG0fOMYAaAWQHMACj6DDMIHiAjB1V6PwgmgA3BFX6/qkf+NeenT6/mARt87CzXeTMxKHqiZFNyE6LvXKtCoieDcslzoTAWHVOhpyvMmzHmdInF4P+1TQ8xr8bYpgbYpoZYUCMshKnQC3INzzmLMcpQl95zTqOEhmXV8P7yNcbQYf+255yDwpg1eiixQt70QgePukJV6IbXvPHeZduKEQ50e1ie66I/7KAcGIyG/pJQAwU9UOEcEMp5QjHvy9KZU+j0NIqege52Qbfug913G44mSGvoPccA27fBbeuhnC/guv6E246CK7xvgtPU9MZhQFmeqHfOPTxbFhP1zvW6ZCcTvHdc8JvjTuaVZixU8NFo+3kY7WCUQ8dUmDMl5k2JxSK0reA3t8MMsKiH6KV2ZaHJwbLyXjQOcKpuVwU5GGWhgkFjnJLd+74FHw1HcKDaey5O204MrQAil+xBWDUrwXv1hMOmegr6tueJdQRF7G39gjeQT7BZsZz5CaU6jT4khYPuBJ+ewqJTVCiMRaEciDiVvwweRs6pULbady55agRfNuLMfy14b7D2nnM04TlXH1NeV8k7KfmbNNuH93Oj4PURE2j6NzV2iV5z2Yuz8xYzafiZxP/Ri4Qo5UXBYwUAoLwnKJvoUxLKpDNPPN02iqvzSJ55LuTj/LXEjpN3KDTA0R/UNr3nGEi+oXBhu9imop9JaD9au6wsd26e9rSn4Y//+I8by7rd7sztiZrXITNPLAMAay2e9axn4fWvfz1OO+20w1NY4Q5Nr1Oh28v6XAbGVmNUFBgbA6cAi3CDdN4nkuM1nftIumAbFTwtWRM4RNdsCVwRQAQLnTyMa184BS4JVCpQGa57S1Cx3wimUfE+zYbhDMOFeykpCxPvBcbCaAsd+mh/XwuxodWw1ntF2UrBVaq+30RfKfJ9ffRJBQAd3hty6KgK89rHT4t6iJ263/AG64Z9OkRQADQRLDMcgHEIhEsQSqbgNzw5PiDGho6BEkA/BNMFHBwYigkF6cY+BSnsVAY9qrBA+3CMWsGxZgkAcPfubbhu7hhcv7gL1+/YiZt3LAIABks9jA8YFAcUhksKnWWFYsWftGKlC9O3MAMLNdwJ3R/DDPxxY6UPPri05R505kdOxfBee7B8YoHhbkK5Hai8nTJch5NHqioBNSaoUHw9yl8MHXzmgOBn7bjpp9jwJSR/z1TkY7rw3GE7md9cL/O87jFczwE9B92r0O2VWOz5OG7n3AC7uwMc013GcZ0lHFccxLHGe84dp5ewUw2wQ1VYUApdmHTOvdegg4aFI+u9hsOzQD6lkGOFsdUord+vsgplpVGF9p/8HeOtPTzfKM0w2re56Hvc0RZdXaHQFkY183IgVE6htBoj69vPoPT+YjFOYgYoxpK5XVyMq0Ns5TQAw0DHgQoLXTgURX1tJ+871DG6df64ykoD0LC5SVx+G5zw7Y0mbgh+agTEeLFyADScclCKMr9dH3c5q+AsgYPvXLLKTbFx8OLVzexSUXKLOq592shl/WWoZQcHUqr2jHN5/Bfj5BBbmviM7WMAclkMGfdPsS2Q5iZIvsOc4j5SLvPL45S3ryeCrcL3AiWBCgKPCaokUOU9HUNBUv7RvzHGhmR9rAj27URpRsdY2LuI59zjHvc4XHXVVY1lEufVyJdzgiAIgiAcFRRFge3bt6+53Z49e6C1nvj1dO/evRO/sgLA0tISvvSlL+Hf/u3f8Ku/+qsAAOccmBnGGFx99dX4qZ/6qcNzEIIgCIIgCMIEEuetjnw5JwiCIAhCgoGJ0bNHG51OB2eddRb+4R/+AU9+8pPT8n/4h3/AE5/4xIntt2/fjq9+9auNZW9/+9vxiU98Au9///txz3ve84iXWRAEQRAE4WhgK+K8jWhA7qpxnnw5NwMdhjNrJjjnh5mW2VB6Bz/sHgDAyg9Z5jA6OZNpEQDYMGSa/NDMpOZigCmTMYy8lBUAimX/6h506N5mURwYQy/5lbQ8AIYjoApjZ40G5vx4dl7swS72UO7oYLxdY7RDYexH8aNaJFTzBDvHcB2AiyAJ07k+IxYO2QE0iUN8KUgdjHIw5NBVFYow73pBFXqqRBGGnfeoQhEqpUcuMztklKAkZdAIU5ezg51iiZgkrcTQmazVQsEx+eHtjCR1LMmgp0qUbDBSJRZNfQ4VMYxy6OoKc0WJfrfAYOSnoi/nDMqhhu1rVD0FMwfYIH+xPQ3bU7A9haJnUPQKmFD/7uZb4MbjyUo7wpDW0Hc7Drzb/xJht/UwXChg5xRskLAmWcyEZDkfb95eFxaH4d+5CqUxPJ/q9X4qeL88ygbZMBDkmCoM0zeFhTHWS1i18+dWRSmNQ6Esui3ZNADM6TK1NQ2/H4D0fxYWBMe+nVSsUIUh/KXTGFdeRm2DJJMnKgmpXG2inFVRLfdU4Iak1Xs7RKkieQko0JR/OkpD4IOSKZOZspe0Gk6S1ih36HZKdI1FoS2KMJ6+yk4Ua0JlXRimr+oTR+TPm6pVC7UcmZOMFoaT3Ckeb2oXXM+8lOpthqTV6xeoljxkstb0P7cGiKvSei8nyNNmpqw/qvumJD+lKFHltD0abZVr+ZlmcMFg4/yxqvo482OOhUptJEiCAfLyVEdewgqAK/IyCetPqJcytPQdjv25d36ofqPagjxaK+c9EoQGr3zlK/Gc5zwHD37wg3H22WfjHe94B6677jr88i//MgDg1a9+NW644Qb8xV/8BZRSOPPMMxv7H3fccej1ehPLhbsGc8UYC91aquaYUFqNvrEYmAJ9xbAULTh8R2Hg+2nO7EsiSbpUIVmUAApcEVjp+K2333ZMMNG+pA8UK0CxEixD+g56YKHHLvWLtuM7TDunMV5UGG8jjLcB5Xag3O73G2+rUCyUmJ8bYb5ToWfKxrFZpzCyBqPKYFQaVDbI2KyCc7WFQ+wv4375y4aO2zFBkb//dmDRJcZCsJHoQqMgDQUK3SLDhQMv2aEM0sQxWzgAZXa/tVGuB3/PLLM+cYlihVcpZsz3KdlLZS0IPfJx2DF6GWVHQ8PLchcKv3xvbxEH5+YwWuigWtYolxXMik/HDAhmoKCHBmbIMMMe9CDELYPt0Ad3wexfgtt7C9xgMNmwjgB6505UD7gnDvxIDwCwciJhuIdht1fQcxV0kT1mlwpurIG+BlUKZJGeLcwAMAOGGXpZq6oY5PIbbnirvHw1xSA6SFlN9t+Hy7BFkLV2w/9eiHu6XtKqMknr9t4QALC9M8KOYoBdpo8deoBtaoAF5SWvPSq9/Q3BtyHAW5XAt6UhWwyZMWSDFe6g77wcru866NsuDpY9LFddLJcdrIx9IfvjDspSw1YarmrGeETevkOFmK0wIbYyFvPFGHNFiZ6u0NMlTIgzY2xXscLYGvSrIqVXWYVS+SA4xXh5nNOIQ4J9CAAUDHR9jFx0K/RCbAcAHVOhUDbla0P8OrKmtk5hwFlKMtk6hgnLctuUuC7GZtn599JVgFglG5B4GebSTq7IyzTzmCYcXluxzlnoGZ8X6pVItgG+PEFy7D1DvG1IHsNlZfVePG0JrT9edq08gRT7QXOKARv1FSStpBlKh3OdxYJgwAY5LwC4SsOVBDbBnmBMwLiWrsLVZaWJdlCXSSv/nYMyrZuKcJeM8+TLOUEQBEEQEgya+uPIZuS7EX7u534Ot956K97whjfgxhtvxJlnnomPfvSjOOWUUwAAN954I6677rojUVRBEARBEIQ7JG6L4ryNcleM8+TLOUEQBEEQ7pBccMEFuOCCC6aue9e73rXqvpdccgkuueSSw18oQRAEQRAE4XZzV4vz5Mu5GRTKSx2YAUuZRKwxw6Nf5jjK0fy6/HtoyoazkgNUlWm8wwyvZP1MSmbgpawA0N3PmLu5Qm9vH+qmfahu/CEsr1/W1J2fx9zxx6E6bgeGx/kh38PdGqOdhPE2QrWgYed8ehyka1OVfIw0k+MsoXh7NsqIbSUYZQh+Fi9Ag2AR9CFpU+f3m1KWXM4a38fl1s/pA0UM5+pZXguqoFBAkUNBFoZsktdGmaRRLs3GNFdUAIB+p8CwW2DcKVB1NVxXp5mpXAHYgmA72s982tUo5v3QeT0/B7VvP6pbb51eWYcZvbgIOv44VHu2YbCjg3IxzEw1R34GLa8L8GQzKsUZuaISNI0Uj1IGEyWpYVcFP3Q8DkefdsrD7Ex+Fq+QXnjvZa0MVViYop5lNM6EpYN0L0oGtAqztSqLjrJePh0kLTrJjPyvPuNQyCi3sVAYuQJDNuhbf14GtsDYGQxtgaE1GFYGwyBDGFudZvFyTjUOjRBlq5wkt7mMMkpZ2zJWIm5IWhVqWUActB4loPXsU1Nm8orD7XWQtBoHXTiYMEMrAHS0TZKHKGGKMhVmgnbkZ9yL0oB8Jl0FfzKDtJmjdCDODGsYpF2YVTcM8df+mCcuUfYzlLGrpRxt6TNF1Stlaupc4jBN7gDUMrJGfqEhEkAxszRdLidpLums36YwK22Q8/r2GhI2QdJq/L6kmvIuomYZqH0RcMjHUZptlRUBlUp7NOok9KlTjy2rCyIvq2A1baMjg0MtXxOEOyuFspg3/v4PeDuCihW6pkKhuyBi9KN8DbW0FfByP1WGjy3pFDmk2TFV5S9ksn6Z6fvlnSWgt89i7uYxihsPwF3/A7jRcGZZ49VYAOiF93r3LvCpJ6J/svcuWT6xg/7dOjhwzBwO7hxjcdsQ2+d8mj1TYq4o0TUVxkZjXPj7IIA022OcnTy3aGD2Erqx0xjYDgZBy9h3XfRdFwtqhCEb9Niil6a+DOUjBRVKHmWtChYFvLS1IIeSGUXIqwy3J8fx/l7P6DqGhnMU5K4KDqqWwLKP+cZs4KAwZo1hCEL6rouSNRQxFvUYOzte3+nvy4yD2mFUdDDuGlTzPi89IOghoIcEM/LvzdCvM32DYsGgM1/AdDrADTfC9fszz9vhQP3oGbjtjB1YOoXQPyHESMcMsXN7H4vdETQ5lE5jUPpjXh50Mao0wARVEfS4bqtqjPC5lrPGmedjfOeCDQprPzsrEO6VYbkzIbaL8WGRzdja5WSZw10H1fGzCXc7FeY6JeaNL8i8HmNOj4NFiY9l4j1nzBpD1oADSrJQsMnExoIwZIW+K7DfzeFWuw37qgUAwA/LHbi1XMBt43nsH/WwMu6iH2St47FBNdbgSnlJZmyqFOMeB6cIWtdhhFYOhbYNa5WO8mX1zx2EcaiEsdON2BCoYzxylOJvvyL8j3YZUZJZOChTS1rnOyV6ob56pkIn2JY4JoxdreO0TqFSDiVpULQkQXh20wQONhzE2XOeinJQb1lCcYZS+DZQy0h9eVOcGiWtNkha46zSQC1vjdJRro+NXGZTksleU5/JdV4xSCai5HbCEw8eFMoZYmft4ztfIbWMdsKihriW3QYZa5QVU/ClIuUlrSos18pBKU62NtbVNgBV5WCNgtMaTukw63Wo4jFBVdkxUzMmTkUi/8xglAOtYc9zOOEtivM2qpC4KyLRtyAIgiAIgiAIgiAIgiBsETJyThAEQRCEBIPgtsRzThAEQRAEQTiSSJx39CIj5wRBEARBEARBEARBEARhi5CRc2tABOhgFuD9CJy3CnIONp92mjNfIQAqSqoz+TjF6aKT95f3IFIVoEdAseK95gBgfm+F3g+WgGtvQLW0tOFyu34f7jvXAt8BFk84HgAwd/KxGJwwj/6xGqMdQLndl7maY7iu197XU2vXheag7WdFwWuvqRd3THBMqJxGGeazLtmEl8aQC3TYwlI9FXp0S0i+c+3y8xQtfDAt0MHbK3rYafj3lnx9OirTLmMqUSpfjlL58lVaN5I15NBRFXq6wtBGf4cC/aKDlcJiWHRQGQaH/dio4LlBcIZgOwa258ta9AzMYhdmcR7u5luPqBeJucdJsMfvwmh3D+MdGuUCwXaDB0sneCpEm4bM64osoCz5dhjbZ+b5Fb3mnKo951hn6UVy76w0LXzwnIteJB3vW8aF90tTxsGEqcKj31wRPefIJZ82FTzbkm8bCFVoWyNroOI1yQoq+tQh+tb489y3HQyC59yy7aBfdbFcdtCvCgzKTvLbGZcaldVwlpJHCJJ3iPdqU8GTxGiubc2Iock1veey/SIqVXPtLZd8PGZ5jcWp26Pvh2aQYSjjoI2F0Q4meMAZ7b36jGrWX14OCt4mRJl3WfSfY/LLkvcKgOARSNpBFQ4685zTymWeKoBzcdr7VtvI+4m2kZ/Kjr3Vjjh54bV8Sdo2FZkvElq+bEzeR4SCBx6ir1z0miFfp6w5rYuefqTZ++plx5kOY4ZfSL6e2fux+Ow0GC5cTN5DJSt+2Cd4wUxNu74OeJpZyRGCmSY8QwXhzoa/tpC8To2yMFm7d1m80w/XhCUFKAU1IqjgrUoWjfsgMm8hKgGqgqfwCtDb5/Oav2mE4ns3o7ru+6gOsfx2323AvtvQ+1f/eU5r0H+5Lw7eZxuWTuqhf3wXS8fMAwC620dYnBthrihhyHu85l57FPx6raNGn+ZAKJ3G0Br0qw6Wtb+ndmkOXVWiIAsNf+9RHIz2UKGXPIYnPZRs1tkp1D6s8U7iss4++so5JoxZo4SPKUs2GDfiTX/fH2fv/TqNvu1i4DooWaV7Y09XWOiMa58zxbAmxngarkNwHYIdA7oL2F7wmOr5OIsLAmtCwQy+9nq/X1XHnocLfebpOHD6diydTBjczUEfMwIA7Njex47eAB1tfd1Yg7IKnsOlBpcEXXmvQzik+yfrGB8GLzSg5TkcYv0Q87FurQvewpx7Ehc+5rNd9jFfJ0Q8BUMHb+GeqdDVPs4GgK6uUAQPr5INRlyg77w/toNCn8ehbfnzFduBf6boYMV1sWR7OGDnk+fcvnHwmxv3sDTqYWXUwWjkC1mNjPd/rbxnWrqdhljAHyPDGUp+YhEVfIVNVh5FDmAFNeX5xcdF0WAX/t4f0mz78LJqep6R5nRtFtqma7STeQpXrn42cimunAzOSZGPg8JzAFPtR0faP/MpFWMeF+Lc3G/Ol9/aSd/1ZB7MNOGjm6DsY+txrva+w2Rsl/LIX9nzaXaMUDGupdrzTnMd67UDq/wZN8SMpLO0NMN38bXHXBFi7hjvMwNl8PxTilEqjQrhfuFU5s8XvP4sJog+9el5YAtgnvSG35x8JbZcCxk5JwiCIAiCIAiCIAiCIAhbhHw5JwiCIAiCIAiCIAiCIAhbhMhaZ+Dgh5v6/7UcDQijYbWrh3Szl041pK1xeuhM7tBSzNXv2W9HFaDLINUcVKCDK4ckaW1T3XiTf3PjTVi894+gOHkX+id0MBiFYeLbCNU8hSnQkSRuQJiOOkxRXQ/DrYdROxAqp1CxQskKo6Bn7LsOCqqgyUETo8MWBedje12SszoAYUZ3lKyCNMHLF3Jpq4ZDgToNnY0VVuSlGRo2yCtmjxOOw9D71IFxNshxFRbMOA1VHhYFlssOekUXB43Fiu6iDBqWigz8+Gd/Dp1RsJ0oeVAoFg3M9h7M7m0w+/z5c3tvgRsM1nG2VkcvLoJOOgEAMD5uEaPdHYy3K5TzBNur5aRJhgokSWusLtKAc2FZS9YapQtR2tqWNOSzmTeGsoc0kqy1E85t4SUOVLggyazlmFq5IJHkqdIAL5We/P3AMqFkhYIcjLLQLblf6UIbcgYD68/Z0BZBzlqgX3YwLA3GZZA7VAquUnBWNY4F8MP7vfTRAlCwBFCqyMnzsxGiZKCRUD7knjK5gwkSU1NP6a7DyVOt448y86lksgBO09DXQ/oRh/cbBoyD7lho48Kwfn/cUcbr2Ms/oiSLoUCOp0+TnucZJQhtqesMWSvruj5Add+US3VjGlGOQdprBZgdAIXY9cT2zlEybGpZa5RdK+28rJWaR5Kae6tu8+04rLfhdy/iIGlV+QbNsgDw0ttUsHobDudy1XN6BHCoj2Ezmdp2BOEIMbIGQ0u1fUJ2jSliLysrfA9XWYWRIzgYWAVva1EGqVq0icjvjdn9UTl//9VDRrHkOyNzywqq675/WI+HrQX/69ex+K/AjvufhqX77sbBe3gZ6uD4Arfs7sEsluj1SnSLKt1DAEAH64Yovc+tGbxsUmOoDJaqHgCgIIdC2WT7ErcDAKdGKFWFEg4KBN2QqTIcGJYZJRiWgTJJV+M2BIvJPk+Tg2MFDQcLB6C2KLGsYFnBMTVlrc6kdBRxkjB3lEXXVJhzZZIvR1GqA8Ckk50LMnmn0wBrgjMatujCFbvQ6QV98/d/CLt//zrP1tqY447FeM8CynlKzxu29P1yf9iBY4JWDtYplJVOEk47MqDKxzOsANdBbcOjvEQ3b6+N+C+zKMmtTPLliNLWcItwJsZ63sIERZB+mmb8kFtvAD6WGzkDTR1YEIbO12NB1tucpGeE2uYmWuWMXIEl28NK1cXB0CaXqy4OjrtYGvUwGBcYjw3sOJy4SgFjL2vN770x9mAiOFJwxtcnAFinGvdex6px47agJCvNJfDxuTHal6B9707xDJKUEvD/dbAs0YobVi8xD8eEsdMY29C+rX9fWeWtWSyl/Dg75yAXJJvx3DjowkFrf34KY1N/EGXtlgmVVaisTpJpWwIWCuQfkMNzENXNKGtLQPa8mx1+blPi2xn7GCmGHCrrSLMXZc+mdWJBOqq4JYfN6r9d9/EYVZD8RjsY7dI50G3rmPC8EmPfhvTfEazStVVMQzMdyxmyjs0nWlyFc1aF82hd03bpSMJbFOcJayNnRRAEQRAEQRAEQRAEQRC2CBk5JwiCIAhCgpFPcrSpGQuCIAiCIAhHkK2K80QhsTYyck4QBEEQBEEQBEEQBEEQtggZOTeDyipw0PS74D8QPZaSmjzXxxcMZvZyckYS7VPmMee3bfkpkd/dFf5li+BZ0NVArxtMoSanoj/k4/rP76A7PgmqOhZq7KctH5YK4xKoFgi248sR/S0Q/OYaJgGB6H9QsQr+Xp2Wn4Rq6NnjVOgLNIZVJTQYGgwL7yEGAEM2GHIx03MuT09n5k0qpKUJKGDRQe0r0qMyvMbouRIragzA++KVrL0nSfC0iD4lI2ewUnRxoJxDV1fQyuFgyLdkQsVIJ5IV4MJ5s11CuUDQ2xXMrgLFnnkAQHH8Lpj9fWDfflQ337LR0wYAMCccDz52F0bH+jRHOwzG2xSqeULVbZ431tkpC5YN8Wqn6HXgmv6HAFL7ZN30FEk+I5lP4oStX/Kq4+Q5F/1HKPjNaVVP1557xTkQVDatt4X3vKlIQTnGWGkY6w/AKAcTvDiMynwHwXCI/lyq4csxdhqDqsCoNBhVBqPSoBoHf5ZSJd+HVBHR80IzbDTCMRYUfEkAgMj786g4xXsGMzU8e6I/Y3rvVJhCvelJ4RPm4O3CoOiHpmvPvtyTBKi9gXJvlOh9Yp3ybdup2u9smgdH7sEGJL+5ovCeS4WxKFT0I+GUR5l5AjITWLGfzX7WD2Ox/2uVI7YrJjT7SM3hM3v/y9xjLiu+TzvzmtQMF/3m4EAq1gunTpcVe6+X4PeiCwdtLJRiKOXrNz9WFz1MsvrN6yPinPIeKvB9Z8NuJvd5dPW1RIpAFuDY1pjAzrcN5wjWKli7eb+lieeccFdgUHZAo/o+0dE2eQpVwW8q+l4Z7WALi4oBpzScVoDJPeco9Wvk7dsAAKoK21RANUeoFkJcub0HvXsX7L7bjsix2a//Bxa/M4f5B50GADhwn3ksn1hgtMdgeWeB4UKJTsf76XWKyntcqbpjjv2azvrAihWGwcd1WXWgyvlUP5YJ1vg+Y8wa23mEHlkU5LydafKx8lUT477cWy7GiNP6HhW8aTVKFFShZIMFjAB4H7Kx8rFjyQZDV6RYbqi8P9nQVTBkUQTP2EIFf+J0fOnQMXYEOH+f9t5Q2X06+K3ZDqGa0xhvVyiO2eXr8cRt6N46hPrhbahuuPGQY3fV8T6BfMwuVD3tfQtHgFlRyft4WCmMisL7iBFqvzEAXJG/n2qG63rfvGDn5v2tg99c69ZV36ta3rRpWfwcPefCvZN18JwLHsOq8HWsCx+rdLSFIZf8/gDfXga2gGPCiAsYqv0L2z5rFiq1kZI1KqcxcgYjZ5KfMAD0K+8pPCgNxpWGrRQ43jdLAiqCsgDy85mswpWPGyqV2nHlFKxTyVfbBS9Ef9B1G02edFmMx0DDb65Zt7HeGGw4ec6p4Hemstgjpl2FWK5yCqXVGIZjHpQGo3GBstRwpQJXKrUDcnXepOBjpCL4qHUsukWFXlFirlOiqyt0Qjyd+kBW3msy+DUDwEgZjMnAAmBWPo94WkNsx4pDPEfNcDMed8tzLsafDf+5sI6CFx0pDq9mWoksPkOIrdub1OXIPYsBCrGtCnlo5dttYWJf4ZJHts+aGjFgw1/Qwbcv1F6kyXs+69bIhpivInClUI01hlTAjnJv9iPLVnnOiUBibWTknCAIgiAIgiAIgiAIgiBsETJyThAEQRCEBGejWAVBEARBEIQ7Dw5bE+eJQmJt5Mu5GZSVhqt0kjMBYeiqoyRHi0NoSXEYnuyAIFerR/mGIb+MenrybCg4h+HhID/MmsJwZFUZqHI7OtUpqL793cN6bNX1P0DR6WBO7wzl6MBrxwDM+6HQLhycA/mhxRMaRk8c8j2sjBeQpSHYOk1nH1/DOBxfD7DCXmoKePmrQy1rHbNByXpiuG0HNsk0gXrouwJDM6MgoEPk9wrX/jwqlFxhXpXY7oY46IZYcr2QVwdDV6Sh6LEsgB86v+R6uK1cwLxZhFEuDWM+4AiVJdig3/Oy1rB/x59DZQmqBPTYp6dHBYr+HEx/F4qlk6CXR6CDfb/TygrcSh88GoFtGFYeZA00Pw9aXADvWEC1fQ7l9g7G28IU6ouEao5gM0mri1d0Jg1ErLJaBZxeaSh2Y1rzWtIalCH10PMsrXzIOMdh6VHeYKKs1SVJpgpSTNWSezKTl8Rk59q1bhiK6mH+Ud5CQZKisuVx3/hK5zNMUz4OcodqbGDDueFKgUoV5B6UjsWfOC/LXW2gORMDzktcmWpJUKz+WJaG1JQJ7IL8wLX0I1HSqhkUpnJXhpMs2Gg/5X0up3QgIJOYlmE6dhtkGc4FSb6r84uSynQcQToA+CnltfHD+rumQsfYNKQ/yofjcdiWvHYmQc7BikLDozpfrhf5PjHrIxXXUpA17umpDOTlD8wMKgBkctHYeEl5OYMKbTVKWgtjJ2StgG+r1lFqs+02OqOLbEjdyFGStVImK09SoyhDCe+tVSDFqKyCtRLQCMLhZGVYwHUKjIy/cWqq7QIAwDpKfSngZU/K+AvYEcBRq1nFvjXcQ/J+NdyXWRNcB3CdIJmbW8D8tnuhd+0+VP/5nSNyfG4wAD7/VQDArtH9oEfbsDxSGJQFqoowWqz7lG6nQqFs6vfy+3TsByunkgR4Gb20vmSNIRcYsQ+Edug++jxAjyr0qERBtrYhgZevRqmiBTXsS3I0ubRfTCPZYgRJa0wvphXLMo6yVi78yxXouy76ztu5LNkeDhZz2F/OoacrFGouutEEywYvE2VL4KpWqDoEGWcHqOaBEVOSD6qqA1V2oIfb0Vm5BzpLFp39Ps41+1ZA+w7C7dsPNxrOPGd69y7QMbt9fe+cAxsvxTRDgJcBCvf5qiS4jvJSUu3leA0PBc1eZUcAGYaLUkdb34eivDUx7R6WyTE5PMPEWC/FhzpIWgsHKlySTuogDdTKxytRKgkAQ1ugchoD6kDRpPw3GtW7YAmSpKOsUjqVa9qXDKsCo8qgDJJWVylwkpX7eqQy3IPjc53i+r6rFJziZCFRWYXSaS9pZQWb3/cpSG6ZUIVtrKv3Y1c/L06ERiHGg/GWL8pEGbBFYSw62qIIEvtIPN7SaQzLAsPS91nRosWOvaSVqro9xtg+ymZJMVSIKQtj0StKLHTG2NYZYd6U6Cgvc4/5jp3G0BZYVvX5YfZxJVvybUpzrd7mcHDpOY0nZNEpDszDGaqfIRDaly9IrLwgQVVNCWqSpwINmWlsx9yK0YBczuq/IiLK+pRgu6OVgyZOMa9WtSTbgVIsCADW+vja9xMKqiJQFfKyaF5n2SWqLMAVQJrAYwWnvPLajeVrGUG+nBMEQRAEIYNB6QeTzc1XEARBEARBOLJsTZwnrI2cFUEQBEEQBEEQBEEQBEHYImTk3Awqq8BR1pqkRtT4aT8NmQ3Dd0kRYBjOURqV65jTjC21rDXsFiRbbAAuAGeoXmcUbKeL+YVj0dsxD3XTPlQ/uPHwHBw7YDCEHvixt0XfwHYJtgj5E7z0DH44NHF22DQp9Sqd9sOgKz8MGgDGYSalgS4wcgZ93cUO42WcS66HeTVGQVWanakM04xa+BlTo8xBk4NClJEoWCJA+ZlbdRhL3YnDqAEURCigUFD9vbNlxjZYrNAQ29QYS85LCqL0IcpaFRg6DF22rNDnLm41i1jUu6GJUWVD1pctwTkA0GBFUK2ZUOMMPbVMGVCVhhpr6LGBHs1Bj3b4Yxw76BFDjR1U5UCWk6yYNfm20NWo5pSf7a0XhlN3w+y6JpfOxPNUS1TDaatPYjZT0hQ1Qb0+l8aq5jD0RpsA6lk2DSeJA+DlFMr4oeK57NTXMYUh8mH2ulxenM9mOq2I5Gco08ql2eKotan3zarPWWUVqkqjKjVcqcFB1kpj8jPq2VpyGOVKrBns/LB9254cKkgctHKwRA0ZpJfdNstRVkFqalWQXHiJaT2zVtg+zlCluZZcBrmDnzXVTsiD8/rLZ221of9KMlpHSYKQzy7Ylo2SCvJh5dIMqSo747VsuO4fXZDPxhnKpso5gLptxfMW21KYsjW2pVCRjfa6XogYUAQF5485PxnZTF1K1zIPUnGmtDAbbibtImIvZSAvwbKulhG7vA6C9YELshgX5C1RspokDsiuPY6S1mxZqMeYFitOkhlBEA4P1dCgX3SgdS2VymVOOVGqqoKNCYXZoIHQhVoACNYGrnmzZAO4LqOaJ5Tb/LrhMYTlEzvo3Pt49M46DvM3jdH5/m2+XIfTyiR0+Or7ezG/2EHV68F2Ca6j4Toh3ul6WV0n3V+mzzLqmFKMF+WGY2cwsB0s2y4OaD+T/A7TxzY1xLwaoae8hUknaL3UlPGx+b0/xmEa/sagw+yqGoyCHHrk0CNKsZ7fh7K0KpQYowwnbMiMkglD1hiywQp7y5AlN4f9dh77qkX8sLMdNxY70DW+jLcoh4MASvazoPrZFmOc2LT7cAYp3kk2DPFYSg01CrPMD+ZgVvagWAE6Sw6dZQezHI5tWIFKB2KG0/7cAIDtGbD2+esR4HSuXKUgt2RQx/k2mCwmaoUhCGCbxUdEIZjJ4o7slEzYlUxYnkRJKyf7CRhv/0HGhVnPa1mrymSHY6d93ANgCDMxK2veDmoZ6+TNP8U3YRbVKshax1ajrDQqq+EqBQTLEsDPmkxjgip9fcasWfnnHseAQ5C1xlmHtcHYVBhqg56uYFz9yKyJYZkwtAWG1mBQFhhWfv24NKhKnWSmaWb2vF41kqxVF7XU1NuIeIm5ya5Dx95KZFyZdJwAUJUaNszSSqUCgmw55aUYIPIWH6jbgSIOMzS7YA/jMosYl2TFbZhDbNJ4/s0IsReH91Plq9MsSijbP2U2tQhp+2h3E58H6jJO2TxXfAeZdfsZItYHEcO0rGPisTumZJMDwNvkxHNdkrc1qrJrK4vrODu8GB+TIz9ja0mw8M8mgiBfzgmCIAiCkHCr+EAdWcRXTxAEQRAE4UiS+3JvJjIhxNrIT/GCIAiCIAiCIAiCIAiCsEXIyDlBEARBEBJ+QojN/3VTJoQQBEEQBEE48kicd3QiX87NgC3BVhrsgtcc4v/YkKeJ2tn7ReVTS2sCMdfDOIkntodmMHPwFws+C4Zgu4RywWC4azu6d19A517HAwDMgSHowDL4wBLs/v0bPjY1Pw/M9cA6GzjJfmrnxtTP2WEyAYS2/h6wzuvvHRNK0smrZGgNOqpAT3e8H4kZYdn6KewXtfchKchOTKHuWMGGuvIeIxWK4DnilJ+SXjOjgIUNAz9tMBPQBBRQmKMCBWVNm4BFAItUos8ltqnoOTdCyXlejCLrp/qOcKs+iAU1giaHMnitlFajsgoDR94aSqnWNPWY6i9FVaxjavjRkVNQZfClKzn403HaD4jeJgRXALYT2kj0m4tT2kd/LkTvk9ozjrl5Time23x5XJ2Pp838RvKmP9H6VZ0ndD11OxT76c8zvzlKHmU6eXlFL4foFeGc8r4iDD9Nect3JPkCERq+YG0/xOhNws5fz67y051jrKCC55waE6gkqAr1gYU6cIXP3zm/yqL2s9DG+7w4RyBiuMxzLvfAcM57hVTBh8z7zSmwDT4h6bxQ8Ovg4DfnoAvf9qPfXEfb5BGSk44z1WPmOTLDt8+vjBU6fRUHX7nKatjg4xinkS9d9HdpHperFGC9n17yXso9D+OhZm2zURjK2mD0LFnHIUw9TvI+PO2+Ky3P2kxuyaPAjXqO7RRQcM779STfG6tqrznn/0cfQVgCVb7Nt719YuHb/o3poLL2T4w6TUEQDguu0sBIw6ngPxruV9FbN95jpkHEtW8m1f0cWUrXNVD7dkUvVrfgV1QEjBhYceH+M+rCDE4AABQHT0DnIDB/i8XcTUOYG25Fdd33b9/BMkOVDnrM0MF7y9q63Fo5FMpirihhMv8px97brAr35OS1BI2hNTCqg2XdRU/Poad9jLZgFrCoR5jXY8yrcfKeA4CCLAqy0HBQ5Lx/cPJqdd73N3jNaXIp/ivIYZ4cFpTCPBnMUXfDVeDgMGIf/y25JSwxsM92cUO1E9d3jsG1nT0AgOuK3fiBtrhVLWBMgCUNDm2Ex5k3rWEfIwTvPu45qI6F7lho4x97431iXGoMhhpYMTDLCp0lhWLJx6mdpQ6KFYYeOagx123HkL9XuhAX2hCnAHAxVg/3D8q9WuHjdY7Gc0wpTe+HTM1YP65r36PR8u8KzyzJby544qJgQDso7UCt+MQxeQ9vLjCykz5z7djPn6emByHi8bWIfr42xBllpb2v8FjDjQwwUlCjEOcNCXoc4vBWrOdMfd0y6Wgni1IBQ1PAaIdl9f+z96+xtm1ZWTD8tN7HmHOttfc+u6qoK4r11mfw+yH8QDAUxAuo8IIEgxjFS+QiGg0lhoCYIH8qxFDGBIKJES8/0IqChEQDxIplJQbQECISjESMIZ9oXayqQ506l31Za84xem/fj9Za722MOefa+xTn7HVO7fbszD3nHJd+v7QxV3ueVlGZcJa7JtjMCVfzgAfTBvf2Wzy8Ej3D/W5A3Wdgn4ApLW1sgmg4D1X05jYFm4106sVmj/PNhG2esUkFibiNnxkJVe0O0xEG9LmUCWv7apHfSpPN2t7suKsi4/DK9c1cE/Y143Ie8WC/wdV+lLrtB8y7DJ4yMBEwU3+WMbvFac15W84/oyw70n+mdoAq9XEIiJ6n0w/mpjvX9eeOwR/3OnOmMWfPrWb3AVi0vdE/7dlvNw/YTdJm8773Nc0EmlfPWoxFW/T2cP3E0oZMAM9h5wXix7lAIBAIBAIOfENaJIFAIBAIBAKBVxc3pi18ncNAAEBozgUCgUAgEAgEAoFAIBAIBAI3hvCcO4FakriZFud7WrvrNRF1H/BjIaGpfza3XLLw0+s4zwShtmZGSeqqnBPqSChnwHSLcPWGAcPbNCT71Rny1V0Mu4p8VTE8mJEe7AEA6cEV8OAh+P4D1MsrcCkgdcNO52egO7fBd+9gfsM59s+Im/J0kcQ1Px+pyxEYfazWhInk1/dUEvYriuGYCx6mgqsy4OG8wYNBaAgv5T22acaYKhLqwn3YkIgxUsFZmrBVOkRBkp+TK5CS0h8ATJxRJNY9EmhJaXXY0ogtjbhgSW/HM4q6T5/RgC2NSO736por3lQvcUafREHCwyIu6w/nDa7mUcKaE8CjUvmgrvFKa00FEkYd8k6DUhEaD0+7n5UOW4RimWYg7+0+oy4wOBHqIFRLKV+ntLYw90YVbN+55bH+awUZpbViQVk1mgRTv79RDT3L54gHeQ+T3seBfa4s86kaTZypUSdZ5xYrn8Do5M1lv64GZnORd7TEFQWp3a8F41kohpgS0kRI2sZpr5TiubcFK3PB6B/gBGN/NIaCUg6T0iNnwoIiaZ9ZaQhF6Z91MkorNSpFv0mpVbliGIXKCgDbcW6U1mPh3Q3reWR9QNZmi7XJUQRWkL4gTHMGM2FyeZaahMqpdbKxz0pl5SL1okqtscj1g9W1pXjN+nlAz1gPOta0HAUUkHHEnkpr2TaKh1AhiPqYYa13rYSalBpsdCtiGRquT60/S0moRajtbbwaXWxW2ofOswPWhW0vJ6geXG3zoDY3ngQqqMkGPEkcJ6UEAq8OuBBQErjqvLa5qGtENZor+jG7kN3EZaMK6h4jlEFq93ESimIdRLIAALCtSGPBsCkYcsGQO/et1IT7c8bzlwP4wRmGlz4Pm+d/FwDg7Dng1rMF55+4RP7Ycygf/wS4lJN1zHfvShnf/CbMt0ZUpUqKpIXZcl0KIYGxyT29ytRkO0pNTd7Dyye8pPbemOS+szzjYphwlifcGnY4zxMuktio2zQ3u+6MJqW5Cq1vozYfCMioGF09RmJsiLBF/oworVK31O49z1u8FcDvHoD/z/gsPjI+h7cPLwIA3jzex+3hbfjwMOHZ4Q4eDlvUh2JX8k7pa1VtpMzNzYF0SKTMGHJt+zcAlDFhNw7YZ8acByAlMPWNiQkYU8JADCru2cI9ahwskGqjcWKxf9YbHsseLLIq3RZNM9Su0bRX0iZWF7P5FnnbXuXsTVrZFs0OKbIPT5SbnW+PP16CgysdPha5/bnZMJYXehoMeV4DgDIlpaon0C4h7Qj5Su7MOyDtIBIyjsrLSmutmz4filKYS8q4ymPLc64JV7k/X+xLxtU84nIacbkbMV3JOaPU0qR2EEPkSgChzA4MGhl5U7DdzrjYyNy4tdnj1rjHJhcM+nwzayPXQkjgRt9s7ZGkEykDzEpf9W2Z5NmSMqutpH1UCbt5QAVhPw94aWXjzTVhmjN20yA04UnmPU8EmlzdVnaNqH+Qszf1pFFa10aQN/JsCLd50SmtpP2cdLAWJGRUVCSkVOU51NpkQWNd0qKT+07EjeIKYCFlIrRfSXGqGVPJ2M0Z+2lo1GlpjwTsMkilAtozoFXJ01hTf7aoA3QOOe6rPjs+KXDYea9ZhOdcIBAIBAKBQCAQCAQCgUAgcEMIz7lAIBAIBAINjONemK8+biLPQCAQCAQCgacHzDdj54Xn3KMRnnOBQCAQCAQCgUAgEAgEAoHADSE8506Aq+oGOd0qKj0cedPg0s9kXP4Tv0KTcunJ6XtxJRBx12BIAGlo8ooKIGFOQM2iPTfvNa2ZkAqB5iRaWdMGeX8OABgun8FwJVp0eVdAU20iAyUnlG1GOUuYLzLmcynIfEYoW+HAtzqZ5EV15VZtCNN1mksSXj4d/sabUkVOAzJVXA0jNnnG2SCabWcaJnxIXVeh3affMzEGKtimGedZNOLu5CtMOeNW2i3uyYkxcsEZV9QTobQ9tjS2d1UsOHpdQsLnpFso+T5eGF7Ab23uAAB+a3MHL51tsS8ZBGAeU9O8MJ0oLgllSqCma5aQJshA0Sr7oWK6c3UA8r6fS1m00IhJtDFy1yzwenNe4/AApu/ldbcMR7RMmExvDu3ne8sTpPo6XUpOzjv9vIMeMG2aiqXmSF3pdKnOHACgmk6XaabQsoyqN4fcdfGq15wzPR3T/iqErBqANJPojkzaxvqZ5q5v0TXn5AAnAhKhptQlKAHRAmy6KL7Nlw3KteuioBB4TgfaFKYfQ4mRhorsNGs2uWAzzE0bo4IWYd7XMJ2NTIySGClVpJSkjbS9OPn1bKnX1/TbKHVtIb3WdOa8xpy0lfSjrRnt87pJvIgIsMzXNN38OR1stLre9H283pzpstWVll/TICFuGoG+rvLWNUYAHN0dS02iuzTnpjk37zO4JOlXG6s2jou2i2nweTi9ucUctgbQ9dbmr+k+PQmEFkngqYCtX4s1CCAi0fKqpuUFUELTCGt6pm7tk31FtExNKxbQvZtkT6kjoar2Vy2Eeg6UxBiHgrNxxsUoRt75OGGgisqEqzLgwX6LFx+eAQA+fX+L518cMb5wG9tP38bZC78LZ89LZpsXJuQHE9JuApjBOaNcqLbwnRH7uwPmCwLb2qblr3PCbhpwlUfkJGl57aW9aS6VAfsim+NcEmpNbf9JJPsMAAy5YpMLtnnGduj6cwBwa9jjPE04V+3hi7zDmWrOXaQdzli06EoSjeGsq8LEBYWOiKO9AvicdAtv3FTcSR8DANzJl9hqGc+GGc9ubuPeVtp//3BE3WfRcFsXZyYwJUw8oAwZ+9w1YmsllCmDVfPWdOvkZN8feW1LQPZqJlrovDWN4abltbpHbSgyDViVv2v7s8faJjyS3iOhtm9FAmu9CjHESKOmY+t1gG3PBNOhbhmp3qPTFwZWmnNqO3LT0xObO+0JeUdIOyBfybXDrusLU3VpJEIdgbn075zVjsiMOWdcJZlDc0nIqc+Lucq82e8HTFcDeK/a07uENCVnPzqbJjMwit7kZiN6c7e38kxze9zL81GeWx72vJVgWrliC9lcy5nAQx8fqMD64YISQKmKnrHZryyawnNJuETXAASAMicZq3MC9gmYCMnrZxeIje7GrBRS+opdFy/sPG9nrsfgKV1FZwPJ41PS9qhqo1QwEhJxlzQmausXr+zjqjYgUlUBQLQ1z9ra9OZmtfH2RbTmpim3OQzta0wJadY1fxat8d727nnNdMD1GZ+zfnZttH6uerVxc3ZeMCQehfCcCwQCgUAgEAgEAoFAIBAIBG4I8eNcIBAIBAKBQCAQCAQCgUAgcEMIWusJcE0gdcEmoxN5ah05N/TkDleoW7El1K9rlD91s6XK4vJaARA1+gSAFmK5Ds513sKWF6B6umlFczlOMyFNCXnPSPMIKsty1gEoo9Aaqsapr2lFj7R0gUYBLCmBM6NSwqzFqZVaOOq16zCR0vOoh5R/oK7Dm2HGmAqGVDG4MNZAp1IkYgyp4ixPjdZ6mUc8zBvcHS6xzwP2jWspGKnijAu2PDXq6qNwitLqcUEDbtEeo/ICtkloudthRtkQcl6Wo1ZCKQnTbkBNcq5yDzveaM2WdZL2o6Re6RWNgsDsXtpP1dNaU39di5V7uVFXkZZUayT/YkfdFpdx8vxYA5MUsOp9LfFeB3EXV1r0rIlWoSMY7Q+VkPy8aZRWdIqrqw8nnT/ZUSFt/DKESmhUjkJCZyjyEjq4VnkWSmtSCgJIw5xbUWx+DARk9PWAElj/nWzzVp9OdeRiddbjPux7Aigxcq6NGgQAQy7IJGHeq1EetY09HSHRkrKZNFR8TgmzUmZ9n56iQzMLRbQ0DjI1WiWXtOg3aw+j7h9tCk+fZQLcWrdYOmh1rFFaenmNlkGurqzt0cvYB4NfV21davdV145VCsDJHcvynrXvppqxnzLmOWPeyUTkKQNTp676diCG0D8KDtqm0ZPcPPb9wKyUOFsL1rTYVxEypm7gb3fBaw08QVBbv5Y0MKOaUyIw21ph6w93Op2nteq+TbPuL7PlIe9mf/FOqWPbjLpLKGcZD84GXG03uLeVTWm7mXE+ThhzQQJjyAV3L4SfNw4Fl2cb7J8ZsX9TxuX9jOGBrEXj/Yzh8gx5x8h7pe/pglkHoGwIRdRFRM7hSuZ4GUZcQiQLruYBZ8PcqF6A0PknpfNPc27HRJYidVkLbcaUK1KuyKliM5YmywAA58OEs9yprud532y8i7THRd7jdr7CrbTDRdrjTroEAFzxFSa+BPKEzIRz2n7G/X4MCQlvS7Lx38sv4d54jt3ZiMoJA1V8Svfi+5strnajyBk4eQdA1/tJZB9qWi1mlUATIe8T8iVhuOyUyzx128S2SGvQmqnJmdS03DeQ/J54ZPH0dpjtm/ofk+6Q623Fy08ce3fXtWcLfRbgQuDiy0FNrqTZeTpnklEj7ZlplRebDeo+L2qpNiJVgCZNc1LJkr20bd4DWVVw8p7lXOFGNQXU1mNCTvJMZHMYgNBuS0KZE/Y0iJ2ulTba47wfUPYZ2CWkndJaJ9nzqYp95/d2HkS2ZNgUmeebCReDjH+jtBqlfSFfAmp2jgclRsoVTAlcy0KCxNqSHLW1NV8lFJJrayVUlSsBAJ4SSGV50iTjtq1n/vnWTH17JiFa2ZXcXYASL9m2vSQ4GFwLm5BlTphd1ew1GcAFCRkVxVFZiRj1GuokESOnhJQqiPJirQNUvqQk7HWtm6eMshc6K+2T9K/RfItb/1fjuNGZyWw87hJBafWopLYinqSdhxuy84LW+kiE51wgEAgEAoFAIBAIBAKBQCBwQwjPuUAgEAgEAg0VhHIDf90MoeBAIBAIBAKBVxcM3JCdF3gUwnMuEAgEAoFAIBAIBAKBQCAQuCGE59wpFNETIc8BX3HtTWCDwF1fasX3pyPHPIRLr5pdRzSJKAGcRZOs0dlpyfsnBtj041S3Yi6ifUS1c9qZTDtrqVNmGkmWZpqx0MkDSCWzRB2uaSCktNB8WtRLtZ1AwJQrdmmQ8NWA6mkVDLkiqyaWaQX4+weqGHPBmYYVvxjOcGe8wo5HXNUR0yDk/YkHTE337SESdnhjkvKM9Nsf4jsUPOBz7FSk77KO2NeMUhOIRAPGNAsyMZhFm+oyMfamyTGLdgWZzpg0q5wjNO0QriR9ZBoOs9MYMe0zPVeHrlfV0lmPM4LTo+sh4FOVe2k17LwGgu/SA12S1UEbQ6zZmAYNqmgpsuo11jlJeHYANCXRsyhOk8uPO3Y6Pl7Pga1epG1i+mBdF8/SNL0f05WjIlon5HT9TIPOvi90v7LOKdVFodq1v7gySMX81noYvRL60elVkmrUtDZLXnRC8ycguXmRiBeh4UtNKBoGvlRq+hrMWISRr0c77hDstNysKOzWLq6iLQTIWKYpAaa14XX1vHyIq38b8iy6GwvYmDumgafHOXHTt+yLkysuk5bRDV7VJGGg6c5ZGn6qVKcFCKjsh2rRlSqDbsii5TKXJHpz+4y6l4nYNEhMU9JXzdZWr89j85Gh2qLaJus/lVXSsvfvTwo3p0USCDxBzCQvA6lGG6HpHLWzts/aOlf92ofV5om+wHDfb6jIng7I57on1KuMukmo44DLjdoYI+OFXEGZkTIv11K3zvGGMd8uqFsp3HyLkHdA2uv77HRXnR5SmoDhEiDTPy4ZZZdweT5gtx3xYFOQstyQVFO4qqan6VLVkmSNKs6+tXWeAGQGpYrdwMhDQdb0xqFgHArOBtHXOhtmZ+OJ/tytvMN5nnAnX+G2CrO9IT/EG/JDvFAf4l5+gDelCW/OF9o1r8xadV8754rPsOeMRBXbNOP2uMOs66Ho6M242o+YbC+YNP+SuqbsRF1TDaqPNgF5T0g70UQz3Vsym5tEU9j6pWZC3RDq4Oy9pu/l983VnmhSg8RgIv2sp5rmLBZjtOGIDdlOre9xdh77G0yDT7V1UxGNLrHDnFaXe+6Amz5do0vsYatHy0HnXzINYdMP3qve3CRac6IzpzaU05uTdu52eGVnuBD6XtzaU8a/6S0CYiPMk9oBuwTaiT0LSB2t36X83e6hzKAsOpIb1RIeUp9rADBzQmXCVRlxVeQZ5moesCsDppqafQJAdfAApAoQ+aXC9SGrRi8WmsRrvTnWcWw2TdqJ5py3j1u9tJ289DerprFoq7Fo0ZlWYOLlWPIfFna/L/cR29Bu425vFSSkxKip3ba8bpGhYHa2oG8TWedEZ9DmtWnN5YlEh+/YuurbxM+11iZaMGsPbxN7225eVfRVxE1pC/OxMRpYIKzvQCAQCAQCgUAgEAgEAoFA4IYQnnOBQCAQCAQabkqLJBAIBAKBQCDw6oJvSFv4wA0ycID4ce4UZgIN6p69pi7YF+fyLNwvatcsXIuVKqEMURz3O16h0bkAZAIzryhzaHQpRndVpwRQxsJV2PwjLRx7c681V+KqtD6jXnCnXpjbMCcCUpKvGiqdM58UdmRCo7VWSqDEnVqWgJQrUq7IqSInbm7FpBQK+zzkio2GsL8Y99jXjKlmTGPCpP7U05BVwDzpQvMAFUKFuJtGnNP2aBknnjFD0t7SeJQacb9e4f/OCR+b3oiP7+8CAJ7b3cJLuzNcTQPmkoSeq7eOuUiY7sLi9j5qKO6BGw2h9aKNAxduu1bpv+ZpnLoLsIWUb7QG5yrt6QAN5gqur8Y8SQwYJdTojLy8jVloGKyZEx/Jg3zBCGCWeyo7Ch61kOdcCSgSoh0A0u7QRbwXQt9rH5ep9GN2jVE9pD2oz4uqNAajO7jx3WhGRjdR2mqycU0AKdV0Qac1tHlDjereaKuLCeE6260dLd8VpYRXNKo1VdwoqjMLpXVSH/65pHZtSkJ/9W76pQpFwuiprf0cDYuYlxSuRbm0D4ujqlSl6Si9xNfLxvJiXLosffO0Y0brXNEXjNJAOs5ptVa0UdbGojUWgSuE5rGa1gShDNcqNH2jFNRiE5E7bcyS0++lJMz7DN5n0E7H8URKa9UCEx/SwJkW7dIOm2xBViqI3140vVaWORzdA4FXEqnI/mOLsVHnOAvNjVSmAnDrta1b6/WSdB5nkTmwZTa5exaXV5VYYClHnQh8ZfmjrYcHbHbHvlubknWUQnEm8KA0P78HmrSD7al2biKUK0LZEco2Y7+toNFtVARZ2yoa/V8oi9T3AQej6XNOmDOj5AxSWusuM/JQcT9XDLliHEqz8TbDjPNhwsUw4SzPuBh2uJ33AIBnhkvcHS5xNz/Es8N9vDXfw4v1PgDgzTnhjenisJEfE/frFf5PqfjI/CYAwEf2n4OPT2/As/s7eHE6x1UZ27XbPCMRY0wVV/OAfc6YBnmUmvcZmNQwKyrLoTQ1o3TS3KU1envJq44k9ns7bpTWLneyoKWehNl+1Gh1SG7gMi1YrdcldUzmpB2wIbJ6/jFqXipa54mUVoqFnMgxSmBrD6vr3Ocl0KmPNp7TJDRWQCmte9Zj8p5mtRfqitKqSdas9OER4FFtykFbJrNKzrC1atuP5ymjThnYC+XR7ACrt5dfWUp2GL201302Wy4loY6DMNeEqzJgNxutdcS+ZKFSly5rwpXUdjy2yDhbidRO8jYp0Gn63n7lbt/R+lxLW/vHU1sdjdMorbKWan1X1NaG9pCDg4F2cDn3M+zGT4WjAq7tTqZmwx3X6OnFYKXq8yz9Csj6eEDxXdNvG30Zrc6Nhn7MJnT1Sd4mL9dO7MBTgvhxLhAIBAKBQMONaZHEX1QDgUAgEAgEXlUwcEN2XuBRiD/FBwKBQCAQCAQCgUAgEAgEAjeE8Jw7BXXZP+ZmexKO+7egADp37UZVBRqtUL4cycfchgdGJep0rkSNbsfd47qladGPWnFcfo0G6MqaJjT3YEuXXPk5iws5z5J3o50Wn7GrK6Duy6QRepTW6GicNRHSkFBzxZyWNDygu2gnYuwH8YOfi9Dz1hEo8wHvEJj4EgCw5z3upIIzykhImLhgp1TWK66YWLSVMvYYCThzHLgHteK36hb/e/oc/OburfjI5RsBAM8+vI0XH55hvx8kouNYWvlLStgMM3ISyoZFKCun3LnR+4ir0PaYaDFGUPXWFtnR2hidOrjy2G4UWHMzJ2hk0X7cR/AySDRSNw6KpUeNltzG5Yru0+4tBFQ9WPVepT1woR7RaiLknbiJo7p0rd6OBij0Sa32jD7e2HnEZ2UVGmVnRelZU0l8+clFSyZ3buHmb3PKu6BD6ivRXOnA1f0498hdR0oJgaZbe9RRiRaqdMqa2jyWSK0SORQA5pKbyz4RL2jidv1cEsqcxV1/RU9tZXXUhUZ1gNI4mJb0rvaig7YyBtQCR8Z+XyN1biRuEb1s/SF/npbnrL5LOge1tqSqVFIXGoqIkZRKD1TUml35jVJAYDCqj5CYZXyUOUu0wol61Dn9TG0MU+9TX0f0eW1FlahmEPrMeqxo29p4pCcYxSsQeBpAE0AD+qKi+yUqHY0q3SejRiG3NS8TqjLgLPJjC7Kse/giHfj9Wah1gJv+RSh7tsEf7Ft+v1+vG0aDN3vBr5eseyOrPeciDpJJFRSh+NdBbxyM1opl9NGylDXwdaOqy5fZA5lRTSoiAVUj0E65YjdUiUgLieR6XyO5ng0TzsctLgbZxF8azvD8cIFnhlt4sVzg3nCOl4YzAMAL9R7elu/hLXlzUsZkjYlnPFsv8X/nM3x4fgs+uv8cfGwvNt4nr+7ghf057k8bTDUv9hjbW4dccAaojERPd2aRQbBIpQcgZ5+ZJMcgUdeZRBrEIDY7OXpcb+MDu4J62RjU8qHVtuHlNA6iYx4p68G97tVphTYgdVyYjaHRaY1+Sp7WavaFPaMQFvarpdfsP5trKnFCSmcVKqucs+iseS/PJy06qytmzYQ6EMpGMqkjUDdAGYGyEWq4zUfOjGTrAAO1JpG/ADS6KfX9X6PRAt3ObHayL4PaUrUKdXWqGVf6LFVBSOBGa92VAfu5R2s1SmstaUHT5HUe1POiZqJJY/q4ugdU2MVzqz6L2Bhq0arRbPX28jTOhEYH5tzljIym36RJ1uYMd7tzGWGVlm24GK8EdnOsSQkkNxda+1ArPzsbfNEGRt2fNVqtPavsqY/jGUcp6UxS/zoyeLBz+ry/tuug6y33PG2M04xAIH6cCwQCgUAg0FFBKDdAdwgEAoFAIBAIvLrgG7LzQr7k0XjdWN/vfe97QUSL19vf/vZ2npnx3ve+F5/7uZ+L8/NzfMVXfAX++3//7zdY4kAgEAgEAoHA4yDsvEAgEAgEAk8zXjc/zgHA7/29vxcf//jH2+vXfu3X2rm/9/f+Hn74h38Y/+Af/AP88i//Mt7+9rfjq77qq3Dv3r0bLHEgEAgEAq8vMCRi3JN+XcewCjwdCDsvEAgEAoFXFzdl5wUejdcVrXUYhsVfUQ3MjB/5kR/B93//9+Mbv/EbAQD//J//c7ztbW/Dj//4j+Ov/tW/ejLN3W6H3W7Xvr/00kvyoZDoaxx5Wug6H3rA8+cTN20O+Q7h0DtBpq4Zxu12dppadl3TYWqCHybowcKL1/ItdOecFlfj1K/Dk2dWbTrVOVBNk6ZFtpJpaOkyVA/DiUWsLlx4yCbWxlJtFhW/EEUnQi3SQKmJqgmq6m2BCYV4oTGXE2OTC67KiF1WLYY6YqSCKxox0hYb6iIEBQkPecIZ7fU74UoL+bCe4YpH7LnHrjf9usIJD3mL35rv4KP7N+H/9+At+NiDuwCAT9+/wNXDDXjWUOaFWvGHXJHr6d+8Fxofpj3AOjrS4dgybbgmmeDPkTuG5bkWstzpeBxD05Nw/Sj6aaJ9QE2LR/QnmvAaUf9pn1l11Eh0CFPXNeNKoKTJ262mHadhydNe80+i/9Hq1rsFnLtWCSwN0mOuPawupktiGiB5QtN1WLRZa1fVdFwPfBv3NqfLUsNF9FXQNMe8jkrX+6OlvoYtBaxzzsYBQbT6NOz7XBLKII1c3FydS8K+ZExz1nOpadQRMUpaOo1XJpQ5oc4ElATScYuZlu2R15MZbR6iUl/TqheHWUnf+HWIqZ28VrbT1rnEoMw6ro7o6STR9mnam+if17okpOUlW49t6UyMIVe9L2Eh46aaiYDOuUpgncusg9Z0AUV7yWmHrGQv2zpozcTyn5P6lCLreiz7Ai//XNa0DbUBSxg1gc9+PEk7z/SxTF+O0PWDbE52rVX3WW2YJu1kc1vnalVdOskDi3XylD1mmky9vqpFVFQryunDLfRR+3/N9lusSd5ecBpY632wLbnV8nWHW7rd5muf3RLckjqStq2Xpo9FJPtcnRPSIIWthVBUT6vy8Qe5DEZGRVotugWEHV/hbppwJ40YIPtjpoTCFTue8SJP+HQRu/ET5Q4+Nn0uPrp/Ez569UZ88uoOnru6AADcu9pitx+7lqvuG4Do4m1yQU6yjwypomRprJIT6pDAlYHCYht6Hd2FNlVvu2YXEold7rc11Ztr/XcMTPogsDpObvNz15ou77HnG58k/N2qH4zKQDHtMtenmh0VarpZaep6c8k0Dn3dTK9r6POh5d0mVzc7AR3bpv1laU9yMjVtO27PN30vpqbhVzaEspHDZUMoYy/D0ngicEmoEDt/YRNMBNonpCkh7alp6lkZ25Rs+s1yoFZJqxTRAjZNOUBstaTPPIXl3L6onafX15JQZrH5ACz00xosb1K9aVtfcGQ8nIDdt9C5XidBqzbT/Oy5w2vVUapiw6mOX7PdVutE9W1coRp//SHISQi39Ll6WxBN085senlkVhtONQO7rrJrv0pON7vbvP65rWmEt2ct0QzlQfXmnGahae81VOp63PZg5+dipdAWDgB4nXnO/cZv/AY+93M/F+9617vwZ//sn8X/+l//CwDwm7/5m/jEJz6Br/7qr27Xbrdb/OE//Ifxi7/4i9em+b73vQ93795tr8/7vM97VesQCAQCgcBrGawPB0/6FQiEnRcIBAKBwKuLm7LzQnPu0XjdWMNf+qVfive///344Ac/iH/6T/8pPvGJT+DLv/zL8dxzz+ETn/gEAOBtb3vb4p63ve1t7dwpfN/3fR9efPHF9vrIRz7yqtUhEAgEAoFAIHCIsPMCgUAgEAg8zXjd0Fq/9mu/tn3+wi/8QnzZl30Zfvfv/t345//8n+Pd7343AEfBUzDzwbE1ttstttvD0OueorZIk3B4wihJeoHR1fSAHLNvzgV4EeLeXJR9cZvbr9EI1U1b3XHJ2GXeC15djqkcejr78iIty1grgUapt4vkjjqou/eAA9pFoyqYC3fqBWlUCEf5PQjpTiyuzp4W3Fgj4l4MIlR1B59TwlSF0jdzQtUKVF4mvOeMKxZ+ZK6MiRIyGAWEiQdcaZzrB3WLB3WLHY/Y84CJc0tz4oyHdYPnpws8u7uDjz24i0/duwUAuHqwQb0aQBOJSzMDk1IC98OATIx0dPBova2N/CV2MNHSjVzdxq1fT9ID9ZwPRf8oOmtzW/dsCHUB5yrnkrrpV3PjznYfdzqmFd86PXFz4ReX++WYaXTeIrQEo0As2JEakrxRV7nTQ9Z0h0VLk0vIUy55STVYuOK7/qC6mpdGETKKLBFgoc4rNarG0fDqGeBEPbz8ogP03cLOA50OXOTdKKyAzJWqLv1TzZhLRlHX/zIL1cHTRdpcIwYrdQhzAvYSIh7AgvYkdCfXVwz565aFlvc0Kd+uJ8bYUWp86mkfvwltjaG0GjNY0haOgY1+a/c4KoK1R05VqOdUMRGQ5iUVaLEOVwKzrbkuD6NDLOav0R34YP5aedrYcmOwU9p4+aeyVn5qc2tNnX01wThcV59MvvEX1acZT9zOs7m1XppI6EhkcxOy55HJRayupywLHrt5y23fU9kQu8dojkZpHWwdcGsAQW5QipVR+QB0KQWltx5dFzx1UClWVfP2637VJ4A6AnUj7zxyX5esLMfg7DZPAwYg9Uh9bVtIQazLSaTUNS1T7rZFpopBC3yWJ5znPc7zHhd5j5FKkyGZ1OZ7oTL2mPBinQBMAEzKJOOFeo7nylvwyekuAODj+zfg/+7u4hOXz+C5h7fw0sMz7K+kQeqUwbMu6olBA2MaxRiatzPqSBiHgkwi2dLUP1IFJTGeTKbBpBKQZX9l3cer67tq44aUUue3Py93cgw61ghLyl9r7CP3NnUSR5H29zDpLdztIUpQqQUSu4KM2trTF1ormv1n49Tnsxz/OuaMutvGHLd9lipETsSdWsiNrJsjyz4tNh51m1jTrwOhDkAd5US1ZxtIXmmillmtCbwncM5NmsXkJXIBaCKRZ5ms3sviI8vYoJlAg64jcwIPjDJn7JNQPHvZCTlVobXWhFIJRW2SuQiVVSRK0kJmhCtcRzmbxtYUrlL2REBaa3CojBDocCwY6PBzl9XhxXNHG1xJXyZD4iitKdf2jLSoP0ubV6V+ljmL7E+RzMQO7YVp41TrbGmlxMiaR1WZmP4AUVGR0GRbjtaXF2snV0Idpfma9FNrY3tOZvCglFbta5EssYGv88XnqfZdo7SeGNOvFm7MznuCdXy94nXjObfGrVu38IVf+IX4jd/4jaZPsv7r6bPPPnvwV9ZAIBAIBAKBwGsbYecFAoFAIBB4mvC6/XFut9vhf/yP/4F3vOMdeNe73oW3v/3t+NCHPtTO7/d7/PzP/zy+/Mu//AZLGQgEAoHA6wsVhIL0xF+BgEfYeYFAIBAIvPLgG7LzwnHu0Xjd0Fr/5t/8m/j6r/96/K7f9bvw7LPP4u/8nb+Dl156Cd/yLd8CIsJ3fdd34Qd/8Afx+Z//+fj8z/98/OAP/iAuLi7w5//8n7/pogcCgUAgEAgErkHYeYFAIBAIBJ5mvG5+nPvoRz+KP/fn/hw+9alP4S1veQve/e5345d+6Zfwzne+EwDwt/7W38Ll5SW+4zu+A88//zy+9Eu/FP/+3/973Llz5zPP9JjOlw//rJ/beRNpMO0kQHQBTNNJr2Gvp+Q1srDimzu9hIVWl/HSV5pHi7J4PQn2aahWgC/DaPoXcnOa+6malU+fuYVzb1lW0T4xzTlWLQqDyRh4/SvJQDRaKDNS5haSHlANAEooXsjD0lNthLVOQCLGSKW9Nib8AOCKB+w5Y0LGxAMe1C0eVomh/qBucb+c4WHZYMcjdmXApB21qwMezlvcnzZ4YXeO5x+c4/KBaNbw5YB0lUCVwInByCimOTdm5FwxptK0IhZ91MJ3H6KF6M5O6yBr+zKaTtpyvK1w5JjXXfPXiTaHyxtdA4UYQHHXZxLtB1dWcmOuTQeG6l8s01uHS7d3clpmLZQ9gDpISHImgLLontm45KTaHqe0UpzOim+r1n5ZxrXXA0sk3kL2N52FVp1q4yXSzzYPZyDtgTSpNh/3NKtpqQz67jXufFOkrntRVauvFhKNi5Iwp645V0SyBnPJmEvCPMkgqXOS8PBOt2aRVwV4Fq05mnuo9qbBl9H1kdb9xKK3QS6s/HIcifbMus0O6up1UNZprC89ounZ9EG46xEx5LNpirBprwBOC1MGJ6nOypArNrnImlOAKecDLUxbs70Gy1FtEmuOpKUxjZK0XF+bjp1pldheYPpVpguzEDKB6JE8QZ25QOCmcSN2HrDQTGr7MKFrzEE1k0wvS7+3dSGpBpffb6h97DfBSRCt10CnP+rlozgDXBiUdJ01rdZCSEX228WS6fd0Z0ssbEHdD5v+12B7Lg7171yax9pM9lRW20X3z8xAZqRU1QZcJsB1acelXNt7ItGLOhsn3B73eNP2IQDgTZsHeOPwEHeHh3hDfoiLtMOttAMAnNGEEQUFhHt1g0ntPgC4V89wr57j0/NtfHJ6Bp/a3wYAfPLyDj51eQsvPjzD1cMNytUA2kml00TOdhdbpJ5JWSdfDy03r/YJMh0uvxcnMTQ4iw5WAlCdjqvZeQk40K896lSs+wNXXvatwWwh1f6z8dMEjCF50npc6H1HbRbTevM2P5yp7s/Dpa3t4PXd6qCvEaLX5W0yAKgsNt+pvdfGcO76cSAGVULZiJ12oPGa0HSAq80L1dJLk5S7TgBf2Z5NB8+Aax1j05rztmzLz+v6Zm2rBNScUHNFyQnTnLv+mn9+YkIFodaurV1K6vrBqh2MmZDq8rmi2RhZdNAwyDhOQ20dQKme1lxbtbVvx0fpDVvfUHtf2pZEMmr8mmD1riDVIPcLILXnCirLzjBtYlIdu2GQh5bNOGOTi4xjFp3maZYOn5DBLFrM6+dv03fnBFAWG1PKJf3GA9qcWa5/6Dqdmbu+8sLu5WaPLvILnd3AEbxufpz7V//qX117nojw3ve+F+9973ufTIECgUAgEPgshP3o+eTzfeJZBl5DCDsvEAgEAoFXHxKY5iZ+HIwfJB+FEHkJBAKBQCAQCAQCgUAgEAgEbgivG8+5m0ILDQ0ccfE2OhcvqYbeld3uX3D/3Dn76GirwJIWdYAKCbvsXaZbfiyu2OZyvaI7GCWW0SkIqCTUVqMjemaVp1laSGxrDgsdXnvdPIXC8jkEg5S6MOSCIXdaq7lwI6MJhDcP5xMxpjMqRio4SxPOaI+RZmSJ+Y6ChCuls94rZ7hXz3C/CD/hfjnD/XmDy7LBvmZclRH7IhW4KgOu5hGX04iHVxvsrwbUS5ku6Soh7QlU1D0eQB2lrPN+wD5VoYnUtHQbv6ZLl/TLThUUN2kINdFoKNe5kx/73Dg7yzwAEndtdc1vt3qqqXZHKkAZ3P3UExR67/X1W5TrWPkdRQEAeATqRtzDeUqgodMCDuiRq7nHWWnapdejGkVTXdM5OeqQevoLu2FJJaSqkef3mh4DpPTaPAF5B+QdC60VnSpRNoSyhdArZiwou56CTknLBnGjt7bnmlBrRdH5QEVc/0sllJpQ5oQ6yTmek9BWCx3vgwqkInTWNFHra6NY1pGFOsyrtcnTVD1tQukidkmLUM/re9D//KOU1JNjl0knEis93p9bVaf0vylxYqU8JKX5dLqOdLDkmXStG4eCs2FCVpprTqtFsva1E4VkLXXtYdRZsgaE0mQaZfpIHR0HYsVa7fSx5BtOytHW2Wr7zJP7ayODUG/kb3fxF9XAE8aBvWafDxfTI2obx8FL+hvcMtOo9wRdY7hR61rijt5KSdaPvjxzW9uYaUlL5MVys9jnjKrb1qrk7LVk3/lwj9b1/0BKxU63fZdBQ23lT0NFHipSrodqCazSDba2aePkoWIzzjgfJ9wa93jD5hJv274EAHjH5kW8eXgJbx1ewp10hTOaMbrNemJn69UzvFBuAQA+XW7hU9MdfHp/C8/tb+G5ywsAwAtX53h4ucH+4QhcDkh7QtpreWbqjLrBthOVkSBAlSFQam37MiBeKFyTUOZ8+0Db1Owko1iavVPRZEYe6T3sx5X1jck4WH+SJqR5UCVwcfsV9WcBb/tZGVufWpnh7U9ejqsjZfM0cUpar7WNNwBls6JSWzEqgdDtjGMyPmZ7c1K6rN23loJwZVlTNA2pAtihz1vHSlzMqcWz1vG02rmk9qC1Seo2PWUCDwl1YJSSUNS2LdQbvLLaejqWypxQ9hm8y6BdamM1TST0X6t36nYoD4y6YfBI4E0Vk2zoCxCRriHEQuFsD1u9DtD154COf6rup6DPuKUkMHPz2DKaa7ukyjUAwEXnU5HnrYUdatIDmZEGxjgWXJztAQDn44QxFZ2bCbvSf+ooJaGSG6jNVtS6tfT7wwXrmL9OZqS11evIhLkpOy8IEo9GeM4FAoFAIBAIBAKBQCAQCAQCN4TwnAsEAoFAINDAAMpNaM498RwDgUAgEAgEni7cnJ33OnIvvCHEj3Mn0IaOj7aypnrhyGeguWIfS7DRCixt5y68hriUqys6JFqmJdYittp1LnIsqXtyK4enPLhImi0fo4ZlgDMt3OoX7utWVvOKLgAVjRilkYkWrs/qct+S03r7iGY58YLWaq7tQgetzeXao4Iw1wRPlkhUkZTemuGpDgNeKBd4oVzg+fkWnp8u8NIstNarMuprwL5k7MqA/SxTYjdn7KcB85wx7zKqupID6kau9EAu0sis58qQsU+DUFohruiAXNf6wrvMr7vDovc4WgppIM4DyrSDpzUfhe9ToxrY2HZ0yEaF1ndy5TA2jdFwGnWh1UkPeH9c85InPqRrLFznlT4yykV1rOBNbdHyeM49shwt01hQeHI/VT091w4miz7sylYgIdhYvdJdOakKLTVVZR8WobECwHDJGB8y8lVFmiuYqEUNm88TplsJ8wVhZilLo3O4ecDZMQlmkhW5iKs9F0LVaK2zFrcyNUora7RWTASaklBry2o90TlPhaQeRkXXdpQIzAQaT/TPseHko1Szu0ijxy0oKI3e46j/Sm9YrF/MQmNBAhIvqGOLcjGjskXISy1aV9U26xFlrVGlQ43GOqaKMRcMSSjDKXFfXzQqmM0HGZc6f60Qnl7h28loYguKKhrl35boAxqMrvFs1JFjTX1szwkEAq88FvxLksWn2TSyQjGAHj3arn0ZWbS1EZ0q1dKTk2ZTLcqV3DqlNFiLrLlI22h4LSq0ZqcRBY1SKRFme/rL9RldIsD2xFVEyJ62RlV39DAiobPmXDEOBVmjsBpKlSiUc1lKf4jUiazRZ3nGrWGHu8MlAODNw0v4HePzeEt+gDtUcOYqfsWMewDu1QEv1Av81vwMnp2eAQA8t7+NT+1v4dO7C7x4dY57V1u552pEuRqAyyyU1p2LZF56G1aQRHNvdkZqkdPrUBs1EABqJdRZL1aqaZMnWNEyj9KpV1TJg2COvErP+nrVL6S2nSlJcGUJNw8s0j4WYdTeLaJpk79Zy6qsbc1jDz6O0mp1q6NePjLqKJFwkd0YAsCzfT6kqRrVViiN6M81ro2uQ9tTrVoq65ImIE2MvO82Xt5XpIlBnhKsNl4dCGUjNl8dgJppYeOxo7QaDdfqxjOhFhkrdegRWUviFsK3sERynSZ5Jpl3A3CVkS8T8sOEvNPy7zTSrNl1WWxpAChbQt0Q5nMWG/Ssj+NEtUeJJxJbytYYo7w3W62P8ceNIM82Ni1aPRNQZGweJOHtPb/OVOqUVntOceNPKK0F42bGxdkedzbSKLfGPTa5oDJhXzMqCLu5/9xRSwKXBJ6MEk69GD4P13+waKz++MnK623VIgbbJHCXHJkugYAhfpwLBAKBQCDQcFPRWgOBQCAQCAQCry4YN2TnxR+aH4nQnAsEAoFAIBAIBAKBQCAQCARuCOE5FwgEAoFAoEH+ohp/uwsEAoFAIBD4bIMwJCJa62sR8ePcKaw1hfy71wECmtYSZ9FKYuIefpxUc4iBpl/XRCM0MaLDNKHXpX5f0+bIADvtuBbiXD83zRA6TM70wYhdeqd0yuCurb3+pm1ARXTX4KrV0nS6ZT70dWu+bNokjEwVWbUOSiXUTChV9adWRSuVMJWMqzLgwbwBANzPW9yuG9xKI654REVqIpcvlFv4dLmFZ/fP4NPTLTy/v8DDWUQvruYBU82YS8ZUVd9hFmGIec4oU0Kds+gS7BLSpGWepd6m18GJkAbVodglzDSAuQBMqFNybeU0ueB0QthJEpxyMVZtNqbTlyzOrbWtjlzrx3O71PqtyHla694QgGEZVrxCu7ZpshzmzQdCKtJuNWukdtWCqxu9fsOgUfVcAHBObcyY9knTOnRjv+qKRoSlPovqZ4iuIhbadGRzxvpTP7fzepwKMOwYw0NJdHOvYLw3IT3Yg0oBiFDPZWzlWxtQHQCktgb4JQUmn+E0X9rnSmB91XZTEo2bklDnBJ4SaK9jayKkvejlpBkH+iumIZhmtHEL6HgZtd02ywI2Dcj1IuLK3zJwnW3aRG3et7VlqXfj57VcIlqXVLFcuPzYNN2PwTRMatOc4yLttdT1YR3DXVcup4ohVST0Y7ZmWf5NO4l6/cn0emYCZhJ9v8UeoQVNJvKzqp/TCWqn1hpDxE2fxcav7S3A42u9BAKBx8OB7o/TozK9pKa7ajbQkTWsGUC61nsNt1NL6LVwukoM1YOCrVO6iCQ6THulv+V1r2wdasVWDT2riq3D7VqvOefXxUU5WXSKK6Fyz5xzEp0zVKRUsckFYy7aHqJfNZWMeaU7R9TX5aoPjkU3+OqIPmYKTFr+HRNeKGd4ttzBJ6e7+Oj+TfjU/jYA4LeubuPF3Rnu7bd4eLXBfid7dNllYJdAE8nL7NnWFlKdVICa0PToWI2iWoE6p4UmMlcCSgJmajZf1yWkxfh6nCfUZk4fG0M2RtcHAbfdstofzhiC0462l99yTW9uZNQNmuYc295m2Xi9bO7jy5sETADM9koAD9w05+rIwFiBkUVnlmUfB9D1Do9V29l8x7DW3D04Z+NZ+7rOQFYt3uGKMT6o2Lw0AwDy/Qnpcge6msRASAm8FSOznm9Rbo2YL7K8zoCysbrRYRmtLFU03KgQuCaUktpzBwCURGAmzCVhmgZMV2rUXmakhxnDfcLwEBgfyuF8BeQ9d3t8gNM+BuYzyXNGQnWauGzrB9lzK/ozWmLQei1zzxbeJmGipsmHRLJO+rXSdyWTakEfmRfH0MYVOc1eKz9AuSINFZtxxtkw43ycAABnw4yBKmZO2NeMousMAJSims37BNrrPPVl8ZrKfhy35/d1ndy7zStbmBOrOehtRXvn9mzgZMYDAQDx41wgEAgEAgGHCqDcgLkYUbwCgUAgEAgEXl0wbsbOi58iH43grQQCgUAgEAgEAoFAIBAIBAI3hPCcO4U1ZQFAi2uubraOH7D8Idi7vSYWmlpyrrLJXWdusCvX3uauTkohJBZ3YQjFij3NIXOn6ZHSs5Ri4bx0l2lreGwr1HXMVk+NA0Nc9bGiyLU24Z5Hc33Wcmq9ibAIl03UaXREhESMnDT0tytGZcI0Z1wSkIiR9J6BKsYkmV3VESMVXLH4zr84X+C39nfwqf0tfHp3gfv7La40pLbRKUpNqFXeyyQNWWcCzwmYhPaQZkd5qP3FJHRBVsorcgJnhnl582zUwwRytEIfNp6q0mcSq8v9ciw06s3anXoN74Zt1FIfwvvYvYcslU5hWY8dEnd3zgxy1AJC9+SmSuqu7e6r1C9azyulUHAWd3yjUNBYkUfhABcm8MDtXM0kVFTqFAzA3W+u+JUahYJcu3A+rHeju1YsKNzWJmAgzYy8Z4wPZCCML+2RX7gE3XsA7PdAzsjnZ3LPfAucz1EHQtlQo+taGRbu8u0EFnQq1jDyAFCKUV3VHX8iJKW1pj2Q9kpptTHmXe313agcjZlC0jVJKR2HtPrV90fQcIySmywtR5MSSgj1tW9N6yGAuNM6e5puLiRGzdQWFuYEDMbVup4aYagWhZSAwkIVbnlWAik1lgGgEMh43To3MetaMLv8bBweoTwcUGw8fYg0XaWVyDG/KK7a6TFoUIFA4DPAem4dox8y6RQ+Tm8ipYwZldTbPZRk2fLb8YFcivtsa4OsC2L7tcuYHG3M2aSu3KftOV1U7Daj7btTsGQXewf1PWRhm4hdxFkqZtRTToyaqNHrcqrYZKEKDqmiMiGnir2zxQA0Ot/VNOIlEgmCIcl+m6micMKDYYtn0hVGmjGx3P9CvcBz8218fHoDPrG7i2d3d/Dp3TkA4N7uDA/3I672I+Z9RlUbj6ekEiUqHXDd+lo7dS8loO6T2PWZ+5oNbadKQEGny5lUgdnP7Nr32Nrux5UbL7a/+PHTpEw87c5OKyXadXbPy9mwa6kFobQCdcuoI4NHtcmM3srWHgA7iZvF+PB7I8y+YvCgdFYA2FShtWZuVOdW/FntXur27wFN9JgNhUPbZzFe7VhFk2wx1m9K8p53jPxQ6JH5+fvg519Aeek+eJZj6VzGVX7mDvIb7yK98QLgDThllI09k4lEi1BM5dWe0fRZUMYJoc4Js6Nyk8pblDmj7BNwJTcapXW8D4wPgPGBPv9cMvKOQVWe+epAQmW1PKz9BwIPhDp0m4aJ5XnyMWwnT/X21Pmkz5OSHSMRUEF9OfFjstDiJcfQJZDgxrPe274nlueFdk7Gu9lOlQlzlbrtS8ZMCXNNuJxGXM0D9pOuNfssc1+limjua3UrsD7rNJpvRqdTe3r3up3YLaL2nfpAZFCnwVvB3V5ij9GBQPw4FwgEAoFAoIHtR8xAIBAIBAKBwGcVJPDXk7fz4u/Mj0bQWgOBQCAQCAQCgUAgEAgEAoEbQnjOBQKBQCAQaJC/qD75v92dpNcEAoFAIBAIBF4RMONm7LwnnuPrD/Hj3Ak0LYY1h9zOe1p5VS0l5qYT0rQNkoTUNg0v4c3bSYhuhdLSve4Fk+hgsIpUMKhpJHBSnQC9uPHgoRR3TfORWOghXaPZ5PQvFhHZr9NDWuiU6LuWvxKAkVCrhAxnp1kA4MDN1jShGIRaEuaSMc0Zew0/vi8Z+zrgpfEMt4YdMjEeFhEbuzed4dO7C7ywO8f93Qb7aUBRXQKvb1VV36uqRhxKAiYCpiQaWqZLgqXeQqur6iekwhKm27pY00umVaVhxomchgYTqGofO12SRRYLbREcYq05YpoJUI0crPrX6XUsknOaNYtusPxVPweZu0aE9XHteTZUAlcGQUKsy1joCVuaogXXdeVADEoVKTE4E6rTVRT9DMmXB7jjomnS0lYNOQCA02S0uniNC9OTqAnAsOxjZtFlA0Qfo2nP7Avo4SX43n3UBw9BiUAXF3KOCMN2wHyRdD4Sqpatjlj4LB9oENlaUN14hOiTQLXmaCIk1TlMeyBN+ppxqJ/j0l3gmM6NyWDYerIWSluDqet11KV+HdXe/lxJtfbY37rIm5lEhsOPf69FkgipQrTm9CRDx6OVY6GZRKohKGsGIGvF5TyKflFNqPW4YWK6OW382BpWSHWKegVMb2mpNbJqo4WeiiskoWlVLRqFXLvburtedwKBwCsLrx1k+7RNyTZv++VtnawAsu6FrOud7TmVwclpWR7Lc71+mA6l01XyS0PTsaPDtdlrQ63L2w5wT7td83LZTaaDR1L+BG46SnWfwAOjFkKtaWHfJWIMqhFcM6FUwqwb4lwSeM7YTwOupgGX0wYv7bcAgOe2t/GRzRvxzHCF23mHTBWTNvL9coYXpnO8uD/Hp3fneLDf4uFebMD9NGCeE+qcUOcMnk3rippW2ind5QNNWED01ojBtg8QLcZN012rKy077sfb57Wdh2VfN11eZ6MsdIVXe6qBrG99uVblWGvDWZqcIH03MHhTQaYRZ7rQTOAZqiGc2qmmRVZpuVfpc4/pzolOLOQ9M9JQVYeaUbU/OTOgz06s82rxrOHsuEW9dc/2W+yijtTbsmnOqdZc3QBlFF02WPl3e1SnNwcA9fKyvedpQqa3YNhmTLcz6iAFms+A+aLrzolmshY/d9ufizxjmOaiNxR4JtFF28m54SFhuASGKyBfAcOVXDtcMdJeBbo1D7NXk2kfql1Gvm9Ynr/EkNbnIa8Tru1ILg0APa1mlzk7iQmVgTR2WcwFP0+FjqkQSJs0TdTTs0cV69cE1KZXqEY7L9Mqc8JuWmpXDrkiEaMyic23GzGrLc0lNZ1JKjjQE29FTX0NrwMDg0woBnV7zcOLQx4TeifI/Yl6Xp/Juht4KhA/zgUCgUAgEGhgiKhzIBAIBAKBQOCzCwy6ITsvbMtHITTnAoFAIBAIBAKBQCAQCAQCgRtCeM6dwlGqgZ3odCM7zN51evGu7qxEPRR66ufILjbakrnGFnWD9nTTY5yIE+7d6/PA0iX+OoobJ/fdXOotHecmfozi2tyCk7ZUtVDV6O68BNQ5oUwZ01CRUkXWBqwsdNdShYwJFsopIC7grFTYOWdMk/gc7+YBD6cNbm/OcZZnVCZcFRnaD/ZbPNhtcLUbUaaEWpa/R3v3f66pUx6mBBgV1dy4y7LfT1EeMANkv3s3CkV3+zfP7KNt51zyF/1hbXoNHZL9ODjG0WiVductjnzjM6K7/q/pFcfqu7rnIFuWMcCufo0ycGzOuM/JQpYTwGlJCzCKKA/Lz+zogZxZaANWjiVr6PCzUigqOuXBzleS/q9Dd0uXdBm834PnSfq0iH983m6Qbp8jTZtGEa7CskHd9jnmaReNBgUIHXhO3X2+UqOy0l7e06zlm5W+YBSaVd+wHzeuHZi0/bLmnYVKDF//VZ9YGi0t15+ePtGWSUexYl0HfbkANErzsfG1oGFUaW9Lg2eSLHSdXFBYrJ4ToeaEeZDGvcwjEhiboWBSqmsrktGq/cRe05WMAlGPXHMMJ+ZJ+74CuXMLyvliMr76YCaUiOIVeApxQD9d0Ol0LyPuNFdA9o4KkFFbKztJBaHXwyhitv669dM+s1tvTs6G1ZrMdGTd4BPLBbsXDjdsf89iOU4sVDdfLFrvOdTahBKB9wlzGrDLjJwrsu4tibhRzpjFc8OkRkpJKHNGLYQdMR6kM3x6FKmI/zsUnG0mbHLBmAsSGLNuIvt5EHmTKWOec0sDgND11I5mo7ICgPZFo2PyQXP09dq3udo0i2cBu5yxpLOu7QxtYHJt6NueUu8af5yzezl5G3u+WIyBzwTuGaHZC436qX1K3OnJvp6AyL4Y/XElv3BgQ1rlE4PsRQwgNfsDmYBB5lC1e33eK1thLYNhlMUD2rDRwVO3t6w9qQLzOWE+SxjPxajMm/HaZiuffh7DxQXSG2WM1o0cn28B022gnFfwwEv6sXumo5mA2Rl+rl1TIZEq2Utl804kTGQN6XZoHQCmJHZqBuqGMJ/JubIllI3Sa0exs1p9W3mg9FY0qR+xu8iVBY36meb+PNNoqFoFGwO1tu7ovzK48dr58Mv+MqpnG+NZmq4SAVVtv+I6oCaUQqhTxj6PeDBIxnmQ9cbGbPHUelI7z8aBWwYX9mySLAEggVBJ8yeWdfox55utH2T2nyWqvwmQS/dJ2niAdN+N2Hlh6D0S4TkXCAQCgUAgEAgEAoFAIBAI3BDCcy4QCAQCgUDDTUVrfew/RwcCgUAgEAgEPiPclJ3HYec9EvHj3Akso/zIh0YzUo925xV8QF866WLu3LopKZ3BzlVauLtLtNhFEQ7LZmlegwVLK/XvnVbZ3axZIxd5quSCzraK+tQoiiSuz6VFKBPKGRVx3U7eFZml8pwz9knoDUZ5AMTFmvW9Vmqu1nVO4Fki7RTKqHvJbN5n7KYBD8YNUmLUSi16z7QbUPcZPKVOZ7AIa4kBo9OpSzdNnY6aZqXkFlrQUdau8p7eaxQJ1miOPsonPNXB00eM2kJYRJz0/dEo0b6vV9SHBYX52JhYXw/0yGDJHTe38oO+13IWWg65VZlbnVo+Lgqnj3pr7VY1/yOuzkRGfUCjrNahp1EHgDWaGDtaorn9e8rCtZ7UVmdH/2xtxUrvYInsVM6UgnM+II3jYrKz0lr54SXSbkKahSNlEWYBoGw0qqzRnDxF0uZ9lbaCjdlZqaw7QjZqg48e7OgFvh4t2pmnzPq6ZaCcMeqmApuKNHZaAFcSapBFmG6DZtlu67G/oCd4SosvgqOV1KHTGI7JAljkagJkrBVHnSIs109tL7LIyAlISKhZGn8/VAy5IiehVuVckUfpszorHYNSX9d6MXrEVKPzOJbNtTh1gdGRHnF7W++DChAIvOo4KlfRThyfhCaPwaQTOrmofM3mW1EgXSRrKtyosXaO0zV2JFb2aEsUTTLhpM3g6YVuvV3Yeq6m7ZCuxU0Bw9ukRid0tM3KCZWBvdpWRSVFrsYBo1LO5iKRKu1cmTPKXu28WQpVNKNdAh5kXpbbJE8sEry3Rdwesiiz7RG6vzb7rvY+AXo7HkWjtmKxNvu1emFfOyyos5aE0S2P2Jhtr/SUU733WkbaIh9e7MU+Yimv2HStDoXE1jMZCWjbNsrjcu9v++I6Uqs+N1hU0GPlIwKQKihrRM1awaM1jNA1D+RQtKxU0O0kLQt56qUri8mWrCViVI0GVIH9njBcCZ11ePEc6fYtlBdeOGjeVo2HD0F7tSHMxtsC860K3JpBYwUlbs8xXBJ4kmcNkcmQ5wzAPSs5W6o9Q8xokZrLhroC0gZtMagDoY7AvNVzZ0A5B+ZzRjln8FkBbdTGGysoVaF7Vl2H/JxZLQYLO68IvdUiNltZUhb6bLH5uHXDYYDYkRmoYCS9qdbOeD2QcPK2j9pcbY2xPtexzZlRNBJw2VTQWDFsCnKuGHJpz5glV8w5oyagUgJx6n2jZYEO1dYePuryo3BKP+fodY+y/gJPK4LWGggEAoFAIBAIBAKBQCAQCNwQwnMuEAgEAoFAA7ME5wkEAoFAIBAIfJYh7LzXLMJzLhAIBAKBQCAQCAQCgUAgELghhOfcKTgdtoX+Eeg4S3xxrReSo5ZWUyxZa2EQg0zL7Tpe+0rDwvQHjvHaT+laNF0R1Y6wdL3W3YHWhtPXWISarl0PoWr6TYdDw0WThQOfe5pUCIWBgtzCYFsIddMXA/Ei1LekqToNk7QVD5JXKaJLN48iYlXnBFY9Ouzk+jRruXLXgsHAQO1aHFQI0OvSTKBJ37XOtG4TL8NlbVJEC6vBdBG8nuAKxF3vgdb52PDxWjErLM49zh9B1poI1PUrTIvjIBnTRysizrEoouoxNE0Kr2HitUa0DZoumIVnZ7nk2vFPPQQ8Z0YdTGODUU1zzkLWs4RPh9M1Y9WsWPdh+0iiL8EZ0uarclidiAlploLkqxH5tmiS1IcPl81VCmguoMpNWqKVRUPaSyIQsRMrTxtPBEZvyDQT0l705pJpztn0IABJ9U6ofwdEq4UHye9AaxKqwbJh4Lwibws2GylMSoxSEupAMr/yUsKVdayKXk1fj2St0H6FG0er/mXVJunlkDxaPzuxJWmJw4HdNDmtYn4MFmkzlVMB76VB6jaBmUDE2OYZOVUkvek+gMnWv1n0iBY6N6pndHQeN1E6d/0x+Dl6bC577SJLR/eG6+RLXmkwCPUG9FCeYBUDgcM59agh7+blek3iUx4I1CShjqa3WMfYnXicyeD0w9whSc/bDUDTK2O1OY8W16/Tfi3ivvat22xhE3rtrD2h7ghllzBdZUxnsuDnTcGwmTFkWXtLpea9wVXyoplAe9UJdhq1vv2pdu1Zb49xElvANF45qRat2r3kNOfSDKSp2yJ+TyWgaeGybw+nN2p5H2urNZZr+vpk70OxM1zy1Pvu2vHp79E9zqfftLOT2kZ0mFfTE5vkmkoEVNWBU5uFquyNTeNP8277/9rG0u+JgJpExw5Qm9ddm5IaaXpfBYFRgaS607V3znKM9vZudoezQxZ2kpqI1WlvN51eALOOj6zPD8ODc2wevBF0717TEz5o9qsdaCpIpVeGM0TDd1swbmcd56qrOGUUzqKdy4S0B9JO7bzJjcd6JC8Su6lmgM7sqGp0q01VN/ICRE+4bEVrLm0Lhk3BMKjmXJb3WgmlJhQCeg0TWO32yqLJyK48Xndu0cZqh+ad6N3RTCYRjMpi+4qoG6HyenxS03b22tle/5qc9pvNf6qkmnNA3bLmJfZkyhUXZ3ucj1PTnJtKxsP9iMurDfZpg6L1kwHgbFnTwkZ/Plk8Fxx7SDp5zl9Gh+9h5wVWCM+5QCAQCAQCgUAgEAgEAoFA4IYQnnOBQCAQCAQaGKFFEggEAoFAIPDZiLDzXruIH+dOwbnwNxdM0hNYuqUqAa37Ta/G+mO5qfLSZZd9WonFrdboksqTM7d0T2tY57WmNSxCyns3e1dYpu5u3kKVG1y4eU9LTIDQCFZpmutz3qFTxBI0fD2hzAQeklASoa7zYwUNFWlgobuuKAQWtr0hJQmjre7BPCXQlbil5x0JDVapCHUA4Ol0jO5K7Wi6EoqdTrqXu+Zq3S7tQ6DCbWwkpXkkbaejtMrqXFiPUB6MprheQz0VedFhLwerRNtYWvdjVZqg0j5bvqtyG62D7MaKRv+REPfU2oRmR4NJaLRBS4/X9BCrWyKhrRBWFFFWarXUgXJ3xa+gNlYbvbUzMoTSqnTeRX9qPe2YzDPr24zh6gybq7vI+wnlxZdahjSOQE49g6PzUseJ0l0tVLzvEnJjxOabUQkasjbdoPSXLLQHANJOI8v3Bb/D7mXwpiKfzdhsJ2yV1ppTxTRnVCbUOclESb0SRNZf1F3/bcmq/eXpPn4ucQaKfU4ADfJqLBnLiyDrUWXp18ek9RitZU2FAAmd42Lc4/a4BwC8lLdaJ8Z92mIPgJGxoP7D6tbpXXxsHqzK4b8f0Mk8h+HItD1FDwoEAq8gju3J14LEbjhY1KEcejSKkh0n9/Jr0SJPvx6Q7onOfjOm/0mKLJbnve13+uL+nrTcbQ0/Zh+euJfc/mRVAQDOhDoSyjahnMnBcjZgPh+QtgV5LEiJGyXYJE3MViW4NAuJHVVdfk5iBdRlHGolVCvgQIu2bhIts9A3257q94mkH9UWIr8X6Bre28fRKl3/HjXFFnbSqm2NZqrbrT++tgvaKYaTBKF+I3e7a5GO5ZO0bkYXtPyK5J8muz41+iFVfR7x43xVt7bvOyoyk5hFXOXmJiuT1fav3bawMU6ZQaydalTYJufDSnOVNJMrCFeSvBK8MsairY62ewKK2dgVjfqc9huk/V0M0zswf/ijhx0AgFICagUVXti2KDqXsKTscibUTKgp6SMltecOky2xcb6QQ0kyvmtGk5+x45zl2aZuGHXD4I1WcFuQNgXDtmA7ztiMM0ald+ZUUVkorfuSsc8Z8yCZzfuMmjNqTqCdZGTzpmYdOlXGSd7zYt5zAspIKDuApn7ffLGituqvD2oxgxMLnd09b8k47evBYv66eWtD3+i8nBmbsxl3L67wtlv38KbtQ4zayLsy4NO7Czybb+P5SpimhKo05qZIZEPdy5q0h4Bjg+DEd/9shtW8Xq8Dx8Zm4KlF/DgXCAQCgUCggZlQvZDVE0P8FTcQCAQCgUDg1cRN2Xkn9VkDDaE5FwgEAoFAIBAIBAKBQCAQCNwQwnMuEAgEAoFAA4NuRItkHSU5EAgEAoFAIPDKghGac69VxI9zJ9D0J67jl7M7wFjesNIj8tp1tOCjo2tWOJ2PxrsnBiVeCI0waRqqRWa6dIDqT1TRabLrFtoEiZe6Fw4ttLqfq3V5nWl9AEuNEV5rUJg+gGpNpanrrzH1e9MkmiTVNOcGoG4JfEbgNCNlSP2hdfSaACav4bVRmLo2CQCaSEKTs+gyUCXRuIC2XVWxAlatg2J6BnSoQ+Lbxcuh8Ur7pEiaUnc6bEc3Jlq5vYYYr/JSfQle3beQPLlGk+T4F9NRwUG/cVpqp1i9TOOhJhlbyKsBZIXx78S9bWZC2kt/AKKvYZpzSKZXQlo3Qq2ETKov4iq31NrgptnG2YQiqGu02ApHco4rqV6an2NomhZNS8b1lYVpB0mo+uYFzgk0b0DlDsbKGLYbYNaOPD9DPdugDqlpuizmTYITWLHx2MVfOLHq3qgWS1rr5rgmt7JrGPs6sug/Ak1zjofa9HysLZlF2yUNFeN2xnYz42yQDiESHaCcKspQRSvENF9cW4q+i6ZnZbTyVSA5fco0ufXCdPb0Mw/yItPNs2Fk+Wle1ifQbl5oeti41HOWDmeAR7l52BTc3u7wpu0l7m4uUZiwSX3yzSWhzAlzScDcx1zTsHvUj0d+UrqiwR92enprTZJTaa7nYyAQeAWwmluf6RTjhbgvLW3Hplck8Pu3SXi1/artbWr3kbN5Fnaj2+xd1vb9kfUwXVi30DY9N7d+r/PwDCivuUkstoHt7Wnq+r2cgLIByla1p24R5luEcithPifkbUHOklnKFdiIOcTEqPuEZHWdgUrdfmjltMaEs7N9mzjjm7jbHGmmpYart3eOSUs5e9/GzOL92LWrNO2Y2V4Hun6mN3fEJjvASr9KdBDd3n7UcEW3adSuXGjDmpZfEnuNiJFcmuxtcJ+kb4u52/peZ7qOAJhaXUoSrWlOhJoIObPs9ZDhbXY/63cz9LmKnWHPQOx0e+vAi/mXgGY3NJ1h/4KzIwko2TKzexKAM1zkt2DcbMCf/C2Ue/f6+WEE3bpAHVLTYANUO+4qoW4HTAmoY2l1A6RuNFTwIPrJNUueyWs6r8BJbKQ6omnMAWLj1VHsPmwqsKlIG5l843bGdpxxNs44GyeMqWCTi3YJY+aEuSbsyoB9HrAv0pD7IWOaBsw5g3NGpYRSVXuu9D6kInXNO+23Is89dSDM54Q0u2cxJsysc3t09cyMSgxKBMo4eObyS6toS/aTTY87AWXLqOdq593Z43OeeYB33X0O77z4NN483sOoxueL8wU+mt+Ifc14sNtgzpvDNl/N56MakSem19H5caJPF+tS2HkBh6C1BgKBQCAQCAQCgUAgEAgEAjeE8JwLBAKBQCDQII4dp/7cGwgEAoFAIBB4vYJBN2LnHUSSDhwgfpw7hWMu82u6wNr9tLlkM/ikH6u/fnnrIgx7xYIK0S+QGzulgJeu5s5NtuVh5+w6BqgeD1ktlAju4apXFIcDep59Tli49jsWbqdE7l11Klob0wwkdeuuIwAk1IHBG3Grz0qfrDmhZmlbctQ3ZPFfp6QUSCuAQ6N+rtzyewh6bRNfN0d99Mk16mPjpKzSc31H3qXe2nmFxTjTdBfUzUa7FJf9A2/qEzSD9YH1cIKOASq0vD5pFPeVC3e7trC0v6/LooF83fR4FQpzmoC002x2QnvkBHBZubMXAhdC4QwuQmmkRpXt45WzvA7aodFwlnOGijSwY3e2vmwu8m6qmUt9HdComDJG7XsCsMV5vovh9ha0Fz4HDwPKM1uUs4Satf10bKU9ufuXaH2dpX6N5lSFupCmTilYUFFsnCYoTVQpICODxwoaqtKk3H36Xx4Lcqrt1ZqQhGaStJ1JaSWUAEoVtSTUSr39k1BUbMwuukPLmAo3Cg5PSuUYZA0QirnQmeD6lFnq3yjiqz5e0r1631SwvG8r0lYa/+Jsj7ubK7xx8xDPjFeYamrRqs6GDYZckZJbiA9o2q6fDqgQ2rinaAkretpCngA4uG/RhkF3CAReeTS6ktk7fO0U7jf9dvKSr4Qja8hqLevUPuo8l4rlGuKzMNsEWFI8NX+zMVkv9jIqTWpkxlL2AX1fweD2fbcGtuVR97i8B/KekWY5VwegnOl6P8sNnBLKkGR/GqUgmSo4V6SchFI3CLUVADCJZAkPBNJ9cCEnontnHYG64b4H2n5U0WweKys5u4PY2V1qCyz6pDVGb9+jlFa7Z22L8zKvY+v90fzs2FFqqz2U8MEewcZvPrZ3eEpnWvZ1s9cJsp+3/R3LAbYqR5Ov2Tt6s9GFE1An66du/9RBqa2FUZAa9XMRzXG97ZPaCETdxrMiDQRmkeSoOh4avVrtvJp7vaUNRAbEbEUehJYJ6FgaE+bzM5zfHrB58x3kFy+lHPsJIAKfb1Bub8GZkGYdx5eE4QFhyhlzFameNHgOI4DM4E1Fqf7BUuzUtO9t1+zOoduhZSO2nZRRpUuUzpo3BZuN2KFnmxnbYcY2y/smFQzOxhu4YqaERIyBKsYsmY0pYz8UXOURU2IUHlDV/qoTaXtp3zCrXQ3kXRU7LwFUpJHtWVjaXOZtpV5+e347OhZXdnob01J4kVJJjLoB6kVBfkYeMt/yhvv43W/4FP6/tz6Jd24/hTfkh9hrQ2ZUPD9cLNrhACvb0lNr+4Fr9gEbxwv7lEGObN7TWr0HAogf5wKBQCAQCDgw31BAiCeeYyAQCAQCgcBTBo6AEK9VhOZcIBAIBAKBQCAQCAQCgUAgcEMIz7lTUKoDMT/WX/MPo0Qt3VrJX+j83Imc36yjvnHCgh55LD9A3IMPqF2+GiuKpI+meCrio0Ri7Pf7qFiH1FvN3iiJlr/SA5tLso/yajTCDGCS+9iXZQDqTC09c3VPmVETa306nZETIyWh7TFbgayQ1NzCOUu5WrTENVy00NY+Vq68pB00msQantK5phms+8quq1jQSBZ0UW2nRsflTjnunvDc0z0RsvXoMPLjwLP4kr5WEduMgkwZElXTKKu+PY9RKFgjue2BvAPylRzOGr2zapROH621FkKdk/RpSUI59ukSDl3Nff5rykjyLuVCe2hsn1UUUEvGjlWliRr1oZ7JqTompUAklO0W29sD8q62dixnCdOthDo6Og8AniRhoeS6Lms0Gm6U3Y6Kygl1IqS93NO88h09p80to2hkBmWJ/EeZhRKyahs5Rig1YSqda1tqQq2pX29zOVUQSWS9mhKgdI06CJ2BB0chsahtWcq4YMV4uo9bY5A6JcnGVosQ5ijYrd3cutOODQxkjd52XrC5EJ7N7e0Oz2yucJ73SKioPGDWCbcvGaWmHnlxTVnSdcWi0y6irhrWVKY1VjSHkxdeR3F6AmDEX1QDTwGMzui+A6tjR2ARq9t3sK6TZjDRo+ewp0VeR20iS39tONh7l1FZZ7Wohz/p105floIl3dNOq9QFm21gn+18dvYlelppkgKk0s+VkZD3wDz3/T7pOrgZZcOYS0bKFfN+QNVIrjwm8JRQMiENSm+du70mthJrNEte0THRZBOwtvFsDHgam8mJmJ1xpF1b3Y/ZIdYGPhIq92Otz735b+13zKbxZVkPA5b9W+qGXme7t5K0M/cbhKYsFF+29vFlZNnDF88Jx+aEexawaKVZ7TzAKMySB23UbtGnzrSXPqwDoSIhoS7lgNa2nO37bA1m9fFjkVFBYGKJxmvPGVj28UL6Y9DxMqjdBaGhAkA9J7HjbhN2bxixeWnA5v45AGC4qqBZbGseCfNZL3uegOEhhLpdCbUQykYa0iRGUq6oG+mrMkgFeCTUq4S8E1vbBZLvkiUZzXaU8qt0yVgbpXUzyo2bXDDm0uRKZk6dnqoDaa6p7fX2rDXkigrCZijgKrY4b6SMdWKUrdihdQTKxkVQriRzXts7FekHQJ8dZrHlvHYMN7uUZW4WkpCukHG9eM5y/WnSNnVg8HnBeHuPNz3zEADwzmeex/9z/hx+5+bTeFO+j0wVV6pH87BucW8+w4Npg2kagJkWz6Y+Auzi2dGt+Y1iq2POytbe3dpM/nkU7rPtEWv78bqN5xUG44YYEk+wjq9XhOdcIBAIBAKBQCAQCAQCgUAgcEMIz7lAIBAIBAINN6U5d2OugoFAIBAIBAJPCYIh8dpFeM4FAoFAIBAIBAKBQCAQCAQCN4TwnDuFE9zvzh9f/tr8qB+flyGV3bvpDq3SPCpHZLoArmxHtVFUnKJrLCi3XzUtmg6G5/LrtZxZ7mvaFY4Xr9e0UtrnEzpf/j6vXUEmRud1Lhbh7Qmo1DRWen6inYW0LAhZvRJAlUVapGmH9GsPNL6OwWloNB04WlWNjtTVnzuWrBbXj4N1yHBy2me9/FKHhW4GuqZDv2ZZ/vaZNEGvkaOaHVLHlZZbapIsohmD/hlFZRIKSduYrpkN4Xqo08VaTyrUdedUnyLtNW3TPFGdGgCgicApwfQPRafCNRaw1Lhx9VrokfjTqjtnGiitr918bJok/lgWvbk6VmDk1j51w6hjEs2UgTCfDxgue9/UDJQtoWy0nG6MJ9hfrLhr+Ky1ZAgLXTOujDoyeKA+j605VIujDljW3ekR2tplanum+1BLwgzxltqnpeZcmRPKlMGVmh5JRULKVfRAiFFtkGRGHfu6kwpAllzTtFR9D6cdcrAeZgaNWjmrfybwlGQOFddQVW907Wtp1czgbUXeFpxtZNCdDxMSMXZ1wK4OeDBv8cJONGQe7LfY7QeUKYnuyapDmh4j9T4B0PSJrsNiXOn9dDB+1wPAixLhCWuR3MxfVEOKJPBEsdKzks9ug/dTwGu7noLTGmo6cKR2iNehc0n6/ZNtUdb5Ltqo3DXFjuTHtrZb/icmkdmKtgax2Qaan+mPNdNqZUuYTbo4vNIz9t9Ns8m0Rteava1cBCRd53NikOk0AcBmxqybiNl1TAlV60zJ1U3XZ68f1mA6c97OOmW3toLh+r72dXH93htn1d82fE7Zys6Oa1rNq+Su09i1sQSoLaaNwvVIsZLYJ6grCWbT4KvLFwCxARJ3zTdXPtOUTrPpzskJrzkHIqQBTZ8szaItTVMSuxPdpmxlNVHtiq5xXNV2XejOmU1oDxyESgxK1LV+ra207q2tVZ+QB7U7nK1cmVBuEaarjPwGwvCQMDyQk8OlaMPliWXukOUP0Cy6e2LjEICMalrRWwLGAsqMPFbwUFFVc66MCXVk1E1C2ok242K8wvW1s0NokLSGoWIcCjZZDGnTmis1YaoZlftzVVGtucJmDy4HV6nde54Sow6SVh0JZUOgc+1botaWwy43nUkeRI+u2q8MqlfJqbc3ANAoGnzy3JnAM3Ut9lkq2DQTnUmErHpzZxXDxYzbt3b4nIsHAIA3bh7gIu8xccYL5QI7HvHJ6S4A4P9cfg7+z/034rn7tzBdDsA+9TEuXaUac2hl54HbsQN48eP1eZvw7bivwM3jphgS/Bpqg9cqwnMuEAgEAoFAIBAIBAKBQCAQuCGE51wgEAgEAoEGBrVoboFAIBAIBAKBzx4IaS0YEq9FxI9zJ9Bopde5fL4SY9rc2R/Hhd7jwC3ecfSUDtWoVOYf2TiKK/f+fou48qbu6l5ncVc/Rv/gesRJd12u1o4QOqs/RZ3+cOD+X9GpHObi72glayqBUe7WrtlIEBqotcMBV3gJcvVMWm927Xbq+qPDZJVVo3qkZTEO6ANpeY+5g0v9ejFYKbdH6Reu3XntH+u9sJW+u6Do5T6WGk1i1jFT9FU7haLRC1ZjapGl0h5oRqMZNBqNp+UaVXNW7kViENOSsogVLaYxgajX54AiaG3BQotYU9O5X+fHFidu1GJkAAODshZmIzQE5AxQQh2B4UxuzJM2Sxb3ft8HVm8yqkavgNJRdG6xo/coDcDSotrpIdYngLjhpxngsVNAUIViVYGeHvr8qkwoU8K8cL/XslUSGin3JqWBG82VmdpiUTNAI6OAkJLUwcZDHYCU9WVlzf0cZxl3NQMYGWlUWsZYwQzUOaEyZHFSWitphdoYXVOAspR1GAsG7bPKhIfzBvsyYOaE+9MGL14JrfX+1Qb7/YA6Z3Ax6kxPc7GWoo8RpPVEx3HopmJpkG/vNXXF0n+5+0IgEHh8fKZz67r71hRHgqxTCSIH4fbfzoiyDcp9V/kPXq8nzuaglY3npTLWzNwFrdT2XJOmMNohJNsKR6s5wcTqdp1Lv62JsqYXEGiQNb5u5KSt92b3sqNjViZkTTCRkJ9SKyMLlS9xl1vJS7tP9mterpueRurKu1CU4WYiHLS1UXlPMtqMutba0U5aom6/8m2Kfm1T4/DPA3rZgga7snva2LDN3dktPRHC2h7iBLEpKnW6py8jO7vU9tsslFZyFOG2b5l9V1XOorr0zAblVV3MPigEzFJx9h1lFbbnML/PO5sTQB+szL2qgwyuRjVdych4u4HtAzHypiIPpq8ieZRbGWWfUS4zpkvJbLhPGC6BfCn0U7NrW1JFZVwywIlaOeRzAqUCyhWJgGT2SU6oKUt31gSeqNlLZu/VQfqg1TOjDZSUKoZcG52ViFFqwr4m7EvGNMsLAEpJqCV1CSOg08RTFTo+Q6im1Y2tgVHPGDNIpFRGkW8BgGkC8kTtmaKOEFkXAPO5fK5bkRtJW6nYsClCZ2agzBkFCazGIbFQWml2z0dmN2aojVcxbGacDTMGvWjmjOfnW3hYNihIeGk+w29d3QEAfPLyNj517xYu72+BhwPSRE7Lp89hkYnhnmfmo88dwGp6Ub/O1uelPIK/jqSdCZ/xVhT47ETQWgOBQCAQCAQCgUAgEAgEAoEbQvw4FwgEAoFAoIHVo/JJvz4TvsM//If/EO9617twdnaGL/7iL8Z//I//8eS1//pf/2t81Vd9Fd7ylrfgmWeewZd92Zfhgx/84G+jpQKBQCAQCAReX2DckJ33GeBps/Pix7lAIBAIBAKvO/zkT/4kvuu7vgvf//3fj1/91V/FH/yDfxBf+7Vfiw9/+MNHr/+FX/gFfNVXfRU+8IEP4Fd+5VfwlV/5lfj6r/96/Oqv/uoTLnkgEAgEAoFA4Do8jXZeaM69EnjUD8Fe3+qYd4DqTDxWWppGCx2v9zTNET3OiUWXwIdnV+0OUh2HheZcddeoXhSgelllVagWWl25+E6z7HGJ86alxhlLnQ7qOiBcCKWkVrgDPbm1flblhaaINtWS969tZ43FPp21noC10eo8O5mw6/RYFvoaer/Ul7uORisolu3o71lo5XWtCWr96u5baX14IZV2n9dcqViMJbY+oUMpLSoyTNl03bBMb6EB4uvh2jLV5TVNk22ty8YAZgKT0zex5I6k3a5Zt+k1aO3gytR08LKrh2mSmK6HhpSnzOChorRC9bw5u7SOaEo2nZNVeVjbiQuATE4YxV1XRH9keCjnhh2jZsI0y3yvA6GOVg4CU5K5kUzvzHVAheqrkeiKrPqSap8vrX/GCh6paRM2DaWBUVVTiYeVXo318SQ6lmC0Na8Ooh9SB0mDxoJB9UjGoYAZmGhAndPB/LD5eaD9SFBtItH9sbXjah5RakIFYT8PuJwG7PbSWNMkujI8m3bhsYltL17pjGA5SA3uojYGbGK1vlAtmmPjda2N+ITA+Mz/wvnby/fl4Yd/+Ifx7d/+7fjLf/kvAwB+5Ed+BB/84Afxoz/6o3jf+953cP2P/MiPLL7/4A/+IH76p38aP/uzP4sv+qIv+gxLHfisxNHB2PVtm+bmI+4xG6S9J3ftwV5m+lhd17MtsH5vVb1KsaP6PsFpZdvxOn39qJpjTWqJRc6Tk9gXyenctr0+4WDvNY1XsyPaKd2HKImuEg9A2WpyY7cxiAGuhLnIhpsTqwYdoVSSIi9kyFZaYx6LAmC5fnt77Ji9cpDWkaRX15pOFMP16bp/gYXO67Wgfv+BjePf1+UyndrEfR90WrbOdOzvqttneZE7521Hr4Us/UztOcLb0uv2WdiT1G2Smg9tK1IbZKG7tdahvm4fXO/Drr28tjY5LTzR7ZUbi2ZXUwIG1dXTOm6GgpwraiVM24z9ZsQ86mNzEq1h0ys0nbmWdxEdujrbu+7zmcADyTsTUu6S/Gw6hZWQ9oThITA+kHP5SttqEP22tJe7pkqYc0YdKuqYUGoCq+ZcqQlzSdjNA672I+ZdRt1p+XcJNIntJ/YYo9ozxSAax5RXD1SArBujGHo8EOqGUEz/WOtq7cAJqKo5V7ZAuWDwWUU6K9icy03bcUZKjFoJu8TgOqBMqXU7zUCaqOsX25jLaHriUlfCw1lsud+6uo3n9xeoTLgqA+7tt7i/kwXo4eUG+4cb4DIj7anpaVt5pY8AztzHauJrdeHbM9SBjWeDsF25mGuLce3vf1L4bXiy/bayfZmG3tNo54XnXCAQCAQCgdcEpmnCSy+9tHjtdruD6/b7PX7lV34FX/3VX704/tVf/dX4xV/8xcfKq9aKe/fu4U1vetMrUvZAIBAIBAKBwGmEnXc94se5QCAQCAQCDTemOQfCT/3UT+Hu3buL17G/jn7qU59CKQVve9vbFsff9ra34ROf+MRj1fOHfuiH8ODBA/yZP/NnXolmCwQCgUAgEHjNg3Fzdt4HPvCBsPOuQdBaT6C5WF9HVTpCM+jHPQ9NXmzXtft72kzmar3Mot1/pCyk7v+dQwl1B6dlfp4y612+fV523EKsm5tvIdS8/BW3lW1Ec99mc1c/0l7c6r9sE6szr38iduHV69xPcqFOBVnxHFuo7zVt2GgGlrWjXzCRUBOPuRNb+zh35ebyTEeruUCje7jrqlIPjApM6/yU6rhIW7+sKantmKPZrSmdjWqwapJFAusTxC6UOC9ppSzlXlOHfVHXxZATvUz+ewvDPorrOw/u2iKUCVrTB4+luaKvHC1faw/qVBBHATbX9kbrbdRtEkao3eLyyrkCWeZgnRLKJiMbnXTu5TzmDn/Sk9zKWAAUCE0JOqULgSYg74DxAePseQ1F/7ACBOzvyCRsVCcAMyfwrH1qlPXcG4cqQFNCmtW932ioa1oUubDyJaFWGPHEmwABAABJREFUBm+q0D9sjGaWHYUgdFmjmmt6dSakDKTi6B8QOitnSNmGijxWbEdpwHEosqHXhFlpWIvlkGlJS079ZCUg6aSaZuEnmAt/KQnTnFFKQtE1ps5JJ+k1HaRzbb0+H1x+an1Ibt6TUOSETnwkX7+GEx2Moc9W/Ok//afxj/7RP1oc2263J6+nFW+MmQ+OHcNP/MRP4L3vfS9++qd/Gm9961s/s8IGXt84sT43XLPPH1Ba1/f4bYnQ5TWwOu+nvNkmTPoLOR3qS0BtxQTZw3LfdL0NuS7PQkrBlhzdCxiSHqnMCE/UKF2e5riw19RubNRBL1kBu1alFkaVLYDs882Gmgk8J8z73O5L1MtUS0Ituj6XJHZBoZ5XXTUoqZyLo7uJjUqAk2jwt7T28HTSI31zrD2FwtaP+fZtkhjeblzZcez7ZmW32gnWvaFVx39gbjaPyKLo/p0YfGJQe7uRlN56sp72cmVsbVh9YfotNQMYdDzqeKojUDZCbWySG16Kp5BSv9VeADVJivbc8jhzlCFSHJU6HVJtsTSJ3dGkf2x8zySU08qoOuVKlklUc8VIjDxUEDEqE8pex+OQmt1y0FZm+zs7vNFrVULE7/u2ltQ5AfuE4SFh8wJw9hxw/pxKfNwvSFNF3SRMtzOu3ijluNoRdjVjArDTIhSdM0SMuSTs9wPmqxF4kJEfyrl8Sch7Z/vmLodSR6CcMerI4FEorgs7L2k/j4w6U6MImw3ZKMSk1wGoG0bdVGBbMW5nnG2E1nqxmZBTxVwymIWiu567NPf02tbe1hxCLQlX0wgjCN/bnQEA5pqwmwapv64xvM/APoH2JM+ZcGuarXPZ2czoc2bx7HdsvmI5z9s8OyaB0O4V++7oc+hnMf74H//j+Bf/4l8sjoWd1xE/zgUCgUAgEGi4Sc25cRzxzDPPPPLaN7/5zcg5H/z19Nlnnz34K+saP/mTP4lv//Zvx0/91E/hj/2xP/bbKXIgEAgEAoHA6wph5712EbTWQCAQCAQCrytsNht88Rd/MT70oQ8tjn/oQx/Cl3/5l5+87yd+4ifwrd/6rfjxH/9xfN3Xfd2rXcxAIBAIBAKBwMvE02rnhefcy4S5dZ+kNbL8Gn1ArTR60gLuutWP14vIUsdcutn5/br7uUUopIN8O1X3SF52PLFEfVJXZItYYy65TJ061oK9lk536LQA7hkmHNBXFy68jhZgt6YZqJNQHhpLw2hf9l6NZkegRGBQizzZkBzP0lzLrckIQtt0lOR1s/rydjqHuChTQaeH+PudO7uPDtXqqu3UqI/o/W23r0Gr8bT4rDQ7cgPFR/E6nmIv47qeLTLRmu7grl8waBeu3gQllRyW1ecBpTsMQN0a7aX3Q6PJgHqbreg9FunteCUsncO+p0KL6HIWVQtV218jyAJokWm5ajSxfUIdZCDwWJFzRRoq5k0Fjwk1S355XW/nrr6gztiYsOP+viqUC7uWJkLeEYZLYPsi4+xTe8nrxYcAgOHuBYi3QMqdMlIIdaQW8bcOEBqUtj9YqB9p1ykOrf2pl4kTQEpVqZXAVGV8bFyfZdb1T+YVMfc//xi9hwiYdQ3x646tUwSkxEIZBrDJBaUS9im3KIkNTJ06vhqX7NJjpkZrneaMWiUKNBehQyy5XsuyHBvAfvzKbZ7LhcX4OwBxo0pQy8O4FHSUMnEDf9hsERNf6/ju7/5u/MW/+BfxJV/yJfiyL/sy/JN/8k/w4Q9/GH/tr/01AMD3fd/34WMf+xje//73AxCD7Zu/+Zvx9//+38e73/3u9tfY8/Nz3L1798bqEbghnKIRNdvL2WiOirhei9gv3sfSa/t031OPSS8sZUcIrDRNf3Gj/1lUcXZpah5t6TplTJg9s4gyqrZfEkqr2SdUXBvQcj1q0TxXtgT7fU0lT9bR2GkmpIlQr3Kz8aZKSEohBJTWatImKnWCmZQ6Rwf1a9IgRyK10jEapu9/Z+Oxt1npsH5rKuXCcFzY3NTHyjEK1qnnCC9nQtwlbE6MmX6e+3EbNqfyMDt0bb/afeviNhqtszHXdilJX1d3jLNKl2yF2tpsK2Mya1Ringmkg4aH2qmtp6A2ri8HMYBCSLNEM00TkPZa3UklNSzqZ4tMKrIqaSLMc0KpwLzKdhycDkfralJ7UudBAVIx24qOto3d1vqXhYLKOl7rLiPfz9g8T7j4JOPOR/fYfuwlufG558FXO9D5Gc7e9AZs334HADBcbpDmBJozpomwmzL2GykvEaOWBN4npIcZw/3Uo78+BIZdt/l8ROX5TOb9fKHM8cSt3ySSLQOZxD4eqJUfBW1uNlkgFwEWGv01JcYmSxm3eUbW6LI518XaavO2rTNuKfS2Ui1CXzU7DxA7tcwZdSZwSWC1pRstHpA54BMzU8w9p1n/LZaOk/PWFVwvPLBbT6VBWIyTJ4KbsvOumdbH8DTaefHjXCAQCAQCgdcdvumbvgnPPfccfuAHfgAf//jH8QVf8AX4wAc+gHe+850AgI9//OP48Ic/3K7/x//4H2OeZ7znPe/Be97znnb8W77lW/DP/tk/e9LFDwQCgUAgEAicwNNo58WPc4FAIBAIBF6X+I7v+A58x3d8x9Fza0Ps537u5179AgUCgUAgEAgEXhE8bXZe/DgXCAQCgUCggUEt8lkgEAgEAoFA4LMHDNyInXcqknSgI36cuwZHqdhei+TYOdMtWnOqfVjwxfUK5bkf8NpbXl3rYa1NAnQ5i1YE6ppGXgfOJsVCL8JpPnESPSj26Xq9OOp6Yqaf0vTpBiz0swgMToSaJZx2stHWJZYW9bdzVE2PJKHulvplzK4JXfhucJI8m1ZZL4fx/0nDZns9EnahsokYtBBTc2XzmmfWHT6citNuaTogTt9O8jLtFVZNj2V/thDvaw2QUyAc1WF71I1Ooqbnv9JdsTJyolZ2WvfZQcI+b1cu36Re1yWr1twIlI1oGzY9iYqmJ2K6h5YQJ15qjKy1floaqgsIiDZZoa49YxoW6N9TkXu5ysvKSBngIunNlFAGGfB1U5Gy6M4VK+Ni/Ls2PTXeVS8Q0Hv995VuTtoT8g4YHgLjvRn5edGao+eeB0rFsJuxHd+A+YxQNqm1Tx2sDKRtru04yIBLE5B3QL7q+iOkdag6pzm7omRpy6ZVYZ2W0TQ5TXvTdwllBjNQmWQ5dPPU9GOs75LNWZJw6V6ux0t4iLZinzv+BCU0vY9SpD1qJdQ5gUtyopnunXSc6zrYr1mJ8Lh1pTcYTmOVByDaLaZVxU27adWmOLwvEAi8QrB1uW08q/NOa4zd50dq5vj5alpcurY07an1LeyOVch+UEn2Yi+2ZOVOXYep7Ttun37kcuG0dpu2F3XF2Kp7PyovtGYXbVAIbJrDvm5eyy4fmsxURQOMk6ztDNlgeEMolZBUc7SWJFpzADAlYCKkmQDTtILLz++xB3sEHbXJrIwtDbd/rzXnul1xmMcabRlf2N843Sm86v912SD2NOz5wtdNdaOIudnt7dwxEEvBiIFEvY7Q8cO9v/y5rn23LHMrILyN29uhjqLpVjdiTzRbgrjrFVbVOWzpJbVPtA2tD6Hvao81O1HtvPbsMIstkyYgm+acHjO94eTqzHvRphPduYxZx9ysbVs3qotXj7f/Mf1muaCPo1bvrLaJPXtUQp3kJF1mjPcJZ88Dtz4+Yfubz2H+X/97mea9e8Czv4XNw98p95S3gHgLqgmpJEw7Qt2qjaprRN4ThoeE4YHYjwAwPmTRGS76nDaidXYdgGqacbbW5IXRLR/b+mnVJe1DuXGhz15Vm45J9OB0kFQQMrrNB71d3qm37coEW6w3Fail/0GxaVUWzbM6PV+SPmACuPJSu9J0HY88W7WqP3LtZ1w3z+3ZgtYPe4GAQ/w4FwgEAoFAoIEhP6LeSMaBQCAQCAQCgVcNDLoZOy/wSKRHXxIIBAKBQCAQCAQCgUAgEAgEXg2E59zj4AjV4eQ1RoczyqW54ip14pBSqO7lJK7Fi3Dbp/IClu7kp9yp1270j6BeNXpH4l6PxD0cPNPKhZlRB2rUCs68ZGVp3TiLy3Q1OkB1tAcsy2lu7mkG6gRgSGB1p6bUy79wL64ELlJGWrmdSx1cPzg6nTX90eY71q4LeoL421vZPQ21uXKv0uDE8srcqRrt5KotrqNCOJpB+36EbnNQN89NWaXXym/0XaWpmCt+ozesXy3dE399oVWdqPc9Z0gYe6M6ZAbmTl1IkyZRCRUr+ueRai0qy6RUVr2mUAt57y+xulECoLTWNd2SKsAzgApkIvAgBSibhDzonNV+rZl63WxeWFh2K/f6TyKNksRLqrS2AyCUW5qkTdLMSBOD9tJAfHkFLgXpbIt8OSHvxkblqAMW9a5Z6CWA0ltJqB75SqitaXbNN0rb1jV1odEDZJwY3YErQI5/epICsFrbiLWMRfqploSi9TbqLB9Lh7GgK9sa1PJIQh8BhM4KAHVK4DmBi1YqcaOXLO7T9Hu+BKr9uoO11Z04SSdaFPzwvgWNeU2hfdJgR1t+ktkGdzfwpLHav0+iUauore2Lc/6rs/OaxIhRCFc2zMk8PVVxsTQIzZV1/V2kSbSktl5n83n5CX9N26P1YFptrXZZkfs5E1B0zzMZiYzlfu/pkbZuK90O1NUDWDfDttQygWeVaFBKK03UJEqMerawddZ1ZrFRG4XyGC1z3f+t3H0/MZseaxveCmD3r+UOXiYWTDdfnopObV3c4F4+kWPSCO600aEpaR9qWlWrcEAVflSe3ha25MzGG/VzxsIONYqp7d0mudGQXVWs/YvZc9RsBrPzktFWi9g1VFZltOxr71owwBPUtjJ7ScbchAEFwB5AHqrsic0OZdTc67WUXpHv7fzAzTbhgUG5gjKDSOiYPMl9w06op5t7jM2Le/CnXzjS+FpsPTc8cwubWwPKRho+7Qll28cqIJTdfAUMl8BwyZoXkCZutNuaSWRMoLTWEeANA5sK2lSQUs2N3stVK1r7fMRMC2rxwqapjESEmhPmIWM3SmZDqqgDodSEWtXucBJOC7are35oa4qNO6Y2R7mQUu6pyRix6zehSqtxW1mux5Hx4s2wx/HqPzHnWp1qLw/cmrSo3xM0gZhxI3Ze4NEIz7lAIBAIBAKBQCAQCAQCgUDghhCec4FAIBAIBBpuTHMuEAgEAoFAIPAq42Y050Ja+NEIz7lAIBAIBAKBQCAQCAQCgUDghhCec4/A4kflU9paXstLdYoaB7/pVDCaVllL3O43jQKn/aDH11oj7fojkhIH91kIbxfWfpHvqXr6a9ef/T0JTXeqffcJqp4Kq85VUWGRVHoR1pptSJ2HnyYCj5CQ2AB49IJhro1ZtVWIesIWplzLyFDdPBeKnoDjWlaWppX/hA5A03ShI22safhrD7TaVnl53blFeqZV6LW+VtfRKr+uj3Oifmu49keChBqvXdOFTS/nuvSaPorThzNtPtMvgbaZKz9bfk7OwzRiyOZToh7K3en0LLRI1nIPtZ9rums2BNxYbbIY3DXXWhoMYNZuKHJv3cgN8z6jbCryUESHI3PX6BtUN4fQdfVcn/q6tzYe+lzyemoAgEJIqofBCSjbBL51Jsk9cwc0TcD5Gep2QN0QqtcKZKfDUtwyou2YZn1N6Hp7qvVSnV5M089YjAPWeYU+tVSDpOlOtoZG09loGkBaVyKt60yohTAXqUDJBfXkAgRQdXpCCW6OSAUpVdXL1DWkiuYcFWrrQrvF6Qsh8WJ3ZLi62Dq+nuumN7deU2j1frQe6MJLLY8T1z8B8A1pzgUCTxJtz/Fz9Njc1oub7hcdmRsn573o9tq+2k447dujeqPXgWzRhKSrmluiN+fOuXIcSM0yFpqarUxmj3h70dlAbY1NotnU9jHb86DZ134f577/NZulavvPBLL9qrDqB0v5uRBotj2cQHtCmqjtXVZITtz6zfq07S+2tupecdRt40Tf+TYj357XuH40W+/luIecsDF9GSjB6c7BGadHninss7fD1gJaRKKVm7q9kNye3OzeE+PnVFnJ1aXZd2ZzrZ5/vB6u6IXJ+Wp6zkDXTTRdMKdpRoVEW07TsPRa3yc0HTXTFma1g8zWowKkwk3Lzreb6aOV1O0ce+eBwSOLvTXJ8w25eVgHyPOL2VCj3j9WpKGKvaE6abTQVQSoqtb3dnOyrenObSnjRiqYZtENZhKNuVbnKs9ceSfHm43LLGUbRKNuPgfmCzk1XwDzBaNuGdhWpKE0/d6mU1YSMBFoSmKbQufyTAe2ppSFUBnglFDHjN0g5c6pghmoIMwlSXs8rr5bWhlcNjVUKLlpkJtNB8hzBJm6LYk2nX/equi23BrOdm6H1vbdap6wPguDdf42zTlnL96QKxlb+Z54xmFbPgrhORcIBAKBQCAQCAQCgUAgEAjcEOLHuUAgEAgEAoFAIBAIBAKBQOCGELTWx4BnMz3yWnWJ7VSI1Y1MYO/7bwmr67+5l/tQ5gc0C72H3b3tsKWVjLPG8OHgF0k47/iTsPRIi8ErN15aeuS2NGu/pg4AbZyr+X7pZW9hxwF0apdR8WY0ygYyLdrC0xZauVp5LfGlv7DVQbM46qZs8C79J2lmBBylex6jSVi/0PKao67Njkpwsn/c2OBKRxnQrR5rrPp+SUPV/jaKq6+nv/+YK7ZRWl26RnPo43mVZur3LGgkSu1sFJGjbua0pK+0m3G0PS3POqDPi0pLCodLpzE2jX6x67TWsieUyXEpqY/jOkjTMSmlwbVlq2tm8CDvAICBG8WVCnW3d80fDPAATBeEq88ZQCy0hvFigzQVzLdG7D5ng93dhOm2lmOjZd85yofNp6p9fKRta5Zy140rvzV5o95So2UAMgZZqbhUaRmW3lhHxR1fjX/Se7kklCKZTLogNtd7R5kmS7f0NBZ9lxgHy4BRhaukQBBqqyYlVBObV7mnJZQEN9ZaAZb1O5z3ujCdWDtaO1RHwYAbEzfk/c+4mYAQN8TuCDzNWNlX1w57tguOGQxott/RtSCxrmPLuc0ElZNw5dA1qNs0hzYgqT1BlQ6oogu67nU0ziPvfh062QaLgqjt6o6TyZO4+i1orW6vJ3a2HBOIubdxpbamC5WROi3P2xnXFLeV6bqLjlHSnD0pm4PSGZVyeyq9hY3scY2ddzRPLG1QBjrF02cGd6wZdMeeGewikv4w7mpCk3TgTMvyX2M7Ls6rXUVpZXIfsevsS6MYu725aYxUbmNZbDJy1FWjTSql1Y8fzbMOWLSjldueKdIE5EkOp0kkdKgyqAB53+24vAHqLqFsEkrOSLm3K2dGHRllK+VhQqN3MqmUzxYoW0bdVGAjhUxjEVorAVXtPHvGoSrtOJ0Tdm/egvjtGN7wjJx8cCmNu92Ab51hesM5AGD/hhH7OxnTBTUKr9l4ZhsJBRgg7vT5siFwlvf5DCgXwCxJYr7FqGcV2BZQrot+5ULAnIB9Epq5vgDNx8uXuLHEAwAisSf3CWWQRr7KY7PvSk1KScXjQ58x1uC2Dq8mK9k9MvgYacngLwRUPqTX+vQW2fNivtB63Ln7ZWDopY5qf3S/eAJgDjvvtYrwnAsEAoFAIBAIBAKBQCAQCARuCOE5FwgEAoFAoINxOlhOIBAIBAKBQOB1jbDzXpuIH+ceA48VOUavY1hEqBU/z7t2Nz9fOUfmMq/RkwClcS2u54P0WgSaBVfT5WsRwMjdh8OIVbx2wz1wvdeyrV3oCcv0XZSkFhg1ARgZZcV/pRnd5T11Ghcnkiotojoa7WzNvdO0LDKkowueokD69iHXdEej1bY2Xp5nd9yiZzY6IgNkbvt85L5jcN13MNYe5XHsaC9M9MjLWx5r6oGNu8WYogMqyvHyU3875dKt59m7x1uUN4vkRgxKxnVBj4bry+nzaVST3t6tLEYR8vNJ85UoWizRUeUseOiZpdm1D6OPa1ZqgNJq0kyoc0JNDK5pSX3RCGicxZ2/5lUbKxWIMwNWjoE1gpeUl1zbWjXLBsAzEmFrujUCAMYHA9LMqCNh9wxh/wZ0WuvAyHu3llQXvUzLlwDwhEVEvTp0Wka1KGMuKi4VADOBZ5sIEBf9OTXqiNBbezt6+qo0oJ5iLCnTFY3WWkqSSLjrSKlA6y+y8uTV/GnUhd6fjZpadT2rQm2VS6hRWyUysKO8lnwQ7XkBq9tJGsXxTYSIO73erQMSBZHb/QdrdCAQ+O1jTbk7SkeydUajOzOD1nzR9X1+j13Ygv3aRfTutDJP3L6+iBK6KLuuR+tInHDryCl7glbnrTp8en2jdXpeaiARMLjI50PfMw+ojX4fT73uh3mSUha1/S0CpKWbsJBBeRSaPeHKYWZ2k91w17K3n1fm94Lu6tpCxog/vuqLE/1xTNZjfY0vs3zkw/PrCreOW5yQm7x9a7RobYdGKfVZm1lNPQkvi7KO7uqP+8+93K4Mlu56Lh4dFzigXh/2ndp5eVl/qkJhTRNQd3Is74CUgTy5NHVcpQlIe0LdJaGxcl1Et+Qk9lHZqDSKj9Y6qv20ZfC2Io1yMg0VKXOTAeFCSKXbN2UL7O4S6mbA5ZtvIU23tOxik9cBKKPQQwGVHmk2Zm8je0/FTZPs6khaxo3QWcsZUM5Z06zgUemsVaOsVo14PxNol5B2CWlHyHtpJ2A1P63vnTxIe5St1NIrc8KesrCXSzqYIwdzws85nVPC4l5PFHdN9TYwS5nauONlu6nkybV5eqzGO7kHrBbZVwe/f/ZeyBndALU08NpG/DgXCAQCgUCggUGo8WtgIBAIBAKBwGcdbsrOe4y/pTz1eN1ozr3vfe/D7//9vx937tzBW9/6VnzDN3wD/uf//J+La771W78VRLR4vfvd776hEgcCgUAgEAgEHgdh5wUCgUAgEHia8br5ce7nf/7n8Z73vAe/9Eu/hA996EOY5xlf/dVfjQcPHiyu+5qv+Rp8/OMfb68PfOADN1TiQCAQCARef2AIFeNJv+JPqk83ws4LBAKBQOAJgG/IzgtWxiPxuqG1/rt/9+8W33/sx34Mb33rW/Erv/Ir+EN/6A+149vtFm9/+9sfO93dbofdbte+v/TSS/Khy2n05wUvrLB+iFhrDh3jzasI2UKDgkj48F63C06XAY5P78UbXHEWx5zGxTENCNPDW2sznZwvphNxai6pNgeZGIXj0zMBUN0H0YSgVoa0bp/G+Rf9kqZLVQkmUuY13LzMnoUvbxp3B31DS501p7ngu9S0R/QWScv0OFaaJKZn1uQCaJl2y+9lrEFHJExU/60nfVS66rq17pr8Fzp9TltuUR/37tvWt/9Ctyat7luVcaE5l126Wk/T2eJE/RzhQJemlbH2vMjK4suc7fquZ8cDo24YPPbGJK0bVZIkrYws47Wi67A0ybOZRHctpa4b4gupZa8ZonHn24bku9e+o8x9wUmsAjC9wpyAulVdkDuE/V5O5R2BJgKSaIdMdxj1vLa8eNc7mAqaVknZoOnOLcYt5Jq6ET0VHuU+6DwTDRNCIqBSAkpfcGgi0EyiN2f6IzhMHwRUP5+87mQl0R4BMJeEpPMMBNHkW48x7aPFBIa7hiVNqRi1dZqha4vpBVXWj6L9R4lRNTNODHASrRvTiVsvopa+/+4myqNkRZqmH9Anid0X9kzgKcCTt/Ou+TWYaTEPTb6LVQ+Smt7bsfucLVRP24Ue3kZhp0XErLpzfp+9Bo/SmzNb9Og+b/vnsXK2+thaJ8dEV0p153Ivg2h7Lu3RRV5tf/drOnfdpmaMnUjTdQ9V6EPfat0Eus6c5bfSPEXt9l6zg0y/K3X7ls0I1j3jsZfjEwv/wn5f2Jl82C/uHrIyVndincXK9lwUgQBiuYDZ7A21jbz9fGqsOrtxUU5tr8V9yb+kn/kgIf1mGryAjic3LsB9b7Vnjio2D7tkTL+6DmLn8cBLF5QiWsFpR0iZWr55B/Cgdg56esSiQZymhLoDaqX2LESltxkPOh1Mz5fUfjqr4G0FjRVplA7Lg7xXFjunaWZrWmUr9+7fCHAW7WJo2l37uT+YNj1k1dO1OWLnqEodTLOxtSgBrJpzoi/sdJiTpMd7XeMqAVrfNBPSXttwAvIeTYeZnOZeaxdrk0HtyYFlLFid1d4jYtRqP964ftB5osvWSsOxr7UM9Hv9equ2oc0bv66Trj1tHTEdRLg8rCjrZ8hjzzjHPusBeTZ3k/7Ic/jxewNPI143nnNrvPjiiwCAN73pTYvjP/dzP4e3vvWt+D2/5/fgr/yVv4Jnn3322nTe97734e7du+31eZ/3ea9amQOBQCAQeK2DmeTh4Qm/OCzTgEPYeYFAIBAIvPJg3JCdd80fqQKC1+WPc8yM7/7u78Yf+AN/AF/wBV/Qjn/t134t/uW//Jf4D//hP+CHfuiH8Mu//Mv4I3/kjyz+YrrG933f9+HFF19sr4985CNPogqBQCAQCAQCgSMIOy8QCAQCgcDThtcNrdXjr//1v47/9t/+G/7Tf/pPi+Pf9E3f1D5/wRd8Ab7kS74E73znO/Fv/+2/xTd+4zceTWu73WK73R6e8C7bnuK2dnMFulZOo1b1e7r795IeIe/9vjU7olEONC2u1F2SlZrqb2Lvbruohyt0o2+h0xGsjIkPXN/9u7kVizs/96wcZYvQKQ9UIa7pQKMtVqPMTdRdrI9QL3j1k7GnGPrQ2OZW3ly4vcv8KXfkx4Vzp+Z1//ky0kFXLPvfp3csD5fGOm/A6Bbqgl3cQQCLPz8c66/1GHTlWwxHR+cQ6oHSaDwlLwmtsruUO4pO8wk/yeAQukoicPZh3Y0+wgdURc4sYd8rGj10SaGwMUhCB4XMw0YHb5QZqxcApS3yoJTWjQ0cBlMCl4w6KzNjNX4oCTVgUb8KpbUqjdMoBb6JdOwb3cK3OTKDs9AnLSNKLHP9wGWepe02EuYeA2O223YJaa+u/RtGuaigbecv1JQxK+WWqqO1ngnFgGYSyg51ekIdXf8oh8jqRjOQi831BC69zT2d9cBl39ac5NoGaGtPo20AjbJTqvCQGl3B9X0rV6OALfPzYezt/kYva1/8fVpIAigxcq7t2tbvrNexu1HHZqNdAY5Ojevh03V1IMKizgsK1BNC/HUzcJN4EnaeUCj9ATRlAcJqDlSSvVGPM9y967ni1xnLqNFbj12LBd0KVddjqF22omy2NP37Os0jMLuy2TRrKpWnkx6BL7/ZkQA6PdXy0bWQCjX667EyHdhXq3Swbn92ZXD5S/uKHXHANLY6J90vGr1tacd5u46T7LdGMV309SuwDrd90MuJeGrrNfZiM+uMQuquPdjSFve7/nH2PKt9I+XgpbyCT8zGpx+KK/uw5qXHR81Sp2r0RneSdY9uciOZGy20DgwM3GwmKktvG6ok11unmD2YO3WSNxU0rIzdklAnEnuv9afYpWkvNp4fF0zynEITpJw1LejQZueIPeeaSstRBwZGRhqq2BPozcc1dbpoo+wyyhnAo1BicT5jPBejbLuZkVNFqQnTnDHvxcgoUwbvk0iKFDdHrAJWzplEAqibva1vGv3X5vZEwET90bV6+4+EJjsDacLyOU7nkNTf5FHkZN24fh242WdgRxe25wq3Hpltup53jb7LavtfK1HQy2hD2Mora6y3CZ2tCHeYVxNwPS9cmous/X2r4bjIwB7arqvHKw0OO++1itfdj3Pf+Z3fiZ/5mZ/BL/zCL+B3/s7fee2173jHO/DOd74Tv/Ebv/GEShcIBAKBQCAQ+EwRdl4gEAgEAoGnEY/149zv+32/72UlSkT4mZ/5GfyO3/E7PqNCHQMz4zu/8zvxb/7Nv8HP/dzP4V3vetcj73nuuefwkY98BO94xztesXIEAoFAIBAIfDYh7LxAIBAIBAKBm8Vj/Tj3X//rf8X3fM/34Pbt24+8lpnxd//u371W/+MzwXve8x78+I//OH76p38ad+7cwSc+8QkAwN27d3F+fo779+/jve99L/7Un/pTeMc73oH//b//N/723/7bePOb34w/+Sf/5CtalkAgEAgEPlvB7OgYgacCYecFAoFAIPB0gBF23msVj01r/d7v/V689a1vfaxrf+iHfugzLtAp/OiP/igA4Cu+4isWx3/sx34M3/qt34qcM37t134N73//+/HCCy/gHe94B77yK78SP/mTP4k7d+68/Ay99oUNXgtZvToM0lDrJ7SPFp/9Oc9dP3afZkSmtVFXXPimd0ILHYEFZ98LQHBPy1/DaaVx8TImq9fG85pLoo9Hoi9gmmLWbgOBp67XYBpVlt4xXT87SczASt/La9Id6E+xa9Yj9T6pH+I1SE5ogPj7uwQHLfP3sjDrseD0OtbXcdPVwmF4+lNYl/FxutHq1vS/4DTQqMssWDtYGU3zBe5e4i7MstJNaPXK/ZjpkXjNGdN+8PolTa/NdEWsvKqZU7Wiyff9uh21PqJ9J+mZVh1IdEHqxEgZ4EKL8Wh6M5xkzHnJMioEzEnawuaWtqvVw3TnFn1s34/oSxC5OePuER2PCtwqyNu5XV92GeUqA7PMN9oUDO78zIS6T6izlLFpgJxX8FhBc8KsmaVJb9L2b2Ooqh4LgLyXNqZRxnvZ9rqaZMZiTDlY3U2XpLUVcW8XBljXOq6ESrr+2RxybWLzva2/p7DSCVnMx9UaAwApMVJi1NQXGVvfLN+D7NZ6KSv0Mq4WDVdGr2NKzF0TK/XxHwi8Wnjq7DzbJ9b2j01wr/VG/TtVkjV6pV+51ipt716PdD2Nqa8NbTto+4xoMTG6NtfjGQOfOboe2aqYjKX2lNM+btpxTs/NayYvNEhtjUsn1lG7TO3VA7uX+33rY7B+8eesmLbPWDtWraeWfbEn2N5Mrj1ah542rI5rxTmjgFy93R7YNee6nfBYOGGbrm1dry9oxWfi1s+msUaJelu5vRVA19R2ebJLkwkgNYW6drBqmmUWjV1vEyS9UcWoReNWM8sQXTJn87XRzyQaaTZx4GyJ7PTmRgbl2u1Z1ke4muS6UVKsLGlxAnjGUjdYy5tmEo1AXrY3Oa24hR2v9YVpKrt7GGLXsNmMPj/V+a3nBen2hNt3rvCmi4cAgDsb+UPIVRlwb3eGe1dieF1djSjI4JSa3dTHqvaN6T9OSXTnANC8zJtmsefsdtNRPqaJbnO62fTa/pV6n9cNULcsNisAjNzsbiKntQwAqgts6+difD1qPvhnrmttQEvUL07WRjqOQIuxdjQPOBt31SbtvQ05va8eprG4bvEM9Ij6Bp4KPNaPc7/5m7+Jt7zlLY+d6K//+q/jcz/3cz/jQh0DP0K18Pz8HB/84Adf0TwDgUAgEHj6QPEX1acMYecFAoFAIPC04IbsvPg78yPxWD/OvfOd73xZiX7e533eZ1SYQCAQCAQCgcCTRdh5gUAgEAgEAjeLzyha6wsvvID//J//M5599lnUWhfnvvmbv/kVKdhNY0Fn9PQEVrdXR2loPzzr+YXLK/PSjdWD0Nxd11TVTvfT+zxlbnVtKxv6dY0i5l2qvZs6nfjxmkn+eu1PLigf/QCvfZ3N1Rnd5bmFoKbu0l4HRlZqQae2aibHKJyNViwVowqhwpp7tqMaHqvPUYrl0brRgibhXaoXtLlj/bimV+jx5sZ/3R8njBJwxJWbrQ/rMV/rw7J4msGS93F9/u26RrdcUgkspPmCJWFTX6kkbV5g3cYMC1fPg6tbxpLm4MtBBCQWyqrRIC3NxH08Je7tZvOvHK9mpwovO5ISd9pFpkWZGnW5oM/XNp8IVBlc0OniPj/tfys7LxoPzje+0y56O0DrbTQPkvJtGMOmYLudWj47AKUSgAROSsnMvTCUK3hg1JEA5kZrxVlBGiu4VFQeUMoRnjdDaOSFQEprTXudf7OVWekhY+8nStxZYa5ORn3y9J2DdgHaX/NqJZCnERn91Zf0GJ1hkRYOseA89Xcy6QJipFSRjAJ1hKJ7FEfz8nl0Kkn7i6UfHMfWGKXM8OOW4RUAM1Bv4C+qj3CcCjxBPA123kla4DG0sakTmglcbQ/piRxSwFactuvSdzRZqiQ21qPmhBl0LwNiz6z2nkflo7Sstr9Ws3UPbaxu0zBI7aoFrdftC70sgPEGF5S/I3av23Z6fczmPLKHkV9/eXnO7sfaxmPZL8l/9+XwZXD1Pzme/DAw29DZ+1ApiyXFGsv2OtVHj9H9tCorQew2WsmqrJVJ2Gx69L6m1V5k962lYoy6a7aelxmhqrZdo/tyo7VyVtqjUZSp9w1VFvpmOhx2R6mGrR603GudrEwdgERqZvsxZ5dWCA0UaBTOlr7VP3XbZGGvahmqUk4T5DNXoXGSy4eTPB9hUzFsCy42E26NewDAWZ5RQbgqAyqT2mu9XkQQKm0SOi8ApIGRcpX9vCTUKaPu5D7aJdAsdh3N8lxl0iVU5DMVtPFn9kfvS3RatrfpM1A3jDpKPWC01ixSIcdw3bOVPFtQo04vb7T7D+3vx8HimUvzW7wfu2f1GHGQ7WK9t8aj5bjyNy6elfD4tuYrgBuz817mfvU04mX/OPezP/uz+At/4S/gwYMHuHPnzuLBiYg+e4y2QCAQCAQCgacMYecFAoFAIBAIPHm87N9ov+d7vgd/6S/9Jdy7dw8vvPACnn/++fb69Kc//WqUMRAIBAKBwBMCQ51YnvAr8NpA2HmBQCAQCHz2Iuy81y5etufcxz72MfyNv/E3cHFx8WqU5zUDcfc+cVIpfgeu7EaL5O6palS7BcVw5e7col6huw4Lxa67dUu0r/7Xa6MR+ohYLU2jzGl0pEVEq+qu8WWHnit0SFc9uPDw/EGUVF8/1sONOknNLdroDp6KeCwykLSB5E9Ks7uuiMfKd8wFflElH1EN6K7cvn2wOr9qknWEsAPqHpPSc48VcvXCsXc+rOSxtseRtljTa9Zl1XcyHoenBvqxtr7/SDrH6laz9PPC9X8dncw+J4t+xfInBE+XsLIYhdbutf7zEYmPFaVqH6wnotJnF+1vdcp62Sr68dpdvVO3JQ2Zw5bmav4vMug1IWIwuUidAJBZ2m+oyGPBZixtk5umAUXTodXOZ1Gxau6UEQzc0sxjAeeEea7gDYGVurGMyAekCS2Sa5qE8pCK1VGvTbp2JJ2qvo/0e4tKte7ztm4tmkKoH0YZI25ts6ijW2dOww9w1w+2Pms67ELNkVJVrEB+rh9ktV7rXLYLerjLr0Wk5eXw8GmSXZ7wRGmtgacbT4+d59ZY4HCd9mvVal+QuW5z2Basl5H52j5Yp73Yb/0Xu5Z1kVqWmYlwsMe4dLv8CjfK4tHrV2sxsLRVWwRWAkyG4mT11b5qafjqZNuPxbZr1K5KPWKkK1Oj17k1cbE2r+yStj+YZIE73trjiB3HFRopt9uHi3r7Mq3tNF9vT4dd2XZHaZA+6SM21iL5U/aWz1sHk43RFvV8/SDg73M2TRsGFfJM5Nt4UdjVu31e7/fH7mtSH3as201ErHmTu35Z3jZG7LmAEhgVyGlhXrFJdFRqzxONtmnjzo558OoFNAmYNt9WY6LfR6gltefJYtRtp8/h6b5Qm9EiiO6rGFh1JuxLlkitl1vsr+Txve4zeE7SzRoJNamNN2xmDEpxLSVhIqDYUuXaotl0ey3CXimuOtY5A2WUc3WjEXiHHom30VstIu9YgZGBXJEGx4u2fnA0VFYDiYhdmyztRouUewz8iOHVL7R3OkiMFvn1ebGYf36crepzMi8iibxdIZFwvXTSGjoGb4BlGngN4mWb+//v//v/4r/8l//yapQlEAgEAoHATUMfHp70K/DaQNh5gUAgEAh8FkN/KA0777WHx/Kc+5mf+Zn2+eu+7uvwvd/7vfj1X/91fOEXfiHGcVxc+yf+xJ94ZUsYCAQCgUAgEHjVEHZeIBAIBAKBwM3isX6c+4Zv+IaDYz/wAz9wcIyIUMqJUImBQCAQCAQCgdccws4LBAKBQCAQuFk81o9zta7Ftp4CmJ7FStsAwKHmgR32egQrfnvTJyFuOiWLJHza0Lwt/xYC3GeGZdh17yqqWk+cVRPBtNo8z3+lfWH6G6zadl1D44QuxZF2OMql921idcv9hbK6xsrnCNfG809FCk4a4vuUPtxJ3v51ejBOk6Qd0vRqXkq+0JEyHvQ79bL4uts4IK9Fgn7tWkPlaNkPxPOO1M33m+kl4AiOtsmJhnqEN/Kiz9b9SRDts6FryLQxfiQP03mjiqZNt5DMI9NOcTo3ibq+17E2gYxtEIMLNX0S0wxh1WXjRAf6glJ+mR8LbZXV+G66bkRS5kHL7rX1VvPG5C/ICZcQcb/PCpAYSIxE8pqrNF6tpPohkgqb5p5rz6bpwmg6cJQktH1FBQ2maSfn0qxjVDV/Uumac3kvnzlL31R1quGms4dW39YeaVWG9XrWOmi9WKimiGqSkNcCPTYej+j68am81lmuNWVcMqR9wdR1RZdiNtfk4db86+Dl8A7nM47X91UCAzdEPwjKw03hqbTz1FbyaDpgNudWe3g/2Wf1tSLXfi/2aRAO7LB1GRZpLLTw5EVgWR8TtfuI3P64qJi8mi7beg1bVW+xFB+x0ZpOb/Lp6TVJFm2zxQ5mtbt2oTlsIm9w+4/7HdjsAkDtguzzO26nNduu6r5e+/EDu81lJJp8JO3o9aZc5zSb7cTzwOKZwN9uZfV7mbMXFybe2u5fF2NhW/qTvLD9Ds4tCrUs8zE9PtEBhGjAroW+3Fj2ssiL4cVY6GYv7ID1HLhuG7D55Pp1MREt05pkrLj5TZWAWcZB09Vd23DHxqur58JGNWMzYdGkfl6b3lhVe5PctUQQbXDfHVkKxJVwOQ0Aztqpq3nAw6sNpssBVTXnaFINvWZj9tITgJxqa5qUKwrldh4699IM5B2QdlqEvbyoSJp1pK6nDBnzZcuoGwYPrGUWe4+S1IFSFc3exboJ0RGuqxb2c8FXgcQe932yWBtt/OhrYbMQH1kEV2U5uMSMzcNr18+HB/b82tY+goPnPpfWwX7zRHAzNNMICvFovGzNufe///3Y7XYHx/f7Pd7//ve/IoUKBAKBQCAQCDx5hJ0XCAQCgUAg8OTxsn+c+7Zv+za8+OKLB8fv3buHb/u2b3tFChUIBAKBQODmwDfwCrw2EHZeIBAIBAKfvbgJGy/svMfDY9FaPZgZdMRV9KMf/Sju3r37ihTqtQBOSmU64fG5cPvHyg0dOHDlXbpuc7+GE6g6qp+5ByuFze73bthCTYOjvGE54pO6F1tajdbqyuFc6BsdkUl9ll3eRAdu3u16Twc5xiVdt0HLj1FHgFrY8+VtrG7fVl6azU1d3NLT3MN82/1GL5B2w2FbH//q2mXp6m7lsFDhIHeuudE79+Uj42RJW3B96d35WyHQXLsXNAnW/Ox2zwpwYd8bXcD1KVXu45R7dgdUi8dZLY/RMA7Kzo0/0aialaTrGwVlGS59QcumPu4aXYXcRFtTFkn6mhY8llP+5OjzRKkqbOMqy1yHhoGXebWcM5yE3kxr9/V1GzmaDes85MzHXfbXcPPzOldzBjCXhGmWzOqUQHMCFQIrp6TqeEgtXVrSabT4tbqBlhmc5TurCz9VCI18Vlo59PPE4AKkQeYjABQre3J19nQHT/NQirpU4GRVW3QnIrmfEvoY0fXZ1qdTVPYFzbdNAvfdDR+7lpmQiMGp9uvttU6LacE6k+vYTvW1wue7uP90/RflffLsg8BTiqfGzqMTNp6bw4817xYb84lrbO2wdfAaGtOConhd2ZLSP529dpKK6/fa63hFtnb5PXCd1jrN1XeTseBM4KprvjNX/bVURUYBwFI2Qm2yxfae2namshi2Fzh7aA2z73SNXmzbZq8cu9c9TV5HT13Q2Pxzge4lR58NVnvxcU2YE9V5jPHYZHSYpRzJG4CrhNa24LF6wpn4anf5ZyAGtzY+GFpMoMpLW64l+PLqdaquZkNQ7eONBwIXdrYkFv3R7KBHpM+r/uJmo7pnDTabyaXWZDykHw6onO0aOuImQyhzxtV+7HZeTZimjLIbgKuEtE9aZy0nU6ce67HKhLkkEMn99YgtRGbnKb0VEIpr3jNSsSoxaNPLzxngkcHbCowMZMkw6TMAuX62erPJM63bKbkHFG3ntvWYVFF61Pig66mSbs1rNj2Te3ZoySxprrx8DliPHTvZxkij8R5ZNNePC9esC4HAY/8490Vf9EUgIhAR/ugf/aMYhn5rKQW/+Zu/ia/5mq95VQoZCAQCgUDgyeCmQt4//iNq4NVA2HmBQOD/z96bR1t2VeXi31xrn3NvVSoJCW2kCYlIGiXCI4AKPxIHQpQooPiQ5gEvhAjkqYQQ8lSkEYOoIAGkSaQH6R6tyoNgQAiNKAMThjhEuuBLwCAESCqVqnvP2WvN3x+rm2vtfW7VrVTdW6ma3xi3zjm7WWuuubq5d63vWwqF4tDA5mgLK3aHPX45l3by+tKXvoQzzjgD27Zty+em0ynufve749GPfvQ+N1ChUCgUCoVCsX+hcZ5CoVAoFArF5mGPX8694AUvgHMOxx57LM444wwcc8wx+9MuhUKhUCgUm4XNWMamS+c2FRrnKRQKhUJxCGCExq44MLAuzTlrLZ7+9KfjK1/5yv6y54ABR80otFtBA1lnImtyrKGZFBJD1LniWtui1T2SGhRCyyBsJ0+VNlO9nbQ4EEU1ijYT1VvKJ8680Ohgi7y7eqt1wlk/YLj0tdomvdlmmse006ic8x1AndDEEj7JPoppJh2ErAsn9K+AoAWW7k1aGJWuS1ueMR2nWEetHWyRNSvk1uuc74+6bq7JaEw7IPk31WtjV9Kbq/wmbRN1lw1JN6e6peYaLveTEde3tubvtX4Ky++i7Uofg6LGWMdgw0H/LvqDk+xG7E/UodYYo/E0qYs6Dg5V26nsNOkz5mWFFkrjf1nvFP0hNUDIMpgZmHjw3IJzmys6K2E8EGm29SS2bmcK9uR7klbLSDGkVgbLreE9DeuKCd4ZzNCh74MxPLegWRwjKGh7eBfPecD3ZlQfk5nAXhTIMriLeiqMoPUYtYLIlfZvHMP0ofxmHvojEM5nLSCLoLsXNefIpoaAUiahEwMgX5v8HuwP9cRRc64SDaraIOr2GtPIGivrWbo/ci2NaVPJcSS3k8YO2Z/S7z1EHityOhpFKfY/DqU4D8C43ljqt2sNG2IiT9JSraRWOknp0mZOrdOrDCgDALcnOWs6cdZpEvOO+FukCZeKWGnZDsrKKbc1h55KO0+MzUELlIPsmRg8aSSOJaFnSo3WXIl3SnzENsQUVbzTxkxVuRlMVGmT5tpLY7bUrWvH7TXKPIjFs1FDO7I+ahPntf6X4fzY8VyAJl/KdRbzSXpz1c0yEKJmfhJlMvVtbAE/YXCHMLeXkDTM4YbhDUKsWbUrFr4Yi5O5XBdtDc25tPOs5wWATciLLLJGbPUMln67eJ+MLwyCLq/0VdQeY8R4x2CgX8Yp1pT1ZGOasZ/KNgupnYhoQyu6GOOSHK/Kc47g5gbMHbLktiNwb4CVGO/FE+SDfQQOWnuuxH9uHv1hOMdSrY5tHisguq9nmJ5h5rGvWcp9NI9jBuCOYSYu65vLZwz2CHYk/zsato3kJhtjzjF96aQjbqg0bJTLeExDc2y8avw+dlGI87iMF1k7OOpU5wvLWMHZRh48dwTnU/WztqOklwukcZ4Ce7Fb673udS9cffXV+8MWhUKhUCgUm40Y9G70n+LAgMZ5CoVCoVAcvGBsfIzHTHlhk2Ix1v1y7sUvfjEuuOACfPjDH8Z1112H7du3V38KhUKhUCgUilsnNM5TKBQKhUKh2Hisi9YKIO/U9YhHPAIklmsyM4gIzrlFt966QGLZvFxim9bVNqti62XczXGmuJQahZqFsCQ7J8nN0nwbKYIuUjm9oH81VFuqKI/RMMNxKXNzXV7ijUwjy/mmZbZyya+g6o3tDp0vSbQ3cU3lC0Z5FWzC0njuog98OZeWSgf/AKansDwdgcpKfaS5imXjtMZL+EIjLWuo83Lk6MdER5E0j5BhtMVyTXll4S5JSxC+GRxPtkh6aUNpGFA2ZH6S4iHv980q6PTDhEX7qU7IY/i/FZKKIuyvqASprZpgNyf6jClb1AcaIwMTH+jUnsEUt3mnUI95CT3CeQB5ibuk7pGgNrIjoDe5/rONJtK2iWGsL/RUa4IdNixDl7TKTHcd2c6eTEiHDMM5Aq+aQmVOVNFUNwP/NUvQq+XpyMvd9whpHPDBWRWDk+PK/UhZZQb61Th8rxpQH/oR20hr6MX/uzgTqPHctiuCF3RstgxMwvnUJdPY0vaN3OfjX7I/MEYiLSAt8698lTgaVOpCLvMHBsfYU2h/FGkubZpENd0k3Rdpu+wpsx7W/P86JhAzfPK1hOgnowu8qPwNqEeD31wf4CFtLNM1Mq1inKmhUOwPHCpxHptIxWppZdVFa6VQbizyISOdNcUdkpY1No60MWUai5o0MwWsGXMo/UMIcx5QxQ48GH92DymLMlaudJGkx6V8EjWMoj0Aqnk/lZFEjJelEqKvUrzmJwhPLJLF1vqwYZABCDRFH2MRI2pMUg9z7FVi4kH8Kuf2RTNJO0c2Q301P6w1l8jniQXlG7RZLgcDTbNKqg4mUnuJ8SRnaRDAdwwTKZ5MKHFex4HWGmMsGbwxc4gx4rNKJV2SzDI8mBsLnRUDGQyKzzAghHk5NiDqAo/TI079PQqtVT5/mGR/PBhlVwAAjkJ8mdIgArkQS7CsN9EG03OSjFezhBCivE0udyloit0o+SrbSlW1ZHgCO4BggixHutwRaG5A80BpzVTwNE5QPOYoy8p4IgAWZHyRTEn9MMqY+El4zvJd6Wu5fXDwr++KlJB81ks0zvRMY0yksScKrSdwot9GWmt+hE40ZYrtMOVJ5TkjjSFpbKl8lcaO9NzZPgguWonPFOaxNJ5RuTX3eTF+CXfkL4PnMEKMd5NRwsbWFtG2isRMuUzjPAWwFy/nPvnJT+4POxQKhUKhUBwA4LEXlIpDBhrnKRQKhUJxEGOz4jyNLXeLdb+cO+200/aHHQqFQqFQKBSKTYbGeQqFQqFQKBQbj3W/nAOAG264AW984xvxla98BUSEk08+GU95ylNw5JFH7mv7Ng1sxI6nYslrXJi8eAlt2pmoATkqy6ur5fHyIrGs3kYqQFoC3eyGmm/JS3vLOtq8uj39Ncto01Jvn2pfXBOol8N8FoIRaApO7OYj809pSqpsXCLuu0JfyHSIuNSaKfrMi9XDLlBa0zL2tASbbPHDyFp+EITfxZL+lj5KgiLKaSl73Mk27LZWlqFnCgeJ8xLifEkwto12ubWoq7wrVOXjshQchgN1szlHcTeoiiIq8/ENI0JSXUwxqaL4JLoBYnuJtL+crWirmDCo82HXU0/lvnl0hGFQJysonutN5FAGSitNQuMjirtLWQbmgZZZ9UMbqag20QoAx3GZvqNC+RFL+EEEdqHyWNBNyTC6LuTrewOeMnxcim8iXUHSwBdC+Du3j3bH4sE95T6OO4UFXkA6JxOMp/pAVeBZKJydEcw8tU2OO5UJZ80LzaFqBInqnKgJnRc+DtTZREmQ9zJR3JUXYVcvn2gLIU3KNNKWHyLLXA6Rp5puW3WP1G8CFWGPwWWX10znGFwTrstjZ+LyxvHKM+V+nXfhkpQmQaGpbJe7/hlxzwKKw4Cq0ZyrqBYbBt2g4VDHoRDn5Z0Ax7ZZXTRmjP6mtfun3BlTUNXz6VZuIc0LMWao4p00d6cxRdoUaf4cqYpV+JdiGplVNSY1dCzhB/KUpVXGKISj5Y1zGYOAjiPFDoOlGuQAm/LqY5w3j3Q1KuUGSjgcxuNE3gzzZkU3FPWR5tVC9BzanWhqmcLZxM8sqjd8b2O0kiQnE9aYrmT8OIr1Hk825DqJMiTAsJ5kHBybGIld2gGCN5xDteQT33HYzb6L8iNtn/EEn+R3pGSF9IPoa3IHVIqxbZJUoRgPGuvLHJziTUfwBmBLwNwEqnKz83uQ1UB4lkgxZcf1bqIptjGR62wI7ENck2UwxPPAQJJCPtNEv+Y4utJriZcl20w5xqnLyTCJw1NLoqrm5B0BfXnWkrIg4VkxUEolZRfGwDsPA4NEwSUb/MHTaBYbOEeBvprq2lLsd8HIICkUY+JIOycXfMhdKThzibfYBzso2eJEu2jjPUKR05Gg+prR9h9jPVo0hnMcs/KO1hzptZR36m3zHDzTibzlcx+A8iyx0L74GZ8vqw1pJVd3U+I8aJx3gGLdG0J88YtfxI//+I/j4osvxg9/+ENcf/31ePnLX44f//Efx5VXXrk/bFQoFAqFQqFQbAA0zlMoFAqFQqHYeKx75dyznvUsPOIRj8DrX/96dF24ve97PPWpT8V5552HT3/60/vcSIVCoVAoFBsEuXJGcchB4zyFQqFQKA5iaJx3wGLdL+e++MUvVgEbAHRdhwsvvBCnnnrqPjVOoVAoFAqFQrFx0DhPoVAoFAqFYuOx7pdzRxxxBK655hqceOKJ1fFrr70Whx9++D4zbNMh9OYq6QATtAQILLYLJ1RyFkKKgOLW0Wwjz13qegy0ijjriQVNh6CvMPpeW2iDBI2HeJiQ9d0o6kZkRr3QnmCDnFfYAjym4ZPOSdFuaHnw7XboSRtJUv591GcYleIjDluxm6BrQFx0RdJW7km3iTyyNgT35faBnFXSZeEmr1zgUn4e8X+lWSd8FLRbULaIB4KfKv2BJPpQtESIEcogdVCSbSN6JNKmWhOGak2qRoMl6/xFrZDqYhPaXLI7awm2DSq1vZSE1AQROh/oGsemdGxot2biYW3Ysr2fZSNCgQ3DTh1s53Ma/czCzyy4N4BhmM5jshQq2VoPz4T5SgffaoaZ4EiynPMDAO8o29LqyrHh0FSFziKLvjbpHIgYzhnMJjboaCD0paSvlzVShPZg8f0IxjQ0gLqCiYWGUPyHSIjSDNPiqJdB89AQaB40SNgg35c0R8gFXZbcdqUZPo4t0fdkAPZRe89YeGdhhMZa0YUM2iRZMia2QTMHzJzAUw5tbaD1xtVX6b/cZxf8J17SZhnVxxhxVzI4+aq9PucrtDzLGJD0SITuCHEYC1otElmslFUrLCKlabj0QzL18YH2nHSX4VqXbz+DAd2t9RDGoRbn1UNtMxiN9YPcb9uxpQQZAwmkMY1hSvEP17pzsv97CqbI+TvpQaGZi2Tarb4cUGkoS72jPK0t6vOMrINazXsyrUZ/q8SNUXdugT6XcUAKY8hRra0n5i3Th3J7E+ccShkh6EhVMbiIYQ3GdeeqWK/EnIBIByOXt9OaxCAulQ2riT33ZMHK2DVtw4ptozoMhHYjdHLlXJb028AMdAacHW2i3nYK3EucxJOgCZy1fmWblnq7Mtb2JDRfxXMJACPbYltEAsh4GBt06AiASXpoxoAM4MhEnUADpGcEz6VdW4A7D5rE/DoX7WawN+H+VEaY+BwUbfcp/hsWkYTrKOraronYDpJmbtKHzvFRe3vua82zn4uxfKprEWKE+o7xHqFoDNvgB1CIlUGAjTGwsxaOYh3NGWypaC5aZD3q9Axr+ujHnmBXAbdK8BMT9SRTLG1iPZAoX9uBuGr/FOP59OyRdZAT4rXcHM5xY3pulcOniO0GcbonkOfs+yrOy3nKwSTeLh+vRuyrLxYnk+YdC5+kBEW/gLhko7BpcZ7GlrvFujXnfuM3fgNnn3023vOe9+Daa6/Ft7/9bbz73e/GU5/6VDzucY/bHzYqFAqFQqFQKDYAGucpFAqFQqFQbDzWvXLuZS97GYgIT3rSk9D3YZXLZDLBM57xDPzJn/zJPjdQoVAoFArFBmLsf/Q3Kl/FpkPjPIVCoVAoDnJozHVAYt0v56bTKV75ylfiJS95Cb75zW+CmXGPe9wDW7du3R/2bR4WLSdPS7kHa2wXIC2vBYG78V4gl03nJf27WyotTXIoy8gDr7UUYMHyeRZL+BNdyriwqTQlamu8bq1t3UdpXulcuy4zFSlRSRKVQCxJZstAx2G79p7gvclbeJMD2AHehyQWsP5GClvT1wamRh9K6mqmMKYLxHJkuaS8bKGdTlL2S+u7RZTWnF8qU1suLiZAUDUTBZLG0hQrpiXTI9+Xtj6nJs8q/0KlIxuXm0vKgilthIhhTKFSJ+oCu+AfO/GYTntsWZrntr2rm2CFpvCRomOnDstLcwDAUtfDscHNAFZ7A/S2bMOe6AFpKTzKb47HxpaGJ7oGx/aX2q0xYcm/iUv/qeNC5Uh5Zt+X/FNdpmX/txhrvBCpaVGBtmrmsV/0Ydm8bLOZIhWpEOQjzVf6JreDQHPpJi5X/YwAvyqoHpLKbQHfhTX+LKiZ5AL1yPcEWATqgB0pX17eL6gwkrqwBt1lkW8otduqbIlegWGDGKNbxGPkA1WCmXJbTW0tIfRlkVlbd6I/caRrgCm04TQu+uH1IyyhUq4NpDsoDm0cOnEe53ExgfM40MR5A/pZuanMrTKhsfzEJWmOTHOIpGKmy6MUCoPyfMXxn8TKy/IE0hgK4/2AWhttGEXibRWW1dD8dpxbNO+l6/LYxZkyl2m5sfzel7K5KMORYtqBRImIh+DruSzHV20Bub6mFCYelpTWQbCEQaxf0W7HfMDNeYmc58g5EbbXtLk1ggv5LMLDw+P3iPmMAcADXaQjwoOIyrxOaKR2QoyXaKep3og8yDBMjAONsNlFamuaT8ucChhiOB/ifJ9kKBDq0aTYE8jUVgCA9fkaDyNo6DHRxNMzIa4h47P9tvOR1irsY4AnCOXu4xzdavTIukmnfMiPUHy9qKpK24zpNHTnQdoiVqrkP3z53cqCgAhwsZ/lWDl8WusxmTh01uW4ZW49ZgD6OYGNGXYbA/gu0smFS0wfJEzsDPAzgu9MpvYyR9rw2MOZiXUT21SWlTEh5kvtCp5r1YAcQ430Gw5pZnpryrai1Tb1EuNC9qGuyfDCYUxiTDogfQ6fg8tgHajRexC8JTmUPXz2VxzcWPfLuYStW7fiXve61760RaFQKBQKxaaDxvX99jN44ZsDxWZA4zyFQqFQKA5CsMZ5ByrW/XLu5ptvxp/8yZ/gE5/4BL73ve/B+1pp/Oqrr95nxikUCoVCoVAoNg4a5ykUCoVCoVBsPNb9cu6pT30qrrjiCjzxiU/EMcccAxrlNCoUCoVCoVAobm3QOE+hUCgUCoVi47Hul3Mf/ehH8X//7//FAx/4wP1hz4EDwfvOOkCCeC+3Vc46HILmX+lRSC784myKrhUCB5+bre4rZN0NCltoZ20szlve50uljoXQAUmcfxhk/Y5RXTTiqK1GJR2ZrjRLnkvaIiPXUEwn6JWJAka7gsYZgJ6zVh/3BD+J5jaaTFnjTWjpSV9lfzFljbKk9UIOMHOCmUetExQ9F6kFkfToir6X8KXUKiHK9iRdtnzKN+kmf6T8WvuF3eEHau2ZBchNh1C3x3Sy1YRp/ZXMTLZkDTYUjbVY6KT54T0FTbdKgy3ZzZhOemxbWoWNTpgYD2bCasyz6zyWJ0F8/LDpKubeYt5bzFJbSE0kps/egMlnLQ8WW5UHrRoqul7Sp1I7EsgaKJZ80JyzHmyDQA67WG7DwQdS2yXmxXsiEzHQq1jjhkVpprw9QI5ALvjfuNKusi5hgo/XcfGBHM+CRghgO4/l6Rw26SABWNkVpgepxQgEHRIAYFePB6l9J/3G0RKma8ZOJturNhnGQYLQMWnHttTX2rbsKWjeCZ2W9v4x+9JSf+ZS2ZT6XR4PKLR7iCX6ud2J5FJ5uL4GiHXcjAMDXTt5fCPfj7RzgOKQwiET50XkObWNx8BDfah0TSvstQf9pRqf05yUYi4qXTzFlCFWCply0t5lALbcM9ZXs0ZTEydlG8YgdTVT2dOPRvtp9N61IO8xJcYDcdQZC87wnuEc5ZiZnBg6bfyLY30ra8Vxbhnof6X4L+rZVfOHaWJeMb4PytaUW85HeX6snglokJd0aaVrvAgjzxuLMHZN0UaVhsgLEJ814jxngo8JELpl8cMRCAY+PgcRUahDAMZ6dIYx6RyWJz0mNgTSNuq9uagpB6DSo/NM6J3BzFnM5h1cDH6ZKWsR+kYOjT2V+mpjpVS/I+0+6d0REPToshYdARzaIVkE/TRf+lqr3Vg53IfMWk3afPPYbXHe50X1ybWOdKVnKdpvbudAaYMUYsOsmczIWsrL0zmWuz5ns2s+gXMGPXXhfieef9KzgyW4+KzjhX4wOYD68NzEc4K3JvrYD8acrNGYnruS5nOX2pwvenNjIAZM1EyuAqTGL6KZZ/+NPqQ2n2MQzxH5WjEMLLyVpGHNfYtuGms7GwmN8w5IjMmSromjjjoKRx999P6wRaFQKBQKhUKxidA4T6FQKBQKhWLjse6Xc3/0R3+E5z//+di5c+f+sEehUCgUCsUmgoG8enAj/xQHBjTOUygUCoXi4AXzJsV5ulpvt1g3rfXP//zP8c1vfhN3vOMdcfe73x2TyaQ6f+WVV+4z4w4IDGgOcUlydQ01W2W366plGmKda0OX4LiddPpdUbnaJHzoVBSX68vtvSltE72gA7SUU7Yc7uvD8mBJzUpULk40wLZjtWVNXw3nZfvtqvpsQ6TKZkpqPE7xPmpoqr4r6RAVKkGmmBqOtIeSWaIykEemt7GJS9Z9KCj1gdJqZk2ayXCmTNcD4pJuudW8oPxmZmWktLIVbnKIaXG92trEQZJiGdsqFxxejjSEVDZZDYOmIuqZGyph/t5S5hh5O3uJis6SlnsnX/UEtgbecG53vrf5HBGBvQcRsGR7bO3mAIDOeMychXMGzhkQcaZDLHc9jAvL8ZMPKNJ6GACcgXcMwIQt1AGwM4F64cqS9EQ5zNTpkSXtzARDkd5pPIxl9JnyHQsd2xib4mjiSH8wPKCAjNJJWuePrbiPVA40/bdQbyjUZU+gyFAgh9wWU7sjQcvIVB45RklziNFZh63TefZ/7wxWbaBzkKDNAoHewLakm9p4pmPLcle8gNQ52jEEuR/JNiadlCm0rePS2GQR2rlkFHCkeEh6whhIfCbTOb2gKj6C4ULJb+gKoxTk+JnoZdm0sbFQ9i9xXN9XKTYDh1qc146LFS1KnpPz5lif3904Q1z+SzzFKXkuHdKhylhTEs9zGsT4IAaKTGkd+6/3PRlPRuOIGOOIMSnlPyopIMsxmgdnXwRaZZhg/ASgJQOKA2aKuYCYj6S2WuSBt/ih1B2JOdk45Ni2nXvYEryNdgg5k1ImqmLKaiCvAmUxF0sXtFNX9Ofo8QbVfLag7kjwOBc2P6ZCXUV4Pkhx5OAZgynEHy7JQYj2lmQaUnwbqYm+8wB6TDqCNR5bJzMAwLLtYYgDfZUDtTXRWz0TnDcAOswjZ9LHOvPOxFhoJFbicB6eQnw5N4BLMX12SmiblhoNnDiXMxWVnlQXJk36lPsme1rYrWsJoHiVjCUal1a/2/FFhElV+20lQNKQIZ4DOD6fBMcRyHGWPEnU9856LHc9tk1XKzt2mikAwPQIz0Cpv0V6uJuE+72lHOf5afOcwqjyl3T9EPtEO9OzUKS1Sq+yp9AnOD67Jgmh3L84UFuroFhckGwYxI/FX9V94pNZtLMWOdYfpjmwQ6aR63ONIK55dtZYTyGx7pdzj3rUo/aDGQqFQqFQKA4IrBWMKg56aJynUCgUCsVBDo3zDkis++XcC17wgj267l3vehce8YhH4LDDDlu3UQqFQqFQKBSKjYfGeQqFQqFQKBQbj3W/nNtTPO1pT8MDHvAAHH/88fsri40B0ygnquygibAEt92RtaVK7WbZf9ppNO+oaDhTuYY7tRLALKgXYllxpFsmLnmVgLSBOO/oQ5bDsvC0ftvLpbgcaHIjrpC0wUW01Wqp7sgb+ooumRJtd69JWRiG7ygXE064I1MeYrkyrY/zMn1JzUv2kA90VrMKWElrtch0PkLZzRUIS8DTLl+yrCFDKn5OdNtU9OQ/LjvGhnIVCgVbrnbbzHWcaRYLnLgIxGCKS/jF0vlCxxgux8601jFKtaey3F6eNiZ0ARuoAbntOgrlc5QpC9O4dt5bQmd85scUmkOgPBixZB1yx9CeQjtwBp59tjdQHCjsXpoosIl2AQrUx9RvR3jA1nh01sNYn3chy1QHSXNJy/Qz7YjG+3ZbV7I/Uv2znOe869xgl9F0raNIxY4+7oVdcqfjeDhT1eO4UVFvY5kmncO26Wqum9m0w03WV9SoZC/bsINaMSp8+EmivHKk12JI1eSRJtxSfMTYmulmxmRaTt6BVxSSEXcTE5QKeAqUCkktGPtfwrxDbRngwo5wjfG57qnQTzBoRuVaoNCpSRzMtvB4uxmktRn/tblowlIoCg6KOK+VH2DRTxvK2VpJZJbSWt1Vzh9SnqKlYyVaGyDGbBGTEQAiIYMi4g8gzlsL+m8Tw+VDbYA3Vo5Eb4Uwaa34dhEan5dd4QE/4UhnpZrWShCU1pGxM43JLKRMIOK4Pn6XRbRh3iCLIHeS5FUMKmkSSROu8k7xsuAbyri8AqHQQuPvhVjHmJ/iwuqZRMYslZ0APJe4HSkuiHWa4mRHMH30fxU3l/g2xdsAwEsER4x553MMBwTpko48PAjGM2beVrTWnk3YydWH2M+7GP/NQ1Bc0c2zjbFv9AQTZUxyO0nVkHYWtZSfcsOu78gUxiwPk2R0Ms+1pAMKviKR9p5gTYqiiPdynckYkEPcTPG5smqvSeaHSmxEzOFZKD3zJP8gxt+RHjyNkjIpru69aWRjUO3WypHK6iYAd2W3Vj8pf6n+S91kb4XfaUyMyPFQ+BXvEbFefP5ItFw4ymXhdtdeKWPS+jEdE+NVua9+xtojjMR7i2npTaHTIXkt0mMDb7J8icZ5ByrWvSHEnoIX7hOtUCgUCoVCobg1Q+M8hUKhUCgUin2H/bZyTqFQKBQKxa0Um/HeRd/1KBQKhUKhUOx/aMx1QGK/rZxTKBQKhUKhUCgUCoVCoVAoFGtDV84tQiKCN1ofElnmI2tdCO2ORTolI/TurGVlGGSCBgBRzW0faLO1eVeJCV0pqd8mtm6udNISB1/oKaHVZxMuqHRKWgg9jVyuxhdS66psQ93cnwuOkqEJGlI+2ijfLGfNuY4By0WPLup2JQ0Sbl9H+6BRZmeAXS02Ghu05XzU9TLzoE0HhO3G2QofSV2Dpt6yj5nC9VJbIl2XdU4Y3DX6A9F+ln5q28ECbRiO+iCt7lelYdFKI/iyxfwg3ZjXQIckJ2LAPup4JM2IpHfmDea9Re9NqL8mT98TenTYNQ1D0nLXhS3uOWqieAq6iAg6DdQTYAnMpmhtzA2op/xXlZm41H32I+dznfFYsj2YCdZ6zLPmXCxr7GjSl0nmIh8TOnYsj+0has2YxkdNnZMvOivkUbR4uqA5R+19TIDn0g6zX8KnNYyt3Rxbu9DIV1wHO3Xwk6DzaKwwbQL4DiPtF/BTBk9iH8xjCso4sKi9xms4+UBopoAR9Cs7rrU4k4aOGD+lvwd6Luna6MPUb7MCSqWRGbRa2LSOL2mPaXrKKszn5FjXjAGctEMX+EOhUOxHRN0nqcFFcoyqvhcN0DGNoN3pzoV4oIyXSWeNwSAjxrKxG4VWaElsJBOK6ac5qz2d4tlcrmYMGxuLmkGNhalB7zfOra1WsLy/+U1JWyqOqVk/K47JvgsXkqnzDZq8yLpbtUYfcrnIC/0sF+I36uOnjENN0klFiL2yrlw81xE8gu6cCHNEXJfcGeck5qLtliBjAcIwBm2xxri/ZuwWNazaRMJcJao4xnictfJETBDjrKDbG7SWZZyR841+89N0zIA7i/ncY7W3WHUhjsuac0yYeYu5s5hH8TLnDebeoHchNvSO8twOT+DexDqN9kW/Gl/iH4paa1JPOviXi+5cTNIYhom6wgCAPl5vQ/zJSZ95UAcxLmCSIV7t5kZHeHSgaCqsGmdkMul40o5L1yS9QstVG2IGyBCoZ5ieoiZxvGluwC74GAA68pjaUPCtncXSpMfNXYzVTP1MwhZw0/Dnp0FjLvgrxH/chVgvaDCW8qZngAFkLMoAJ03IVMb4SVJrWT4voek7UjduLK7MZWlOxLFj7Hm6wiIhOPHsEH5XA/P4PQtQPQcrFAL6ck6hUCgUCkXBWi9RFQqFQqFQKBS3XmxWnKex5W6x32itxx57LCaTyf5KXqFQKBQKhUKxSdA4T6FQKBQKhWLfYd0r56699loQEe5yl7sAAL7whS/gne98J04++WT85m/+Zr7uX//1X/edlZuBuKwYQL3yf9Gy/UgbG1uqPNzeWfyOS1oTNSCzI40HnC1UARPoD8O8GzrEGJVBMOVYLKGVdLy09LfdBj7RDcpy7RHaltw6Wy6LTluUy6XZlWElvdGl4m1RBS2Rm23W07b3sGGZdU5iTkPqr6ChERe6g5lFWgIAP4lbi/fhfjMH7Dze5sIS74XlGoPwE3lkZkmyg22kTsh6SNd6lKXYYol2pios+t+PlOfIsmm5PL9iyDDArlBb663sY5IegW4o2xwD3CdKQGOMB+AIzhms9BOs9MGRPRv03sDNDfzMgh1jZRoe9FYmPTob+BREXLGb2Ye+xonymCmQwS6aB1oGADj53w/JD4y4jD8cNoYxsQ5LXVjuP+mmWI30cjambpySNolAhQhteIQOkba8p8Yl6cBgb/ba1/JUSo+ptDtJz/GRhkCdh+k8fOZOZd5NzjLRCTJVIPpvahwO71YBALOlDt9bnuOm5SX4JQMnbPOTQvuR4wnbQMv2kVpOdoTmxML2loGT23KhJVMf65hCncNy3TdkO26qakAvknmNnK/vBbwz8FZygJHrNNsLUbeDcbHBCIWl7V+jdm4WFtE6FAc9Dpk4L9LlqKU+AQNKlRyz8rA6Ri1cFBOkAVjKiSDMIyEGE/S8RJ3Kc0WdzGA6QXNfq2UhikRy0GzM42osHl4jZRyy1IaY58bLjfGYOOXRxC9MANkY40lnppiykh+IWYh4ZOB/DnNFiuFML2ygSGvt4hwan4jYChqfoTBn2lL5LOqHwEIqojhnML1LClvySTOH5FhMlGXNNtUWNT8ONDeIOKmSgQBVN1K6zlOIpRJ1VNiYYlcyyO2VPOAdwfcGq7MJdsS27byJ8iSEWW8xcxa9C3zTJFniOUhIeGdyLMKJquqiHfE7IOK8SF2uqL6m2Jeeq2ycw631mE4cptaF2DneyExw1oQ6Tn2tfa6KThw8p4i/3CYkBjxYccnYkBPTync0/YJtaK9IVFQg1NccWeaDHGAEDdSvGsznHWaRajyNHWDbZBXbllaxfXkZbkuHfgvBxGecFN+5KeC2RGrrJPqrQ6SyItPMq763UJKFC309ti8gxHi5rtfwSbi4OFCqijBifCivG/sU35nj2MtcZA2quJSbG5uiyedIaaN8Hm5jXWn3mG2Dh+ENgMZ5ByTWvXLu8Y9/PD75yU8CAL773e/ioQ99KL7whS/g93//9/GiF71onxuoUCgUCoVCodgYaJynUCgUCoVCsfFY98u5f/3Xf8X9739/AMD/+T//Bz/1Uz+Ff/iHf8A73/lOvOUtb9nX9ikUCoVCodhIcFrZsLF/igMDGucpFAqFQnEQQ+O8Axbrfjk3n8+xtLQEAPj4xz+ORzziEQCAE088Edddd92+tU6hUCgUCoVCsWHQOE+hUCgUCoVi47Fuzbmf/MmfxCWXXIIzzzwTl19+Of7oj/4IAPCf//mfuO1tb7vPDdw0pG3ZIT4T5JbbKNdQ1FAYFROo0mkFM0q6JEj3JLbnZjOiQ8DClrXeRle6HZzTy5on6diY3ohMd0RfJR8XdgII+hxJl4AxtC/roXEg34/x70fy56gV5tM240Coq2SDZVAntA0afai0RXhlStSuMD1Xx4yL+iQc9Eqor68P27hHRwg7kyZMqw1TawuUn0lvkKVGlyhbTifrGmRRhLLteKNrMOrPtk4JA3+Tp2APYrVkSRJGpWMzqCfR7qX2Rto23RH6ucWu+QQ32ymAoDm3Muvg5xa0YgALzCdhSNo17bCV6vSYiv2UdOdAQvck6pDE+uFWb85GbUUmwDBM1CKZdA7L3RxbuzkMMSadC3ppALzh0s4GPm18AlFuqUMiLk/nKq22NfQ68q2pv2ZNFHFOtH1Yhu180OMbS45RtD7ieMUu6L50xuGIyUq+9KjDDsPN25YwXzXw1mQ/sy1tlQn5v3jYBL1HdPGPuNZIdMj9vdJJkgVh1PoyUY8k1SULP1ayfVnjsvi46hNCrxKV4GODVCc+6Ayx0KUjE9tPm4YUBRrpU8XweK3nYpPU4Btoq4jfbf/eCOj/cN5iXHbZZdi2bRse9KAHAQBe85rX4PWvfz1OPvlkvOY1r8FRRx21yRaO45CJ8xhRL0wOwhFtKCfGnTTd5e65p7I9Yk6VcR8biuNLPGaEMFK6tpkv1hrDRrWRmOrwoY1ZdlOGpDeXdHFLzBWPtefSJ6MeE4XT2Bfb5GeeV+R9RuTTVpcJumZZF1TkmXWcUWIDAKAopEqWwA6grgzN7GN5LbK2aXYjEyjqVGWNNmn/7upljfkhNzlRwKJRVt9IrQaaTE5MSUXbj1OSJSYfu789IdpbivGTtmzR6AtpsyPM5xY7EWK81XkHQ4zeGbj4V82pMlYUeWUNrzTveRL1RjA9ij5j7ZQc46dnAdOFC6eTHlsmcyzZHh4EG+N974Ndvo+i320dyTY8VrdS/Le9Jx3n3T2jybREcNTYwSbEVjzxObYKGswGHMcM2cYBAncG810dbt46xWyLxSQ6bst0JzwbrMwn+P7cYsZTgMIAZGbhbu6i7twyg7uYXxeewbL2Y1uwpqy536DYB1frCps+xqUinguGsNCaBLLeY+s+Tuk3trQxlTQoGBX6c7yP1xgEqy6+qB9L7br0OTLeVvZIs/yCdr0/oXHeAYl1r5z70z/9U1x66aU4/fTT8bjHPQ4//dM/DQD4m7/5m0yDUCgUCoVCoTiU8ZznPAfbt28HAHz5y1/Gs5/9bDz84Q/H1VdfjfPPP3+TrVsMjfMUCoVCoVAoNh7rXjl3+umn4/rrr8f27dur//X9zd/8TWzdunWfGqdQKBQKhWKDsRm7hgEH3f/ifutb38LJJ58MAHj/+9+PX/7lX8Yf//Ef48orr8TDH/7wTbZuMTTOUygUCoXiYMZmxXmbkOetDOt+OQcAzIx//ud/xje/+U08/vGPx+GHH47pdHpwBW1Mmc7Ga65Hru8Jiodj58Q14oJAFeDFdCgAabt6ud1zux13wwooy+vbZdGZLsXVct+Knbdo6TZRphWUYxC0DGSqLBuUrecTfWuQZqFKDOhcSEvv5fJ6QWnoAO7L4VRkMgwyHrAm2iH5DcE+bteLRirdgNrB5ZxcbpxopMQIbcSh2sacXMjKR/pezrtZ/Z7rLPoqURfl8m7y8TsLvzf2ZUr10MOlfS1sXItuaoyNy/2Dj4M9Na25XM+CyphoH+QBPzdYWZ3gZhPW3HsQ5vMOmBmYuQE7hp8HzvG8t3CdC9k2dZZoGS23iI2gvuaL4znLQKYChIMmtk9rPabWYdmGfeSn1mXKq49L6dfjvjr/zG0Ynsp9VlzT9mu5vD9TPZql8yh0E2N9GU/iNQuHLxfrpTfwnmCIsc0GWusWM8NNhy1h+5HLuKE36Lsu0xBksSp6bqTVcsexH9a0VgCBN5QppsX4QBNKfavQIjJFgwNVZZTeGft1pj1lp6DQw1OCqT5Z0MEFJGWMPcHH+40JkgM+UjkIZTxgoNDQ1porcj+V43gz6MhxvKFfHGwvrg4FTKdT7Ny5E0DQbnvSk54EADj66KPziroDFYdCnJfn10QlMrRmH87jU6IUpnEKu3neWCu+SwlLeQ+DMh6iHmcrpKF+MCYKw8Qx9lSx5ta0NxcuxH3ENJSKaGVSRilkI/ytKs4SNDhZDtOOjSm2FHO+iKsp0lm5CXw5zh3t/zeU8T9cX8t4oKKz5pgDAFzMD4hxoZDWcOW+lA7LmDjOUe08J+d9MiKv1nfrDOUG96ZP6Wcx17AByBDYcvCZoKAmqrG3AHcMnjB8koixyPOqnxvMUjycHokcgZ0BPBWmtgnxgrE+sSmzrE+K5cigyNaktidkLsgXuwDAd4CfcLbPWI+uK/IlSzZQW71oCDNnMettsMeEPpLjFlkPezL/0sj3Jt4fxB2yj1Dzl8/Xv8mUOIq4lL+S3En+sQb9ksXK6gQzb7FkwoPTbac7cFS3E8t2jmnX47uTI7A6XQYAmJ0GZh4y5I7zH4BAqzUMMqhkmDJSecf6dOqEnupnpj7QlttnsBDPi2eLsXFQjsFV4Ds0LduQHpjS36Jr5fPPguuyREs6z6LfpPK2/Q0jzanioisOdaz75dz/+3//D7/4i7+Ia665Bqurq3joQx+Kww8/HH/2Z3+GlZUVXHLJJfvDToVCoVAoFIpbDR70oAfh/PPPxwMf+EB84QtfwHve8x4AwNe+9jXc5S532WTrFkPjPIVCoVAoFIqNx7o15575zGfi1FNPxY9+9CNs2bIlH//VX/1VfOITn9inxikUCoVCodh4pBUjG/l3sOHVr341uq7D+973Przuda/Dne98ZwDARz/6UfziL/7iJlu3GBrnKRQKhUJxEGMTYryDMc7bH1j3yrnPfvaz+NznPofpdFodP/bYY/Gd73xnnxm22aiWHovPwC6kwfFMKxxreJmONnY8LN9OFIm0Wwx7E3aRifdm+qcwaa1GTu3S2gQjl4EvSECsrm1XJFcU1Gx0tFnshMqm0BtJ0jtHwJKOJjPOO5Gm9EWaJi15blYaE8quivE3Cx/mXVFzEai6Lu8KaTGgv7JYVp8+ycWdJ8XOQ2l5dk442p53VkWTV6QKpB0uKzqvHMwW1fei4+uhP8g82uX0QNlVi2ixX9ZK2xHgDPo+7A4FAJ4Jbm6AnsJOuJbg4y6d3pua/lC1O5F23Fk2mcsu7CDGkYKTdxObMMzEw3Q+9AsGbBfW/k+MQ0e+/FmXKa+BqrPAkS2FBxB9jevfcml79qU8IG5bMIbIpBMNO5W7xWBZvTQtJZmoOD2hdwYGhda6THOsbumw/fBleE/YMVmGX42de27APeVdX3N/smG31kQPIbEjLhHgPcEzQh270mhG23c78DDX1CJxKu3mFWi14qSgoss2KmkIFXO0oTCHHVsjPZ58HFswaIfk41cxziymVIjbRV3nnRBFm6poWJulAae4Rbjb3e6GD3/4w4PjF1988SZYs+c4VOK8MJZSiRdSR5Zz32AsCtestVvmXkF2ccMhh7UeZHJsVGKwao5Jn3K8ShS6sXhU2FFlQ+W2Om0usVu7s6p02gjFVo5rFGO9yv5FaMuVqi0F35FuysJg9oHuSB1gHMKu4QjxB/kgyZJ3+84yEk1cE2O9jBTjRWmIvAO6pLTGOSnHxJ2YW1CHFTnOjfHfGA1u8DzStsGmTlsK76hr00SYdvpkhHncUdiRlRlE5RwTIsUxxqwyTgIibdVkH+djjrJcS6YOWwaRDzH4WBCT4s20E2yibhoU+nCkaWfqsA2xHk89aOphpw6TGOdNrcPEhljPg2ApxSaBDEmZNsmZHllcONLHpKOTc0bL0dy/FtKzXps+UIIfpkC9jYbknXdFPJJprRx2XqWZwXxuMXMWXZSVOWZyAw63K7jz0o9w+6Ud+Mr0jrhm+SgAwE03boG/uQPNy/ORlNzIEkYxXqKRPk7peTbZ72Pfo+ZCWfYmrzTGwAr6PNWNPLm3iudIjOkpTW6+i5i8GmfFs84oxuL+bA/i7s3xkiyJlPzIC24spzXKu/XhX/7lX3DKKaeMnvvQhz6ERz3qUetOc90r57z3cM4Njn/729/G4Ycfvm4DFAqFQqFQHEDgTfo7yHDllVfiy1/+cv7913/913jUox6F3//938dsNttEy9aGxnkKhUKhUBzk0DjvFuOMM87A1VdfPTj+/ve/H094whP2Ks11v5x76EMfile84hX5NxFhx44deMELXnBA7z6mUCgUCoVCsVF42tOehq997WsAgKuvvhqPfexjsXXrVrz3ve/FhRdeuMnWLYbGeQqFQqFQKBRr4xnPeAYe8pCH4LrrrsvH3vOe9+BJT3oS3vKWt+xVmuumtV588cX4+Z//eZx88slYWVnB4x//eHz961/H7W53O7zrXe/aKyMUCoVCoVAcQFAa7S3G1772Ndz73vcGALz3ve/Fgx/8YLzzne/E5z73OTz2sY+tXoAdSNA4T6FQKBSKgxhZGkFxS/D85z8fP/jBD/ALv/AL+MxnPoPLLrsMT33qU/H2t78dj370o/cqzXW/nPuxH/sxfOlLX8K73vUuXHnllfDe4+yzz8YTnvCESjj4Vo+xpZetRoT8zoWqzgvuAaI+QDoV9ZLCVuGJ/F6uy4h6HllvTXDax1C0mQjsRVqJ/t/qgwhbB/phlXAFhj6QvP1GM6nWBxEFbweESquk5Jv1O5I2ltBzGug65TLGLb7l9vVSx0loyWX6f0zPd5T1QXyHoF1mUbYqNyKrKC9BPWCYYObhnOkBOwsXZV0MAGyplqSQOhkdh+3JJ1EDwxfRidy29mAp8KiuSNQ0pJxYcCS3vmnuIVl3qdDJZpsKIO5J+i0u5RWPe8p6MuwIvjeY9cHJzATvTNFoSHoNiHp0sjEaHtpKDLJc9E5sKJdnk9uHj9u/09Sjmzp0nYNnAjOhs4G2ZQ3DLHIwYTh3tZem31JXbk+Wbw98nPxQa7wM8uKiZZGO5eGDCd4Xo1P7A6FowmX9i5iGDxp/HgQbjT7S7sQx0w7bD1vGzFsYw7h55xIAYL6rA2CrcQUI7SnVB5nQD02sG2MYxgI9EHTcHJd20ZSt8klyxIjOR9ZpM0HXh2P5crnZxL7EUq6l1hMRfQ3gODaWi5MGYr6ekp5l0Y/MfYNK+ixcPEC6z4t0UzlVceSgAjPD+9AJP/7xj+OXf/mXAQB3vetdcf3112+maWvikInzxrBgLsi6TunPjGtMDTSjEOfNVk+q7e7EhcvCQTNJau62tpRxc1y/CUCZG9PBRXNZ1PWs7ErhQpOEzLaKJ9eYQ6ss5bV5ziv2rBnryPlBjpcmTpYm6oVxudjHWJIngO8BTOItVGItb1F01BB/y1jRFYdQT0E/2IsYr/FRuDfq3ybNtC7WLyNo1bGwX2gZJn3V7Ksqzhr6M/sDzbk9oo+luTVebMo8zh6ATXYi6Ng201U9d1PUmqPqmhALi9hG6EbDE9hQjmWS5nZOOOoZclcyY6ag+Zd8KAJrbwFMPbAU9Oam0x7LkxCcL9kenQkZeZT4kplyTLhbnw36I5f2K+uKytQ+0I1c0KfTuSquqPpD0LPmHkHHO7ZV8sJ/FOvPlN+pDtiHck6iIN3R3Q7crfshzJRx58mPcFR3M7Z2dwUAfLO7LW6wW+F2TkCzFNzE/GQZba0tbOI4R8QhPx9jfAC+N6Fl+PTwlNKpdaw56dkhPIfBctEUls99Idgf9yUHv1RjTfMsc4vQjtspXYT6zjF2ev4Za1ca6h1UeOUrX4knPvGJ+Jmf+Rl85zvfwbve9S488pGP3Ov01v1yDgC2bNmCpzzlKXjKU56y1xkrFAqFQqE4ALEnL5cVu8Wpp56Kiy66CL/wC7+AK664Aq973esAAN/61rdwxzvecZOtWxsa5ykUCoVCcRBjM+K8gyC2/Ju/+ZvBsUc96lG44oor8LjHPQ5ElK95xCMese709+rl3Nvf/nZceumluPrqq/H5z38exx57LC6++GIcf/zxt+hNoUKhUCgUCsXBgFe84hV4whOegA996EN47nOfi3vc4x4AgPe97334uZ/7uU22bm1onKdQKBQKhUJRY60dWN/0pjfhTW96E4CwynVsc63dYd0v5173utfh+c9/Ps477zxcdNFFOdOjjjoKr3jFKw6eoE0uE5dLuRcsRc0UtLSkteK9igu5uclGylVaAh2XwyZaZljWHWhbeSv3dpvnaomtWOXL0WCZp4kUizGaYJsW4pJ94Yt2RXe+pqWjDZb91nwI8lyWYhsW26VzWfrsqSwPRqJDDG1s38KT8QClNd+FTpKXSyc6KSe6SVgi7ifhDwDcNFJbLQI12AA+URxI1HUflppnWussbl3uwxL7RCv0k5BG9RdNZMvgzoPS0n2z4L8V8vL5tpKiv9C0OeErSacpfuSFq+tb32Y6tqTLpLpJy+9BQF8v488UbELYSl0sc+e4vF/Si3O2PlENpM2pjVCkjjBM52EnLqZHcNTBM5WdbiKt1XSR4jCdZxqDjRSH5W5e0R1YOkXQCtjT8D982qX+DQVllJq6Fph2Q+tJy+SH11GkLrA3hfKabjNxS/oJR+oJAgU5puGZsOImmKdGCWCrWcVtJzfjpi3LmDsb6LIAXG/gegPqRd0CZUyJtAYyPo9j1vrQ3zqC7z28FfSWRHlpipk+B+6T45GJ5bZhLM19GxS+JgqJ5N+0Y5jIq6L2e8rjcfqUNHiq2smC8b4qVDydLvWUqe27vZcqfsvG4CD4383NximnnFLt1prw0pe+FNbakTsODBwycR7EfAg089AwbqklBGpGE6EetyqMxS3NuTSWhbSD/EBIdzF1K9xfBZUizTbGk4Pdgrkp8eBG5rFRyYE9Qcy2SJ6UxFtplHXrH0mpjjT3pNikmSe8BWgiymHK90Rh9V39O1EVjQPghO9ckDCR0iVATGNS7ueOwdNwAXdBLoQ9QGQqmiilyuCh+ys/ys+maVbtgKme5gY/FgzuhECJjHFxS2Mt8ylX9cY23jdix+CZp53bY9xS0T25xHgUqa1VQj5IpJCjQG1Mt3UMmjp0yz22LM9x2NIMWyZhV+yt3RyGGJ4JM2exMg/B/uq8g+sN2IX5fiAbJKnXTdzFEL4QN1WPZ4QhtbUpzti5POWL5yxy4dEmxG5NA4jtzftCeQXCs0z2DxN8jI4tPG5jVnG4AQ6j7wMAdrpp+OwnWJl12NlbwEU9kkzVBNgzyIZ2a6yH7UIb76yHNR5EDO8NemfgYozTM+DZhme81F8BIMoQcXQa5/pGTWmN37NfPQBQHofb8CiPyWja+26eH4cxYwNqPqt7qZLygS/jQ6EDLwh24/PYhoZdclxXrAtJrmR/Yd27tf7FX/wFXv/61+O5z30uuq682zv11FNHg1CFQqFQKBQKRcDy8jImk8lmm7EQGucpFAqFQqFQbDzWvXLuW9/6Fu5zn/sMji8tLeHmm2/eJ0YpFAqFQqHYJGzW/6geZP+La4wBLVpuD+wV3WEjoHGeQqFQKBQHOQ6ymGuj8KpXvWqPr/2d3/mddae/7pdzxx13HL70pS/h2GOPrY5/9KMfxcknn7xuAxQKhUKhUCgONnzwgx+sfs/nc1x11VV461vfij/8wz/cJKt2D43zFAqFQqFQKIa4+OKLq9/f//73sXPnTtzmNrcBANxwww3YunUr7nCHO2zMy7nnPOc5+F//639hZWUFzIwvfOELeNe73oWXvOQleMMb3rBuA24VkDIIQhtCotJ5Y3GTTMZHPStfbmbDICOvFRpHUb+BbdhaPesWNHoS4TaWtxdb5LGoO8WmSIvI65iacgCNdgfH/ecbzZCURy3GUPtI6HsMOP2EQrCO8gBhO+omDULRYyNhBxXOfqXhIW9PvpR5Zc27oJnhAbilcMwtA24paB9w1HDIOg5Rh4980B0BGs25edGGkLR0P2l0V6LOHixAXdDoKvUebatlP4ZYS8fGLNCqiecrrZ1FaO+P+i3wolmkehKaHEJGAeCircVSRy62gaA5SEFXQmhwMYdrjGGQZfgkI5j6RMewE4fJpKw+mQFwHvDehrQnoQLsxGPrdIZtS6tZd8TENrK1m2NqengQem8wd7ZojMlyNSI9uQ/Ja5NPFunGrIVGYyRo3tT9WuqQZB9TXU1Jyy//NgzuAJ4wMPFAF855D5jYGVxvsGM+xfXzbQCApdSgAUxNjy2TOTobfEmLNBFFOZJuXx56Yt90noMfx9qeH2ns1bgaxVtk3zBluGVThoJsYXIfN8ej0GE1rgJRaye2VY+secmehnaLtLM+0Vi5RH2QrBvmMJbEemZaMK6vIRGkOLAxps3267/+6/jJn/xJvOc978HZZ5+9CVbtHodMnJfilhQTGK7nrjEUMaN6omMxNFQhHZd8pDiS0C4iE7WHTUmAwUVnuEluMHfn71ylK+0YK4/Uz6vK1xZiJObN81D2x6JYYy8GL0puXuPetvyttnF7rQG4K3KsnOKWOHcETeJwztvyPWvKRVNMD1Af4jwTNedS0X2HrIvFNs65SyEBY2PQ5KLeljdlfiExd43NgQvcIPWD0bS5Ng7YMxQfFk24OHd5lLjPEbwP/gRirJa0wRqtumpOJKEbJvSfB89MFPT5gh6Zh4nxcYJ3Bt4w4IJWXNavnXhMt8yxbesqjlzehdssrWBrFzTnDBgz32FnP8Gq67Dah4ByPrfwcwNOOrqt5lyyj6nSF0wWp74jw0OObsgH2zpMcd4a1TMa+3OMSRzAOQCJfrWAXwptMNtJyLqHhoC5t9g+XwYA/NBtww/8jTC0AgCYUI9tXfi+tZtj0rkyrkldxZ7CanDLgzjPGo/OBs25IAdIcMKWXLAmVm6dmvsQoejN2bqNM5JederEuxnsRPprHvSxnpN+XMisQqXxKL5nHdKkM5c05NcaAjdaS1ixT/Ctb30rf3/nO9+J1772tXjjG9+IE044AQDw1a9+Feeccw6e9rSn7VX66345d9ZZZ6Hve1x44YXYuXMnHv/4x+POd74zXvnKV+Kxj33sXhmhUCgUCoXiQEET7G5kvocAHvCAB+Ccc87ZbDMWQuM8hUKhUCgOcmxGnHeQvY983vOeh/e97335xRwAnHDCCbj44ovx67/+63jCE56w7jTX9XKu73u84x3vwK/8yq/gnHPOwfXXXw/vPe5whzusO2OFQqFQKBSKQwm7du3CX/zFX+Aud7nLZpsyCo3zFAqFQqFQKHaP6667DvP5fHDcOYf/+q//2qs01/Vyrus6POMZz8BXvvIVAMDtbne7vcr0VosFy0/lkvRwYOR7XMacl8um9OKy3Ux3ipRXBgX6GAFkOdI8432thjQVKsZgy3Rpc9xqu6UAsI8UrkRbrQpXJ7fmNtBpC/Zklo90RkJNsYzLfinS2Nhwpnhmylza0jzaDUR6nqC/Fopone8YWFIXKi5udLsFYIF+SzjjlgG/lGxBpF2K2wh5a3NA0Fv78seinjimn2h4kkKctosnsUx8YPsYXW5w4fC+0IZGGkei8ixIN7AHqzXkouzNevy4lJt9/Gxp11R/cttYIx2Cu+ADoLSDtFU7Og9MU3slcOfzFu7TSZ+z8kzwcwM/MaF7xS3eJ5Meh01nuN3yTizbeaa2AkBnHCwxVl2H3hs4JngvbGSKy9RTW48feZl+458RV1d+GPON8GWF3N5bTpHIK9JxKkq6WHLPXfTvxMNMfM7DOwL70D/93OBHu7bi2qWjAACrvoMhxi43wc5+CSt9ByconvCUKVcs+ixSe+PQlpPVPtKZ2VO4X/osmSvoQS3lPrcvT2AqB1mMDS1lbJQWkugyEs0YRyZRnijTE9gRYOPFIzYmGvOgn7b9WaQZ3ESoOWUjaPrPRkC6UrH3OOqoo6oNIZgZN910E7Zu3Yq/+qu/2kTLFuNQivMGsZtE25fTvDcS62VKW7qEh11/zf6bxp2YYI4HU5oir0KpLb95bIwYzBm3cACRtiSw+Fsj+QENLN07yCPGsjGGGFyS6mStwSnR5iQdlcM86TvEcXwkTTR1Fg1Ic5OJ8RzNI6U1xnlZ1iDCu5in4RCndElaw4EoUDIdCHAM7mM5rCitQU39zMaMOUTMOUYeHHwR5ZLHWi/XMY5sZ+SQJUzYBNO8dFgXpBmyXEu0P9d97Gs5xs/H4pzKdfxLFOJi03kYy1mGhBGbMgMeUW4i5jlZ7nH4YSu402E34c5bb8TR05uxHCU6VvwEN8y3YOaPADNhHmmt/cyC5xY0N0BPlbTIWq5j6bq9nSsX9ZtYpzKGWbjAiQDYGOO1xsQYiSYhOL95NsV3dh4JAPiyvQtu9ku4fXcTLDx+4Lbhe7MjAAA7+mnwjyfAxVgvVZtleEORTkxga+BjDNO70AiJGN4bOGfgU5zoSlok4kd4hHgyjpnkUZ61hC8S/T85gjOVWwRkY05K15nm90DrJHxPcSZ5ZDpvem5n+Zw5iCNFXNvEhmNaCe3j+WYsYNM4b9/gIQ95CM455xy88Y1vxH3ve18QEb74xS/iaU97Gn7hF35hr9JcN631AQ94AK666qqBULBCoVAoFAqFIuAVr3hF9dsYg9vf/vZ4wAMegKOOOmpzjNoDaJynUCgUCoVCsTbe9KY34clPfjLuf//7YzKZAAgMhDPOOGOvNXrX/XLu3HPPxbOf/Wx8+9vfxn3ve18cdthh1flTTjllrwxRKBQKhUJxgED/R/UW48lPfvJmm7BX0DhPoVAoFIqDHBrn3WLc/va3x0c+8hF87Wtfw7//+7+DmXHSSSfhnve8516nue6Xc7/xG78BANXWsEQEZgYRwbmWc3nwIVFMqyWpYkn56LLotGTVRyoZADIUqE2Gw26AHJf+oiw2p0jlJDNCp1irU3GsEy5sBraR0pX+uFyb1k9zSw/1Yu3tGnQEtiWZ2kbKy+4p7VKbLkxLuuOS7OATRMqryCflX+1eWQrmLcpuiUDcEVRQiUzx42BXq1iuQP0LdFYAcFs9/LIPS6y9he8Ak3pLX5a0U9zQiCKzMu3gSi6WI+0wmigBkQpLksYQqZtkwk6WlXuTraJ8Q6oxhiDOVOJRel+8d1Df6YTYfag6nKjPctcqQf9gYLCjFVvktmXE0vO8y1tcjs8dFwpI3PXJgMETgl82yIx+FyjfZuJhjYcVZbDGgyxnOquJu7UuT3sctbwLd1rejiO6XZgYh3nc/tXBYJebBDorCM6bysbcn5mGy9DlUvpRHo50hPDXonqTScq2Olb3kuKd2nbLgrHhGHdld9vUN9h5cB/q0s8sbtixBd9EoLBdv3wYpsahZ4PVvsNNsyWszML/CPm5Bc3LzmV5zDIMdoS4z2Acg8I55ww8E/q5DbuizU2mNVCkuUrWlezmaawgx2GskPSdMToXMOAIDHdPFDQhEsczPZZi34+nDKHalk3UBXnEcg4rf03Gqg/teLS/y9+7a1eKAx47d+7ENddcg9lsVh0/UF9yHVJxnqA4DeOXPUyD47iXA7e1rw2fTVwlx6V2fpC2+EgdHBtz2lgNw0t2i3xvSivQubLMCI1d2+QPlDiiGaOJmnFxLFYWu40O59zd2M+IlLQ0v5Q8fAchk1LiznCSKhobRZkOciG+q6RLMrU1zq8mUe1CnJjlaxIVD4DtfCgaMbwjeEtFzkXsECrlYVi0jex/lGP5k5pjY06q2kTKj5v2GtJiSruTN+mw8CeVWC/JQBDH+Uz2JxPoqWnn1SxZkn6nuHLEXqIQM8rz3jcPWxaw0zAebd2yijsctgP3OPz7OH7L93Gn7kaYaOSNbiv+H90ON863VOl4F+is6KlqN6MQvsr9/ZZirC8k35tG6mas7yXqqi3xC4mYOIeOjrDj5iX8R380AOCHK1tx9Zbb4TbTXViyPVZdh+tXw3/C/NeOw7G6MgVmBqYnUC/CHqa4k64BDOB7DpUZ7XfCr94ZuHk81xtgTiF27AmRbQzqKcsDEQG+o/ysmOitlfxAbvdj45Fod+n5Jj07yT7VPgemsiW6baLfJrtcyWswXI3FnrLO1ohFN2XPLcV+wz3vec9b9EJOYt0v5+T2sQqFQqFQKBSKIb7//e/jrLPOwkc/+tHR8wfqSy6N8xQKhUKhUCiGOP/88/f42pe//OXrTt/s/pIaxx577Jp/BwJe+9rX4rjjjsPy8jLue9/74jOf+cxmm6RQKBQKhWIfY73z/RVXXIH73ve+WF5exvHHH49LLrlkv9l23nnn4Uc/+hH+8R//EVu2bMFll12Gt771rfiJn/gJ/M3f/M1+y/eWQuM8hUKhUCgUBwIOtDjvqquuqv7e8IY34NJLL8WnPvUpfOpTn8Jf/uVf4o1vfCO+9KUv7VX66145tyigJCIsLy/jHve4B4477ri9MmZf4D3veQ/OO+88vPa1r8UDH/hAXHrppfilX/ol/Nu//Rvudre7bZpdCoVCoVDcKsDAGNNof2O9LI/1zvff+ta38PCHPxznnHMO/uqv/gqf+9zncO655+L2t789Hv3oR++bQgj8/d//Pf76r/8a97vf/WCMwbHHHouHPvShOOKII/CSl7wEZ5555j7Pc19A4zyFQqFQKA5iaJy31/jkJz+Zv7/85S/H4Ycfjre+9a15o68f/ehHOOuss/D//X//316lv+6Xc4961KOy9oiE1CN50IMehA996EObshvZy1/+cpx99tl46lOfCiDslvaxj30Mr3vd6/CSl7xkzxMSGlr1cQqaH0lTAqg0S9K9GYRaJ4OFpoEJGgHEUYPDE6gPixmZOWx/jahDZmQvoqyHMdD1SPCBJ591vWJ+bAJHnhDyC3nFtChpVFElZ8EoehrpWP70gjdvuSpn1qAwUccCRQMk6xckTQqp/cGR8y+vyX4Wdsd1n0VPruTb6nsFHQ9gVGfAAH4CuCnQbwv6FLyth526oJvgCU5oZNl4byr/YMttj6CPZRoNExfyNwDQA15qW0jdjZhu/t5qhaB1DEZH2KRnSMQg4RPi6MKsvdKKunCVRnEVg43Y8jzd52mg1dPWXWoDgNCbSddErQwSmnOTzmFqHSbWobPhWMrPzS1AjG7iMOkcbHSyR9DCIMOADeWeLAWhmG1Lq7jNdCfutHQjjupuxpR6rPigobbTL+GHOAw3u6VRH8qd2ptd6mvBCWorq75+t8h+ofH6HGvb6VBeAx113kSfZAbQMch4GFMK4a0HGxPGnBWDVSzh+lkQ+bhhugXW+jD2MME5g/lKnC5WDagPfRQo7TbozcUma2I9pyYCgptb+JkFVqNmXdackz6g0o/Djbl/eRDYCXkTw6XtGnF/9NXCoINKNoNTsV/kMc43jZbKH8l2XGnFNHNBU52VZF0zTinWh/XO95dccgnudre75V1UTzrpJHzxi1/Ey172sv3ycu7mm2/GHe5wBwDA0Ucfje9///u45z3viXvd61648sor93l++wqHTJwHDMf0fJzqvr0egSAZCjUxUfIpJT3fPZkjuB43wrjEUROT8tyY9X1FTMpjGlqNLNJaY0+ejpo4cxCXDeJQFvEv11Ml1fPDqA8onGCZ6FpPkjnYEPEWyvzCNmjO+Wn0S8fgLsQeIfYOelgAYGYEOwPgpb5cSMfMAeoBO+esOZznISJwB7gZYGaA7yn7n5lgjI9aa1EXLPuQwUJDq/Jt8o/Ut0Vzvn0G2VOkkKV5ZkHSFk6aXUDUoavvrZ8TxLOOeOag9JxjGcYybBcqxhiGtR6ddbAxTjXCEB9jGc/hOaZ3tmSd3R3SnU5D5Ry1ZRfuuvUG/MSW/8LJy9/B7e3N8NFn3zWH4ya3BYd1R8IaEXRwKQulZ7s9gSxnWy0jz4QlXtjzcSTEKXKAQmwr4pqkN2c9TBf/REzvnIHvDfzcwu3qML9pCgC42W7Bd7sj0S05dJ0DEWe9uPlKB7erg1k1QW/O1X2QGOCkyesNfOwbHLUTmSloESc9PyA80/VFb47icdMj6xiyCc0uVfWaw2P7HNGG3qntSr3x6MOBfp1MMz3/MvKzJqXnXCasLSR8C6Fx4CgO9Djvz//8z/F3f/d3VSx01FFH4aKLLsLDHvYwPPvZz153muumtV5++eW43/3uh8svvxw33ngjbrzxRlx++eW4//3vjw9/+MP49Kc/jR/84Ae44IIL1m3MLcVsNsM///M/42EPe1h1/GEPexj+4R/+YfSe1dVVbN++vfpTKBQKhUKx8ZjP54M5eXV1dXDd3sz3n//85wfXn3HGGfjiF7+I+Xw+es8twQknnICvfvWrAIB73/veuPTSS/Gd73wHl1xyCY455ph9nt++gsZ5CoVCoVAo9gcOpjhv+/bt+K//+q/B8e9973u46aab9irNdb+ce+Yzn4mXv/zleMhDHoLDDz8chx9+OB7ykIfgZS97GZ7znOfggQ98IF7xilfg8ssv3yuDbgmuv/56OOdwxzvesTp+xzveEd/97ndH73nJS16CI488Mv/d9a533QhTFQqFQqE4cJF31d7IP+C9731vNScfeeSRo/87ujfz/Xe/+93R6/u+x/XXX7/vfBdx3nnn4brrrgMAvOAFL8Bll12Gu93tbnjVq16FP/7jP97n+e0raJynUCgUCsXBjM2I8UKc95GPfOSgifN+9Vd/FWeddRbe97734dvf/ja+/e1v433vex/OPvts/Nqv/dpepbluWus3v/lNHHHEEYPjRxxxBK6++moAwE/8xE/sFwfsKajZ2zjRMMbwe7/3e9WuG9u3by+BW0svS6vO2+XP7WrzwRJx1JyE9JUFbS7RZNNSfBBgCbBhCTx7QTVMaUT7Ktosom19TL9D3i6eEu005peW25OjsrzdBsPYl7TIh3NsmoLKc7b0u3K+lJ8IYLnNu6CBJeplOsdpO/NEx5BLkNPycMFLy5RVhOPeUd5+nJPdlipqpayfTGvdwvBbQwVMD5tjOu0x7y1mTPDz8Bd8EikOeSk8avpqphxHOinitYkCke6divpConpQ3MY7nDMO8DbWt0dYKk4ir1Qle7AUesB6IEEHrlet13ToZFsuSPRb6lMmM1BQ0bYRluRz9HPbBTlSaBNNkayHFbTW5W6Ord0cfkKwpizVn1kLZkJnPTrrYTO9NppjGJh42M7hsOUZAOCopV247XQnjrQ7cRu7ExYek+hkBwMbb04UiIqvkTnfou2lMgj6wICC0EK240WXCIrF4KrYBpJ/a1pS8QGXyoqUhzAGmNT+m4TJAzQ3wNyAdwY+wSxSfihSjgGAIw2BZoHinfp+Ts9FerPBYOk/e4LvCZgZ0Ixg5jRKH2mZwWWsQ6YqcZq1SP5FG7m+r6LgD4tenRPWIo9RaRzxYXAjYvhmHKmYrGN9MfbRQnWhfB+L7GpDqS5b1iI4+PHf//t/H4j3Li0NKecJ65nvF10/dnxf4AlPeEL+fp/73Af/8R//gX//93/H3e52N9zudrfb5/ntKxwycd5AO0P8FmNtOnVL9XkCHSyN36Ffj5mc2f2p24txNlHKiBDGXDmA5PGijFFZmiKPQShjyhja+UEOSU0IuCY1do1znMZWKdMwhhxYLMijobblsZiLLEpyj+8Av+zhl+PEs+xgpyGIYkfwcwvelaiTBqYnmBi3mT7QWYFEcQ2UVuNCYUjUqV0ldB3gpwS/ZOAnIU3X+fDEFecm9lTal6cse8Ko62zoj5Fz3J6s3TY2L3FuIk1QIOZVjvExEGN8jz1a0pHDKJEWmUBp7SKtdTpxWO56LHdzLHU9psbBiA7We4MV12Gln2DWW/hIueyFnWQZ3dRh23JYcXPbLTvxY8s34Njp9bizvQlHW8IKh/xu5hVsNavoyMFAPHOMdANq2lW6Tsba+XknUiZHny9GnYNh/UjHxfYrHnHyqdpIYWykD5Nl2M5nPzITvA/tGysWdpeBWQ03GheHuQljZSlRvIuNJlJQWxmVYifnT460V3bBKRwprOFZJrYyj0gfR4gf07OuQ6a1AnFsk/Fa66cFA1A1Nsk2nCitzXg4Opg3MZqs61uEJq5VAA9/+MPxV3/1V9WxW2ucd8kll+CCCy7A//gf/yOvzOu6DmeffTZe+tKX7lWa6345d9/73hfPec5z8La3vQ23v/3tAQDf//73ceGFF+J+97sfAODrX/867nKXu+yVQbcEt7vd7WCtHbxN/d73vjd4i5qwtLS0ZoNQKBQKheKQwqKHhw3AZDIZfTHUYm/m+zvd6U6j13ddh9ve9rZ7b/QeYuvWrfhv/+2/7fd8bik0zlMoFAqF4iCHxnm3GFu3bsVrX/tavPSlL8U3v/lNMDPucY974LDDDtvrNNf9cu6Nb3wjHvnIR+Iud7kL7nrXu4KIcM011+D444/HX//1XwMAduzYgec973l7bdTeYjqd4r73vS8uv/xy/Oqv/mo+fvnll+ORj3zkhtujUCgUCoVi32Nv5vuf/dmfxd/+7d9Wx/7u7/4Op556KiaTyT63Ua7WkpC7nj7ykY/E0Ucfvc/zviXQOE+hUCgUCsVm4tYQ5yUcdthhOOWUU7B9+3ZcfvnlOPHEE3HiiSfuVVrrfjl3wgkn4Ctf+Qo+9rGP4Wtf+xqYGSeeeCIe+tCHwpiwJvZRj3rUXhmzL3D++efjiU98Ik499VT87M/+LP7yL/8S11xzDZ7+9Kdvmk0KhUKhUNyqsEn/o7oe7G6+/73f+z185zvfwdve9jYAwNOf/nS8+tWvxvnnn49zzjkHn//85/HGN74R73rXu/aLfVdddRWuvPJKOOdwwgkngJnx9a9/HdZanHjiiXjta1+LZz/72fjsZz+Lk08+eb/YsDfQOE+hUCgUioMYm8iQWA8O9DjvMY95DB784Afjt37rt7Br1y6ceuqp+I//+A8wM9797nfv1Q6x6345B4T/9f3FX/xFnH766VhaWtovHN69xW/8xm/gBz/4AV70ohfhuuuuw0/91E/hIx/5CI499th9l4nQQAIE1z1KN1Q7aCf5onxeamykhCIPmpH5+cxBW4mAvPW65L1XUimm6EKkZLMGBlB0BIhB1sf0TdF0S58m6r95KiT7Vv9KaiZFfbWsSSG3q87Fk06p00z2Zy08YXvybbWtPFBr0SUtLKKi/eUp60Mle5Pm3kB3g4KOhp+EtNwWD7s1KFocftgKtkzmWOk7bPeE2czAJc2trNVX2kAucqVJUfeLpJmF6Dc/CeddH2z2Sdeqj5pcMQ+T2kLSm0vpJp0Goa8gDWFu62LE1rTdeHWi3C+LQFTac5WXYTCoaO/J+rXSvhHhr6TZgaCZkbQyLDG2dnMcMV0BAHTC0bvMBM4bTIzDNOqXAIBnG7TprAcZxvJ0jiOWwv23me7CNruCZTOHhYeDwZyDFsyqn2DOFnMffhsSeiQjmnyVPIunge5cLpcsYys6IetDfrYaPK0uhhfnU79LuhpJ68PU93PUrQSCzk1qFsyxLzmCXaW4XXwcNwzAHYM7wHdR0yR1I6EPUhWaObTtWFQSfmMPsDdA1DEhJ+5rRI1aXZfUBsnXYwMzA3HskONvbVPt9hZy/BoMsGyquiEKmi7UhTGFjeiH+b5ky55FPEHfkZoBvUnP1MOnomB38/11112Ha665Jl9/3HHH4SMf+Qie9axn4TWveQ1+7Md+DK961av2KnjaE6RVcW9+85szhWP79u04++yz8aAHPQjnnHMOHv/4x+NZz3oWPvaxj+0XG/YWh0yc1xYrjcFxrM26YM0cmsK5RWkOziWN1fQzDlhSY2xgFzE46tLJ4ZI46DtRHOCisisoDVlyzpKarER5rKzyjOMP+RFjZBixmyYwer4V/mwv5Oa30LVdOzOZB7KvQHXdkAm6vX7K8MsedFiI8Za3zrBlaQ5LHnNvsXNlilkUAvaO4GcEM4v5CF3hSjc6Dd1xUjWOwDOG7QjdTsB3BjGsgDMMnoR4xc8taGZynGdWKWuAsUWRbLWo4ouF88paD9mtH9tYZsTPZDg+D1AV3+e5qEknz3nyr02TQrpdfAZZ7nocvrSCbZMZtnWrOKxbxSQ62YGwy02ws1/C9vkStmO5xGfOwBNgrIexjC1LMxyxHOK8205vxu26m3CYWcWEGI6BeTRlhSdY4Ql8LFCK8cgwfNLWZQSd6LV8KbXqkp9iHEKmuZGp6Cu248hanSkHUeOmZF3oxjYa8XvQsQ5av93NhO7mcNyuBju4I7glglsC/FK433co8RQhlw9I7YCz1l5rBDsKGsZ9aNOy3EWPu7lVxlnSNyxPtgUr43PWmYzXytvC82sJDjm7lgb2U4qlbWgL7EVeKbF2eOQF4/eeoE1rbN5QHPBx3qc//Wk897nPBQB88IMfBDPjhhtuwFvf+lZcdNFFG/NyznuPF7/4xbjkkkvwX//1X/ja176G448/Hs973vNw97vfHWefffa6jdjXOPfcc3HuueduthkKhUKhUNzqsOD56oDEWvP9W97ylsGx0047DVdeeeV+tirgpS99KS6//PJKW+WII47AC1/4QjzsYQ/DM5/5TDz/+c/Hwx72sA2xZ0+hcZ5CoVAoFAcv1vH/yPsWe5HngRzn3XjjjVma5LLLLsOjH/1obN26FWeeeSae85zn7FWae7DvTo2LLroIb3nLW/Bnf/ZnmE6n+fi97nUvvOENb9grIxQKhUKhUCgOJtx444343ve+Nzj+/e9/H9u3bwcA3OY2t8FsNtto09aExnkKhUKhUCgUa+Oud70rPv/5z+Pmm2/GZZddlv+z9Uc/+hGWl5f3Ks11r5x729vehr/8y7/EQx7ykErf45RTTsG///u/75URBywSfSD+zEtXOW6BPlhWj/El+vKydjlyXArNxPVSX5/oTgAZDzImrw6uE0SkDop19mkJfl5OXNb3mo4DZdbXeQX6VKBtMaFsf53oHZIaKouWttSO23lLeurAP2MuMeEv0+5c7VeOy8arNFJRMx2NI6U2muKpXEsI1IBElYjUXQAgG5Zr+6W4bHuLx9Jy2Ab5iKUVHDaZYaedYN5b9KsWfhYSdc4ATOHNdqx3n0z0gSbLRICJy8NTOeN5Mw/u8vGZx8wJ3pnAUp0T7Jxg47Ma9QjUwp5AFjUNQbaXdjm0XDrPoi5bGOTl/OE+iu27phfW+5Q3/vdt32jykG1jdMn20DBDjM54TI2DIY/eWyzZQEdx3oCNR2cdJsaFfhKPEzGs8bCGsXU6x5GR1npYt4olM8eMO9zklzHjDjtcGDRv7Ldgh1vCzFv4mJbJ9ASut7QXlIfEfAw/GveI5e+ZRtTyEHb3v0ck0+ew/byk1IzRTTwBrk4j2cIcqNMs6eyRak09AgVBtidD8BOApqEN5pX96f5U5kX/9dYej/blsWmsLSSekOi/bLm0q5FxhQ1nKi+Xaqt8VbfvQNFNFPlC12V4jnSHTG0T9yFQabgj8IThJ+FG66n4YQElYZTCEdMl5kh9WXBjSnej/4vzVrJy7kDGIx/5SDzlKU/Bn//5n+N+97sfiAhf+MIXcMEFF2TNti984Qu45z3vubmGNjhk4ry2vzZyHnIM2evuN8hDpBclOeLXPI8yRdpYpMWR5E4lWhgQxnIZpKbLqvGijNeQ6QqpgmRPUiHZ43I1Y95gyE9ZNz4gGeaRcEpOt5i9kN5aHWfARF9ZLvIbMWXfAX7JA8sOS1tCjHfk1hUcubwLHXmsuA4T43BjNGO1J/g5gWcU5j4H+DgXGADOJBkPBjUxD3GI8ewqYFeEfImxcEsxFpsbmFUDuyv8trMwDzPFeC/J23QM31ElTTPAWpUmfTg2H+f4vQmu46lAb43nDMf2uji7tcCMHKsBgDUenfHY2s1w+GQFR3QrmFCk/TJhq53AEqNng5mzmLtAa3XW5HQmncPW6RxHTFcBIFJjHeZscYOf4CYwtvuwS/N3+9vgR/1huNlN4UXjoRQ/WJRnIcFilP6Q59gwYAOllRLFc+w5ZywWYRJySI0ziQrVvWn7o5RHUf/MFOK8dMoTfB8ppnPK7RIAupXY5ixg+vDdpQyWEOKbVjIpOoXjcwO1si+yzH7E4OQ/ma70TRtHyzTHkO7Nz+Oxf6V4EDF2pHIux8PRDpLPrSZI2gR6vMl+JIO6vpoxN8fUY5ToKgalhRPJptBZF8WdinXhvPPOwxOe8ARs27YNxx57LE4//XQAge56r3vda6/SXPfLue985zu4xz3uMTjuvcd8Pt8rIxQKhUKhUCgOJlx66aV41rOehcc+9rHo+/CfC13X4clPfjIuvvhiAMCJJ554wK1G0zhPoVAoFAqFYm2ce+65uP/9749rr7222jTr+OOPx0UXXbRXaa775dxP/uRP4jOf+cxAePe9730v7nOf++yVEQqFQqFQKBQHE7Zt24bXv/71uPjii3H11VeDmfHjP/7j2LZtW77m3ve+9+YZuAAa5ykUCoVCoVCsja9//es49dRTceqpp1bHzzzzzL1Oc90v517wghfgiU98Ir7zne/Ae48PfOAD+OpXv4q3ve1t+PCHP7zXhtyqkGgFLb1K0BIqtLtUyhX8lJbRxuOuLMvNu8EOaAol3bxzTl5WHHdb9fGQFSuGLcN2Dt4T/Lzs1kqOym48huvl1GnJvinLgMeWbudziQ7odrNGN9Iq0hLhtMtQWoYMIFJQkSm1clNDGC5ulP5plulS3EkpM0IkBQ4MTGIeHYOmDluWwqqAwyYzbJvM0BmPXfMpVpYnmM3Dsnqf6IUm7joJgLqUfrDT9MEmNwnH/STaHnd4tTPAxeXlZsXArxrwBKBVE3buiufIBTqAsbEOBLe52tVywY6rYxukVWwXEjv05vviSUbe8XXQrmV7pFQxNOgXiTkhl77zgvXbzJRppV58HwMRo6NAi0jXhb4EWMOYdA5bJjNs7QI/eMn0mPsOO7AMB8JOt4QdLtAdbu6XsMtNsOIm6P3uZThz+URbq/pgdXG5Ie3Tl3aW4kQHXlTO2B9D2dDsChp2YQUCLSH3T09g19yX6BYMsCu0VnYE4ynvdkWS1goANlZtorXY2raK9jzAGmvlY7mqnW0Zeaetms4b+1Ok4ecdgYHgw7iDqhyvigkLjIs7p5Er/RSI/dpRoKqkoUlKAxBgOw8iYL5kwKuU71u8i94a42BFdRH9T5R7MRV8P2Oz6A4HKcVi27ZtOOWUU7B9+3Z8/OMfx4knnogTTzxxs81aiEM6zmM0fXPkmjH61R6lPeRs5R2/5akUT0bJCfYkKK+FJpd2Vy3zfzE6x1R5fkQeT1IaY/S93ULYUclerHV9I1UAz5Fei6FP0ry3+xCyuifNHx4Ud9YuhfMW4CWPbslhOcZ4hy+t4IjJKqa2x8yFAG4WqZP9zMLPDNzcxHkmxmBAllegaAS5KAkBMYdS+G5XAe5SPGsyXZV6gt1FsEF1A3YFZbfWDnBR8sRPQizPXaISLtgdfuyA3FW0ldlIlw+eY9r7y9yWdsJdE2NzVmyr7AneEXoXGuvcWfTeoI9yIl7ohxhiGPboyGFqekytw8QGJ/edyc9NS53DtulqjvMm5LDCE/zAHY4VnsIx4QZ3GADguvlt8N3VI7BjvoS5s2UXeEJ4xojPGyG+oNp+0c5zX0vUzLZ9y6Kn9j0yny6SwmATJEzCMw7V9408e5Hwb/JxupC9ATsTnsc8BjakMSTHVe0z7Ug/5EH/HOn7Ju1mX1PnmSnv8pqoxUkeiLxom1WMTUUShuTJuo4q+8XzTxVnxi8sqMwMgLriTOoYsDEOtKGyeU5Z6qmNNaXdeWxo6mZsrB0NVTdjJ66DNObaSJxwwgk45phjcNppp+G0007D6aefjhNOOOEWpbnuDSF+5Vd+Be95z3vwkY98BESE5z//+fjKV76Cv/3bv8VDH/rQW2SMQqFQKBQKxcGAxzzmMXj1q18NANi1axdOPfVUPOYxj8G97nUvvP/9799k6xZD4zyFQqFQKBSKtXHdddfhZS97GY444ghcfPHFOOmkk3DMMcfgsY99LC655JK9SnPdK+cA4IwzzsAZZ5yxVxkqFAqFQqE4sLHR/4F7MOLTn/40nvvc5wIAPvjBD4KZccMNN+Ctb30rLrroIjz60Y/eZAsXQ+M8hUKhUCgOXmicd8txxzveEY973OPwuMc9DgDwjW98AxdddBHe8Y534L3vfW+1qdaeYq9ezikUCoVCoVAoFuPGG2/E0UcfDQC47LLL8OhHPxpbt27FmWeeiec85zmbbJ1CoVAoFAqFYm+xY8cOfPazn8WnPvUpXHHFFfjSl76Ek046Cb/927+N0047ba/S3KOXc0cddRRoVExtiB/+8Id7ZcgBiawXkLQ7wuGx7eKz5hqjJpgvSjchyQNEfaOip4SiCUdca37lDJE1C5IOReLFZ10rYYq1DCO1AmReHPRNyDJYaltxvC6J4qVtpsdguNgh7B9F0rEwQV9C6gHIYsIKjYeKuI+ib9f4hj2CDlU8R7boW5HQxSMDMDzIBs0923nYWAGd8eiMw5QJWyYzLC9N0M/iVu4uVDanrddRtKnMJOjL2VmUtoqac9wFDRJygJkFfREbN72zq4BbMUEDbG5g5oCJ58gFNxoHYB71xIR/uIvaY0m/QrrYi+ML6oxN8gOXcoh2XqXYppM0TEyslyQZMvI/MSzPjZnCoWyuD5W92lusuA4rUbRvRz/FSh++z5yFJa410KSZxOiMx3LXY2qKw3b6KXa4Jaz6DrvcFLti2itugp4NVlwHx2ZNrbvcH1AkWTj5wor22eoVCccwyjWL/tMq6flkdzeafnm8AcC29P+gNUkl3azHxmAmsKNKa1IaUGk6yuHFI4wJA+2OtUCxLxbtk5QgG6raAVOtF8IGQQMTxQdsASStR+F/BrKGCRj1PJXaa6OBwz72xT5qRqayOgTfJH0Y0Rfgg46RNR7WeLipgZ+GBkg9D+s76ZFUGigo+jOojw9cKnRJpFbUhkHOMYq9xl3veld8/vOfx9FHH43LLrsM7373uwEAP/rRj7C8vLzJ1tU4ZOM8CdlPATFxiXE+fUpXjS0/kMdaLaX0XYxPzFzpYLEYv0IMlGKrteIq5JgwxZVyEsrFSWnLcabRRlqUPsu4K429u2s2lb846PWmsME0mTYxbYWBPl25hm0ZK9kj6+WCAJ4waOJhO49JjAlyjGd6dORDDJBijC0ddvUGve/AxsBPhL5wU4fkSrxm5iFWI4esX0Zhk2bYFQpzFwFmTrCzEPsBIV5McxE7VHMccdTgnXBd/Co2aP3NpX6SvutauqiLzslHDaq6w54ht40Ql/veoI/ifbtmk6AtRwzPhFXfYckEZ6Vju9wUvQ/XW1NicyKGJcbyZI5lG+oPAOZscWO/FfMoyLvqJ7ix3wIA+OH8MPxothXbZ0vonSnPc8YDZIIOGUV9QTFvpzhjGA+Hg5VGd+vXJCG2lhbu2L0pRFrk7DROxe/sKcTxnuCFWhU7CnpzKXzsyjOJ84CJWsXeojxHIBY2aX4nZ7TPrYyoWUjVSYrjFXUc+2Ftd9b0y8/V0T4hspU127zwuxzXEO0y0q8oGsEeUcudRAwdLyOAbIwzc1ni2GoZxgYj2RN8ikM7A55THRPKfGVs18aNXK5hA9GhONdLVeiNRNs2Nyzfgyu2POqoo3D00UfjiU98Iv7gD/4AD3rQg3DkkUfeojT36OXcK17xivz9Bz/4AS666CKcccYZ+Nmf/VkAwOc//3l87GMfw/Oe97xbZIxCoVAoFArFwYDzzjsPT3jCE7Bt2zYce+yxOP300wEEuuu97nWvzTWugcZ5CoVCoVAoFHuOM888E5/97Gfx9re/Hddeey2uueYanH766TjppJP2Os09ejn35Cc/OX9/9KMfjRe96EX4rd/6rXzsd37nd/DqV78aH//4x/GsZz1rr41RKBQKhUJxAGAT/iP3YMO5556L+9///rj22mvx0Ic+FMaE5QHHH388Lrrook22robGeQqFQqFQHELQOO8W40Mf+hAA4F/+5V9wxRVX4BOf+ARe+MIXgohw+umnZ8bEerBuzbmPfexj+NM//dPB8TPOOAO/+7u/u24DDmQQRzqXWKKal6K2S3zj8n42Yen6YIUqYdAJiJC3uwcQl8iLJa9jW1+La8e3tC+2SgoYEJZvW+uBuJW5pLelLcFN58GO4MVSZvJUUQQk9y0t2U3L3yktTZbU2GRvC0nBWHQtQawxR/F9pnqU8+QCLZgh1qUbADYuPU/r1UV61AUaAVmu6iJRGzvjsNz1WJ70WF0OS+7D0vEO3FFpE8mUnmBWCX41+MbHHsYdZxqdnQFwhe5gZoBZDRRkMwNMj0xvJlHmRIvNrjCAp7AteKEuSD+VRsdG+EvUV1q+TpLHmNbUt/WAxb/ZiCX43JzPbWbYCIgYHAoCgODn4ZrV2QQ7ZkuB8gxg++oybl6dAgB6ZzDpHKzpQMRwsWC9M/CJXkwMI/Jb9R1WfYeZ73BzP8WKm2DmAvWhj1TWubOYOwvvKSy1z0YWelF2EVDXffRv3vI9UQnkkn/hn3qL93R+ZKl3Oz6IPp2ZV5F+QBzylfSoql7STWnpf+7GYdwi07Avmt9jW8BXXK/GVu8o1C1Cnwn+QqCsSqPGxspkog2NKV/uxRjJse0aH+n4BPbF15n6axqKFFOQEEj9KZnvwtjNPtxMgibBnjNFt7Me3dRhdRoqws8J1FPNVhiMaVRoD8Kf+WemRsTfmS6WThxcNIBDBV//+tdx6qmn4tRTT62On3nmmZtk0Z7hUIrzANRjEGMYvwF1jJVkORZ0y1H6YUIrG0KRCgYqsiBxDCy09pExYFFsGOPKMLfKoEAkk9Kuh8Uy3IyVJccM8begtMqxr7qvkmQR8yCXeyW9ts2nnRKZU/zdnJDzRaTJyvmKOh9kW4jh48UzZ9F7Cx9prlPjsG0aeKYryx2cM5gBcBMLN6dCmasMCvNGprWuBrqqiTRVpihJAoB7wCb5jxj/ZaqsL9d5Fgw/EVeToWoey/FbFXfJOD385hhDV1NuG46VkH78U6Q5xoKVcxnLepO2geCdQT9LNhCcJ8ycxc3TKbZ0y1i2ISjuIoXVM2HmLVb6LsfkiQprjceS7fO1QIjzftRvxY/6rVG+ZIId8yAfsKOfYtd8gp3zKWbOVjEeEddtOLkxUhQzzXwR2u651guPzOfmoZ/Xui+nTXWQwQgVyil2EZf6QN8lAGzD84hbKnn6+AzCXTiXnhFYUEwr+3J+wQ5yseiicXFsh2xRngfFfZzbPJXiyDCZUaiwsg8bBApyQmfA7AFvioxSqiMfYzyRRh4jDMJzfXr7YbjyGRkf5J8s4GJ/84bBxoDnJkqwyM4k6sGHvpzKRh75fUCuNlnOdkiph2vFrQynnHIKnHOYz+dYXV3FZZddhg984AN7lVbbBXeL2972tvjgBz84OP6hD30It73tbffKCIVCoVAoFAcG5HvBjfw72HDCCSfgzne+Mx7/+Mfj0ksvxVe/+tXNNmmPoHGeQqFQKBQHMTTO2ye4+OKL8chHPhJHH3007n//++Nd73oXTjjhBHzwgx/E9ddfv1dprnvl3B/+4R/i7LPPxqc+9amsRfKP//iPuOyyy/CGN7xhr4xQKBQKhUKhOJhw3XXX4e///u9xxRVX4OKLL8YznvEM3PGOd8Rpp52G008/HU9/+tM328RRaJynUCgUCoVCsTZe/OIX40lPehLOOeccPPjBD8YRRxwBIKz0vvbaa/Pv9WDdL+f+5//8nzjppJPwqle9Ch/4wAfAzDj55JPxuc99Dg94wAPWbYBCoVAoFIoDDAfh/3BuNO54xzvicY97HB73uMcBAL7xjW/goosuwjve8Q68973vPWBfzmmcp1AoFArFQQ6N824xfvjDH+J3f/d3cYc73GFw/LjjjoNzbsGdi7Hul3MA8IAHPADveMc79ubWWyciMZyYi3aQhNB2KFoLRftBanYMtk4W9wSNo5QlRa03qq6t7WpsiKaamE67hNSYoNPgo75X1jVzCNprFK5pKfUQdrX5k0fQ2eN6zWrYRl5qIgz9VnRFhJGSox81TbJ+lkfZplrovpAR5H1PIBR9KDJR6EDYKPNjonBNuj1+STpkANCRx7TrsTydRzsIcwBsbUhS6IC43sBbA2uDX+OO7kF/wTJ8T/A2mJM0RuwqYFcIngHqqWojDNRbjEsdQo6aDpNGC0bUTz4YdUeS/Xkb+KQbk7UmqNK1q7RD2kG8OsdYU0dsN+CsGREMmc867FhZgouaGTtnU8xmYbjynuC9gTVBUyfV08xZ9C4cT+ijeMYuN0HvLXa6KXbMp1jtO8x9qJx0PzNh7k2lXSfLmrVW0njgUeqGOOj+pXaXfJCuX7CWm0joa4ikwI0Lk1Zc1NIIOnHxlNASTPYVzZAyDmXNj6x5Qfn+rEmYMk3FN8WmfF8zFgz0SQDAE9iFv2Q/u6gBQqi0c8o4UfzEQjOSU34jy+LJMEzHMNbDO4M8B1Joj9zFvt3FscJysCmNkb6UlcT4kvtZGiN7AnsD7w2oc0G/qBNjndRzlL4RVd9+DjA6ryC3vYNs9/lDAjt27MBnP/tZfOpTn8IVV1yBL33pSzjppJPw27/92zjttNM227w1cUjEeWNzZtSGlNpTGYZ33w9TbELN7+bGrLlkOIzrxMNpU+qyLYK4qWjUjVw2EkKOal21dnK0kRGDy9q2Rf4Y1VTajf35t7xPisfFz1w3VHSriq/C9zyVEUp84wl91FxedR129hMYYkxNH/SFo+bZ4dNVOG8AAvqJh+9NPU9nv1GI6WYhTTM14F0EawGzGueYOCeZeaiDEBujkhFkG7Tm2ridXIgTk/a11Har7Bj7HrVogy4rV3UdouTdgJrP6Gdqjg3uibFQ+C0Citi3fIq7nIGbG8znHXauTDGd9OhsmHA742FErC7jPACwxsMaj854dCIgmUVd4V1ugp19iPV29RMAwOo8xHzOGThPVdxXQWjDpjigxFhNIMxC43fMoSlupCY+HgQK4jPFIDl+HElWHOc8ZnGMG6lODwhxlGX4aYn7YGLbjOXjDlUsGbR5OaRHdZmzzl2KR6Wmb+6LXMeGKa5qNY9bPzTtmA0HTXDrYbpS1+wZHhbMnHUaU7xp+hCLG4dK8w0IsZoXmn/sCNxHQw3DGwOioFFpUrksw3kGRU32KgbOvh55/hExeei7w0F4OHaN+EVxwING5ugdO3ZgeXl5r9Lbo5dz27dvX9eyvJtuugmHH374XhmkUCgUCoVCcWvHUUcdhaOPPhpPfOIT8Qd/8Ad40IMehCOPPHKzzRqFxnkKhUKhUCgUu8f5558PILyYe97znoetW7fmc845/NM//RPufe9771Xae/Ry7qijjsJ11103WLK3CHe+853xpS99Cccff/xeGaVQKBQKhWKT0KxQ3Mh8DyaceeaZ+OxnP4u3v/3tuPbaa3HNNdfg9NNPx0knnbTZpg2gcZ5CoVAoFIcGNmuDhoNlU4irrroKAMDM+PKXv4zpdJrPTadT/PRP/zQuuOCCvUp7j17OMTPe8IY3YNu2bXuU6Hw+3ytjDiiIFYp5Vb1YqS2XyQ4oRyNLnDO9SS5bzRQEuWRY5CmWLpOgd1br4dPvtPzWh4QTZYtcvbLcxO3kwxJjQc/jkLmxkasnaWftUvpM80XeOjqXu10KH5f0MvNgZbSkrFZLg7NDR3gY0e5qW3ODwAkAIXFyc7o2pdEuKx+mG7Z2D8ube2/Qe5u3bV+yPWZd6C79xMF7giOEZd2mLL/3NtApPJtAUU1txAT72CJTXSluY25ngdoKUK7auPI/3Gtrf8ol1RVrQNJ70zJ3cSGbWG/gQoNt6dLJAFFvSNm37qv4heO+HWWBS1qx4O+So7yu3hnGip3ARWr3bNbBzWy+FkzYRYy+M5mWMO9tpCo4eCb0bDBzsc68xYrrsGM+xc2zJaz03YC6SsTw3oQ2IIymSA1JDsh0cE6UCI7URkFLIlGuARWFS7kBDPrMIqT+7FObGKGO+ND22csc6/MtHV7SWgutHpmSMQo5NqVjpimnp0zzhadQvyjtlFoTOaZWUcLScn+q8swZG4adOJiYmIv8UjYIfR8IlNaJzzaOjc3yMzVa8oLiTYG61PcGxqTOWSgPLGkOQB4/Q12k+YLWF5Tk+SH54SCJaA4hfOhDHwIA/Mu//AuuuOIKfOITn8ALX/hCEBFOP/10vPvd795cAwUOyTgv0f0kDSlRDkfGytHvDcrcmq4V47ScENNhGc+IoToNeQO6E4nkmiwWUsXkd3FTmofK/ePjLHkqUgPCjkzJygVv8x4LhmVeYxQ3AvEIxTdeN1Y3ibrKsT6rcET41jmDeR/G79V5h51mgql1MOQjvTUM+Fsmc8x9kC1ZpQn8pA1iwod3BN8beBupmgDIhdjPmBjjxeyNB9gh0AfjvOsnxRWGmlhaltljGEeMQbaROD+S4UjrzQ8TIV7OtE7UcTiVy+SzRkVpHTEky9QkqRRpD6fAlkpYmnzXM3rjMbNdloixNtIKKVALw2dwjk2/Ef6AIl/iHWHmQ5x342wZO2dTrM5jDOhMjkcqKmt6nmkeqZI/KpmRinPM9TNMC+JAH06U1vZZByO/5TQv6fW1qYvvBxVfy3Mx/ucO8Dk2pFBX9WNC+PQEuJRO/Bw8i0VfCmmQXP+xL8rnWxZ0VhL9N8uLiGEkS7ZYhPjNetiJg+18zio9gzkw2Bj4noB5vNECNA8yRUnZSD7HEyPLJFEv3EUGHiFuNbY4hkW/JINQp1W9UXyuoTgINH5iDP0X08uyQvm7xnm3Fnzyk58EAJx11ll45StfuVcbPyzCHr2cu9vd7obXv/71e5zone50J0wmk702SqFQKBQKxSZCY8R9hlNOOQXOOcznc6yuruKyyy7DBz7wgc02q4LGeQqFQqFQHELQOO8W481vfvM+T3OPXs79x3/8xz7PWKFQKBQKheJgxcUXX4xPfepT+MxnPoObbroJ9773vXHaaafhaU97Gh784AdvtnkVNM5TKBQKhUKh2Fzs1W6tCoVCoVAoDlK01DbFXuHFL34xnvSkJ+Gcc87Bgx/84Ex7YGZce+21+5QGoVAoFAqFQrHH0DjvgIS+nFuALIcxxh1f1Jh3oxlV6c6l6xsdoaF8x1AIobIra23En2Ir7GrbagBEDGs8iKJmUuLR+6grQIAhLloBlfFDG8v20Cn9cjLrTqRrxnwmZR+EfoGk3OdtyIFQSOH/XFbiINiBomWQpUwcgTopyEK1PhSjVAwXPYzeG/Rs0CFokXTGY2KDHsmkc1G/wkQ9iaJXYeDhOwLbuN12u712st0Bdl40QLokp5Y+U88kwMstzoGqLrI2WNIV8aIBeVEuYWPbrom41E/SxmBU9g7a/ECrDnXjbttPo5eTv7daN6m9OgM3N2DughbgqgUnPQkmOCasMtB3RZzPu+Kk3hvMnMWKKUPcjvkUO1aXsHM2xXxuK805k7RZYjpVGyEOemGt1mOR7giN1gy6cy4aiUbNor+NoYw94h4GKPlIXgMAFnm7ePJJ5kdWcLGXuT6X20VuR6jvozqpXO6kGwKApVHEWZuGhc4c+mJ70r9J296nomYdz6TBAYAtR02moT1sGabz6KwLMjpSQ5AYsPH+CcN0LpfJs81lrfQcqdwKH32abGSGnxH61Q7GcK1ZU80RTX1H/zLTuGRLc28Z/7m0q6SXuZv5RXHg4Yc//CF+93d/d7DJwg9/+EMcd9xxcM4tuFOxIUjjTSs86anoIDWnEnI8t1ba8nN3D0GtLtHI3D3IIo5VVXy1KB85X7UHk8CdiNnk9dW8kO7MA/dIntJveaqr586k/bRY2FSkLxPN4zOJ8RJBZ4rjuC41k6MOF0cN1KQrPHMWc28xcxZT42DIoYuac1PjMLU9ljoLZgrx3oidREETF30Z71O7oB4wc8D0xUbuADcBeBJ0hVOcR/F70pTNU6opaa4X1dwu442xtpIyaBs0FV/SGnPQwL6UXLyXfV336SYGQvslWz0/uBgjkGGQDZ+2C0FZZx0wBazx6DlohPVRpNkzYUc/xfbVZdy0soSV1Qn6qFXsXXh+oBTrjTx/jJVPPgsOnr1kHxh1TLkvP8espX0d76n6n7BjFIPj7UCVDnOMecJ5n8IsL6o9megBuPjbEmAWaEAiaimKMrGNhR7TTktxo4gf0/CbwlbuAD+NsfjEA1MPO/WwnUdnS2Ce2yMxuPOhfqfhvJ8bwBqYGQCi0Aeb8Y84llH6yxvAcXyGEwFZc2OtaYk8vsSvYlhNk8R45eX2JNujxnkK6Ms5hUKhUCgUAuI5acPzPdhAIw9jO3bswPLy8iZYo1AoFAqF4pBH+/5xA/NVrA19OadQKBQKhUKxj3D++ecDCC/mnve852Hr1q35nHMO//RP/4R73/vem2SdQqFQKBQKheJAhL6cWwS5VDm95fXlVLvVfIUFb4XX84Y607zS77WWFBguS4iNoFs0W1SH02Eb8jG7iBhE8bzYCr2lX40tr2YT7KC4/TSDwEb4SlDyUrrV8oyW3oi4nL5a7tssD84UWgZ7QSfwBE5sIZ8yEpSIdpvxbE+hqzETem8AEyiSQFhGnz6t8eiJwYlqm5bvp/XZyczUZjxlygL1gOkZdjXcY+bJ0YBfClQ7uZV4+k1pi+52WX2itMpzuf001A+gojFW5ZfgQAUpdB+uTqUl6Pn2vVnyMtYfkq0e8L2J3wncG1CitXoA3sA5ghfbncPH5fcMrHYdVrqyk6Bjg12zCXasLGG2OoGbGeEQgKyHsQwyfkhfydSF4XE2kQZuosMT/cdwtAd1GwYizXHED4lWNEYN5th20rUm0Qdi+pmOhUL3RmMyo9C18gWxXIm6Ky9PLhqjrMR+TaI/ceIvpbGIASRaa6QgBaoA6sGt6dNMpWxkGcwM7jjTMXK5bRhvrGF4jvQiQU9jA9CEYacO3bSPNhLmjkJ6HYN7QceQdnMaS5DTM3MDNzOYmy7Ud86ruJKZQCzq27Co15xUPIdx6ofwBahQcPaqjyk2BVdddRWA0Ce+/OUvYzqd5nPT6RQ//dM/jQsuuGCzzFNE5L4o6FyUxkhfKFfhZH3vIJ5bzF7ajRHAYC5MsQ0hUNxBYv4WXDmgnky8GJNau/NYHk+mcRwAgzPdbLf25Viz0LsYGL93EXZzLQ9sFr/j/dV8GAOSoFjAYFA+WabVUL5EsfTewEX5kiBhUijmJsbBKVZmJngRF+QpMFJlixwHYOYEMwPsKtDtBOysFNZ3BNoCOAZ4CfATUd4JQoyYqK0xIx+lFyopizE/Vn7i+nh1n2gcOd7lwW1FzkOmMxIHtfeNgFJs3cTwA1pzQy9nEQ+4SGt1UwsvYnJDDBMd0bPBjtkSblpZws5dU/QrE/AsXJviZ28Z1DHIykAolS3FdNEOEc9xkg9KzziSHpv7VZVgM4DsAUaurQ7FvEaTTDG7MIX9sOHIcSTXr4xBkdpfPEHhOQJ2WMmp/ko/DHEv5/hI3COfA0VMxIZK+7YML2itvORhOg9jveiLMTkOUjPdxAGT8Dv1bTc38BMLby1gCTwTEiupaNGm0N9ie3MEdgzMEcor6jqH5SnGzcnF+Cw+CpKn0r1MPO1DO87Paake0jMDlfiT14oJFYcM9url3Gc+8xlceuml+OY3v4n3ve99uPOd74y3v/3tOO644/CgBz1oX9uoUCgUCoVCcavAJz/5SQDAWWedhVe+8pW3yo0fNM5TKBQKhUKh2FiMyLyujfe///0444wzsGXLFlx11VVYXV0FANx000344z/+431uoEKhUCgUCsWtDW9+85tvlS/mNM5TKBQKhUKh2Hise+XcRRddhEsuuQRPetKT8O53vzsf/7mf+zm86EUv2qfGbTrGaAtyifDYEvORFaljO+9U6aFJt7lmdCehZjl72R2wLKnNtKx4P6XTiTIxtgo7nW8oEXK3osoMEstzicXuTInzRqN5sVgazImS1l6XqFxthsmu+GrZWAYTw1GhPRY6WlNGT2h3jqWRJelzbzHzFp4p0B68ybQGI65Ny8bZNcu3o62UNon0YccgMwOMCzt4dSt5fXak0hjMGXBLAEcWVKa1SvpNorxGamO140/ThjI7WZpnMFL5whdUzmdKrKeKzcDimnhn9TGAWDbPqU1U1Mb2+mBI2GErLEmnSEEkR0Avyi1v6xiegVnX4WYzxcyFnbqcN1hZnWC20sGvdsBcUFEsh93T2MN0JrB5ZTtLzbilFJj4ZwEYhrEePvKRA+WBAvXH1H1B+oRzWVHGg7H2PqB7QLQDzsvyK183eZVd+Jr8xi5vhqMxX1e7w8rjuW1QoUlI+pGJO7pWuybHcsU2TZHCQp0PycwIvmMYUPkvpZivizvw9TMLnsc20gfqKhmPbtpjadLHaw3cxMBF+gTJGTDvdF0KL3cxox6gmQl0WFO33SAjQPXOx4jUETR1KigPTCiUddlH03HZHzdSuXfRnKU4JHBoxXlUt/VEaU1jqpgLMzVvPX0jDf0xH2rGjWr8FLHD4MJ8nRhPYj/NtCxubJNMrip+4+Z8IIOCxTzPwzSSbEpKL9P2F8Sue0XzFZTeii4oKZZpLks7PiZaWKSUETgFdhXFTsaansMurDNn0VuDGbpMnUuxXppbnAt/gyJ6CjtDRskN0wtK6y5gusOj21Xaj5sQTE+YR9mFtFurT9IlNtDs2jr0HYokxCK0/s5zxoLGKtoiy3aHJp88XwUaZIoFBhu7MmLstGiqCnWSwnRmrvIlj7CrO0KMR56yLAwM4Ltwcb/k4ZYMvCc4T1iZT7LkjPNBvmTXygT9rgmwYmHmJd4JUhc+xiAxL8OZ4hmeSQI9utyU4nAOsWK0n2yiJHLZiTXd1YwpA/ruiGvydRDXtreIuLtNTvo9744rKfpRWmStMKLcH/OKUjEDG4TZJJ+HxorIzQ0xjSzdk+nEiPIlDI60VpqE+JkZcM6g76mitZoYd3fWo7Mujw/z3mI26TA3DE8diJJ8EIZyBaKLkA9tj23wAbvSRpIMCSc6f7qfYpyXJGWMaCNGPEskV+RndVRpSpmBDYXGeQck1r1y7qtf/Soe/OAHD44fccQRuOGGG/aFTQqFQqFQKBSKTYDGeQqFQqFQKBQbj3W/nDvmmGPwjW98Y3D8s5/9LI4//vh9YpRCoVAoFIrNQ/pf9o380//FPTCgcZ5CoVAoFAcvNiPG20gCyK0Z634597SnPQ3PfOYz8U//9E8gIvznf/4n3vGOd+CCCy7Aueeeuz9sVCgUCoVCoVBsADTOUygUCoVCodh4rFtz7sILL8SNN96In//5n8fKygoe/OAHY2lpCRdccAF+67d+a3/YuDnI+kwo2lQjOgyD7wvTC9eN6QTkz3blQNQtKLoMa6QvdCGqPEfuafUQchLEsMaD2Qg+PQMjW6fncwsKHzQc6nJUeUZeftZqSBdHXYSssWLkjW1eQqgh6UcwKv0mlrf6oCMg9bnkFtlA0KwAgLmz2NVPYMDwIHimfM5LIT5P4F4IECTJjqxhEI6bPmgemHn83jPsLOoqzD3s3ET9LgM2gJ8I1xkhQSO1Gkz5yzpest7aes6aWqg0xLhtlLLORdvj6jwGyMmMJMdRx4u5aFRk/Zdc382NHoAJ/qW+bIVOc4Ci/otcbcMG4AnDcZCA8Z5go3YZe0I/s/CrFrRqsn5dsANgm+wb6xgoGhNJeyLZH/XmKLUj6QMSdUKoG6PQfSv6iFIgqNgGBB2MoMMSz8c6l3kBNNQwEgnmtt+OJ3LIqOxP39f+ry5q0xlrHxzbadIGkoUUeXPS8Itb2JuO4eHBnQk6IE7cEPV+ZtTBOxPqdiWIxZAvyRtidDZq2BHDmA590o+xtR4IcdRbafyRtEjIEbyj4ZCYNHMQx4NJ0jsS9dwWO5VXjKOV/6OeipDu2zjoKrZDGodKnJfmjzRPJ12mchKQ0/1usSgkkmOkCFvKoNPGSE3nk/N10vyK91USeIysg1vSEwNPo4GZy5p02fakjOkmETsRNVnJyxeluWY8y6Jy0vXp+4iGFQMUgy9O18R5hnzQ06Oo8eRjXTtngraw67Cz9/CWsubczFvM019vQ+zQZ5EsYRNCfJK0TmdBW9jOgqbw5GaPyc1h0qKe4ScGprcADNjSQHOOCaCkQYqSXYgzUPm8uiD5bOBHlLaS3bg4eGPmur7aGJ/K3yA3phhMifR8fBaotKK5NpcpaFSzKfHyPPjUzMt1vgvn/JTglg1W5wbz1Q7d1Amta4Kbm6ArvGpA8xI35pis1WXOfSJqf1nRoYRuYdKcI5vaf0gvadZJ31LUN6z6YUpzLN7LPhypxqY+xm4LMTaK1lx+/kB4fs02yL6zdmevxhVpYoo3OfW4sfMLbszPL1wtDQptnIGo7Zd9DITYzhnkZ3Fht7Me3XKPznpMrctx3tS6+CwL9J7A3pZYum90x1ufi3aZ7OD8bEBZPjRr7ZmUnqzvYZ9JOtE59E+a64v8tVHQOO+AxLpfzgHAi1/8Yjz3uc/Fv/3bv8F7j5NPPhnbtm3b17YpFAqFQqFQKDYYGucpFAqFQqFQbCz26uUcAGzduhWnnnrqvrRFoVAoFArFgQD9H9VDHhrnKRQKhUJxkGIz4jyNLXeLPXo592u/9mt7nOAHPvCBvTbmgENaCiypZJmWVdZ1t1TS0SWyCcQ1HU3mU12XztH4MvQWY3S0xgYG4DhsPz6gPIrl72El90jvWWvJ9Vprc/3IsbQ0Oq2LTtc4lO27x6hjXJZw56TSsvQxxLKkpfXkCRDL3Ako9cEEF+mSq31YBk1U8kp0VudNXOYMsCPQ3BT7kxviNvCJnkAOoD58Zj+6kLBd9cCqB9DBdwS3JOiLaRl4W1fAgNIazrXcOXkf1/eRaBjiGjY0rGcWC9gprvZP6Xkq9IcxeqpgqAR6bFz632YiOJmUlugLOiFFSqOZB+oIueDf5KtABw4Ocwz0PcGl5fGegDnBzAKllTwqevBuJ4vY8Jgo35f2rl/IBpJtfCS5QnMoZZY+g6dyayxroYeK7dqrPijSB+A9QGNL7Zvr2nNrDTkVfXps7FqEOPaF7eXFfYmGTghU085nOrLtHJhtzdzpC4XIdxbsDLgnmF0WZrUY7gng2Ff9gMoSh0DDQ7+zaIpyXE3nfUPmSLa5UBaygfoKhO+ZNseo6LaB1jDePgK9iUVfw+h1CsW+wiEZ56XYQ4ZwVMYHKSNR5APiz2bc2yPa68gNaS6QMU1gcJY4pZasqI/JqVnS1wo9vzFMUhxB9SExT4+FB4vGoYEaRNbh2A1EfmOmjmI31yQaa74wUXZjTMFxbHbGYDa3MBQ0RHpv0Bmfv8/6DvPews0t/NwCs9gQHEEmTx4w83DO9CU2MT1gZgy7KwQuZrUHdwbkJmDTwU8sXJQvMRME2YZI68tyCECe69mMtLFFjY4AMsJXzZQlbx+tJhkvyCxkW6zmzRgo+xhjc2k8g9h8wfOJlPignmBngJkFP8IH3wAhxrMrBLdC8FOL+TRSTpHiasp01ooebJHpk5Tm1+QrhNiOLAMdF5N8jAUMB8qloLAChdJKMiYEchvjNPfHWBZAkdVJbWis78j+IPvroraf64ubPEZivz2J18T4l+0YXBOeu0im2do7eF7kTO3Mp1I7Tc8xxGXscqbUaYzbs8yUYfipQQ+CsQw3MZjGhwRjHXpvYCxnKRopGVK1eenu0eeeWBAmwIdKI1G2cE+U7HEUbJXUZRlLyngv09S5es5UKIA9fDl35JFH5u/MjA9+8IM48sgj8/+o/vM//zNuuOGGdQV3CoVCoVAoDjzorlqHHjTOUygUCoXiEMEmxXn6/8y7xx69nHvzm9+cv//v//2/8ZjHPAaXXHIJrA3/leGcw7nnnosjjjhi/1ipUCgUCoVCodgv0DhPoVAoFAqFYnNhdn9JjTe96U244IILcsAGANZanH/++XjTm960T41TKBQKhUKhUGwcNM5TKBQKhUKh2Hise0OIvu/xla98BSeccEJ1/Ctf+Qq8HxMXu3Wj3U6ak37FCHG/ogJlgjvXwg4EIeUQ9Qm4OljfPviB6rqieRW1BoiyNlarD8Ke4LwJmmmuEO1T9iZqSRjBi08aAFIzrDJL5tHw+GnseLLdhO2y8xbkaQt1Lwwe41Y12goDjGhnVRJoQvsha7dEfRfvCD7mP+9t1vob0/zjqCVASd+iF/WXtopvNOdMX357S4CNei+eQXOPjoDJlDDfatEfNla25qdB0WsAUG1737ixcg0haHuZdFlTPsODuqakY5N1E4T2jmxjNN5c6y3QZbsXNknxCkbxadJwSL7kpPMS/pIWHZvwnYkAmKD7JbIkR0H3L2rkFS2hoBmStUQYgy3ppY1Z681LSQoCce2T3D9ytQgdkuysUq6BfptHzoCcaLdCmyM7JAtpNM5PWjCVqMYeLipv+l7VfkYuq8c+LlorTRqUBN3a+2KdUMdZc66uP4T6yxkTAAu2DOMIZpVgZ1SKbQE/J8znFiZqCTETXG+ClkxMX7qGgawPJ8ssu9hA1lF0MEp2Jl1LF7VI+qCBMzoWLtBzCbpBm8gtVVrrIYtDJs5rJytiwFDR9dzdUFmJYS7AwjiIh/m35xFiE45aTUCc5wyCnU2iWVPXAEjvVWV1VfORNEpO4rWtbQy8LuwDzlSOEaNIcJpDmGggbxsvFPpQQPRgvI/gXZrAASKLFQCeCa4zsHGe8EyYOYveGbi5AVYNaDXcl7Wvki1cYhCK+miAqNpoB80daO7QAfBTA7dEcNOQpp+EevVx3qp0rFPMMfYYMBbbQcyzURdNnsvfY7zFrQiXfF6R7TP7vv6Ufk960Cl+IgMR8MSLmrZWdNlQ9Hd9jJljjGdcucWb4C+7QvATAneAT229DX8Mg+NTLlsGJj7oylXacbVf2DBIpMfJ5EVzsYwD2v7MEPrTJaasNB6r64cBB7f1hnJuFLsbtKpgpsRLlfmpfSzQxN0rJD3r1J8rO5D7LfWm6Ar7oDFNQssxgS3BLTMcAXPbYZcpAx0Rh2c4oa8+iFMr29DYhFJ+iRSvJ/1ykSAxBW1oJ8554ddkiuiPQVs42Yxi70ZC47wDEut+OXfWWWfhKU95Cr7xjW/gZ37mZwAA//iP/4g/+ZM/wVlnnbXPDVQoFAqFQqFQbAw0zlMoFAqFQqHYeKz75dzLXvYy3OlOd8LFF1+M6667DgBwzDHH4MILL8Szn/3sfW6gQqFQKBSKDcTIouWNylex+dA4T6FQKBSKgxibFecpdot1v5wzxuDCCy/EhRdeiO3btwPAwSkQvGDJMxLdwaM8SHBc5j62bTVQP3DI5dGSspVWkUsVQOKwRHyECsU2cA14ZLk1RzvT9usJ3hOcM/DOhGXjlV3BCEMMTwuWwic6abpR0D9aEHFYvms4bj0vl8dzoWakpbySRphYbwYVbaHd/jozOLMfE8eAqiXTha7Y1k/KiMNW7RT8AwQ6WaKzeqZAW4zpGOJ8LNEvTaTTESdaQlzenOgODnE5dKTbTQA3Cfd0hmC8h1kF7IqFnZtCi5NLsVumgYk+lsuvR1g6FU0BKPUiaJzSr2QiWcbTYPk9ycvH6DqEpg0LV6csR5bpZ6pESitRC73oW8klcVt08oFGYvrkj/BhTUjYzEs7yBRjDtf5TpREsix800bEluhpaXplvk90RRrSnyuqiDgs/ZYoHc3l2QcyHy59mi3n5fCV/VT/JsaAWjqgrEgaU0OPKX2qOSfL0JQn0cSr9jPIu8kfsd90DLI+jz9EHCj4fahPOyvXE4c8uAtjoZmL/gaA54BfNXCTDivCB35mQb0Z0BwYwc9seMCoz0z6huZT+wqZco1Ev+gT1TXYRp7C2N2mMZYmoYxdNHKtQrGfcMjEeQlyKIrj3VhsleajPK+KyTBRJxfnEWlkIq/2nsGUTOEXGcpxIKW4zubTBXG8ZyeGpZH4Mc1B+dwadlfyJcRl/sqZB3pplY2kw+XvI5mtNa61cxkJCqahMMam+mlinEDFTXO4sFGW3RF6FE1FZqCzRf5gdd7B9SbEr3MDsxputDOK8hnCxlQ3idJqAd8BfkrgiYnHKFBbZz3sLovJToN+OdzopoGeGWIbAmwZ95N8CTdtcc2HajFnZxphQ5kkwyHeGZMoYRq2m2wPx3kSw7rL/UJOquXetq3m2N9TJSeRr0/3+EJtNQhzO68GOivHPyDFRsH33CW6cCx/x4P4ItuRnw1E3vKzKps81gQRo75AVbZBOVvkOJdzmcq5NWIHAGsPQGvkx8PYcYyyDCDExLkTtfkj13+WCUnpmBTwxmxl+j70R5qHOI9mpa+ZeYjzQ/xUbPSTkBcbA286rADo+9AQyDBcb+BmFjw3MD0NnjFz2UdcFvqcGJsH7aC9GGVeSDI86dpFsfPgOSzF2ms1DsWhgnW/nJM4qIM1hUKhUCgOVWiMqIDGeQqFQqFQHJTYjDhPY8vdYt0v54477riw6cACXH311bfIIIVCoVAoFArF5kDjPIVCoVAoFIqNx7pfzp133nnV7/l8jquuugqXXXYZnvOc5+wruzYfay21T1TCvCNLXLvaLncFCnWNyzJhyp9clnY3TDO5pDbtfJR3QEJZ6txSPzMlIy7vlkui2RvMext2q6p2RUW1/J0EFXR085iUd8fwaZlxvrf2U6IRyJ0tYRB2ajU+UBVYLAOW9lguS++jb0LZw3LgRTsZVsuzM32Dwg6NYgdVNmI9NwNgrnzNJu7i1Ruwp5yfjdSHQLOILIt5cT97grfNCvS05JnCkns3JbjlkJefGphVE3ZtdVyWbye3tivnU5lSOVN7XIR2aXWixVBKpFkqbyLdBsi7JuX2MkZ3llkZDOol7eAFL+gaLdJudILqSE5QWlGoC54Z5CjvNpvbjgeMAbiPbV9St9OuSbFfCDZL8aen3K9Z0opTf23aD7m4DN0h7Mo54GCLMWHRg66kOKR2mPKT44mg9mb7G4pD2vmppSPwGF1DfN+jVfRVnypGhvZe8qqorU3brWhAMt/kKgvwxMNOfN41z3kD9oGWYPp6d95EU2YXKMdyJy8g1I+ZGfibATcpAyH1gT6BdvdUMVYP6CtorpM/0/iXuF0emZbOJqYpadW7SS8YGU6UZjM2uexHbHB2igMLh06cx3nsBMSUmOajls4kdRnasWPRHCzPybxETDhIr7IxnkxDWJzbRml2QNwZEhjswhnTIhGvjc5LVNuZYznD9fxezT8xBhHpseEsXTJauJH5pJJQSDFpO2cl+wyK7MTIroqUv6Y4D9W4luZ7F6lwzITelXR6Z+B7A3YE4xGocUCR0ojxBMScm2h33sQYb8nALYf0zayLO5ICZu5hZh52FirVzgE/D7EhWeGtGI/xbuKuMr+K60RMX10bY25Jb94TZEpw9H0V07cSHjmOG4lNpf+TLEhqz+k2y/CWQJMwr7OIM4yLc/08xnsppgMypZWmcXqfimcgy2GnVvFMkO2I8SmnnTZT/Cd2WU1SPDmUorhjMEfnLwqkUlzR0CoHshko5U8nE71yTSwaT9aD9nmp+ZR1SqkvJYiyj+YvxwsK44d8RmBPYA5SPmZOMLsMupV460zEfCJOBEJdkEOgmxsD7yaYTdJJhLbVE0wfPqu4cYGtsh7kc2RFKWeqY/NYtNCWUT2zgMR+2sR1mqI/xSPyx8ZA47wDFut+OffMZz5z9PhrXvMafPGLX7zFBikUCoVCoVAoNgca5ykUCoVCoVBsPMzuL9kz/NIv/RLe//7376vkFAqFQqFQbALyYsAN/lMc2NA4T6FQKBSKWz80zjtwsc9ezr3vfe/D0Ucfva+SUygUCoVCoVAcINA4T6FQKBQKhWL/Yd201vvc5z6VUDAz47vf/S6+//3v47Wvfe0+NW5TIeSf8k7Hkp9daYUEDjr58bfCSYes2l4+3cqR3J50D+T22YmbnvUPxM1RB2SgR8BBf4lt0E9jqbHgAe8JPmotVXoRA+06cY6afKNumLcEs6gFUdSLMyM8euKi/5ASTXp6Wd8hlK3SHJFFXaCnkXW3ol+ytgGnrdrHOf1BGqPWb2FEPQRH8L0pdkwIxvqof8BD3RgfbBj3S6hbtwT0UXPOLRvYFQPM/eB/FrJGQVN2AFmLJGkXcOuOSvtDJCIaNcdryDTnDECyYEnbJZVrzI1SC0b2E6ao+ca1xkHT3khUT5apSW3fctEOMaEdZ+0JX9Io+m2xPyadifRpAGeafsqhbxAFHRZ2lDXDKr9HPZJ0zvSAR9C0cI5AVpQpt9modSjbcdYqiTZm7cr2XuS8suaG4dCnW53B0swrDZzk+5htDS5/C/83K+pkMDW6G1RdUj5ZVOLIeEjSrqpNh7GCOs6ajkDsf1EjzsyjtmPSnolDiwOyPlSVpA96JORMaTuxjST9t1HdJznOVsY314nfRe+HKp+wo6xHUjfuBelX/bA5t5FyJLKfKg45HEpx3uBQGhN2N5+2c3KrO1XNgSP3tJBjT+rvYt5Ic3TQv0UYB007gKHMtwixm9QxpjTGpHFQppnyNBx02pKtSaPWpntjbCVjiDR3tnPESMzbmkrSWSS0mNDmE4wO83RMN7XRMb+2cQaJP3ENe8A5E7SPRf05Z+CdCXP+iJspxnqp+DlJA3AH+GmI8eyWMPmYWQfLQVc46ZOaqHGXdNeosZlFLMtNTFnpXu3B/ND6EcmPTcFyHNn6lGIMZlKwuSBDWQ7RkbLWXc4ozsMeA01j31GJS5oYhbnEQ0njK9nsEetipD3ktsaodL7BlGM+chTjvFhkoUtLJj5P5dtCPwzPcByeH6oMmzpK6WS9yHKp1OpmqQldxY1NWiJOTCdztxHazckO6ctRv8jbpN5myivHp4uCf1TjX6upRiY88xnrq+cVDxNMcgSaEewqYHeFc2YGmKwRnuLQ8ps4atKxgVllsDGVOYvi20qXfKwoYxp6lb/FYU9Z55NkW043ybSa54BKIzLnvcCu/YXNiPM0ttwt1v1y7pGPfGQVtBljcPvb3x6nn346TjzxxH1qnEKhUCgUCoVi46BxnkKhUCgUCsXGY90v5174whfuBzMUCoVCoVAoFJsNjfMUCoVCoVAoNh7rfjlnrcV1112HO9zhDtXxH/zgB7jDHe4A59w+M25TYbgsvRRLnCt6VDqelrKOLNUkRk2HTQcjEm0y0dfksmJONkRKVEW1M9wszRVrYYnBluAZlaogewrL9/MS8nGbKNMKkOli6RIvlvyS5UDZy7Q8ykuVq5XPqfyibBRpr5nqkZZMx63oc76Eeil8SlKujm/8GyixxS2c8miXN4+pU4rlxRTT9r0B98VZnhhkAGM9fMfgjuEn4UbTI27nHn2UaLoWYCfsJsAthR/9koFdsrAIVGE2gBdbw4el9JHG6etl3RXvWvil0AdRtxegpkRycyN8rBeAvay00vaIGofLtmcCdaGljZZ+0FacSMJwaQeIFNK0pD37ITalLrTxvKJfFCNcG1MpDMlgA8ry/kxd6AkwBszB0LBMPbXp5MNgCyVqZUzbMMBd2KodkyGfIlPapc9znUVqaxoyOdVpaTvpnOmpnEdo47nY0q8NuyBQQMrS+pbSk6i16bvP/aatG9S/93DpfdV1Zdnkin5J+W/6vHcGNDcw8+gLX2gOHgD1yHTiTAdJZnrAzgDMGtqOEdeOUXWlX6oyS27NgrKSqHPEcS6lFcsox4AK1bmmHRGP0vj3K5R6cMjiUInzBvSmNCa5ejxN5zJ1X44NCS2ldcAVW8uQMA5yogAGUmpIopUwMAxYMZ/GMaZNL9Ns5cmcVvoUE0aiwBKKzAXSnMqBFtvKqCxCRWmLee3peFJxOwUVsg05xHhJ7fkRtDS7aq5xgHNUXy/iADYAT0IGnilT6hbBd4CfAG5KcEthUuq3hEojz+DOgDuCtyV9OYfled6KOSPPPfuA95bqIzkupllRWts4Tt47EnemuCrRPFN6JCu/bQcxNk+KELnmLYcuFu1qpV7IlfyS34AY+zXPLLJPBypqXVZJZzUuxIPUx3xjPimu9BNhuyXAl2cN+Rwy9sxSCoB6LBEFrGKIsThL+m9QN+U5JyM9n6W8mnsSpTUnKZ+b0lgh7Un5Duzas86dni0lxTlJl5ieYCOt1czC9XZe7GIK/k91kOqaGKAZynOodEfqTxZV7NzGsKP0VdnG0/XpAaKp30IZHqn3wZjTxOJ5jKT62Xsj0LYXxQGDdW8IwQNhq4DV1VVMp9NbbJBCoVAoFAqFYnOgcZ5CoVAoFArFxmOPV8696lWvAgAQEd7whjdg27Zt+ZxzDp/+9KdVi0ShUCgUils7eI//M3yfYjPyVBRonKdQKBQKxaEBjbkOTOzxy7mLL74YQPgf1UsuuQTW2nxuOp3i7ne/Oy655JJ9b6FCoVAoFAqFYr9C4zyFQqFQKBSKzcMev5z71re+BQD4+Z//eXzgAx/AUUcdtd+MOiCQueFUuOyOYeLW2UxFkyhpQwXtpkb0CRBCCgiaH5JMzACithZJLn/STWACu8inFzIvWY8gyjtUGlORYw9w+Ex6Bp7ge1PpaCS72DaaRoIXn/Uk0ql0n2Wgj5onnuBd0M8DGt580q4Qck1kGMYwvAu6HknjhXy0fUxEpDEv6TqxDzp6tf8aXn+l74D6UyDZTY3IBc2LyAhbA8DBWIaZOPhlA59siZpzecv1lF7ckp1cOOYN4JbCuX4roVs1QWtuycBNCRx1FfyEwZO4hT1CO6t0D0UZSEpKjP1viCm6Fnkr80aXhpKuTJJV4FIvWRMk6YM12iFFrwbgVpMntnNmoY/TChMSsh5I9psXMg5VexU6LfE8m6TzAvhpbZ9hBL0+kW7WFUnpT2IeQlMo15snUI+ifQahLzgPeiXwFPqEsD/r7XkqbUrW2yL9IgR7s419vLwDBu221RKRbTdpOBLVehfVvePaMpU2GnGt55YvqstCzIs1LCq7os+Q+gQFLR6PMI7ESnFzA5oH35Ori04I9Wgc4DrUmnMc69gFjcCsXUjBh34SdIGkPk1lokfll+imWlKk1UAyqHVIa0+VMduI31Lzo9H5S+2FUn/baOj/qB5yOPTivDjvcPkJt0BrK0HEcwulpQZjdPPZmJBOZY1a4jBHG5FUmrsMxziPQtzmaY+6KmWtJa40n3LaeZyhoQZTjgPFeJbHLhofK/Z23EoDI4dYO5WO4wDKxUxUA7TItjpEpdxBc0/EOtEP7CnGkymYiPd6ChpVUw8X9eH8JLaPqOXV6pqZefjt+xCH9MvhPtMbgDqQD2n0W0w+56YhHgyaWkHHGEjzU+1cWqMt5TYyFj+LawihDdVBo0h3Le0ss0AHEMgxQGlbYg7bE4hkyXKYqxs9b7bIOrn5ehEjSs1meMoawR4IgXecf+VcTy7ozJl5uD7FeFlzzsY0KcQaKW0wRY3lPWjrcnqXbUcWPNY3mxigy/iqSWO03trvu9MnzDF9/C2eEWB2f/vA/6JPhrgXUXMQYBj43oN9GNTy81sfdYVnwfdmHmI6oMT/VWyfdP8M8jNVui/XG4f64niP1CUc6FW2cRxErDfy7JGeI/aoSTdayjKP8j09T3HIZ091PfcFZPypOKCw7g0hPvnJT+4POxQKhUKhUCgUmwyN8xQKhUKhUCg2Hnv0cu7888/HH/3RH+Gwww7D+eefv+a1L3/5y/eJYQqFQqFQKDYeYxtZKw5uaJynUCgUCsWhgTEyzYbkq7HlbrFHL+euuuoqzOdhbfCVV14J2tC9fjcHHKkDQENRIgBdpEL4Qssij0wXXbS8OSzP5ZreBkFplcu0jaBbcKSANTSEtL19uEFkZBhseUDZShRZdjUFlA0HqqpMvuJ5pPtRHeO4BDcv0XYUliwDYO/yktmyZXhJk4QfqhXhFc1r3I/purQs2juEfDktReZMK82r+wX1r16CPZ48RR8wU6TgCYMm4dMaDywBM2fgk82OArVxEtpPoMAC5IODqY/JMDIFzm4hzGcGtotUhy2F8uqXAq01UZqNbAbNCLdgg72yhHvBfXKNNhmGsT7X45rL6Af5MECBBpKWsiPRDxalIZfty5ki+SjSWqql98Shf4AqKiN3gUbiloLfQr+lUmQnlrJ7ZLpDoCZEUzuRd7SPeoLpy6eJFNNMb43933uAikRTTjvXtS2Fz0OoeAmS6qiyUSzvl0vuM7UcyLT2itadxy7KfWKwN/ca/Uu2l7LEX/Iy1h7rBsh2UaA6RAoJUPzpewLmBm5enMgzA9NTobFURqZxF7nvZzo5I9DTYj0nWjAI8BzbTFeODdOsqfiDsaLhNSTqBUykbSd6a6qT+BnaazOmtvSylLx0X6KbKxT7CYdinEeJRkZpnkgSJSTivoBRmr84VqRGeDheAGvPn3KeG71WBEmGItUuzLMMLtIr8v42joq25diLAU7zyxp1nUI34jjXJL+ke1Istkb8MbRtjetR5rQ0N+eE0jyw3qFQUFvTOJo/wfA+cvgS1S7Nn4ZBEwATX8ZmcT7E1FTkJ2YGPAuV7x3gYtwQTAiSJeQBNyX0WwjzuN9KfxjglgG3lGRM5DPCnvttWG7xmZIkBqdnGQ4xW0W7ljIXI6EiUvyxyA5ZP/IaCr5mGTtUQctIXlGih32JiWmCaj5t85a2m3l5TiAH+C7E59WUG2M86glmViiS6Z7wrAVgGii2WSJjYcBdl2HQtcSjlZTbyOfWat+04Bzv5vwi22QALqVL5Hi2J3H/mD0uyhXlcYvhDeXYNUnf0NzArBrYVcqxWoqtwchUZe6QJUlSehRjvBTnGXmfD92ZbKy/RWaLobV9zhh8Z4QKXaPdysO7pQXH65N0CXuM+1NxyGGPXs79/+ydf8xty1nXv8+std8f55x7z/1FWxppCxoBFVIBoRf/kPoDbgCbmIA2NVfLj4uJNlXAHzRqaFHSEMFgIAhighr6hyGKP7FipCYaekuhNMSIVQwEpNxaSnt/nHPed++15vGPmeeZZ2bN2u97bu9533PPeT7JPu/ee601a2bWrJln7TPf71iJw3/5L//lTuXFcRzHcZy7AY8R7ys8znMcx3Gc+wiP8+5K2v93OJNv/MZvxPPPP7/4/saNG/jGb/zGlyRTjuM4juM4zsXjcZ7jOI7jOM7Fc9s/zv3Tf/pPcevWrcX3t27dwj/7Z//sJcnU3YDIPBer88m075in2OurWeHLLO9XVqdM8tEwRIQhFplSLCeqVokJXNSgsZaucV71tUyHNmkEgMcsbTVSOp4JmENegZI0QVkRSmSmIa8UJquFLWbv2qntduUjUx+6WlNbh5Bjs7zArOxT6qnkp5oS3srKYnrxTGXFy8CArPZKctGSlK6S5bYriTXbyLz0fIYQGJtxxtHBDgfHO9CVCXRlAq7OoKsThis7jPkzrs6Yj1lXEU0rcmUZwxGwOwa21wK2DwRsrxGmY2A6ZkzHDD6KwNEMHETwyIhjrnOzKmW7UlndDpv6s3KbRZ2na0oqN4C2+b7MIR3EJg0OrNI9aaNFng2szQSvpTdN/tsGZKR/IjngIa2+GQ+SpDUeRMQDLq8RZhXgPA0+S1SHLRBOKa/ESkY+ku5zK2kVCTtZeU1EkRXZdkeo60/lCp3218PcU5XEKpjjO1Po2z7LriLNZK7NynWm6npiOUrsm6vP0Puydwgz0op2ZoWtsE1ShrAlYBvA20FfdJpW8RKZg8hHtV9q8izbdDVfQOXB8qIZ2o4XdZWlGOmal2u9V2kgqwCGck2TLI50xVjJG4bmujFV6S9WhHWcS+B+ifMgMVIzcMp9S1N5BdMfLMekdGyRtjbn6X13XiRekniEGBgYJLYmoe431EbEjjkipdM0ipRqMfau5TP37bqyqcRfHUkrmXHQnnM1/d73Wgaq37d57ZW9TcfkSWM7jUHNroxK0orACJsZB1d3uPLACa48cIIHH7qJhx69gYcevYEHHr6J44dOMDy4w/DgDvzAhPk4Yj5izIdJijldSa/tNcLpgwEnDwecPkQ4vQ5sH0yv3TVgvhoRjyL4ICbrnLHET+W5w1RZG+ut0bm+VWzb1JXGKpHqdqQntXFeGYsr2Xd7bpj2lhOkdv+2rcZyUSXG4yGtvjkdA7urjEleV9JrPsyrsFO6f4ctMJzk1y3CeJMQTnJMMZnXnONBiUum8llti/T5y8ZfK/XY1rut/7asXMcZi9VD9XWOi70vxl4j28RoTCXXkqpdqpdtD4t4JT+b0USgHYG2+XUSEG4OoBvpFW7m162A4VaWtO6W5bftLLUBebZFV9asdYo6ncV+0sfP2crAXOfquLZO9tWvtYO6HXmqPn+5fYmTOPdqrc899xyYGcyM559/HkdHR7ptnmf81E/9FF7xilfckUw6juM4jnNB2ADcuW/wOM9xHMdx7gM8zrtrOfePcw899BCICESE3/t7f+9iOxHhXe9610uaOcdxHMdxHOfO43Ge4ziO4zjO5XHuH+fe9773gZnxR//oH8W/+Bf/Ao888ohuOzg4wGtf+1q8+tWvviOZdBzHcRzn4nB17f2Hx3mO4ziOc3/gcd7dybl/nPsjf+SPAAB+9Vd/FZ/1WZ+FEG7bru5lB1utObDaivfKy1kOzCL4xuPC+lbZc7DdrzEi4uyrxuI50hIYPKL2qULS1gNIS1yzSVK8wTKxXWc8cO0hJYUN+VxUfCp02XL1OAHE1059QcQ/Bdjv10AAhQgK6cCY87k4F+U6IuSl161u3/qW9P2cqPO9+N2p/5q9HgMjBMbhOC18MzgSwhAxDhHMwCkOAADTLnv9bc1JcrmmfJ3CRIgbYLoKxKOc/8MIGmLKvly32CmE1IPQ9a7g5X5SAWZ9dwq89JhjAoGzZRoVYxabRpBKYDCkHaTKrepX33MnM7eB8aMAsufcBogbBjYMngGeUvqyn3qHGB839UMbUfwqpHjiJ9nxKSPj0aFZ0oaP0mbUn84YjpzhX1H5e6A5tx5n2rg9sJdeRPbcM+2Y0r1ry2w9PMq58jHi3bM2FV7SmFH2N+cCkPqROXmRhCl9FabcpMZ8D5yWTITsB1O8NlH6Sls34rVi8x+w7kmiFVPXEUUUrzlbH2SOYwIzg6qDc3FzuUvfm9u+ePVU4wkXXx3xAF1B+yLHuYPcf3Ee1/2GdDT2Y9mzGyuUnVH6yvZeFu+uNVrvJol/pJ8nM7Ywkoeujmmm78jnIUYag6s+sYxN0u1LmixxnPRjqPsp9dLkMvS3IQCQx0Q9pvF0q/pdGftLrKDfW86SXFXji0knxyuahPTZzW5EKaYMQ0REqIfjwBgOZhwcTDg+3OF4swMAHI07HAzJSHSKATd3B3j+5BAAcDMcYIqEOBPmuY454yZlhkPyxp0Pgfk45XE+4uQrPKS4k/P4QRFA9oiWMaXEBHk8Rsf3q62mZrs+luRxrbqWJl6uEymnJeQ4O49fxXeYq33bY6v32gbMJls28WvN8SMPedOQnm+sp7Y82wTKMbh4RNq4bUjXgCIQN4Q42pu7xEELTJzJg6lr27Y7zw/p/ssNbt/1sW2yF5tUdSqBUJvGSvywt8M6g/JIsDifhkOd88r+JHGzbbd2f2m/2e+PJpOUaWuV5xzV2xAYHKh4EpqYUI5tPZPVM1SeAxgpDgayX3nqE1gN3+W86ZrSoq9BeWY4y4/Z/rV5kn7YfypzMuf+cU547WtfCwC4efMmfv3Xfx3b7bba/oVf+IUvTc4cx3Ecx7kcznowvlfO6SzwOM9xHMdx7nE8zrsrue0f5z7+8Y/jG77hG/Af/sN/6G6f5/nTzpTjOI7jOI5z8Xic5ziO4ziOc/Hc9o9zf+Wv/BV88pOfxNNPP403vvGN+Mmf/El87GMfw9/9u38X3/d933cn8ngpMPdnCXdn4FcyUCynEnM9XVdm0LJMF45UlnBupkl3JWQimQt5CrzIHGz6Q14aOxqJVZSp4s20aJPVyFRPcRcZVitxywXjoOoEUCQjecjTf/MUYUQUCe5tSrREokpZRgvJvy61nutSppm30uFYL0HfnTmcpzBbmW0QWUZgYCzT2YdxxsFmwuFmwpgT5rxxjoQhMIYsa53G9BAzbwbE0Wp7oVPyZdo7TUnuMB0z4lHUc9HAiAzEMYAnqtulSFiWCoEkhbBNcV+d520h8HLadj5PJe1rp9Yb+Y2VaYtUJsls9tA5paZr5DyLvzJ1HQCPSFKFMckdqmIs6qbkkSjLH6I0ZHOZGjlGkobmJKLkz+RRj+MiZ9QEuUpLpD98WzeDLYtkpCTdlW1HSlJ4yaIcFhrlRJ7mL58ZyLJ1sw/q/arzMJJkNSCdD+UvsgRY95kIlGWtNOftnKUNQykETenetbIWreNW3moyKftzoNQ+WlmN/Wz6cZqBMKPIYYwkgiKBmNN1lzpt0hTJT5W3LK3QflSOW8hGqPlSZBqpX+3JyO4Ue60anHue+yXO01jESKVsd3ymIsxKrORzN74oCe69r0w6TFBZKFlpqY5R0tmYgc7et7FRnXGOy9pxSPOdg4jAixiwLksnCNZ6LP29zbvGgyix0iINc67ukGhiU62bnsWHCaskebZ9rI6DYl3CKTylWI0lYYzYbGZcOdri6sEWD2xOAQBXxh0OhgmRCduYHqF2cxqctrsR0xjBm4B4kIIviU80jBmA+YARDxl8kL88iMAQiy2CZF5sOCTPcSV2X3lWkTKCuKp/ksGYaimdSvPsc0c7dub2QWYMrFTVa+2/d6nM/UYmpieRtMZyv2icly19eMPAkAIVbeJzqTeRS2pslPMwD6jqNMUHRh45GpchTtvjBllKa/LR9B2rtDGoLa/E7736ar9c6zfUl6UTaDdWJPqcCZxrfKem/WmyvZiqJV8DkRyXc9c7q51IflbhkCxqqnOtuSvk/ZPkGIimbHGor1fVB0vepF6kChmISPcsBT7fBK/etTL5W+zbeW/7x4vE47y7l9v+ce5nfuZn8K//9b/GH/pDfwghBLz2ta/Fn/gTfwIPPvgg3v3ud+NrvuZr7kQ+HcdxHMdxnDuMx3mO4ziO4zgXz227/d64cQOveMUrAACPPPIIPv7xjwMAvuALvgAf+tCHXtrcOY7jOI5z8fAlvJy7Ao/zHMdxHOcex+O8u5Lb/nHucz/3c/GRj3wEAPD6178eP/IjP4Lf/M3fxA//8A/jMz/zM1/yDDqO4ziO4zgXg8d5juM4juM4F8+L8pz7rd/6LQDAd37nd+Krvuqr8J73vAcHBwf4J//kn7zU+bs8rPeB8VPYR/GYKqiOXr0JuEqQIyEYXf+a90CVLAFs/OYgPhFyQODk+SHpiS9H1v8vypPzxUyIkcCt75zu0/kue1IRp8yQej5QlT7nPLVpLfxHmnIDxn8kp8FSX/lcLH4s6tHClRcHR/HqUNOW/LdUuFyaNj+Ufed4ZPW+C2PEZpxxOEwYQ8TEAdvsORKzMZbUY1VXA6s3YPI0yO8J4JD8ruIIxEMGbaKeKwQGRwINXHmH3Q59H5BSH+rrR2cv5s28bA7FlzA1eCkbWt9w+z8nZPxT2gT1mprGKo1yprodB/M3mGN6ec82PQtvIPvZnjf7+vBQ8q0eMuZa8lp6th1qW2va4VpGudRP1Te0//u0avRSPGooUr5vCG0DIsbS8zL7l3BTBk3TeJe0FkTM5Xi953Pbpez/aPvVutyo+zsxf8meIhxKvdOU3xOWddJ4kfDaf0OZYzRfc06boT53Uc47EzAAFBmrd4rtu3L+5DSLdiJfcvN9sx/HNFY4zkVw38R5nPrFhaeS8cJSpEvuxHlyTLt/2lD+Wg/hyrPYeGXqsVTG5EW6OWAh8Z1rM8JQPyyNOSKlcb4dS6p0uVNwW0Cu/JMZJe9Vf5/Hb/HKIzBiDE1afarTd01Uc8YXXs+o6rp4cXHyv4ophpC4jJkQQvb2HZLnmCYXGOMw4+hgwvFmh+Nxh6MxmaSOIQU1kQOmGLCbB0y5bFHOGZLvbTwEuPHP4jHFk3wQQZt8jYeo1znOxgy29RJ8MbNOst+cersRg5nBGsg0++87jx2T8niO3u72OkQkf8TWp9a0t9arVbzK1PvVhu9y6amJ53r0nmMkNhikHDmuMN6NNJTj1c8se86pZ2w444KYmJiJVrNYHZKfQYiz3xmj8tauymTaf7Flbp5fzPOh+se1cUTjl1wfV2LIqlzMVUxa+q0c/1fxaf6751maKXnEiY0kmecGjeMa7zjNI5XrY3epjoFpW5zbl/gacp12QI4Zh/pc5RGbqjKqb1svjjsPuRyMpp6d+5rbnjn3Z//sn8Vb3/pWAMAf/IN/EL/2a7+GD37wg/iN3/gN/Jk/82de6vwBAH7t134N3/RN34TP/uzPxvHxMX737/7d+M7v/E5st9tqPyJavH74h3/4juTJcRzHce5J+JJezl2Bx3mO4ziOc4/jcd5dyW3PnGu5cuUKvuiLvuilyMsq//N//k/EGPEjP/Ij+D2/5/fgv//3/46nnnoKN27cwPd+7/dW+/7Yj/0YnnjiCf18/fr1O5o3x3Ecx3GcexWP8xzHcRzHce485/px7tu+7dvOneDf//t//0VnZo0nnniiCsQ+53M+Bx/5yEfwD//hP1wEbQ899BBe9apXfdrnTLK5JJ/r/tLb+wW4mXq9TBTdKeR7lzNmSvN87XTZdlaymXbMgTTBJFUMwES6n0rSCGkZcslslgTMMYAZYJEgSL7Omqqbpz9zPhcPBBpz/kUqYQrJnCUA3KnfPJU7yWsb6ULOLiJBFromIvDASUoZuM6rnW6sB7fno8X3zFSW5c4SBdlnGCM2IeJgmBHACJReQJKzThxASOWbdqKLK2XgXPd2Wj1CmmLNA8AHrFPnRZpClMs2mLSaopwlN7WqXpFYinxHJBUUagmE0pM+VNvZ7MdFm2LPLdciNsdIQRstNYckB1BEas5lOvpiuv2i8OUth3JMK1tK0gUuS8SrVFauE6VTmTxL37AqmbSZa/Pa1H+7e7d/Mf/zxJFKFbdykeYYiqaJr/YzeT+rC5A6a6UKWSJUTfVHvQ2U6zL3MSx9jfR3jSxW613zWd/3KlHgUt4AJNn0Wp+b7yuVHdt9ev1urp8kqanzSMFIIaLUf9NeCaWLttdE5MQUszQ/H2fkJSoHNkj6nK/3qgXAHWKPOty5B7kf4zzMBAqU5OoofbqVbgplLK3fV6hUr3MubtK2MqhODKKHMcnoU06TJaTMWTLXxDzS5yOgWEsMKeMqb0V9zN4ZDTbPpqxEXGLOJn9k6qHqu6Svk35+tdwreTBZod6FavYXqWAKOo09QI4v1a4kRE0lhGRdcjDM2IQZI0WVrG7jiCkGnMwjbuwO8MLpIW6dbgAAu5MRvAupHVGOKUQimT9jTC8aIsKYBgq1ONk3lu9j0Q5LPCbxXD1epTazGFLa8ZCqQ8rfHM9pDN5KH+X0M2mMw+a4Kk2N2etYrxqDqYyppe2YmGaRZoqlbXXyAMRNlqdukrQYMHFhIMTA6dnFxtj5usURtT1PW2/7hmfbJ4hVio0XJBZqyxYp2fackbR9372l2vrSA5q/vbSbOInz99H2ddKfyMMFk8ZeUl/Epn2bvpM10WwfMmNR/3Eo+9u6qvJlpMoal0u5Iqp4mSKSdclcx70cs6x2Ss+vLA+BAdXNUsWo+b22z6Y+94Zt0r5kLMix3oXRxsAXeF5nP+f6ce4Xf/EXz5UYrXlV3AGeffZZPPLII4vv3/a2t+Gbv/mb8dmf/dn4pm/6JnzLt3wLQlhX756enuL09FQ/P/fcc3ckv47jOI7jOHcjHuc5juM4juNcLuf6ce5973vfnc7HbfF//s//wQ/8wA/g+77v+6rv/87f+Tv4Y3/sj+H4+Bj/+T//Z3z7t387fvu3fxt/62/9rdW03v3ud+Nd73rXnc6y4ziO47w8OGsmzZ08r3MpeJznOI7jOPcRHnPdlXzannOfDu985zvPDJg++MEP4ku+5Ev080c/+lE88cQT+Pqv/3p88zd/c7WvDc5e//rXAwC+67u+a2/Q9o53vKOSczz33HP4rM/6rLSyaSu/MrK46uGFZcr2ipwB0Km/IhtMhzVzXxdLhq1mu5zHygPkCwLCENN02cjVvjQjrZ40lKQ4oJJlxryCWXUuI4tclbpGlNVa57JaKxHyao1yWFoxiyPMCpIdFuVnnbdNDJWiqDRwiOUa6LUJRqLCSylKNTW5TCmOWX5p5WQq/TTvhTkfN8eAeQq6uiLPudC7UMs5g6mPwIghSag5S2hD2xZEg2eOq+bF95CVsBqp70IuElhlFbS2z77TGEWDqlN19bk6jyq3MWejkE/Yk1CYe65abcmusGdXvRWJEPNi+r5OXc9pWDkq25W4ZMkoOW5Aaf+mbRGl1cpYpvQ3fcLi4kjBY3ttm797sDKOtdtwgdwSC0lDrVVYrKAqbS6XWZUysU3HpMHmPAStmyKjyhepvTayomrbxyBXm+2vTN8UZF+yO5fMcKB61a65lBURC2mpSB5C7id1m67uRVnWykYnUV/PSmYSUdqwlNX2g0R9aY7sTnn1vkhVXh3n5cLdHOfxnIKHvACnrhLZjb1UmsflfbW9xBcdN45CE3P0d2oO4UZGL2NRjgkQmgRkOI1m/I2cZXJl3yLxrI/tlr/9LgVCuR9rdqpirLW/65XEdt+2ons6rDPqT6StzGW1Wc5yNjLjh9TxEBhDjtWZk1VJzPHmFANO5xE3tge4dbrB6ekG82l6lOJtAO2MHY4ZAzEg2a+MUZ8FiuxX/q63vSKBburqPHFD82xCOqCfN/aWA5uBW2OqEpeTiaM164wkH7exKKW4QLYtwlkZp3OspvFflHOgBJ/WwiRkGeQBioUPUGStB4y44WK1IWWYUyxKA8pqoXIN7TNMWwcSu66M33p+W261+lmvavWCWesjzHNkK20tabSf63jnTMklm/hED6yT4+aaAvk7BhCKbJzzBdbztvd8vsZk4iW9VyWGa/uVyrKolKfqjiR7Jn6lCQhW1ir5zu2FA8ATQAPlvAOkNymWf1cvouSt0y+WjbkDoEVM6ty/XOqPc29729vw5je/ee8+r3vd6/T9Rz/6UbzxjW/E448/jn/0j/7Rmem/4Q1vwHPPPYePfexjeOUrX9nd5/DwEIeHh7eVb8dxHMe5V5Hnfsf5dPE4z3Ecx3HuMtofby8I//nxbC71x7nHHnsMjz322Ln2/c3f/E288Y1vxBd/8Rfjx37sx/b6iwi/+Iu/iKOjIzz00EOfZk4dx3Ecx3Gc28HjPMdxHMdxnPNxqT/OnZePfvSj+Iqv+Aq85jWvwfd+7/fi4x//uG6TFbv+7b/9t3jmmWfw+OOP4/j4GO973/vwN//m38S3fMu3+P+YOo7jOM55OY9Uw3FeQjzOcxzHcZwLxOO8u5KXxY9zP/3TP41f+ZVfwa/8yq/gd/2u31Vt46wD32w2+KEf+iF827d9G2KM+JzP+Rx813d9F/7SX/pLL+qcNBOI03LeqmMX+X87FdR6CrTeA2LrkPXwIXCz7H3PvKQ+XnX3quvPaYhnRKW7TweEMSY7hkgqYQ+cvRRiEv5rNo0fRfKbKz5rYCrlWvPEy/mw3gQ8Zz8K4uw/QKCh9p/i7ANiy2Y9GhQqx8VQvFS0HmcU/4js51D7+dm0mnLo2uP1vhwJMxHmOaSyRKhXS2TCHAOmGBCIMceAGNP/8M9TwLwdikfUlBOeqF5unqDLj3PI1hm5vqSepI4q/7PAybsjZWSR79ari+wS5xZG7f3Qm9vc83tpztHFXsNgjC0opUex3p0h7dn4hhB0KXbrNQeg8t+qfCiynwUi6rqG+L7kdq/7mfON2YMk5Hojc21CufaVUQdnrxW9Bva+6VQLl/1sXRUPQdRL0lu/klzO4qlHWLRjc5Gp0x66dNpFdby9lqZs1fbqeAJFzj59qK6NtqfG2078RKyXYvGXKf0DBySvHvGa5HwL2PbUtP+eV4n1LKyaffabS75Tpr8Hkh/NDPXspJnAcnBo7mubD+t5I/e83PcQHynSOtW+3qSlfYB7kTj3MJcS500EAoHyOC2ekrZPsd6kXa+5BvWls1/0jjlPH90bR6qxFcDAwCzjFdV+WeJ5CSS/uZjiB9Z+qZOxtg+z5WjzFsxOpr8XjzP1o+2V0fgwtQsAp9g1nbOtSh37xLcrpyGxDLUxuM2v6ViT73FAREQIKWbUbpupxHkhANOImI/bzQNubje4dXqA3a0R8XQAbVMlB4nzkGIOiWOAFKNSjjG0b8/7irdd+tw0Mlu2ymC11CE3hy2uqolppOyLuum976FjuhkgQUBk9T/TU82U/boolR9YxDgUkPzcZip+rG17YBQfwkjJE5xy/AVU8QgHRtwQeEDlLRxHTt7CI4NHrvPRPGNpPjT25nJf606p/OITKNfwPFRttSrouQ6/fcyz2blkjHIN2bw32xZJ2DYB09/Zppxj+UXTs48Hcm/YOAgmjgu8v/9twm95HrBpVjHehMoqnnN7oVHGgnx/mTgOpl7kHFpX7e1rP++9tiku5pnS86Zz3/Oy+HHurW99K9761rfu3eeJJ57AE088cTEZchzHcZx7GPcicS4Sj/Mcx3Ec52JY/Af1RXEZ53yZcbahh+M4juM4juM4juM4juM4d4SXxcy5y4AiITRyuvbH3lraaiRx7RRirg+g9qfqSu5mTiZy1cWJ7bG02E6BEQZGIEYcAqKVHsQsGbNSMDJTshmIkaql0JM0larp+LpJpusGOb5M+baySQqc5Bcm/71l42Xqsk55pyIDTkt2c5miLMcG6HmJ0hL155oa3JE/yLT0mMsfp5DlIEVGG2fCdh5wOo8YKGKOAbNIGSKlqfxTSPI7aUNzLX1jO6U9l4njsn1wDEAoc8FJ6kcSOofEprcEuZ2uD7CeU+Wca3JrbZdmLjgxCFS916nqIUsPrISnkeepUqWVaco9ZSTWmoZ8DE02JX2Rb5uTcCj3KANlaXQAPEBlxZop2ZblJGX6vUhJaCnDtuU0l8l+ltOuSkNNHaicVspJ9kBzvLyqvqSZbi+b7D63I2fp9mmdfWKRoZQ2jiKRaGTNyNdRjlf5KFCWuhdJw4AiJ2WqboUqG7kf5oHBQ0cuY6UJ5lYgK22NAIY6H7INA0wfyct6QEmzsiYIKLJ+yVC+H6v7RFLOx7vcwXHuADOBiOr+RiTtTd9eyVVv41ZcqFo78jLtr+w+Eg92Ak+SDHKKGziY8VsDprqvFpmodszcJGzHkUUh+nlujyVTP2qp0cYRpN1ezjOW9Spyzyb+lVihzQPpzvaLZr/OWJ0sAwJmznWq0xUChhAxB8I0D5gpYM7WJafTgJPtBruTLGk9GRB2Ob+5HaXxKudJ6kEtDWyMJVkxMU7bLqR+SEStXG0/i4V0sqWKAdqKQ11nEhY2XjtqzxB5UQaa09iW4kKuYwKJ8WRcDHYbVe4d9m96hukXLFlqsCqYZexPsQCnMb2RR5L+g8pKhe2z0+JE+R6SMdokKNeWzdi/QPLG9Xfl+eesgOycVDdMuw3rfRkbifK+/VqstLXXn7TdThvzmClDNuZd3MNcziX3ifYHbVxrroON40L+a6soTECUGFRirtampS0Smb7J6GTVyqQqixS8zh9HSlJaj/Mc+I9zjuM4juNYmodix3Ecx3Ec5x7C47y7Epe1Oo7jOI7jOI7jOI7jOM4l4TPnHMdxHMep8f9RdRzHcRzHuTfxOO+uxH+cW8F6DKlnQat31505LfVstqvmvdPwxZuAxf/Navo7WvlzYT0eKPnNhRARhlh5TohfA3N7Mmie4twYeak3BBcfEfk+/6081JA9lCLSMeqjkH1RjBcJR2q8+2pPC2p8TKpV5MW7KhKY633UO61TPxWUNiZvi+K1F6d00XnO38ViHMMxYJ4DttOIIUTsYvEjYfGnE18/8cWw3mvRjkoAAOX4SURBVFimPvU7zvWUzQtKG2EAobKHUf8s9T6TDUtvl/SX7Z+FJ0jLut8cZe8GMeRZMY+w3i3qnWPTMX8lmV5bb9tV63tDQBzq7IGBMKP4gZl9xQdGfURa/xxbTyt+Jm3+7LLpJCYngHqFVecRHx3xuGDxyrCNoznG+lN0vAO72WrOLf5vpaBNe7CcK81+3eiy9eoT2Ov8zMsWV+4L8QeZS12pnY25hgDAnLwl1R8KJk3K/nTZb45Ds30NNp4ksexf+dFFAs+mj7H3WW6sVf8vfbxsaO5fmE2L7Egf6V4kjvOSo/e59M2xHsaqmK/927LW56F83fbN3e0wdkrGw3eRd2IgUO3VJT5n1tTNeLWuj935kMASElXH6RvT91ceeXk7qfcd1MdYs9KO41W/WfKxGptIvs/qBq33nBxmlyWUP0zAXGIMJhtHRkxz0D4+gDHnQWQ3DZinkHyFp4BgPVLleUFOH5B8zgDQwHVZTV608N04KF1P9SVsy9/4XLXwvirT8Zj6n3uDUj5Xsi3kco58ka3PmuSXYvabi2T0WiX+JYnNJBviQxfNrrL7DBDltjDQsnAy3mefMql/iG9toxfT+z97MraeuFWdi8+cfJ+9qFliBa2ufC1jDhCZulUpu2qNlN2XtP1F6yu8B9v8z8W+2DCfm5j7p91nhJjjKHTyI31tFa/J9SIsrpu2iVBi3KaL6edf4jgTm9kQnGJ6hoixtD/7O8C5nsnt/W+f+Rb5z42Gc4ArL+e+x3+ccxzHcRxHue1g/qXiMs7pOI7jOI5zP+Fx3l2Le845juM4juM4juM4juM4ziXhM+dWsBKihWQK6E/9pmYfu6/9uJge3Jmurst0m+nQXI5PU3hpdUozEWMIjKmdAmH3l+ybfHOeqg2ZzisKgTw93O575tTnPE1cfp6vJLGcZa+8Mo3X5Ke3FPxCHrLvl/iVadZ6+eQzp+n3ABDzXGqespyMy7RmjsA0B2znARQDdtOgMkqOIk2gxXRpIMlGkjzYnFgkCR25CTMBkXVp9mqZ7rBPetC020UbMBeRSh3zvinpRhayuC72HqgvM8h+12bV1BVHk2YrqzZyo+p9c8/RTMCE9N8OVslCUEnrYno6mzSknnU6eyPjWZWkoDoOgUpa+R5WEQBRkst075/mnrYyD5NHilyuvymHSHKtzKZqVyK1aMuvhezlqVPWFZK8wJyPmkrm5ayshR1AJNCUPodcDitz0ONCkshwI0PRcuQ+i0cCDyYde71Xyiqyh16xWymcnEcKwNS0GXusyM6A1NhtX2rbsbnWHAMwI70uEv/fTeceh5hU5gRgMXa1/cS+4VGOb8cJK/HrxXOyjSOVndUeoPSp1EhbkxQzD8Rm/JV89+ImHbsZyx1EPhkk7pS81DFNhcoUeZlW59xnYvfRsbgKNEAx55Oa67aw9ejE5c34J311OpST9FQOJ84SytT1RokNY8jWLya/dpwOMu6kF5mxgQJXeWEbpHUHm3x9AwBOY34ruyz1Zd/L84PZdo7QzsYruUYAaxmjdZPLI+WOyT6CJEaFrdeXBhv/hRmIkrfGtkJsSzgAGLiyj6ke2aQdRGiMT712BIAg1jeon9/E7qYTU6plj/QvRoZq49KuLQdMejZWzwe1z317Zz+txG8qI90X056BxntaKSYxRn1uif1EStrKhwkL+xHO73kARKZc2qoa+yCC6plGst9KX6txXhuL2jTaemvrRvKY+1rNa1unMGNJt09Oz8LFCqmzz53E47y7Ep855ziO4ziO4ziO4ziO4ziXhM+ccxzHcRynwLyYqeM4juM4juO8/EkzBy8+zmsXQ3OW+I9zK9CcJUhAmYraTqsV5Mu1KdzNtGG7WuvalGNdfcZOa5abKE8j1hnk7XR2mOnyZirt6hTzPD09SVqDrjgq+UjTthspppzOTA2upimLFmBIMsLFbO087ZtnqlZIa2EmxJyurpoqU8W5pFUfZOpYLou9cOZ6pt3zNPG5lFs2y3R3WVFV8jFnOSsRp9W7ZrOkr5F/LOpc6tDMpy6r17LmW1fwZJEWmDSa/NtyV0ibbGbFn7laK0ydtnWmx5u5+It6rbOwaOO0fC/tXRUUzXRyXVkJSFJTqZ6mTabrmPe1Zc9yBx5YJa9lYTZzg8zcfGfOR3lQWbuR2Nw34HxvFAmCSOUZnGWv5bRtXYkMwt7GukpvRL3KcW/6vXy25bB9Sj5xVc9nSFAW8vq2L9T7pMmPbl/piJqvrdSgrGzbOTRLffUre97cZ3EgxJHBQ6770OxjyqNyVtu3NHIl3W8uhbdp9qQitQS7yPtZ6msNzslm2Y2v1uo4LzGNrOmlSrPqALjzQiOn6sVxMhD3trWZtjGByOWlH+quEtgcJx91WOJFGbRfbnRwLBJ/phK/aHDaj8/ke12hvtETczTnWowxlMdic1gTQ3Jlf8BaTjKWLZX+jLLdxRglOczECMSY86qtc0wDQLR5kiRk1XhGWWFyyJLWnJcwRpRVTpFlzHIcl8o3BaNAYHAqWyAgSqX1sTExIV2P1ZXT96VhQrrzPLsXiTWwsGtAGRc7R6am1j4DrLQZfS8WKJRWga0yn2M9DEjXoh2LcxvQFeFz++3JhUu+KcV0QGVnQcRqz2MvC+t5aL+NCJq66TxHVhJjlOtj47i9NDEem/ersft5mkvveu2J/6p21ayECjRxlNH0tWEjm7oi1NJWuQY0l3xIPGfj1661Ss5/T5aq8t3zDBbV883+/dleQyZQpMpKx7l/cVmr4ziO4ziO4ziO4ziO41wSPnPOcRzHcZyal3pGkeM4juM4jnN34HHeXYnPnHMcx3Ecx3Ecx3Ecx3GcS8Jnzq1hPauM75Bo9veqwq2VReP7wWw8L3rLp/d8RxbfY+nTYT0LOvmp3uf89JbvrrwSJA/5D2WhPmlZzHLy1ssDxiMrlnzKcZXnhvrIdWo0l9N69K3608m+4uOhBgX5JV4OgdWPRDwFObLmgxpfM/V7CACGko84E3aUjEbmOSBOOTGbv8oUBcUHJiSPP60P449C4jvXXG8WYwqq99ddmutlz1d8JEydRNzWT/Nqq8i5jTCBs2ECybrlPb8Kqf/sb1Z54FR5Q+21INdDPCNmaJsUv4rF8uSmnOIPIt4VPGS/uexDgkjJm87kM2XL+HrkfOi55CRN+eQyq/eOVIHcE23ZgJQ7qQs1ymCtp9Z7g4HaP0X6JwuVcpCpKwDJn029Ak0axtSOyZzvnN4j9dL2pRh7D7A+NLmMlXcgm3ybaqr6YaDywFQPE+sjEgAakt8cD+a7pu7I5FvT4JwvOW7IL3M+Nn1Fyr+tgJURwtz3bPZRTxNxUJHPuZ8MkUBnecu8hLSeLI5zr5Jim/whGB+g1n/oNm6I2j9rJY7Tk5c+2falMs6mbcaPtkmEiCsfKSlP1+dLvezkJMuMJ6+yamgoxxm/17Qt+8NFNunmU7W+eyYzap+soUCzrcqnTaN5b72R7bhCacwHkH1+ueyfx32aqfKT5cDgA9K8zzBDM5X6r/y1iHWM0KwFAGOKN0h855DGKwpisNXEAzGPzZXvXD4ZpfFFhpXW6reqE27e2xha6rrXjtvjetzGeFC1Hcms5F3yYbykaSbA+KpW408b31kaX+U0ZnO65j2/OTlPBGjK55pLvC/n0WcEjdnzBuLyTBDTDiSxgga4pnwrzysaNzV9yyKm7RS3ex1uZ6y2t+Wec60ern0TUnxMTVyqCa+Qj7UxHoAqzjaW27Z77GcmFN+5yvgvNuewHncmVqziXhuLNkWgHIst84ByMXse3fa9uX4UqYonEevtF8WlxHkeW56Jz5xzHMdxHOee5pOf/CSefPJJXL9+HdevX8eTTz6JT33qU6v773Y7/I2/8TfwBV/wBbh69Spe/epX48/9uT+Hj370oxeXacdxHMdxHOdM7pU4z3+ccxzHcRynhi/pdYd4y1vegg9/+MN473vfi/e+97348Ic/jCeffHJ1/5s3b+JDH/oQ/vbf/tv40Ic+hH/5L/8l/tf/+l9405vedOcy6TiO4ziOc6e5x2I84N6J81zWuoZMeZVprvm9SuIWcoH8lxhMZUlnlcIayZZOjZVprHa7TW9tZjDLVF/RMJh97azeztTiWvJQ3yUsstB2ynFgfS0klc2609VS7jL9WfLVTu8FLeVTJFPEywzldrnp5TrX+ThbL1aeKvvkKe80yrziuvJponqq+5xlZQMDG4BnuW6EOAfIx3kKuo0jycrr5bxVXk1hVTJhK46AyFDJG6OWuXalKkUN0aYtUl7ZL+U/n8doV9jsUslRem2Q6ynoa/uU8phl6lene1M11VzboFn2vp0Gj9xOdNn1Nj0rtSUAQ76WKk0odVzJTtv2L/Xb/FfGQrok8h6kNmiXvKe51BdRKpfIL1SUxFTNyq90DyKf0WnwpNILmwU0XVO5H8lc5FJuyZ/WUXtN5d6wg6rsZ65VyUT7KrnhCIiqx55D+liVkjT512TkGlTSAVJJ60LyHjjJmAcGh5xqqPNdlUslyKWMRRYt/X/Jk0hweOB0P4gE1tTjXiXqvm05X8xZ6iOyB+dF8cu//Mt473vfi6effhpf9mVfBgD40R/9UTz++OP4yEc+gs/93M9dHHP9+nX8p//0n6rvfuAHfgBf+qVfil//9V/Ha17zmgvJu3OHaft20891ZV/2+2o8b2Mj81fsCvZlQ8Z6AGI/sHZMJbc0nb7YjyQZJC1jS4mRIkDBbGjKQYGS3YcUWGMlVGN5ifPqE4lCs18hpNYmdv/Fbmt0pKzVWUTWmOWkHFIckKSTQJAYb0sIEyXLDALiSIhzOiZGgIkxd6xHookpeWAQU5I0CvK9xBpqoxIRgshjUwV1i9qGt5TyApFW5qO6ErtqbE/nYuZ0PXrnWjlnSc+kCdb6Tuk113vFnsYeThEa27LalhAwEcKc4iQAlXy6jbs0XhjsK9fJwHm8N0WLJU2a0nhKE0qsH5s2rfVc2o48j1USyxyri7R1EX+utM8S97CxemnOL5LcpkrlcW8Rc7Xf2dOt3U/75M370Bgpl1/ti0yMa9MxcV4VW/X2XZwrV770M9TZLFL8KjHT3+b8ksrZUxyqFiYEnaak7crarMiJmLXuq75HT8lmXDD5awtpbghrn3Onf7S6H7iX4jz/cc5xHMdxnMKeHwbuNLvdDs8991z13eHhIQ4PD190mu9///tx/fp1DdgA4A1veAOuX7+On/3Zn+0GbT2effZZEBEeeuihF50Xx3Ecx3Gcy8bjvCV3Q5znslbHcRzHce4KfuInfkL9QuT17ne/+9NK85lnnsErXvGKxfeveMUr8Mwzz5wrjZOTE3zHd3wH3vKWt+DBBx/8tPLjOI7jOI5zP/JTP/VTHuftwX+ccxzHcRynZiFRvoAXgK//+q/Hs88+W73e8Y53dLP4zne+E0S09/XzP//zAABa6uzAzN3vW3a7Hd785jcjxogf+qEfOnN/x3Ecx3Gcu5bLiPHy66u/+qs9ztuDy1pXsB4C6l8gXmjqO7c+H1T9oJjq99avrvX2atLr6fbTcdAlrMux+W3PI8WmIZ4XrXY/e0hwpOwFUeeNst8cBeM7oYZayXcBVja/12vJVm5n25q/nd2HyjLUEF8IOXGE+nFUfloh+4CoBwinggcxBgRoSrsPW1KPAg6EyMW3Ko4B0daD9dow/gMLz4J9VSJLqacP6i+VykHFGwHcqduVtOV6S1NVjwSq/QDbal4pg9g/qIeO5JG49pdhlPK2XmDWq86eN5Z8yTaKpN5/1HpuBSCK10jjF0TiqWeqho1vYl2gcp6ej8e5lnTPdWI9gyh7BonnnvXqYaJSt9bvwuyjSUt+xfuyk39Nq5P/6m+uU/XHsV6GJjn7BbU+dZbmnK3HByKBxfuRShrqHdL4fFR+cB3UJ7P1h9Jr3uSHUv1p+khtJrRt0FxrW//WbzRmHxK1MjT70YzkZ7hyj2vX0PiREHHtVcS2DgkcQ+nr47Jt3KtsNptz/4/l2972Nrz5zW/eu8/rXvc6/NIv/RI+9rGPLbZ9/OMfxytf+cq9x+92O/zpP/2n8au/+qv4mZ/5GZ81dy9hxzqgeFOaEEW3Nd5QlR/Uou8EbExAvb5ZPxszq3a/qj+rByUiG8vZTqwe+/R4GfNz3jgyyPal1O6cv5B4F1j20T1PpbPI48bas5JEQhyyk1TjBwus94XJcwzgTUyxHqTekicVTQQxCw47wrAtMV8YgVmMhBHE7jalMXCJ0axnVEjesbVXLDQmJRMb2X2SF1wpTw78THus00o1kT2qNEFzjbqVkXyy2liA7YVunxfkc+9ymrEJyE65ej1I/YERmzgu55mR8qu+crJ9phSDTVAfV42VjJ+w9f7mkD14Bxnf8wnFby7XDeXxE0Dxm9uheA0CizF/NQaxfUI+jsWIjtBcYFtXpQzy1eIRsI0Rbpd9fYxsa+I9aKs6/zn0SEZ+zgIwq+Pbsj2pxyIAZsSBljOCpL2tlT3KLlT5c1defIGz73Y5FxPpY7WNn6pnCarjPPEVllivzgNpu1rUt+Sn8U/WtmjL1rYNG+Pxi7v8L0c8ztuP/zjnOI7jOM7LjsceewyPPfbYmfs9/vjjePbZZ/FzP/dz+NIv/VIAwAc+8AE8++yz+PIv//LV4yRg+9//+3/jfe97Hx599NGXLO+O4ziO4zjOOvdjnOeyVsdxHMdxFJ0QfdGvO1Sez//8z8cTTzyBp556Ck8//TSefvppPPXUU/jar/3ayiT48z7v8/CTP/mTAIBpmvB1X/d1+Pmf/3m85z3vwTzPeOaZZ/DMM89gu93eoZw6juM4juPcWXRm4QW/7hT3UpznM+fOgMlOUc1Tps1y0ECnsZltPJQnDpF6qZwropaP2rQYi+nGqkaT6er2UUblb2UafTVtXsrSSKv0XDFPTDYyPHucyGXJbjKyPA4MDFbquGfGPVMqg8gPm3OpjFbu5CYhK4mzxwAo05Vt5YnMYGRgYIQx7USBs4wX5hrlKfAz0jR7Rl5a20yD3xEwBKOypEp60ZuarjLHpt6rfahcM5Hl6vUAKqmElovzMYvGmKZgqxRwsQY5YGWLMvV8Ic2TbNhl0FfkErYCquXrRe5AAAaTl8jV/laCIFJFnY5upbF5Nx4YvCn3JzHSFHuZvm7vITJT3xlVHpN0NperN1f9dkYTWyciq8hlKZlPbQqMfN+aa0fmuCYbbdsps+SXOhRqro3eSqaOtW57xeOUT73POn1Je47qOK6vJxOqvgEElZpylierpKTtN+R+795Xpn20ZaEsOwpcZC+BFmktyiFSh6HJoxzXXFPKfQgRrwcfKscw/bPpi4tSSvofAuYkfVLJ9R0Mau4H3vOe9+Dtb387vvIrvxIA8KY3vQk/+IM/WO3zkY98BM8++ywA4P/+3/+Lf/Nv/g0A4PWvf3213/ve9z58xVd8xR3Ps3Nn0ZhK+gIrz0K9rbpXTVyo+8irtbiQe7ft181Yq0O06a9Z5INcd3tJKpnHvF6Mpfnl6pws/8QsZwsEzuO/SrZIdiKVhTIDNEhMYjpoRokxpEiVrUNTD2g/m3xW5Ut1w9FIW4FiD8HLw7T+A8BjBI0MGuo4LwUx5jwzEHYA7XJVTTDWGQRQlrYSQBzVZkVj4cBJagos+m+LOEPESDn+yPYxc7YuAEosLAWrLjiKtJVNGwWVGKozNsoGZioyWpj40eZRTt1Jo24/KWZkUD3e5hiPZol5lgktpMgiD4x5jIt17Cb3mth5LKWHnOMILnGKvb4SfxiprEhnaTb54ebYpu67z0zmHCxy5G7Q1uwMIEl8za3W0sRAi8sl90ArmzcxwqKf6cUljCT9zLEJd86pz2PtsTmepyjPGflg6TOohEraj2Q7l0iNtNV0K2xetmws8T9BrQfEtkTSYKDI9BlFEi2nsW3LVk22yAGAOOb3bbmjVC1167qMCTmW1XhT0mK9DvaeIZuOPCfNTbtxbot7Jc7zH+ccx3Ecx6m5x34MfOSRR/DjP/7je/dhLoV+3eteV312HMdxHMe5Z7jHQpx7Jc5zWavjOI7jOI7jOI7jOI7jXBI+c+4sFhIrTvNpRd4K88OzTEc2K9RUikKWlVBzUlbyVc0dR5ryurJaKUXUU63NNGCVTAE6nb3KeyCklWzK12ymfqsssDPVuzcdntp89H7uzauZqlSTuKwKO5vpvDm91R+xK8lanbeyD9V/Zcr2kFZqDUNEELmDnDZP6SapozbRLC2TVb1oIPCOwBzyiq+2jksatiwcqaSYJb0yPZtVAsKlnkRmOlOZ9txMr5eVc1k1hs21NnmxK0QtMeezK6PZ1UFDmr7flTJaOMtgrHRyRpG1Wgkmmen2bbtDSkOOt9O/ta0NKFJzpHPoQmYxT6NX6aypl3aav1lhjPOqw1Y7s1ilz1SBfuxVbs6zShBMHmrJba/NUbVNJanIkiRbjSjXRu+lRt7ANi9men/3XpdtIgsBlpKUnpLDXrtm6n/VXgKDh3IyHvPKa3ZVQFMNunJWtSozqutY5MOmA5SMNKtxqWxBymHfm5W6YgB4LMdJGqpSkMNEUhugfZ2tJzRf6SbitOpz4LrjBlL/MEv7z6vZxV4ju0P0ZDCOc6/RjDmrVhwWO66qnK7tm0y6C3lnh2wVYa1LiFmlrav5kK6jHZ/sYRKLglUqL591dcPBdNSEPIjn4yTWzbGOtZFgUxe2jCKB5dxHs136tJJY5vy1nY3E2TB94xnXRlZkp4FBIRb7EmIwBcyRUzkbCSTl+A45PAZybLFNMRqHkKswF0DKHzjFbkMalVO567pIstXyoMBU6oNj0LibRdaarRhKBZmKymNZHds2ldDrtHP8oRJmiRm1bkqZQOn6UmNtU9JBlkVnKvsSGavQH/ebzEpctGavoWPxUI/hCCUmW7tfNf92lfO4ci77yEASc5jgSl/cH8c1xFxuXLW4WImNiHM5Y19uqmmKLZB8trYv1cOd/b65VcmcD0Y+3qPTDWlM2l43ybfaN5W2Ju04okhbF7c/1Xnmpi6kdNVKvnovsCZKIUv3m75R1O0M08YkzhtRLEy0MEh9s9gaMdC7KJX8Wu1QWDtK4tT/FhmribElFkcn1r6TXFKcd4GR7MsWnznnOI7jOI7jOI7jOI7jOJeEz5xzHMdxHKfmMnw4fLae4ziO4zjOHYY9zrtL8ZlzjuM4juM4juM4juM4jnNJ+My5PbRadfv9Ps00E8ry0dHsnD0Z1DJC/Od63glW166/MheTDIpU/D46P7EyU7LSst4RVOv0lUjAnDbw3PE2WiwRXv6ytVppfM9I/AIi56Wos78GUfJUkHMZXwgWo7bslydplDrplNWaQIldh3jCZAMD8SGhgREqL79Sp8nfIlfJmKvV+PtZr0CeqHjKWYspbTPZ30PLnA1arKWL8XnLViSp6NafzHgUpgyVvMsxJEuZq0+LqRcLNe+lzjh7nsC0j1x7siR48vAwHjU9jCeJ+mHkZevVWIJKJXHg4jcn3oON/4b4MlgfBl1qXdpzKNc6+dtl3xMyx+lBywZk0ye7q9bTurcJm+td7WOvYa6XykeDja/MItGSzeJLySa94sEhu7e+Il0fCfF4kYRmU7Be+bKXiU33trF9mLT3xveNB5R2hrr+W59FTQso/UY071sfl+ynw+oBUraJt5zaveX2pPuOOZ9yXOMvWXsWIrXjpo/iXv4txuPGHkszqTEKWa+cC2K1DTnOPYS0871ec2YsqLyuTB/c9ZuTTWv3Ei37E7b9V5XO+Vx6yORPjzDxI8HEYgwdC7QfrIxy28TLMC7H6BsGODJIxnbYOCbFA3UclxKS+EldzBaJ3yamvxWPZCIAIYICIQ6sfmJxJMQR6jdnT588hlM8wRMlj1Tx4CMGhTzuBgbPsEFwqQ9pWzmo4ijBXy5fJI27dJxH8oarSi8BY6CqyaiHl91vBbbj76ItluumvoImrq/jGvOXS75Jxr8mjluNQ2Rbc5+0cZfGXzbOa8tp4xRQqhdpe/ZZxsYEJjzT80pcElifqdRHrFe3zXe9fqR3v7Q+vXbcZ8rtUXx2iapLvDjOlksSaGLotWsh+S2hJfUvmLRZbRCd/LQJD+aE6j0HYM4JMiPmCgl5W688EsenD5SvW93nWs9ENpnkmTSe4wGIYhkppyCzbZO2ReM5V1kH72nTlWcxARjKcxMC5y6Vi++4+D0y1Gubovl+7l3wO4PHeXcvPnPOcRzHcRzHcRzHcRzHcS4JnznnOI7jOE6N/4+q4ziO4zjOvYnHeXcl/uPcPmQ6dTvVWnRkqocqhzDVfzFwPV13NtOUK+mVpGvOv3LTGAVnJaurDmKRFdTT3tPSzvX0ZcoyB2IzfVc2a/nztGFJVxM05e3MipZl23U5bCFSvYR0O1VYJAFGDsEi77Lz0auT9SuLQv47sEod0jlSviqZxZDPNablvqkn98z1xHO+BoHrc++bJyzSykhAlGn6lGSLRIt6kPOJXJeaNc2JTN2HIlnYO1WZGnlqJK3jOAdQniJOgct08YGTDDd2GnuTaW1HyNc2S3M5GMmM5DFLl2X6fTvlfyFTrE4kJ6uPIc7SAEK9PDk3xy6rpUik5T4O/X0rminwbV5a6cIqVP+tZBJyP1Tpi8ym7Gynxze76f2k8pxGTgGUdr6QYLR5l3o+q0yd9sgBwGjqeKgPaffVlzR927b25cNIqUVmEAdCEAmMlc4A6ToOpYnHDcBjnQ+KSUJuukS1K5ALVOWF0PQdVFRjVlIcamkHy1jBMJIdx3Featj2AT3JXDW2Q29Sbr+X/auEsew7zyMPs/1utkCQ/oKlI7TyL81THrMpxRVLqT+leAg5BjB9X9aiotXRVdYle/KrVitSROmvOcs3rZwL+XuSvMhxUsayT4X5uKj/ZlfW8TFJyyikGJAP8lgwM+Y8loQ2/pahI8cvVSwiu+S2wE19kZFYsjmObCzB6MhLU3pdGWP13GEy0Madi+cBZHuYEkyIvK+6WNJ+QokLrBS2JGbKY21I1HqhbnN744NezGfL25ZJrqc8i2j6VMZY2347sYHe66F8z/Z7Qi1ptJLWM28Ck2bTTqt4QWJ9G8rbe4M4xQKSn975z4q7zkE/Zu18uScGX8SkWo+s14S0oSfJNhhJRi2XiXJZuZOm7XvydYORYLMcoHZN5QKIZJXnJFcWN6Oo9xKKrFXiPJG0ansyya611dx3dJtxrgtjJlP6B2tXIvLrc7Qx5/7AZa2O4ziO4ziO4ziO4ziOc0n4zDnHcRzHcQps/ofXcRzHcRzHuXe4rDjvJZj5ea/jM+ccx3Ecx3Ecx3Ecx3Ec55LwmXMriF2b1Z8Xv4K0LLJ6Q7W+UNb/wvhGUaTkrtF6jhBnP65G0976nSwyKZmqf4ZmBqL6tJkNIZ+n/dk6e4JB/I3s+t/igdHx9KjIPgqyTL3mxZbVej/s84oi1L4bC/+V1oekNkWx1m2UrxflJa3TstbivSGec1SsCnL+45iWZCezFLv6EHTqQfNLnesLyXd5T3lpbQDZKy4vAU/JIyVdJySPlIWZSv4jl4g4e9aVvHFl6NAYgARKxlqE7AfDQBSDCNNgct2lY7Kvg5SjvW5y7taforuf+OOIf8hKwzqrzfUOsZ4oDF2WnJjVQ6Xr6dI7N5A9LoyRyJ7y1OYm0LZ6Lr85OUzafudU9Y6o66bJW+VTYu+Nxs/D7rPqvST3qfFQ0jL17mHp79j0P0TFOy33q8XXT9pik6fqbzGIsT6Cbd1aPyPNfig+PjzkJe3ZeMtoPgAeSzbjaO751leyOhcQZiD2PEjNf39R7m/iZL7k0qVRc50kI5ey1P1ttNmX/LyOc0Ew5fG3N7a390DrAWX35+b9Sr+o/lNybhsgZm85oPRryWeX67wwlXhBdpbOY60vMXnkiOTtRnwuj1qyaYYSj1QerbbOtCz5rYy7bUzQGYcrH7aVPHHg4ndmqk7LrmNTHYhRYNAYwQcS/wHJfCz5U9nQp/I57VaKBl9N5qgqux1vOedB2hGFcu05pyd1XNLP8V3jHV3lw451vfEbOeaNJc9ETV2b46zvHJiX10tjm6ZtddJjdI5tv7Jxo70VmvupLaQWkaC+Zpy9zKp2YJF2Epbb0jWv42h7XK8trN03NmRs95F7Sf9C4uD6+F61vyhy/fbaxmr7NjGe9fatdomAeDP2Y8pUl1UfQ9LeYfqvZSb6HsLox8XmXNrnDLnMA8BD8n6U2zvYNia+dKEcpzFh075tPbTP+Lbvtsepx7Mcb5/HNc2ms77ogM9jrrsSnznnOI7jOI7jOI7jOI7jOJeEz5xzHMdxHEdpJ8Q4juM4juM49wiXMFEP6E6adhr8x7k1gkx55SLtk/eclu4mu9zyWgO3U7YZtUzSTK/tKKLqL2w6eWHm/pTkNIVWpsHb6fApzx2ZpFlavcg7zXmzLHS1fFInZu50JXlYzIdGWZ5e0pAs6bRyXuS/6IPzRHA7FV/qUOQBVltn0rdT+TkSeE4ve10AAEOSlnLk5fLodpl6SdvIEKqisjnG6m1tm4lpOr7KWgeZ7wwwKC07biSFWicR9XVpp1q39bayH0UCZvmYr1/glB9pByIHjE3aVZm5O0VdssCBK6kIh1QG5CnolUKjrc6q/fepVD5G+ggAmAmIeSl3ZKmInWIv5+xca212Mq++Z6DaSiHsNPZI1S3AMgVe5C/N/cFyzzVSBG7PYc61qAhdbr5JOBaJp5bV3OvlvdEqGBkLgCInjXVdg41chFM9yTaGkYjbe72T9bYuKnmRlUfZPqSTjii3UxlzfzIQONr7suRHziWjIo9ZHmHrSPJo2grF3IbmOi1JvmrTk+nske693J3V0hmmInnzH8kc545QZE39m6yS8+sXWI6zMj7l/W/HysCmI30kE6dxI0saOabxCwA4cu6POoOBxlw2bjJ/JQxZG0/JHKBS2RQHpG6KTGxmz9kUp4o/eucw8WGPtt4lHzJmt9fLxmG9agmMIcc0s5yCOFVpIMQtIUxUxquAHPvDxKR1/ldprr1xZDB5tRelqQbb3ETSurc+TZuk5sRybmPD042v5U/gdIhpy4tzSxup/GOQ20i//iv02aSMpXt/IJAYo4mv7LnVBkaeR3p50LiTs8VQs01kmE1MsMZCpr1vn94GIpUQ81paTXi/Lz+r59Vr1hzfpsV1mWyMp9fAHpvjd5XeAyonRa88zbmbptfPh/1aY8umLBK3mYBZYiqW53h5zoB2o2V76Md5Nv8U6/JT2/403k/PUtWjqmQ2AmSeNRf1mZ81znuNnXsb/3HOcRzHcZwC2yeGCz3xJZzTcRzHcRznPuMy4jwP887EPeccx3Ecx3Ecx3Ecx3Ec55LwmXNryFTZsJw+S5yn+ctPm5HK1Nze8jxyeJ4Ku5jyKh/MfNZFEtxOd03nqVbKkV3ZSO/ac8hqrUY20E4tt5IHkYsScUd6y6C8QisBsEtAVZKHnBCbPOkUYF2typx7MS29p1Mw++iU9Ha+c1MYqRs5Z5Y60pymIi8kx7nM3Mwz1iRkn9DkxVSS1hlLXXKdkOzL6Twhr9Qlx+liPrHsp/m306zzlGiRWi9WSLN5s5IERpJ7zpIOlXxWUg7O18XMRa8kFPnVXncrN8lSER7yTvbeCqntlCSptPn86k1/r1ZJqr5HqUCgkpgu5JT7JBBW4tAUWU9np6LreVPd02zObfdhK2doMpDPaTfZ1U2rci4y0/lOko05wfY+oZL+Ykq9lZ7YuszftytQaX/UbpO+xqyy111Zzl472SbXP8ssRJdg5aW9fLfSFwC53+ZKrqbVQEXeIPnbKzGwzT/nTVe66+xLM4F3ogfJzOYa2PtNMmbKd9FyB/cice557AqNKOO+jJ2pD95zI9gxHKZPMmhfs5aMDV3kGBkvQh7nbazEzWqtKHEFy9jeQfKRZH057V6ebJwAACHbqKAZA6VcvZimU9hF/7UiQe1JQqu8deMMLmOkjTkgsWt6HwZAPDxmpLqMFFLfP6bxWrMhcudQYuCUHqoVVIkaqxjJHzd5lc85ZiRbfrn+TXsqklZSCWGXZnyom0CKkTSPko+KErAS5XJzlitqHqna3Y5XFLJNSOhc+UXck/eQmFZigs59w1zaXnWPLfJjYkpQZXHTzQs1lUBrNkFY1q29nvJ57f6mPWmLHZApe2uZUbFyu9g8tLYz+lipbQ9Vvejt2/ZjIuPk+n1VLrMva2xIKj+lWNpRXR/mJXmgpitp/9p7qip4SUfl1vk9E+WVuJNF0aLPAJarMpvY2D5S2vxoncoxMd9vsxSgnIsDlfHE2MEskDaSf3O4KKoyOncVPnPOcRzHcRzHcRzHcRzHcS4J/3HOcRzHcRzHcRzHcRzHcS4Jl7U6juM4jlNYk9Y4juM4juM4L388zrsr8R/nzqDSlmeBtnoaCFkP3/N/gzm08nir3gBdU4LWg6H5urKpU88AXj5YWU2+eAA0enqKVPy5BjY+a9nLpOftJZkQn7JgKsB6MDAlnwnxV2IAc+OP0Ct+9ptovSYqf7qqYsgcmzcZrwLxYRPfDp4DsAvANiDMSN4X1sNEfaA6F0LE+o1/gpo7NL4tFAicfT8WHn9RPBeyHwwBFNLFCAjJmkN9LQiI4q9B+djis1Bd69brpC2DbBfPBCRPEwrFW0X82TgaH4/G04as10POZnVJsqdP8nCBLmmu/gzZ/watr0VD7xZZLENvjzd1nHwzxHslnVY9I6vr1zmv+K+wyfMZUPZSoWi8Jho/Dxb/CfWuaNLdl6/GV0S/s/4hZl+bbe55EmlbP6NMJj3xlKu6MZRbgyP0nl+csuN7stYd2uXt9bxAqde2rcu+My36CA6c7sWI3Lc0fihyvrYumn5t4UfSu7/kMPHliTlPdh/1JuFlHTXncm8Qx3mJEa+21nNI4jygPyZxp6u0cUrjz6XHLMaoxutJvhZv1OwfTBLXyb6c4gn1PzNesNTGJDrOk+aNwXl8kvMBHFk9a+vCsfrOgWC8g2mRrxL2LAeS6ivjt2asirVsC68ne5zkz1ZxjjMkdgFD47wZAcHErhzNgBKyB+4IjVHKuQAeGTxG0GAKZ7zs1Met2tZc+8pb2NSXXCt7fN5ee89R8ZuTWL1XN2swoB7D+Qu2QZo9Pzh57KGJV0tCZrzLXl62bE16C6+2HBfpPrOJ0dfyDht7oRoX5aPUCUsjNOcnU99S7PS3c1K9d/oZau9feW7qesWRnJOqWLrKV9Nezhddmp3lr/GnXeRRNudyLWIiQvIWbPsshnomLzznTD+hsTVyHyIedHLiJr/F0zpvC6k9Uif/1otz3/N1F30+o7pNmIrpx3qlLus+3fw16egYESF2llpu4tI3L8YFOT+XNiseeI7jP845juM4jqPseT65s/gPkI7jOI7jOHcc/0/fuxP/jdZxHMdxHMdxHMdxHMdxLgmfOXcGtWyOsJi23MLN9NtWGlUdT/00OmlWS1ejqxrQfdlOG7enC5xm0MrUckkvUlpCPk9FTktQ541ZuoZg8t4rnJWBVPvk97PZN8u7KNJypoSVYjDAHMo0+H2/8GeZR7ufToeWaddMJS/bADoNCFtC2KW8yJRiHpDujtCfBr5fCmkmpxu5g7QLjlRP3c5SNyKA52YZeOKsSEjz0pOkxEyTHkS1wJW8RVUMa/IQSaadfs6c6zLJWFQtE1iXJLcygR5Wbp2m8+dbJzAwZBmJlA2pzimmnfU4Lq9F7bbnXb0Zmn2stEWm1iO1d1nOvRTC/BU5APJ9Ytvo6vmKHCDJGctxNOf2n79ry7y4d2x+bBbba2uP76UBqec6zap9tzKv/MFeh4WktZdHzlKH6sC8ae2/hGz/SvXX1RuRVXVk0HrbzFm+3uYRRdqylgXdVndvC6lDOQh6H1Fsyhds/ov8AzB9jZHa2DTp9kQuLy0MdG0MHOcepMinbuN+69weKl3q9BN7ZyhYnZRNX+LJVhIFqKQVKDYrKQaQgYCqPqeyAUDum6UPmgEKVGK9SqNq8ggjR4MZ6Nu+uToGOtbrriY+qLoZI29b9bGQMbMZW0g60cjgGMBT2SxqsxTb5PdiOZHj0IWFzYAkaR0ZFCJCjltIYrJcFfVxKHJkPWfeFEt8p9JgYyHCGvOSkbUSEHOem7ixChwaklIuN6q2bYmOlKXeTFwkO4dUL2yku932K/ECqMg22/qQtCNyLJ/L3AzEbfrVY89igOzHLVW8tohv0hOK2sgsytJcyzOgPO4X2WeTqOQrSyetBJrA55O2NiFAx4WjtK+1+M/sbMsn8YfE69RcC31J+QxFtgqNdQGo/JWzRVBXOtzkQ65Zz23Flq21P9F+MQIUUJ575QSq5W3K18uSfkfa51bl5mUddI/P/U851fJ5DlkKzu11IvO6KC4rzvPQ8kx85pzjOI7jOI7jOI7jOI7jXBI+c85xHMdxnAr3InEcx3Ecx7n3aCcgO3cPPnPOcRzHcRzHcRzHcRzHcS4Jnzm3RjSadvtdTw9+mxpxuzx0dXxjU0HVG7Nt3/m46NkJecl0Fe5TX9cu/lHiEWV9QLJu3+r52XrArWXGeJ6UV+N9IvUgPh1A8iUTfwnx4FA/g5VziS+LeKuYa8bi/8HJ74MnAm3Tb9LDrYDhFmE4BcIuV0W+I+IBYT4AeANg5LTEtZw+8Dl+1hZvFuuLknzcWApt6rF4awRwnLF6AuP/xeIJJ8uBS2KAuca0fo3Y/K2uN2fvEyx92AKX61IsNFBda9THyHLlHPLxxh+EQ/aLEN+JTt4aS46zfRkkXesRYbxqiHK7yN4Pdf3VtD40TLT31K3Xm12KXutL8iZ+HfZYbnxl5Bg23isr563+B6znr8GdTY1vS+uvuOZdV/nbyVe1zcfCp0PrUvoCEu8ZAG2Z1/xHuPQDlSeh7G+8T2hqOlSL7RY7/3PY2vlwr++yx4tf55D3l9uXULchm2fxpyNe+vCJX17OjHj8XRi9e9lx7jVW+tsXw5rf3OrMBJ22QMu+fc8YV8V0QPJAC6lzoBBWfbPUIyu/j0TFdyqPmWoDJr5z5awaDEhM0HTjTRzRlKMqG1fpVB5sNmFJrxqjSrxoYxPOcSJFAuYAmgiUvYWTxyuKZ5scI+kNDB7kb95hAHiT/eaG5DcXhqj1DUrpsfjPSZkClr7O2t+rCxxoyNcxF9yOmWwHUXkGkbxXvloosbK4xbXXvYr/7XFNbCpVbDzm0gBLyxigG+dxuc4Sw5v8kDRwboK5Nr3efaj3SUlTx2WNyfPnHGNW8bokE02ZeveWzZZpc+pv2CZo+w7xL2zjoZBjfuvZnRNWP7ZOfL6Iw+z7fOm0qkw/kg7ulK093vzV5rDIBPZc7xKTVs/JUhcaS7Z11slP57zWok3beY6XNKa0z+j5nEonTuuhZWjKXHwE836tv7Hp0xZeldRcvzaubjzedNy4DDzOu2vxmXOO4ziO4ziO4ziO4ziOc0n4j3OO4ziO4ziO4ziO4ziOc0m4rHUNM7VVZFTMZmpzMxW0Wjl9zwxVK6GoJpa3U5PRTLetEoFOnV3Kr8x7nZ5uDg0MjrRcNjtPy2aiJBkw6TGv5GORJ67ksMRspvZTWW7bTuOVssjPxCKtkPnGlU7OnMsWGijTmpsKIVmGfk7nD6cBw610ss0L6TXeAsIuSRbjQTp8OgZ2V4H5mDCLHFOWihcpmpUJaN6sjIDrZeoZQDDSisVUcAAzECkgqD5PZCxUrq2p46yRreqyqqM2f2cg14bz9asPZRBRkb6Ycsm15UY6orIdkbOaPKocxMqt69OtZBIlLT1H3pDbEhGyVCUnpdJZ7ksUTFKL0640fjutX+UnIn+UOmFkyXhJR5ZQ1+NW0l5UwXlmvvfKReV87cx8NnW4JofSjHDzvpWgEKrraKXmgJVfNNIUlLpoJWA2T1Kfdnn7qphWDpHlxDyX62H/7mtb1SazfyWjbfIhsrC2TjigSPXX6lb6l5ZoZDMXLD9olESOc28SAcymj5J/2n7Rcs6xda+cVQ4PAJjX+71O+LNIqyO3WthE5Lxqnyux7Zy3BQJHTn1mkOOa4FJOlMdUitItESiuj6mlrCVOISN9rHR17RhTlZVrSasdxxmgXQDtCMNJft1Km8YTIGyTdQlxiTXjCMwHwHxEmI+B+Si9AIDHCBoYYZwRxixrVTlusotJEtiAKLEuJP5uYrWqTJS3M2hgsOqKm/pYo41dUnhVpS8fylC0kvA5lXTl8lMpT5Z02vhB06T6WqcYR2SHTd7t4Z1yS8xWSwebouY2oVlsx1OtCNKmVsmxq8Ki2sD280rcKHFBWwb7HEZmgz7rtNexRxs3LHw80L2OC/k21j+vHdeLx9bS0SqKBETW+5kZi8y0tkb2fIv3zf1jJbQUKfVjc27twQRvRlLeuzb2HNQ5dxtraizf649zm+Mhy6kDgKG0R70f5Frac2k+OdXdBcd5wOXEeefseu5rfOac4ziO4ziO4ziO4ziO41wSPnPOcRzHcZwCc/of8As/78Wf0nEcx3Ec577i0uI8D/TOwn+cW6FMSSdtSBSpTE9td5ZVjXqyQqEzzZ1C/tibHh6p/6xSTZNt8sPpuDIn0m7P+Qxl2nGbN1nRi1UuYKdR23nAJb86bb6avgxdmIlA5QNQpsebsug0+IH7Ei85r6wm1St3lS7pMYRUprAjDDcDNs+nTYefAg6fZRw8PyNs05Tk6UrSbJxeJ61HHoB5qMtcTX/vrYiVpRvU1oms6mhX/ZQ2QVlakmWlKZnSWHqSUls3ZOqEW6lor0pXppGrNCPS8nhZjaiRJ6h8MVK1oliRkmIl43UZ9klbtUnK1PGO5EhXDM0SQ5EQyP7nwtzztwVbyTLpZ50inzetTusHKtmI3K4p/9zISOrjyR7Tpm3kCQvZru2zOli5aZEu7JGEmONaRUMqR5Z4mDYkSvBUT7Ssl7yNCSq/17y1SB5nAk1AANcSllZ23TuX1LPtYqTManVgzmVWEeMBKnMAktTBysz6Y4dpn2ZV2GqXWH/nOM6nj0g7q6FcpEiEZEOBWqKk74F6DDfvu/17c6x+1RtuRCrVi4XyGG0tTBY7NOdsKX2ZyM+4WIBUSy/WcUXeOW+lspinBCZr44KpO+rI/HWcszYXgpVIBi7Hc8kqTQHhNGC8QRhfAA6eT7EdABw8N2Pz/IzhdAYig8eU+Hw8YvvAgNPrAdvrhO11UhuM+SANGjQwhjFiHKLKWgEgMiFGAgbplEP+Hkli14zjgH1fhI5aTFkdV6VvUjBKVjTylZHQVtrOPMhZKaUMwCXUbgJmSg2vSE47tGMlo8jvYO6bQP3GWB1fYiI5trKKaKnuQ3Pf6Eroy9Xl9blIpaP9MnWzelZ82kmnusad1VqL5Um5ya3FyWoeAYCaTWQyafsXGzd1YjM5X2uLo+2CTXr1rV+2t/lYq6ucB33us63c9g+msivZqcQ6Jh82lrQWOirLNxLa2nZEbEGWMWVlG9MpK0UUOxrU6SLUycnzCOdnRYn50jYutiW9ZxsCeKbqvB7nOYD/OOc4juM4jqX344LjOI7jOI5zb+Bx3l2Je845juM4juM4juM4juM4ziXhM+ccx3Ecx6nw1Vodx3Ecx3HuPfbKyu8kHlueif84twLF+gWI5wPW9fb7PAvsku/WlyAi+c710m09PNRfYemBUvyPSPNJgfPy0rUHSWs3p55S4k0QzTHnkTc1y6in49gse02oDB1smnKMeDRVXgy09FUJMH4cdRkqD46GMAPhJGC8ARw8l747+mTE0W9P2HzqFGE7gceA6YHDlHTcIA4D4gEQN4R4kL1EbHGyMVW6dHJ9GeL/RsQgOzeVk3kCLy6ALQPpfosytrQ9K+VrDiQPmZCupXh6Lf21qKSzyEfyyei6HrbtUgy68jLpvUN6bZVNHhZeek252baRgEWTWuSPmn2kqDH79s2UvDGA7NmxkhbO2CaZ4+ygZnxA1Gsu31tsfVDku0h6zXSZees7YdoBt9ew8scw/nb2uMaHw1RFk3bHM4ZLnqo6au5fa3tjWfPOYCIgFtdC683SbW7SFqV8tozSb5o6BZIXCU3G66Qt177Pck77Oe+38J2T7yOAYI6TPjrg7Pnpar7TyYv4qrjM1HFecmgihMGan6UXB1Y/YDuGqIdqRn0z2/7W3K/Ww1I9cBcZqT9W46X0Jdp/Jz9YpoCYO0M28eX+oKHkw/bpFHP66l9lPJJyPNPzr7XxK62dm5fHnQlJZZXzcuA6dmVK4zgA2hLCCWG8kbyEj3874vjjWwDA5rdfAP3Oc+AXboDnGXSUYrzNgw/i4NEHML7iGMQj4kDJaw7AfJguABEjEGMIsfZliyGPW9mvTWPgdKGpE+Opz1VM5SrxMdR7kJpxoMTy0OvFOu40/nPmb7lU2W+LuLKPJqQxWJ4PWg/hquFX4/7Sv0vKJuVSXzqThI2F6meBfnot7f2wek/KfjbPsZRD/fLa8XSR3npeqniKSyzQetkS8v1RFULyyPV3aydq82JjHY01CWFGiUt68VlE9ocscR6Zutr3I00bm1f+uU2fYPs+6RN4ZZ9Ffdm+0/jKyTGMOo6mGSD1OjT3gmTyrLgenTLvifHSAU095O84sPrNcUDyTgeAwEu/a/EVNvVAkVJ58stx/Mc5x3Ecx3EKDFT/qeM4juM4juPcO3icd1finnOO4ziO4ziO4ziO4ziOc0n4zLkVKnlZ74flRjKns9irNZpRTYPVabuxfEmBi1ytneLcyiKa89sp/5VsNh+gUoOhSVDzWU9lp5inMFOZWkuRUn5jnvreThmXcy/W7673S8te5+m8ItOSOmwlIDJFHrmu2vrvzQS3U9bb3SOBJmA4Ta/xVtppcyNi8/wWw/O3gJNT0DjqDTEfBozXAnbbNN24lfW1U9U5SxMJlOubUU1fN/su897Ri8g33DYg1BKEdNIsozXNLnCRKopmolm+XE9tr59Zkn2xlLtIeAjgplEWucAyb6UwqPcx09hXfQ8kD9X9VmQNViZRTYtvye2DZdp/NJIYKwVos8/mP5Zamcdiu1FXtP0H11P0VYoaub7G+XtJSzdFIzGmJr05T4lvp+CjqdemT+JQ0pEmUCk97LR7W7a2Sct/8dhr1FwHKYtIBlSmK9lZaQNWzrCQX/QkCUbWGgBETrLhSt681p+0XZitj7attn1Wc/yyv+514ntQqUOWOtvrewG0XZfj3IvQBNAA7QOIgJjjJZXLaX8pY3o+2N70dvCVfsiOc4DeVK3VwppUqmszkP8mWStDOl9VN5qxo3ec5i332yHHeTEgS8QADJztFuQ4ho1xNelW62YkimRi3BQbUak2QrFyqBI027lTfs0KQeSdYl1AE6X47hawucE4fHbC5hM30rZnPoHpE58oidy8CQAIN24hcMTB4Yjd1QG7q4QpKWExz0CcCczl1YORY7Rqu4m9m3hH660zBiUbFK7qlTjHB0Z6qs8aEnvEdN1619zGqSWLxopFpa3d4pXrqvmp/9rTEZAltwRIPGxjp/ZZal99NKwOnyyHmzo2O1dy01gsOhb5l/hH4i49Mar40l5PkSNamWwVG5k6Mbeq6QyaeliWemlBZMttpZ+MKkaqypXjPIm75PmTgykom3K09SK2S6ZOOCyaRn2QWPMYa5zFvubc5RotYzyNHSOA2bR/AsIERNOO6+cCE3+fhW3XnWf/6rG+U0+VzDewtn+VtJp71rZHaZNiw1LZsVwE7Vjh3DX4zDnHcRzHcRzHcRzHcRzHuST8xznHcRzHcRzHcRzHcRzHuSRc1uo4juM4TqEn3bio8zqO4ziO4zh3Fo+57kr8x7kV1Gdsn2ZdxdqEVVOExu+j9W9g4yXFOSl7bKUHF1sF0fpTs7+ep3giMMzy88EK8usDqaO5B9Jfngk8UOV1AQCIZHyjOsYRTNmzLsvuxcdupmLIQAxYT4Psn1F7O3U8Oyzi72I9IGzZYjln60HArakDF68M8aso/mHZq2E2ecjlKJ4E2fuN8tLelQlC9ieJtO6NltMUjxOyhT6HZ5X1PmRw8pFpvKrsuY2lxqIaqGqQ9gD5Wgrd+Gfs6+w5+azZz7XRWVsg89e0/65PWJuWTSa3a56yP0vjOdfzL2vLs1huXk1FStuoloA3fnOV/5r1CJlR5i/ndKx3nrGJUe8Z3U/ONdUeGT0Pib1+LeLrYfxB5KBFObQQ5e9q2u19yI13idl333dk6nlf+yJGqk+kKlUvz0DqI9X1fdrTXhdl2FPHveN0t6oPM32C9XqRNgGoj2CYoX953n9Ox3FuD/VylNszSNwE7dvETxYDin+QxCWtD6SJWXoeoMnQV96j+D61sdyZMZ7EEiauANRzrhq/bLK2r7F9LFHyKiYCTznW0y4r5zly3V/mSmKJZ0yMVPljMlX9vow5lY9d29/3yAbFLPU7k/ozhSn3kzH76J3RP5c0GYiMMHNqCxKjTgRMhDgFxCFiNw0IIZrDCJFT2WP2sgVy/atvrIk5DT2P0lUoxYAMKv7UoVSaTYthvLs6Y3IZk3I9AsV3rtPG9JqYRNWbjfZdJyyDgt6+OhbnmMzuvhJTAEjxszw75K/rvEh83dS/egub5w9N29SBKZztG/SesenJy8Rsuq96kOXTyXFNzNT1h2zft/ty834tLpFnq/a1dt423u5VFTX79tCYsuxX+Q+2fZTtk1qvN/k+50d9MqWIDPBAqe/umQkKvWcGk1f7vvKss0j7N+VZXKa1tiveevm5AzOl+G6X+rGQ43ieOsc79x0vG1nr6173uhxAlNd3fMd3VPv8+q//Ov7kn/yTuHr1Kh577DG8/e1vx3a7vaQcO47jOM7LEQbxJbwuu9jOpeJxnuM4juNcBJcT5537P0/uY15WM+e+67u+C0899ZR+vnbtmr6f5xlf8zVfg8/4jM/Af/tv/w2f+MQn8Of//J8HM+MHfuAHLiO7juM4juM4zjnxOM9xHMdxnPuVl9WPcw888ABe9apXdbf99E//NP7H//gf+I3f+A28+tWvBgB83/d9H9761rfiu7/7u/Hggw/e1rkW05VhpqMDldyAA9IU55Wfg3vyLvte5GrU/KC8kLRqRpCXazbfiazOTheWpbhVNmembvfkEvl4kmn5SOXCnGRWDFRLe7M5l06RNyUoy8lTWcYcZQo2yxLfVo7IXKaSc85HWw8d9DoZSe5yJyCOwHyYEtldCRge2IDiMcLhBjwQ5qsHAID5MCCOZla0rddYMqFTm0PJXlp+nIsMEelLkZwwo5LfdhXRVoKQy8Uiz9WTk1nqPEsStY1kGURMsoFKvXvG/1p0ZRc2AWIQaClR7GgRyhR4OwfcNiJzHiu3JgaLJFem11dL0XfkFeaetWUBUt0hEoJM0o+kEhaVGa9A1b1l9pWp77bZW1kiL/Nj80URlazdwlTaknxWqUUz5V7PMzfSilxXkhbQvURVWey1afu/Npv7ZFfdY1QOhlTneSObzHWlw+bvYnvTrvWa5vMkyYOubA8ekNpVlrYSuEjbrbRm5ZqtSlpX+tOFlLdtm9of5C+N1JomUqmVlVxdCLnPcZyL5jLiPDYaEpaYKTB44CRnBdJ7HVBq2wrbx6YvsJBmpQ+o4kaKpS+q7BpEsqdxnt1WzqFzTW1g2kq5mn5J82O20QwEIsSQrDA4lGQoxxmQeE1Ob+O2SHWsZrZR4BS/aP6lsrgbinDZXJWtstlgSnEp1wfFAExHwO7agOHhKwCAcX4U4+EB+OYtYJ6BTXrsoQeuIT70AKZrG0xHhGifhhjATOApYKIBYYwIaguD3G9nSeucY7tcDz2Z77KQUkcSv6dryZzitsW+bX0LOdZM0mEuY42xtumfPxWiF7evIjEI5Ti2+/xgdH9yzKL9y7hPQIDKdrvxhX6omn1dxupL077ldjWWEot70WY55uwGc91sWbKM3drzFMsbFNnsIp91LFcyulLOtu/obWtirF7ctzjXIk6Tgq89VNW7LNoSm+qR/Frpron1qjxxHcdVcVUbN9ouF3UMlB+7gSH34RLboV/Xetnz+/b8kv+uRDj3l+0zerXdvpe2Gcv9UtpP3jYTaAeEiSprmtXn1zuBx3l3LS8bWSsAfM/3fA8effRRvP71r8d3f/d3V1KG97///fgDf+APaMAGAF/1VV+F09NT/MIv/MJqmqenp3juueeql+M4juM4jnOxeJznOI7jOM79ystm5txf/st/GV/0RV+Ehx9+GD/3cz+Hd7zjHfjVX/1V/ON//I8BAM888wxe+cpXVsc8/PDDODg4wDPPPLOa7rvf/W68613vuqN5dxzHcZyXC+l/ts8xm8JxXkI8znMcx3GcO89lxXlnLajmXPKPc+985zvPDJg++MEP4ku+5Evwrd/6rfrdF37hF+Lhhx/G133d1+n/sgJp+n0LM3e/F97xjnfg277t2/Tzc889h8/6rM9qpg1XOoKETO+W93klo1W68/eh0751WnUrXZDTG7WCSh1Uq9WkKTvGtJ+sJFWtwNXIKzjUU4apmebLeRVVtlPuz7rBcl72ysB0qjyX79tynIVO9V5ZBTWfI46E+QiY8mo4pzEANGI+CginqZLiYZpMur0WMB8R4gZFsqoSDpO0TPmWlVwj0nxus7Jmlc+16fuVZNHKQ5CkEnNeXdSuLBpydYUkzePAWaLQlP3FoPW/5yIvdAZ2m7RNqq9tLz9tW8/fEaGSsmrbs6odM22eIlbbDEUCZq7k2jK9PMjKzCbtcq1Jz9tdSQqoyl+mrGNV0qqyBLm3qD6pyL2luaTviq6D0alGNvlbFD7vYu+53m5N92anvK9OtW9kIrbf6N6HqkWASrKqVaCbOj1rEJcyLSSnpk+NjDLSUd3GGCgyItUSmyzb/LTSiyYPtTxFKp0XZWG7D3OSsso+efXBVtKqK4c7zsuMuznOC7mftrJWuZetvBVIf8vqolxW3bOHcv0CsFwtHeV7DvaL8p5l7BN5rTm37mNW12btb1C5l7QnrvrLvL/km3N/T5HAkev4V/qxFWleKjCWO3TiWbutvWS5NNBIpo0DubxSPFTGTh4I8zGwZQLTgPnwEABw8OAG441rCKczKDJ4SBd7PhwwXR2wfSBg+0DAfIha2jqnlWsjDUnCKnGAzQ6nuueefJXq8KcuQ6pTiReYSdsXv5gnV7EaMZ9VenqeOJpLPS4+G9uHyibDZlPbVifvnWcZAKChrNS60AvmiutlXXZtx2bNvqzS2okJqvya7HEUGxg0EtSSAZU7mrhRV3vuWKog38OtclTv7Vzuto0wF7lsZXmRy7CQXXbirNoOZVmHVWZg+qtOvGOltFojEp9HpOcQaTa6HzUHmLxoeiagPQsuh1bS1txv8WDyDagVgK0HDTNDrlt06tDE5lU8ipLOmdYw0ZbdlDFbO+kzwgSEHelK03rNfbVWB5f849zb3vY2vPnNb967z+te97ru9294wxsAAL/yK7+CRx99FK961avwgQ98oNrnk5/8JHa73eJ/Wi2Hh4c4zIO44ziO4zg4X9B8L5zTuaN4nOc4juM4dyEec92VXOqPc4899hgee+yxF3XsL/7iLwIAPvMzPxMA8Pjjj+O7v/u78Vu/9Vv63U//9E/j8PAQX/zFX/zSZNhxHMdxHMc5Fx7nOY7jOI7jnI+Xhefc+9//fjz99NN44xvfiOvXr+ODH/wgvvVbvxVvetOb8JrXvAYA8JVf+ZX4fb/v9+HJJ5/E3/t7fw+/8zu/g7/6V/8qnnrqqdtewctxHMdxHMe5GDzOcxzHcRznfudl8ePc4eEh/vk//+d417vehdPTU7z2ta/FU089hb/+1/+67jMMA/79v//3+It/8S/iD//hP4zj42O85S1vwfd+7/e+uJNy8wLEwKG/f9609Jeo/Q965yEU/5DFLuLzELj4ohgfEvDCZUzPxYGS34kcxwCs+SMVXbxo6TWtjhZ/sYz0ObwMul9lTy3xW1hbYrxrcmI9Tlqfj9ZjwpyTB/HyKMdwAOImYHeFMGwHgIvnyHxE2B0D8SD7GXTWNRZ/C2IUPzTjJ2I9YRZlIAbyst+IrNcZyD4Odvn3mP3m8tLtSvZN4ECgkHwzEHrnM74h54Up+fjsNZY7B62XoP2uufBsPWgCkvOM3TWY99YYpOcbgeV3NJMagFRLlselL0jb7uXEtS9HMS5RfxPr0dbzXWvSV6+f9Kn2WbFtwvh1UL6PxeemsvrpdFE9zxPZt733Ks+2XC/qcRLLPtaebeFH1/F7qfxGTPlLAfrHLeh9b+1y8vYQ8300pNssmnqkYGxRyNS/6e8JqH3zTH1UZjUo6Wp98vK4TnaLx6jc79JGkTxIwlR8SGhfndwJuGqYF3niSzinczdwKXFe499ku+Kq721p+rHKK1b+mv7SHqcetmhaO6H2VQ2c/WQlP8t7g3UMMmOh5AHNcervharv0tOv3XpmDCe7E+W41aYp2Qj12G3Hb4RU4SRlbE+VYw+O7XiL5NukY20Zf5mAuMnvB2A+BHYPpBOenAaE3YgwcfZ4LfvFDWE+BOYDYDoG2HiTEgOYAjibEqr3bOC6HlDXJwVOXmFtmNP6L5s4L40R1L0uWjFSj9X1sNuNLyHbyLMfb8kmBqrjVpE4kpInoPUuPJc9dM47a9yb60rKba/1IohZZqWK9209cme7LbK5NfRMOZ4kcO39bbIj7S1kzzOaofe5xpP29ljrPyRWGFi956pwKOb208T7FKFtoOtjWMXY5e9ajMfms/rmSdOKqHzQev5r6jsXSp+GwWxnAobSp2k/0UvL5tv2T03MaD9a77leOm2/aX05pYxV/y1/7eus9C2m3bUelBo7zsljDkh+czQjec9lX2HiM8r1kuNx3t3Ky+LHuS/6oi/C008/feZ+r3nNa/Dv/t2/u4AcOY7jOI7jOC8FHuc5juM4jnO/87L4cc5xHMdxnIvjQmfqOY7jOI7jOBfDRSsynHPjP87dDnlqc5qmu5zHXUkb7DE69ZnWp8vmudUyGd0qFSopJ1CkDvKdldflc8g5mVCWa5fl1ns3ZCs7a/IvS2b3lKa6q5VTcKe8zbTrWkYox7GZxkzL42yZzbH1dOSyjcBl2nUAYijT6pOsAZgP81RjIwGOY5JGxIP0nsM5p+7v6+zyFGsK6dyanC5Vb3Ug+auIJGeVKe52unRg8EygQIAsS69JnrPH7V1P+Y7tpat3YntdYd73TtvKaNqKbKaWyy5k2wiZqfNUH7uYkm63yfsox9X3R++8i3PIhjafZhp7T9ZaXYKOtIClXzAyG923lQKZxDhSfZyoQvbJHfbct5q8PdZIWkXeUEk2JL3Fta2lAZqftn+xMnGbhqlDzf9qpjvnjua9uZYkUrK2e6n6PC59yVy+Asz1bKWtvXzYTbxeBEK6lmTLniUPNFEpz3lkFo7j3DYiF6+k7fK36e+t0psiATPpeFzJwOb86o2JlS7L9A9NH8KBUx8pMUOvj7FBYu73OJKOVW0/pbYlzbhqt1cF7sBm7OZOQKQhWxOiLdIUuVm332zju3zILH0ilX7YWi2EJE+NI0CHwNRYTFBsbEGQ47qhvOKGSzmkv5+oGj6ZUa6NFEekcwAQsjySoJJHIL2v4iam2xjrKFsycLFDEWsbyvFZU8dE+Xy9uF4KmRtg99RNLF0SzhuZ9l/jtkxtXnJIRdmeZxFTriS5kLPauMuO0WewGus1+Vb7mljakuxjpZ9tjFQ9v7XPO9L2A4qUXZIdchsnTnGIlWOSyW6vz6Lld3ovMqp4RK0yTJyh9ThjIWtd9GcSk2f7kHVKp2D7h/ZaSzxm+zr9Ts5r8sEBRQLaxstSZirSYe28GSU47NRpz1qlZzXTJVsaLbq7KBLWImtVSevUtKvWJsa5L/Ef5xzHcRzHKTBwOV4kjuM4juM4zh3nMuI8Dy3PpGNz7ziO4ziO4ziO4ziO4zjOReAz5xzHcRzHUchIXBzHcRzHcZx7B4/z7l78x7kzsI2XxDNC/asy4kfFtPQkar0RWi+DvKt4OIlvWFpiPGv6jT9B2mgPzr4n9nziO6e6/bSRZiozWCOl/SQDbbm1zJSWFo/QJcZbj4TK482kj5jOqd5VxqtB982eavIlg0r99rT9Yq5l/UbykvRkff3s/kJIvmxSH+LjEcei+1d7h+xHF0eAhzVvlA7Zc4AjpWsoS7wTJ18SAlg8SfSYTruQz9ZvTv7qZSMQpXOl80GnKDNT1xOmx8JzR6xIrO2LbU9rviD7piqveZ9UXoxNfltvnI7nTu3VQEvvj3Kp67wAC1+I4qHG9Xf7sH4d9rqtLT+P8r1eS8k/QX3nxD9jca9JWUzdkP7TyQfl+zb7Ra42iba+5J6dSx33PDjIHmvSWvWok4NMW+BeGi8Wyb+8l37L9j2mbmy7YiB5N0o/jlLm4htq0ml8UdikVXyqio9om0f1gBJyfwlAPV/cf8Rx7iCMqk+wfkMM5NjEbANK/DEbz7A5ewrJX8Yi3gGyT5K8X4w/3PSRXPqU3mBlYq0qrptJxx+JjdBLYg2NZ3MskX0xee7sFwmYSP33Ku+v7GnGlONIG/BqTLweW6U+lypfP61n663cZn0AeORlONHGGG2cKP5U8hn5/JT6Yh02hjSmJC9TrvanHEwxcjwWU3yW0pKxlNBtd3vKJOdKcV0ZwDQcDoyuL7CUs6mM4kNmAocW63VmP69hPOz62/ccBi6xvea5JLm8R0nbd9c/uHcuM0az8QyUZ6yuvZ45V+t5Jp5ttd91p8zNcWp9Jvc11VWb/BNzgMHQ5z4b+y/y2BZ7ZT95hrMHaF9l4pvKP1P6krZoUqbGf3Fxfo2Tsr/uwpASVSxmveM0buxcV4oonneUYty2T1W/cfv8EEvCcu00nu08Y0j2GpvzOvuSDqP4BcqOjHpsyP0ozUDoxNfn7qedexr/cc5xHMdxHAN3fj24mNM6juM4juM4dxDznzDO3YV7zjmO4ziO4ziO4ziO4zjOJeEz59boSJR0anKslxDXqdUqI8BCMmqlZotllnWKuZU8lKmx3Eim2inQ9nx2KfE0XZzSctz59EV2inqWQm86tpRtRpLYRQBEJQ2ZbtxM+07HkearSLRqeQVHI/kS6cWQpKdlCnoj9bDXoi2zlXJIXYl0wlZYXoqeR0bM2rK0fLk5Lhh5RCsvtPkwyUq+eKb0s3c0gjY79TvnQbayyKW5TLOGSiFIPy+Wam/fM2opq16TpVzCzro+72wVXpyPlu/3JtB8jlS330YWYNv8Qsqt9WTagV3S/qxzt5uz1MH+rehMxa+Wojf3frWtOqBJrpVC6LXqZLZVn3RkA6UwqMpLaJJcO9bkWWUNdsp979w9zmpPbV8BIyvoyRfqLmKVqqswUuEwA/NQvpdrw/mgItFN7YpDkjdUslNu6qAtkm2rJv9JKt+RcABJ2m7aKrWysPaYc9xijuN8eqj8K6bBkSvdO0pco5YcWEpa57K/7b8WdhHUjj15Z5FjBU7SyU7fAk4xVBVvzqRyW5qWMqpWQsVVmXI6MyeJ2JTLJvtRWw9ZQitlt3GL9LGU5J0cuGyj3L8iSzGbzo5FyirWKEY6HCZTz804zyJtCwAHk24o9ZwqrRyzsGqw8Yatb1s2I7tLMsGV8ZqbOA/IJTZ1YU9uYogqyXw+znUl15pFmheytUkvH3skzbUccjm4FLmmjfOwf3xvpbB7ztkelopTBxkaU9k2rm0Vi3F5TRJcMoAidcz3WpGO2wPLn0pu2Iu/e7HeGVgrjCTjLAlYaSQHMtJp0/7s+W8DqzrWcuU+IRgbja6ktTkf5VDV2uKovFOkpvYe1Weguo20suW9sa35ihlVnNft12RbMHEe5ZiMU/2ilfqic60FE+9z9V2uDNM3yjb7XLKw3Om013O6ETn3OP7jnOM4juM4hbMewhzHcRzHcZyXL5cR53lseSYua3Ucx3Ecx3Ecx3Ecx3GcS8Jnzq3Rm04b85R74uU0Xy6yQ7tiaDs9dm36c28Bm2qqdeAy9Vn0W73psUb+SDkbZcquWemJqZ6u3ckPUKYOc5anMlhloaXs5rxyvJEk6Gqq7bToLMuwqxnKKlccOK9aZAtqqFaopeU52rqRqccmE0kGweAhywTsT9UBiINMf5cML7Ohacsqu+lDmrKOABqjlqtUap2eyBLSfHCZ617qaHWK9Vp+7A5WKmuvt0hBRUqj07DNVP8ebZ3LzufNo5FJ2BWB7XRxPb+++jeNShTtVPzOCnndfKzlc/H3jP/iYZMHu9pVU57VVbZsvRl5QO/cKrMkLitfraVp8mdXwbJt3K5YVpVDPjdlqk9U0lxIY7MEfnHpe/KRflH3fm9XimVCdyVebU85jyrtktV9e/JhrVfGUsKFfvuUjLR1YI9rZTXmQ7WSK3fKu3LtLgJyo2DnHqdaza9F5E52nAPKfWpl6CIlbeV2ef9u+tJvZIldFWvkeE8lrW0fl2MnLOS15XOYoNJWoO7Pu/1MlrJxgK4ardmPBDtWaP3I+VvbDYk1JAY1AWvqO+UbBnXiSWt3YW0rYGxSWhuJssJ57i9tXDeUeqxkxbZPlVjIbgu8WI2yWpGRaGlb0JRFkyck6anKE9caRhN/9cZZSVvqKR+0sLzp5MOm2923Sp/QjoGSwXNJOW9jCGnC8yqNyvKhsdqo4hMbb7XNKpjXwEWa3Bu/bXpGSrwWX1UWGCjfadux7a6Ng6wfh+Y1NWgyx6X70hxrpNXVeaVPs/mwu5jrWVkC2fjV1q/dVw5dSZOba6J2QVJXUn7zubqO5m91jOTBHiffZwktS2yHFINaua1FY8ZcT2SuRXsdq0e2XAf2vWxcSGyrE6LcR51+V+X40h1caJzHlxLn0e10DPcpPnPOcRzHcRzHcRzHcRzHcS4JnznnOI7jOE6BV/7b2XEcx3Ecx3l5w/A47y7FZ845juM4juM4juM4juM4ziXhM+dWYONdUW8wuvOM9Y5aeE01P0qvekL0EK+C7EWiXkviNdDNONSjIX1OC9an5LiI6kUHbxOyvho93bxsaH9pz34Q1sts4R0A9D2TiNfreM3Koy34GfUovgoMFBMUmHN0dP7iS5H8aNqLmP+2Piv5OwwwfiApYR44XTc531nXvvL5sI0Gxqui+XxerI8Iah+N8/wfSvGIM+2nuiHWzouFV4l6E655onTaR+XVZr0OWy+N5tTd9M+iNUJpyk2NX0fl2bZ274snTscPZC2PlU+OeGaoaSTpdwsPNutBktsfDzkdafNLy5Olb1KbF0m349eCCPWd65VlL9aHpIetB6DruycbKXuRBCp5Ea8i6a941eimOW3PL8TkqVsP9ljZz+zGTYF6PlAcSloX6jmXr+OF4/+J61wgPKDyaFrcY7Z/4Pp729+f1T/IX9vnc/bW1X7U+Apzz2/OehyJ39xMwAz1iKNIoCl9DlPp7wAsfNoWvsW5HGlM5rpzjaYq1sbvzjgux3D7JbOOpXzemRss+csvUzYdw8x4x8YDigdCHFA85GCudWAzpuW8aKzGxr+rtAOWcjTstZ9rx1LrdRU4OZBSKaceJ/Fp/rLyLtMv2tEEeFF9qY3z5XMnFl17vnlJaZ+p5Hpa38S4bJOVryvV9WV9BG08VpvJNuk1fmEadq2cW5OR+93GX0DtcbkIvEzZ2zZi4wHzPZk+S/cxfczeuMveT43nHMQ3uBPL9tKx6fXKZP3zFn6I5t5ePD83bbANxwnQNhGyv2bM/nwUUl+WvMzbOB5Ya7/7wsKFlx2bWLLTl1W+07Y/D9kuT27fXBiJzy8Ej/PuWnzmnOM4juM4juM4juM4juNcEj5zznEcx3EcJU0aufj/3vRVvBzHcRzHce40l7Naq3M2/uPcCjoVeY/0rEy9NfOoe9Oi187Rm+LbJk5cXoHrbVZeZ6daz1bqR3rzMVO9LHw7FVymz1vtVSdbbKfp7pn6W5Vz37zoVhLWnu88cri1pM10Y5G5lYxBV7NfyFlE/tCRqol8t8gZzU6i4RjSd6zXhfLy7VxLEgFzHevp88vClOnygEhipH109s/X6tOovkV6laS1t4Q9UJ+waWtWBiBpdZdop+Zzg70t2rR7Ta33nZU+rEqlK+nISpoiDZhX5B7tdVN5hdkGs8/a/UB5ej4vj6skreZYK6tIUm0sJVyc8r7Id9MWK1lup39cyDdtvXauZ08ttioP69WJSpFM+dvjGklMJd+IqSxVPy5/bftq8qtlpOVhst+eW3ipKlu7QaXMKr9a2c9xnBcFD1lGZKVvzf3Yhlt7Jaxr57Hj2lp/b+KQygJDE8l/RNI6ETBTknJlWWvIklaV789YSNVKwepy1xku55P+zIakWoCetK8pc3cMb8eZlT6w6tN718XEvfpexrxcVpGJBQARjV5NZMVDjvdEViwxWqf+RdK8KEeTz3LNmwYk3xEVGa2VpjbjRy3L5Pqa2VjyrEBv3/b2hFK3zffnkbMuYq0VL59zx/Vy3uaRyLa9ntSxTX/RHtvr06GSUcv9lGMljSNsPVH5c7Zlyb6g1O5n/pqYgO0xNia0zzO0Wv31fXtGf1aVpem/2J7PxIW9PqWKmbmzrelPqvwuMmViqHxtrNSXQuoPIwgYOD0HmrJ3Zcmo+5xFW2nOr39NO+xWpY2NTRyt+TfdQLxIWatz1+I/zjmO4ziOU/DVWh3HcRzHce5dPM67K/H/i3ccx3Ecx3Ecx3Ecx3GcS8J/nHMcx3Ecx3Ecx3Ecx3GcS8JlrSuoR1PrEZLfVMbVPe+rljX/gcYDgCuxO6/7FogvRKS8nH3a0XojyGcOUgBUy4iv+WP1/orPGgeTSev3gbR9ocM/D20dhFyuwMlKIZeNw0qC6rPA+dos06dI/QtTGTJA9ynXIefFnk685rK3X+VbQJTazQzwWGYMR2kjg/iGtIYYe/KV86b+VOo9WF5tcnpYxytC/E403dv2IkleMwufRUm7l4Yc1/pO2HTafDRpncfvZDXvHewlpvyG19rtmvmheE1IO1hZRr56b7w6FvuYNKsy9K5R715tryfV31f+IMYkTn02esdi2Q9azzmbbfFaIUbnepq07NeN98ii/ve0Ucn3av5tujZ96RNi8vHTQ2x77J2LV67bWf4y+9jTZ6oPKLD0xbzTuNzBucdpPZpW/ZJgx586/ulCnc2320c0/SKLt23jN0dT/gzxnDMxivhitemZ8UCKxG0/a8qr8W7lr2xin9ZDag/qy5T9kLly4sSeAYI0j9LnhzYvOaVqLJbr246l6sPKyZMqmHPZ4EA8z7T+m+8N1quOJFbrBWcax8kFyLE+9xqOSdeOuY0nXidkPB/dGA9aRk3vjJh+cX+0aTe5kjb16XhKnwcbN3azbwd2iUnNM434zNGMdL/Js5XcZ53np7a9VZ+lHqM5bzTtzsTKuv+ZhTQx2krcpp8lPeN51vM5rDyDYa6TOZd4J7f9p41VFp7EUibTL2k+qMSRmo/8Rdc/W76jlJ74TNJcbrsAIDKV2zDXuT4rr8Wcxo+48tdr6rjOT/PbgHy3r5+kum4/rVjydmFcTpznseWZ+Mw5x3Ecx3Ecx3Ecx3Ecx7kkfOac4ziO4ziF3izQizqv4ziO4ziOc+e4rDjPORP/cW4NmV5qpuzWMqlm6javTI81x+2Vc9m0mn242cYqYS1T0Emn8+Zp2CYvso0Z4EBpGr/Ji1ENVFOKq7LGPFW/lSCYfNjp4NROzT4vBFBklbba5e3rNa6XWZTpzSpryPsViR2dQ8JJJv9G8GbKEmbUkhErqSCAhyyXiISY6yNsoAsg0oBaQpEPtHW2Ko1upCjyWad2t/tL3TRT29dksCUvtdyv1AlVso7+8aivUysBEXmIlU/UWS6yF3CZ2s7tcXvaV/v9PjmGJH1WW+1NOa/6BPM1N9XTuW79afH2PWlDSP0AVe16Tf5SyRFuY4q8lUBQ09bOJf2Se0/2jf191jPQ+a5znlYmoWU2zYFCkTi0aRCXe5djk7ztx9fkRW05Pg0ZwqKf6kke2nM7jvPSQHW/p/LBszgjzmv7lPP2Edqncd2Ps7UumWkhaQ1TPn5N0mrzKPKsLEnT77Vfb4MrW7j1vC/6p33jnE1bB+D2nJ30bLrmMJXD8XL/arwN3LF1QJIvtuXk/H3MMa7Etp2Yr5IzhmT/olJGez6J16TcNrbNMWdX8WXL0Ehv19psLVFeXoRaZtiJyZiW+50XXnlf5yD/2xto24zWN1Ub56xJJ2uroHztiGCjWzbBM3G+h2a519IrTABNRTYOoJZE5ixq24oAhlJMMrGQPicRSiFyQF5iXRRpto35ltVXvpZ7O9T7tPYjNj2mFCvFYOrH1J3tu7SJGCmrfd4BUO4vGztKVqRcEXpfaT3Gsq2SFUubz3Eam/5s0cfC5H8GgtyyDIQIoxMsFaeyZDm+iZsXUt5e7GvaHrc546bc57ovHMd/nHMcx3Ecx8IMcl8Qx3Ecx3Gcew7CJcV5HlqeiXvOOY7jOI7jOI7jOI7jOM4l4TPnVtDVWlv5IbD41bdMbbbaKbN7K4WycqxOetV58qoyHHXmc0kvJnlDO+VepmbrlOTFjHbK03PrE+sqWIs85Gn94DS9uDMFW/ex04N5WXWL8pkslXxQkbMywDK9Pue5O4Vd0uisqlmvpronP+0xSPWqMji7SpO8GilaWv0LiBsgihwCQGRG3JAWm8xU9qo+GkndbUkKGHWabbO19Sb11Gvbcu166Z83P41kokztNm2klYeYQwjI8o5Gytmm35HS6Ez83n3ay2J7f9p7xrY3cFr5OEtROM+bJyN9Vwl5KXqRALQrWrUyBHPedvUsW0+Le2tNBmMPb8vY27/ts7LkYdGPdCQL3XQWnUnD2rY99+i+83LI+ZWkqd62SDu3RzYZUYm+yFRk/2DalLl2e/N0VplM+fdeU8Li+lwIPnPOuR8gLOVL+ir3QDVcrvSXor5jNLcrnaMPbse3xjql2EJIf0EqX22PbeVZbdna1bZtvNuu8Fhh+3QZynv7mvqz9hsA0vgpsVxPYrqvQ7Vp2dUUUcZMO+am86Gssgg7RlOOlfMGIwNWe5i5xH66TeKgnCYP6QXk2G8EeAR4ZDCb8UVkjqaIWtK2q13UQS9Y5sX1XWelfqXC9sUSlmb8rM7QCSe72aDO+7XzmGtt06DYxFzmmUr3AVZtKzhQOb61l7ErssZG0jpliSRQpOPyyGHvjQEqXeW4zC/LSq0EEEzF2RhdJNVN3CflXNzjJs6xf9lYA9nj2FjorMo7garP0LQDa7tnKxUfOK9QjCXynBoJFFmfjcrzFJX7zdRxmHMdygqsxqbJNqVF2zTPzMT9cKYnUReJ/OLeMv3mWhe1sCbh8p2V8ZZMo4qvbT91YXicd1fiM+ccx3Ecx3Ecx3Ecx3Ec55LwmXOO4ziO4xR45b+a7/yJL+GcjuM4juM49xGXFuc5Z+Ez5xzHcRzHcRzHcRzHcRznkvCZcytwTwO+ZgPR8V6o0OMbk4DWJ6F3Dnsu0ehLOtUS1CZN61/Exnsj6/C7flTEWZdvPJdstsWbwviwkE2Al3r7hf5+H42lRskLG4+EtLG79PpKet08rexflVk8DubiNxHEhyK/V18/GD+G7DkSN0A8AObDUigmVhMEBspP43o9xUOmMbMxy4dXZWDjtcKdsq19X+2T6pPNZzCnvDSeO/210c33+05kvRdWrkfls9Z42yyuYeee4QBdsl532ZN9WF8O8dQQ/wzj0VHdP+bkEZz8FwkgOXdzrWA8fKx/WfWd5p+Lt0db9+el8QviKr09x63dq6atUVu2jj8GiddHRH3vcXVYNz+9frb1P1qrEvEKidnXJ8g5jS8QIB4pJS22faeUk0tXx2v/fUXNtjNujd62ugDo179pI6t5cRznRbH0/eTiV9bp31K/wLpBhz7ppwLU56oay1DS2+s9Z8eryruI6v5hX2wl5ZH4jzrbJB+tNxVxld9l2n0/qV7MK3Gl1Iv11aq2LVOD9c619UXEYKK0OZThlkyFdz2y5PQTVba8MmaLt1jY5e8l5hOvMRPraZqhxHrzJn0fDwA6AGIkRAC8MUFNY8rW86fSWL69tkTLOgup0CRlbuOiPeyNzc96npHj7fem7slm5NOZlJPbCQWkCFUyYr3mZB+Y7+S8MobLd9mTliVG0YOoDmGtz1vjZ0dtm5P02ns7pFiEzat3X6kXmvhqy3W0z1PcqctePGDu6dpzjqt4q8T6XPqIQOWczalSmsV7mQc5B4MHTv566sPM6g2unaD0lfm5grKHHGabbwIFBgWq/R0jEEO+JgNqP7rmeaKKFc174twn2+cJW8jFvWbqqum7F/1nm17V8Zdr2Oa5VO76uZ37G/9xznEcx3GcGpc7OI7jOI7j3Ju4fcldif9fvOM4juM4juM4juM4juNcEj5zbo08LXl1Weg98ryKnjzNzK+t5HfVVFk7hx71dFjZSWSuZup1lz1SsJJH+QGd01LfzVRqstOsUUs6qvRqhdgqexWQkk6eGl3LMvYcKFPcbT6aqctrkjKZLq1LqM9J4iBSh7ADhl06OH3Hud6TBCPmOyluCPMBMB8SJjMTnwMQAiGKbLJ3PWUKuJXaWXmgqB10/zItHTG3JVv/+XvEeso6mfNoxYlUOWahRGjngNf1vKzATr1KmUwxyVxPlQ/2pqWvpKHpcJ6ubw6Q5eoX0lbJsylSLScV6UFaHh5DWRqeBy7Sn/wPD7muBgIxI85Uptt3dJ4qNWinwXfu9XafRXJGWmolVZVEqbpfUJZ+b++lvLO2fTP9PsyoZPM2T2Trr53Gb2RCNLdtrknLlNFKBlSGi3JtqCcnsFVHqKQjUe4xkZtYWetg6qSh6nZD041IWTuShzWkjZ/5H4XNeNKWk3vX7k6S5T0Xjv+HqnOR2DgPTV8Z9jdGjTWA3M9TGkrbscfsD9O3dWWdVdxVBkaSsRzpb88iYsEidmrG2MW505cUuVZg2uMqDSH30wdK3NyL44y8tT53U1Y2cSea/IQ6CXHjqL40nbfIFYPp14JYlkh8dwoM25TIsGUMp4wwcRoLZ1PRAyGOhHlDKc47IoSjtGmegUmqaUgxQrHF4DpUMpI/xFRmlfO1saG2lSa9kGI1iiLN3F+3mrb9rvrcnLehZ52y2N5KsM+ikfuusjL+2billTra4yQ+VHmriZfkmYEJSaYpt15I11GOn608ss2yaZdV3BVMXANUMtNFNRs555rEWauriQ80zWDz0TxHmr9yrfRcTTuo4/Jy39floipek/u9G6Ppsw3KX/t959ppnxlKl7io/7Wmc474rDoPShdnv5MNVVxq+9Eqoby7zVunneg22w4kVvU4z4HPnHMcx3Ecx3Ecx3Ecx3GcS8NnzjmO4ziOoxAzyD3nHMdxHMdx7j08zrtr8ZlzjuM4juM4juM4juM4jnNJ+My5FXgASJaPbjXoHX2+skcvvtdaoXec8SqiSGk5cZNY8oqihQ6/0ru32n/uyL17XiSRzTHZz6znL4HGeyl/2fVjMvWnSbUa/ebYhZ+B2b7wldjzHwCr9cPFXytMyYMESO+HHRC2jGELDKeMYZvE+WHHoJlL+QMhblKm5oOUaSYgDADn9KIsDy7XjFCup+TdXtPGe0LzLku3Czmt1DoITMs2Ip50iyW8zWfxuOPAeelxMr5zvQpdeW/Tb/eXRkRyLpSl5Ju0Kk+zNs2qrXJaBr7dh2v/iCprxpsDQPGbG/PfgYExt+OBQYHzf2PUNxTnehJvv7V7e5+HxFkeLrUfIZIfYETlq8jioQIs7wO5t60PifEAUW+4TvuX74mXafbybH0bw8T5r2xj48uHpv6Tb0kcgTgQeETxcByh2yDegLZ/sO0le5M0RazKvvCAae4XaRuU69F6Gy3+g7Hn+dKh6idv4z8pF/3gcP5jXxL8f1SdexyN89QPCtkX7uy2f1Ys14uzlhkwr1g6CELxeALnPn9OX1AEMFPqn+WvjRfiGXmTPi6aWIrqnVq/pZ7XknjsdT20Qgp202dajuVtBjt+aBIH1WWr4xg7pi28qMRbjku92DFuEJ+5U8Z4whhPIoaTdNBwMiNsZ9BuLn5zQ45bNgPmwwHz8YhpSg1GYpA4onitZiM87f+r8kKvazqQylhryljGDjJjvmyUZ4IUq6XWYxpfE6DXcS/Vba+3zzlYeOO1cWXvWaQdD1cDNVTea7YdaCxh/ur5bB6a20i+qzzgjN9wuv+5G2PUBVqrkJXvq9ibls8j5iSt72DPP29RXe0znI3xTNbt84Stw8pjGLbeobH08rqae7GqljNi4aavqGKyofwFbJxWv+/Wgc3Bon5NuZvnoJ4tX5VfNOds+zqYfc66b2z31aYtZbvoKVMe592V+Mw5x3Ecx3Ecx3Ecx3Ecx7kkfOac4ziO4zgFZp097TiO4ziO49xDMC4nzvPZemfiP86t0U4TxnI6bLsk9ZlJtlPAGxbSqHwO4jz7e66Po2ikDc207mpar7w105lFUqjf96boSh566bb7rk3zXfse2DudWHfldlueMk18rjq3iVfT4PPnVH9QCd6wS9vCzspZGeE0YtilA2liUGSAk6SShwCmNAmVRkoSPtUY7suXqWS2soZmernsS5yuVXNNOAKgdN5KnyISiVbmcla9qdSgKcI5q7uXICehTkpS5LJM6320nYvffsd5+XZt41y2Z5lvV76d90nT41mnzmNgxAHAyOAxgjYMGrK8ZYwYhggKjEAMIm4kQOX0bOq1et9+x+l9jOnm4Fi2c/5Orh1L4pHy/Z/bve0riBGHLHvpLYtu7sFaNlTugbBLLytrDebeIK4rVPsD01bDzAhbRpjS32EXEbIUnHYRNEVQjKnCiMAh3TO8CYibgHgwIB4GzAeE6ShleD5IkvH5AIibJHeIInkYkOS8a5IHKbeVsORrX9WfaUepv1lKTGx7u52up7oMe+IRXshnyl82ZXQc5yWkjfPOkkot5IB5I69LuVaJaUxPfQyBmFP/r/miOu7K2yo561z6cMD0x00MeC56sq92l6au0meq+indFmjRHytU77svT724e7VsdkySGGou41nYAsM2HTScAuOtmF8zwsmMcCsFgLSdQLsJiDK4BfAmPy4xIwwBUR5qjRRNZNGpv+ZaIlmVIcVlek2NnUllZSJVZMYzESpyYGN3k+qaqniJqvZZSRBzHhaWFdjznNJeh/aYzjVZUS+nbfpPB5Uj0vJ6yjWesd7WZbwkFIlkjh14BOKGwZu0cxwZ2DCwicDAGDYR45huqBAYwxAxDjOGkOK/INJzG2ozEEGYY2oIMab3+ncmxClvm0OyQ5lSTMf5Xi75J5WcEzjJx3NVrVpjNM+NlSQ2NnUmViPmvqApv5/SgWJrEiZG2LH+TcfJd7HEdXMqAE0x3TMxxYxMVPR5IYDHAB4G8MGAeJA2zIcD5qOA6YgwHxKmQ8J8lA6ZD4CYXyp7VcuZEst1rY4YxfbJ9JFiQSNth9eea21Stq/a02YXeTDHk2mbi7RNDMsXbV/i3JV4uO84juM4zj3NJz/5STz55JO4fv06rl+/jieffBKf+tSnzn38X/gLfwFEhO///u+/Y3l0HMdxHMdxbp97Jc7zH+ccx3Ecxykw0n8pX/jrzhXpLW95Cz784Q/jve99L9773vfiwx/+MJ588slzHfuv/tW/wgc+8AG8+tWvvnMZdBzHcRzHuRAuI8a7g0Ee7p04z2Wta+xdwsVIHNb20XSa/Zp0sGezZIMjLaR0dqqunfJt5RaLVaLstgiVb1GbeTvNNzZyy045pYhJYpYzKhIz4u404Grq/Mq04rJyIlefRfKxSK837Z6bKd2zkYDMzZTuHTDkqdvDNkvztoywjXmF1izRyytP8kAAEXhMLwCII+nLrjqpK0FJndhqsXUQG6mByBGMBK/IkSl3dpR8AwIt64Cxt45X5aNy3ez2VnrXS87Ue8lHyqesalo1yPP00+1U/nySJC9s5Bohr4HbmUKukhNZnU+mx2cpaxhnlTRssqzhcJxwMM7YhBmbYcYYosoaAiWpKwDEXDH6F4TI5TXHgCnrEucY0ucYMEfCNKd57POcZBAxUpI+zARkmQRmaQZZBhu4XAzO8ge7NFkPbWO5amJp92FX3gPymbO8gWvpFOd7YOZ0/2S597CNCKczwukEurUDnW6BWyfp1KenwHYHnmdtq2FMNwcdHQKHh8DxEeKVQ8QrG8xX0rbpyoDJSB7mA4A2uThDvr8GVLIAuda68peuttvcgwAWcp9o6tJAEdoOV++B2405rMRH0l1Ixup+z3lx/PIv/zLe+9734umnn8aXfdmXAQB+9Ed/FI8//jg+8pGP4HM/93NXj/3N3/xNvO1tb8N//I//EV/zNV9zUVl2LgAOjU2B3sMdmaqNqzSOovVty7AqpSyxmuj65EfpSNX9T+ZAax+ASMVywK62CFSyyJ7FicYdNq/2HG05Fpk33+W+SeWDjbyTZR+7HVDZJ9r+DehaE6zSlM3aNFj5ntiVpHgOGE9yjHea5KzDrTxmne7S6qwAMM3lITIE8OEIPkwDTzzaYLo6Ynd1wO5qwO4KYTpOu85HwHyYZXibXJ6B67oz0ujKjqYrSSaNFznkIYjLMYzUBpM1DUMbs4kX9W9vRVx7nnb/DguJMZaf90kEu/dU9blc8KouIhbtWNsbl3G/tbLQGAFFysoHETiMCAc5xjuccHSww5WDHa4dnOLaZotr4ykA4Op4imvjFoe0w2GYsAkTNqqPBCIHzCDs4ojTOOKUUxt5YTrArfkAL0yHuDltcGN3gFvbtO10GnG6GzHtBsRdAE9BJa80JcsWkTlzTLEWUF/3bp2ZdtOz7tFYT+6LHPcN2yRTFQsfIN0bw0m6L8KtHeiWieVu3ATfvIm43drLcdsMY6qPg+sPAtcfQLx+BdODR9g9OGL7QIqJt1cJ01VggvQNrLLWOHK2osl9OLF5tJC6I2BOL62Tqu+kxfNz9xmXdXNp57cZB3bjRtMHlth0JV3nTO6lOM9/nHMcx3Ecx8C40//DuXbe3W6H5557rvr28PAQh4eHLzrV97///bh+/boGbADwhje8AdevX8fP/uzPrgZtMUY8+eST+Gt/7a/h9//+3/+iz+84juM4jnPXwLicOI/hcd4ZuKzVcRzHcZy7gp/4iZ9QvxB5vfvd7/600nzmmWfwile8YvH9K17xCjzzzDOrx33P93wPxnHE29/+9k/r/I7jOI7jOA7wUz/1Ux7n7cFnzjmO4ziOU7is/1EF8PVf//X44R/+4eq7tf9Nfec734l3vetde9P74Ac/CACgjg6FmbvfA8Av/MIv4B/8g3+AD33oQ6v7OI7jOI7jvPy4LIUE8NVf/dX48R//8eo7j/MK/uPcWZh22/qkLb63h1nPh7Xr3fpCdHzlAOM1Ysl6evUUMPvSim5e82p8p9Jpsr+KGB+13gVmKW5rMGBtm3SpdzMXM2noqau1X/igrNUhQcX9LF4lefns7vLhdul1qQ/juVB5kczWayv5a4nngl0+nPKy4JqPQfzkQvKXOwyYD9K26ZiSP9ZRXgbc+GPxwFX9LPJu/A8W3m1i4NKpKJL+VXyxmuP2e82lBOxS4erRFUx+szcPWQ/Blfba+s2xeOowpeXV13xOzot4jjTlW4wx1ueGOHmTheRTgSEijNkrLfvMHR5MOBonHG+2uDIm87Ur4w5Hww7HQ/IcGcOsniOhqdjIhJgnI+9iwI4HTHHAjgO2ccQUs49GHHAyj9jOA3ZxwHYayzHTgGkOmOYB8xQQJykygZCNfAZkTzTTceT7QpeFb/wwi4dkuTfClO4FvQe2xXNuyPdD8lrM3nLZ+4Sm/N2OEaaIsM31Id4kN2+Bb91CfOGG+pLs5fnnAQoYrl1FeOAawgNXEbZH+VwHoGkAxWFRroh0S6rPnLne9n5jue5yeNVvlGtI2Q9R+zO7m7n1zvTNWfuuvV+ok5+17fs69XuMzWaDBx988Fz7vu1tb8Ob3/zmvfu87nWvwy/90i/hYx/72GLbxz/+cbzyla/sHvdf/+t/xf/7f/8Pr3nNa/S7eZ7x7d/+7fj+7/9+/Nqv/dq58ujcxVjfM0tnLFv4yXHxMTrLb84eL+eigNSJqa/sGWOryaT1dwMluzog9e3My79V/k3st89fqf6y5Knqb9XHFUvPT9lm9tO8t75yzec1X0/1xDP+bFJuie1kPBvEPzV7zQ2njPE0Ipzmcf80jV1hO6vXHIecyYMADAQeBvDhgHg4YjrO3rDHA3ZXCLsrAdMxMB0nrzkAiIfAfMiIBwwecsyhA0fJr8bv+rl4DS/Hb6kc1rICOSbQsSGfoFdvZ11jey71BeyPNbFJvxu3txfvHONl8cHjsg+heBTbuuM8pps8116znONzBjYROEgVFg5mbA5nHB9uce1wiwcPk4faI4c38cjmJh49eAEPjzfwyPACHh1fAAA8QCd4MJziSpixAeOgCQy2zDhlwgkPeC4e4nlODeFT81X8znQVvzNdwyenK/jU7hjP7ZIx4adOj3Bje4hbuxGn2w122XsOAHgO4Cl5pCXPYdNGWGL91h+Qi5dwpPp5kcu9YeM8ID3rDKflvhhuRQwnKeAcbu4QbpwCN26Bn38B03PPI5kdv3TwlG7Q6ROfAD7xCYyPPoqDxx5G2F4FRfmRZgAPhDgmH0cwgaVCBgAbBg0RNDDItlkGOBI4EiD+zZPxYyQCZiS/dTb3zdpzk7mFF3S+rG6BTixZ8mGeaz3OW+V+jPP8xznHcRzHcQrMaeGOu5zHHnsMjz322Jn7Pf7443j22Wfxcz/3c/jSL/1SAMAHPvABPPvss/jyL//y7jFPPvkk/vgf/+PVd1/1VV+FJ598Et/wDd/w6WfecRzHcRznMmBcUpx3e+e8H+M8/3HOcRzHcZx7ls///M/HE088gaeeego/8iM/AgD4lm/5Fnzt135tZRL8eZ/3eXj3u9+NP/Wn/hQeffRRPProo1U6m80Gr3rVq/au+uU4juM4juNcHPdSnOc/zu2hu2S1nXXaSh5gJAvmkEra2tURLL+qZLGtnEryEetXu38XIwuweec8LZ7a7c151mStMj1XZn1zKOUmoCtTaKdrL7abtAEkKQABHKiSnankLKdDc8mjlbIG8wLSdyrfmzhP+87SgTlJ9yQjcRPMdGQCj4Q4EuYNYT4kzHkWtryfD2tZa9yIvK65tlIPIm3pyRqkMrJ8oSv5kIbWyBWo1x6MzGIhIxk4ySMHzlPFyzEU8ivnhVamXzPXmWSR8+Qy1tPyqclzN8lFodm0ne4hIk0MpZJpYIQxYhgjxmHGwSZJWY43OxyNO1zLctYr4ymuDWnu/9XxFFfCFkdhh8Oww4CoslZhRkBkwowkZQWA07jBjgecxA1O44jTOGIbU3d7Oo8YKWIbkrx1yDfbMI8IYBANaIkI4KakbOfih1xHeo8WeQjlKf6hkbxX97Ru29N52Ps1AhQZNEWVBGE3A9stsN2Cb52cT9KqaUfwNIHmGZgjEGPOI5fy5Dawd9a/kUfZ5ekr2Xar4rFqiBVlUC05Mu/1wM7+dnNHribyWcljd/9Lg19yGct5T3uneM973oO3v/3t+Mqv/EoAwJve9Cb84A/+YLXPRz7yETz77LN3LhPO3cUeGWDPWsKO1XZsPUvS2sXGhZ18tX2G9v9tDFp9rvOmcremPDa/i7JaiSlQy1azXQAAxBHgMVtfjAwek7wsHcMqNUsxA2vMZuMGZkpdO5eTckSWpIUi7wNAWZoWJgLtgLCjKpYLu/QSqV4ewjGeMIZtkrMO2wiassxxl98zgwcCxlFlrbwJiJuAeDhgPgqYjgKm45SPZF2SpKxqX3KY62TD4JEBsTApwXVlLaHxXtaJqp1JpG4bYsrbjAUJ5WvFRGorU2HruTe+aJWziZPklWNNsZBBie2r+LFKtD1BHact6qGJexf7cJtoWz4UCxZpdyMDY8SwiTg8mHC4mXD1MDWEaweneOjgBA8f3MQjBzfwyk1aKfKx8Tk8Or6AzxhewENhi4cC4UFKAf2GRgDH63kAEBHxQjzFp+INPBtPAQBHtMOGJmxoxkARQ3NBAzGGcIAhME6HEbsxS6angDgFlbSqNBMljoPYxNjvObePmYHZ1GOEPpedKRVn88wzMzDNwG4H3m4vJBZI8V/E2mwulnYphNRuKTDC0LlpbL/JKLL6IM+3VNqftUFqn3dR/q717QupahtvWukq6m1W0mqtAS4Gj/PuVvzHOcdxHMdx7mkeeeSRhQFxC59hjuw+c47jOI7jOHcf90qc5z/OOY7jOI5TsLMvL/zEjuM4juM4zh3D47y7lgudQOk4juM4juM4juM4juM4TsFnzq0gWvCu/xew6jnU2InVfmvGL6LauUlXN/d8RFC08PYvxXpblY7xqEjeFcXvaJHpXnqNBr/NNgOqqZclzjmgeJXIuboHYuGhsurXlPO60O6b4zS/2QYrzOk9zcZzbse6TbzmaObkoSXlzt4LyQOAwEN6AUAcgLghxA1h3gDxwHjObdKS3/EgebKI5xxbDxIpysr1rTeWi9ctt5QdMB5kfRbNuOPZUbzmkj9bGLI/y8AYQkQI5W/IeWy955gJ0XiOJF+Z9B0zEGOQbFf+c2wyqJZpxoumPsd6OYkAChFE0PwPIWIcIjbjjINhxuEw4XiTlnK/Mu5wZdji6niKa+MWx2GLK4N4h0w4DDscZP+QgOLPEBEwcwAYiBgQOSBmw4iZA3ZxwMQDppheu5hujokDIkodtXkfAiMGRowM5PyDCZEjOP9/ir1/xaOHYvL1YfGeg/iUlH6o20KyJ0YcbD3n9kCU+ovJ3FMDGU+dkozaE1JACAE0joi3TlI60271eoXDI9DVY9CVK8C1K4hXDzFdTTfOdGXEdCVgOg6YD/N9pfcUwGP+K3mxfnK5P2NzbzGwtCZZ6Ye62H633XefL0njSZIKXvLTHWKs/4/jOHec1ssNyF5O+bue9+Ti2BXK/Vw+pzip9KXqNxTKeK9eS228dkb82PZLdUaaDOcxoPKbHfPYP0ZsNjMONxOuHOxwvEkeXg8enOLa5hTXN7fw4HiCB4YTXBtSf381nOKQdjjKPq0DMeZ83uTNOuIkbnAzHuD5eIQXpiMAwAvzIT61u4Lndkd4bnuI50+PcOP0AABwejpiOtkg3hoQEAAzJg2nwHACjCfAeIsx3ooYT3OcdxoRtjNC9pujKGMq52CBEA/G5DN3kMfvowHTIWE6DpiOCPMRkLOYfOYOk89civM4eZ0hxU/IvrwEiVNyPUfSF0WAZjLxZtpetS+LXnNqxhIubarxugKoihtZfOVMm6OBU+yXTxiG5BsYAiMMEYHSewBV3EfECE3DipCYr47/YkyevDFStQ0M/Y6z1143HuRcFON1J16Gw5DytBlTQzjYTDgaJ1zZbHFts8WDmxM8tLkJAHh4cxMPjzfwyPACHhpu4tHhBQDAQ+EUDwXGNRpxJVxJbescRETcjFu8wBOej8Cn4hE+FZM/3afmq/jEfA2fnK7i2ekYL0wH6jk85foAgIGS/7GNZ4kYPATE7DtX7uPsQ8fIbSi3uVjivdK5QOs/7ZNipdrKLT01gAgcAjgAMT/jjGMAxgA62CAcHoCeewHx+edTWnPtufzpEg4OEB57FPzwA9g9fAXbhw6wfTDFyttrhOk43XNxk30u5VlF7zECR0ZtRI7Kt5JmAqx3Za4zys+KIRdJnhXtcy+A2ruzyb9Wqd5nph+Xz+I3HszjNpvE2t8GnPse/3HOcRzHcZwCc9eU2XEcx3Ecx3mZ43HeXYvLWh3HcRzHcRzHcRzHcRznkvCZc2sY6QHpHGFayhoEXh57Vtrr82MlfVqXrpopuWuy1jNnydrzmfOEGTqFN8xcnydpEc2BpPIMO52XB6q+qyRwrfa3J2tdkYh1ZcF2Xym71gcnaWsEaGaECZV0VaSsZZl7mfpvyjUQ4kAqp4tjeq+y1k2R2onsjodmCvZQ8lvJWSX/ppx1GctU/oWk9xxyt+7+8l0rbUCSNYQxYhjTdHuVCwxzkoUOMzZhxhiiyloDisQ1VWEpwMRZ0sCEOSY555xlrTHLXedIiKCuHDa9ryWga5JWmdU+hAgixhAYYyiy1sNhwmaYcTRM+ZWklsfDDsfDFsdDkuEchh2OaEply41lyyO2nLrLXdZuRw7Y8YCTuMGOB5zGEadZuiDvt3HEFAds44Apl3vigO08YI4BEwetj2lOUtgYU51Usl+5bnJjV9eVsryFlrJNc2/17iXKbTwGIIxptj8AcCDEsfQtIsMBpI9ghF3APDHClMocTjcI2wMMp0eg7VXQdsKwzXqB3QTEOd1fgYAwAJt0HB+O4MMNpuMR89GI+ThgOhR5EWE6JL2v4pheQJazyivU9w1J+4lc3ksbsfdX29e0kqIV2VrV/3dkbnZflRMb2YPUo0hbS8Lmb5YtcXPchXEpRsGOc4Gs3PNqZ2JjCV7Zfy3p5l5e3MfEJTYKRnaIIneFWGFUksVzBHdtjNFuJAbJOXKaYUxj/zhGHB7scOUgjY/XDk7x0MEJHj18AZ9x8AJeuXkWAPDKzbN41fAsXjHcxGNDwMPhytmV0vDJeBO/PUc8M18DAPzm9DA+unsIv3HyCJ4J1zHHgJNd6vDjHMDbgOEkYHyBMN4AsmIxv4/Y3GSMN2cMJzPCaRrDaTeDdnOeJYIyJWEYwCMhbgbEwyFJWY/zWHwlYDoCpmPCdFSkrAAwHzH4gJOcdZNlwLkerbJOJIkyboq8jqK8h0qmrW1Mz1LBjh92jGAiUOB0iN2WZdE8MDCkvyJTRrYsGTYRg1h9bFJdieXH4ZhipIMw42DI28KEDUUESrHf0GR0zlYdEw8qYU6xz6gxz8RB46Bd/jzH/MrxIAC1QNHyEzTGHCim2C7n9WCYcWVMbfVo2OFqtii5Pt7CteEED4QktX5ouIkHhlu4SltcCVtcpXwMRQCEU8zYxZOqTBGMHTO2zDhlwg0ecSMmmfVNPsBz8Tqen4+TNHs+wvNz0j7fmA7xwnyAm9MhTuYRJ/OI0xwnnc6jxnrzHDDNoZL6ljKn+5+jaVSBQZHA1Mg4W0iknyn44KE82uipQnqWmQ+AcEgIE2HYpdg2bEcM2w2G02MMp9cQTh9FOEn1NdzaASdb4PQUfOsEfHoK3iape0/ySmN6OApHh6Arx8DxEfjKMeLVdENN1zaYro7YXQnYXSW954B83x0B8wEQDxi84WpKEc/pmTxmy5iyIdWbylmthHyi9Bw4E2gq1kcAiqzVPu+iea7u3J9V3x6R+lZ0YjZa6ZIvk8uI8zy0PBOfOec4juM4juM4juM4juM4l4TPnHMcx3Ecp5Cmrl52LhzHcRzHcZw7gcd5dyU+c85xHMdxHMdxHMdxHMdxLgmfObeG+Df0fJraH5qNz5BssnZomsw+rXmrZ9fl1qF/dbnnCeqd1tXMW5+1CF1yO/lfQH3Wwpx9MiJAEyNMMf3dRdCUEhS/DpoiMM1AjID4Csgv7kRJZB8ICPn33iGAQwCG9B0PVDwSel4J9tf71mzCvGciYMh/Q/YkC8kjS5aZT9ua5Nf8GdQLhtRfTtMcKPvLUeV1pV5zY/aXs55zA8DZa068sOQ84h+116+ml03rUyAeNKg9bTinXx1fed6UbRyy38zACCGCBsaQ/UjGMfnMbcYZR+OkfiNH1oMkTBjDjCHnY6TaZyJy8pYDgJkJkUP2Gqk9R5I/SdCl5cWTTrbNMSx86ADoPi0BrN4kyXMuYsxGE5sh+eSl/CcflTHfUOIrN/GAkwjMHHATyQ9jyNvm7C8XmdRXbsfJT+V0Tt5y2zhgOw85rewrZzxVpBzirTJH+Ru0fDHvx5EQI4GzX40uCx+zz0akYhAXs3cN57+NB6X63HQ8bZiQ2tSYLOHkvqERunw8ifeS9d/I/VOYWfueMAWEaUSYGGFi0MSV96PtHONA4DFf63yPzQfJy1H+AsVnTj0cQ8mj+lu2PnJA8YrKhm9kVqRa7L/wkqNyj5qOXLzj5HjqHK9pNJ97PiPc+o+Yz3I/a157ZbzTuBeJc69jPOXSZ9PXWS9JAAu/IQnu2iRzn1qNz3nctt67+t7e503eMEM3kPhmWm9L7ffz5xl17GjLJ/Fg2/9D4p30d9oA2wPGc5u0YzyKoMMZB8c7HB9t8cDRKQDg4cNbeOTwJj7j8AU8unke14dbeGhIJnAPhFs4oh0O8uAwg9Sr9bl4jOfnY/zOfBW/vXsAv729ho+fJM+5T5xcwbM3j3HjxiHmGxsMNwaML6RMHmWPufEGcHAjYnMjYryZ0h9uTggnO9DJBNrugGkC5lxwzv5cQwDGEXyQBhceCfFgxHw8Yr4yYHccMF1J59pdMV5zx9nz6jDXx4aBkcFjBAWo35wSCZzHZPW8gsTZxWtOYnu51tZ3ucLakZk2ktoZl2s3cIk3BwaPyWeOxohhZAybVFeHmwkHmwnHmx2Oxx2ubba4MibPMPFruzac4spwiithiyPxZgs7bGjGgKgxkxaZA7Y8YMdj8uHlVMencYOTuEkevLzBzXmDbSzeaxI3TTEsYkNLoOJrPFJMHsgUcTTscDhMOA7iH7zFYZg071fDKQ5z/gNF7HjEDQAn84hPNRW9Q4rXTjjlGQBOeYMb8RA34wFuzoe4FQ/wwpQ8527NB7g5HRRPuXnELsd/23lIXnIxJE9lE/9xpOKpLN568oiWYz+92AyN8zi/J4n39J7P8cpMdbyH5n7P3nP2nqchxVh01KQZCRRDfu4ctT8B5HlT/Lu5fsY0cEjPVDE/U6VYrvbr1u83S79uAOBRnqOSt6ONgyQOLTcIlXsnx622rsjWl/GVq2LiNu6Tr896bpPD8phQhU573ktfzkzJ274dj+40l6aQ8EDvLHzmnOM4juM4juM4juM4juNcEj5zznEcx3GcQprGeRknvoRzOo7jOI7j3EdcVpznYd6Z+I9z+2hWt16Ts9ptVtoqSeh09Dx1ddEudXorNfLULF+dgLBL7wFg2ObPO8aw5fw53WBhyxh2EWEbQbuIsJ3SMvIAaDsBuwk43QLbLfgkyRPirRPwtOsW7eVwD1lFCA0D6PAQdJRkiXR0BGxG4OAAfDCAD0bwJk0953FA3IT0GrPMwUjt5oMsZ92QTr0GknQ1bpJ8NW6ylDWv5F3JC3oSVPOe7BxqOxW6bUBaSO7L4IKZ7q0NMU0FB2XZhewHIARGGBhhiAhDxDhEbMbURo7GCQfjhMMhyViPRNaa5QMHYcJhmDAQq5x1QOncZ6Tp+zFPyt3FgMgBOw44jWOStmbps8pcKUsaiIv0MwaEgSt5q05nVwkAKqykNTQ3a8zyWJVNgDDl5de3YcQNcJZOLOUaRX47qFwVALZxwG4esMt/ZyZMc07fyBkYImGQfBtZA6ANQuQNnOWu4CIz4CxjFdmCvNf6iEW6SrGWNSAaeZNdHt7KHUI9dZ87fVtvSj6ZPJJKLopcgCQhey6VkOdNRrIqElYeyzbJG6yMtaEnJYVReaus3UpT8+cFVtpgJWgif5Dvo9lPJcD58I40SaRrbGW5IZfPvACoXKlSbFy0rNVx7nGSLJSwiOWspLXtL3XHph8h21eZsTqgkafXMQHJuYysLHDp562FCSCxX4oHhy0QtsCwzZK/E8awjRhuzRhOZgwnE8KtFNvRyQ64dQKcnoJPTsGnp4jb7fnqadyADjago8MUUwGYDg7x/44ewDOHvwt8OCAeDOAxj3+bkORsg+m0jL1KmDlbqMzJRmWbCndtO+GBk1vA6bNVPgGcmdfFIyalvITjI4TjY+DqMbAZwccpkJuvHmB3dcR0JWB3NUlap+N0qEha4wEwHyaJKGeZL4YksSO5llmmmDJhpIUiM5yyrHVGZTFBbdvqSOoq2bG8htx+hpyXkOV/WcaarlfEsIkYNzMOxhlHmx0ON6mOr262uLbZ4tp4igfHEzw43sK18QQA8EA4wQPDCa6EU1wNpziiHTZJW40DmhGINd6TWA9AkrRiUEnojZji79NQZKFio7P3AubxT9KNTCppDbmC9DMxIggzE3YycM4HiEgWJDfpEM/SFbUmsbFd5IA5H7PjIclu8+vWfICTrLm8OW1wMo+4NW2wnUacTgN2Uwpc5hgwTwFxDuBZ5KjmobGRrJ4La6khfYKRsKtM1cR4NuarpJowcVjT3gB5VlnJR/Wc0Qs8qBtDVTGOdK0S5wWkfjHLVOV5hI3sf699h+Rf7ieu62bRV2uZG+m/3QaTX9SfKaCqRzsetFnk5tgSx5n7tnOeOoH6ecC5v3FZq+M4juM4juM4juM4juNcEj5zznEcx3GcwqUZBTuO4ziO4zh3HI/z7kr8x7kVzjWzVDVTWMgNq3T2TNNVOavIweyKrFm+MOyA4RQYTtNNNJwyxluM4SRivDVjuLVDuJmm/NOtLXDzFviFG4g3byLO88rJ7014nsE3bwI3b1bfh+NjhAcfAF27Cr6SptzHKwQchCRhPQqYD5OUFSgrRspqkXEEWGStIr0bRNLKZXp4yFO2gVr20lCt4HjezlGlcaznErmqSGl0BnpI8k4KDBrS32HI0/vz+3GY06pXQ8Rhlq8emlVZRcoKAAdhwoZmbELEqCt2LaWjABARMKssIUlaJx7Maq1FFmpX6Zrz+1QlpCucMicZKhupw1qVSfl1xVbi+nOIKpEgs82WRSSwko/JrLjaSlenOct455BWV5WVtfI0+yJntZ1C+7dsExmETtPP6emqU7KtWZEVleShlqIWian5a86vq49yN0umcpt8o5F6tXKw6qDyUVczNPJOlbm2sgAjB13QnqvNSyfrIptQaWtHQlS9t3PL5Vwx5yvf8xTNdevlpSnHomyVrLX0HYuyu9rBcV5aRFNa9O/GhkS+q/7U6iOVHXIl51JbiTNODVm1cya1MAFy7LdNstXxBBhOGJubKb3NzYjxhQnj86cIz90Cnn0O02//Ts5ILe5k5AVfP0142iXrkyauqsqDUo23I8m5XeXf+RPOEs8QgKvH4IcewO6hI+weTIHc9oGA7bWA6QowHedVWVNoiHjIiJsI5JVZk8649M0kjST3/ZRXZMVMaUVWuzKrrNY6o7J86Baa2nZVxkYeGDyWdiVS230rsh6NE65strgy7nBtk+TBV4ctHtyc4NqQXrKqKQBcyVJWWWl3QxMGk9FkWTKojFVW4D3hA5zEDU7M6qYAcHNO72/NG9ya01+RjG7joCvcS+xXVq6nasVWid/k/RAiAtLfMcRqJddAjDHkWNfmHVTZm2xzHDrFgG1eaXU7J9mqxHjzFBCzdBUzgbNcWa41ImkMsna774ulrLS9HGC+s7YhEts1K/1W0lXzXtJaxCT7ZKjWcsPEYiJJlW3WtqeSa1oLHY1v0nEqA1+ppEXsC6T4d94v590X2651LJWkNcdgQL6X7bHVtdgTb+a0FvevxHdNPQMoFghtvZxnWVjnnsd/nHMcx3Ecp8b/R9VxHMdxHOce5LIUEh5bnoV7zjmO4ziO4ziO4ziO4zjOJeEz5xzHcRzHKTCX1RUv9LwXf0rHcRzHcZz7CobHeXcp/uPcGlk7Xq12HBgUKenGWz263a/nZWR05UXTXpZ4Fg+BkFa9rzxHhlNgc4sx3kpi+/FmxHhjh+H5LcILt4DnX0B89nkAwHx68tLVwT1EvHULdHyUrGQOUrOfj0fsro3YXQ2YjgjzEannyCx+cxuAx+IzB6B4zAXjt2D8SCrzFds4Wm8x/XBG5q3nlPHHEZ8bCpyW/c4ec4B8l7zlQmCEEDFmz7lxSD4dm2HGwTDhYJhxEJJXSXo/YaTkQzdS7VgzM2HmZbcRmbDjIfl58ICd+Hlw8vMQXznxmQNQ+YyIn1vxHIH6zsl78ZzT22fF0E+8Sci8l++JoP4k1PF2sL52AJKPnPifcP4seYwAi8+ceMtJHmN5v+pDJvlv7SaM70bVV4gvpXjMSZOLMMvGF28Sm95qPkzbMtmvtjE1++5jX1u25/r/7b15nBxVvcb9nFO9zJrJSjJDQhLWsCMgkiiCCASUVS8CLiRXlhc1hM0r8hEFggiye1VkkRvRKwLvFXzhIqsSuOwQ4yVALiRkBZJAQpaZTHq6q+r3/lFLV1VXdfdMZqZnMs/3k05Xn3PqLFXVVb+uOc9TUV+OoO9J1GPO63hke5X4gFRh2yHef57vXKBfvg9kgg8dxF1Vh71JxCi2X8ZSpTj2Es85CXuTBPqEmP1BCOkd7DSAdCAhcGGO+y6Hvp+BmE6i57YIoXOV61nleMw5XnM6Dxg5J9YDgNRWJ+ZLd1jIbDaR2pSD3rDFaWv9J7Da2+Ge9kkCRkuLszB+LLp2aEZudBq5ERr5YU5yoRkwGwVWvQ3UW9AZC6mME++kDSde8mKEoAea5frLWqYB21SAqf196l+HLNcXzPWdA9zQLWmnRXy/vFjTTjmxpqQEkhLH/y7tVmAIUmkbRtpCOmUhmzaRTTmmhXWpAhr8Vx71Rh5NKceXul7nUacLaNB5ZHUBGc/oEEBBUrBFI6eKXwrbvWBZ0CiI4zPn+ct12U65nJ3GVjuDTiuNvJ3CVtdXLmelkTNTyFkpdFkpmJaBghs/mZaGaRmwbeX6CBc9e51tHtg8Krjsxr1K/BjPj/kC8V2x/8qvz4sjHZ9gL1bTsF0/ObjxXMhXLuJ55scfAV+3uP3pv5e5pvuLkd8DRe84FfaPC8WAbh2B46rEczhadyS2UdqNaaT0vFX83QonRgn60RmB3z6ezxwQ9prz91O4Us9bLhQfe+MMeicDxW1vqdhxl3ocR4jEmCVji9kmodVLYvaE5WA90WtANM6LtBvtmz20bOJJAoNC1jpv3jwopWJfr732ml8uLv/222+vYc8JIYSQwYWIQMTu9xf/pDp0YZxHCCGE9BOM8wYsg2Lm3LRp07B69epQ2o9//GM8/fTTOPjgg0Ppc+fOxbHHHut/bvH+ekYIIYQQQgYcjPMIIYQQMtQZFDfnMpkMxo0b538uFAp4+OGHMWvWLCgVnoc6fPjwUNkeo8WRGUVkYaKkOHU9IrMLEZgPmzhVNkbS6staXUlrKidIbRWkOwWpTme+a6qjAKM9B7V5C2RTO6xNm7Z9vNs5ur4eatgwWKOakB/uaFfzLSnkmxQKjQpWHZyX8wR42JmilMA2ABhSfFa6CkhKoxKWsro2TyKR0MmE6ed+G56k1ZPhQXz5qidv1W4fteE+Ut6wfUmr4fYtbVhIawuGtpExLKSU7T96PqWKmouCbcByGzeUIO+eLixf+unKE0S7j6c3fPmq6eblLSMkXzUtDcuTSdgKtu2sG5Q2eNvCk5QiIEsIbqcSWauXHycriu6XOIlgsN6gGtnrQ/R770pXVTC9eIgU6whKU4NdSJC7+o+SD8okg4+N96b3l5F3RusODT9BrlrNlPsgifKtSmXj2nA/+8vBfRnZH6HzZ5Vy1mB+sC/e6TzUr6TKwqra4noJ8uq4uqLbOCQdqXTNqDS43kRQGy8SMmSpRZxnp20gY8eemysd/eW+9iV2AnZR5ujHeJ6ctct5eXEeAGQ6bKQ3F5DauBXqk82wP14HM5/v0RiHIqldJiO38ygAQMeOaXSOUegaBZgjTBjDnO3Y3JTDiPpODM/m0JTqQr1RQMq19zAgsODENFutNHJWGh2mExxuLaSxJZ9BrpBGVz4FM28UlaqiHVmk9iR/xdO22M7nWDmdK2X1LFMk5axkGwDSNiQlUCkbOm0jlXZ/B6QsZNIW6lIm6lIFZFMmGlLOwVVnFFBnFFBvFJDVJrLaRNrV19bpArSyURADlq3QhTSsQGdsceSrlmh02SkUXI1tl53yXzl3m+QtJy8oW81bBgqma2tiOXGfbSnYloZYAemquDLSQPxU7hJXjBOKQZaKppVZsaQdrx8BCSm8MN8uXuxj46py/fOIfo6J90riFy+m9PuEWFmrL31F8XMoLS62dH+CeP1UcI5Jpd33aPfF3WZu7BmUtYrlbHtHiq0Cx7SE7aCKP3tC3VCBODokx7VVeMxBuxZv3GXiv2hM6UnFFVAag3phfeg7KfE2LnGS3yix60l87BusIyrDtvrZrICecwOSQSFrjfLwww9j3bp1mDlzZknerFmzMHr0aHz605/G7bffDtsuf6B3dXVh8+bNoRchhBBCCKkNjPMIIYQQMtQYFDPnotx9992YPn06JkyYEEq/+uqr8cUvfhH19fX429/+hksuuQTr1q3D5ZdfnljXtddei6uuuqqvu0wIIYQQQqqAcR4hhBBChho1nTl35ZVXJhoAe6/XX389tM7777+PJ554AmeddVZJfZdffjmmTp2KAw44AJdccgnmzJmDG264oWwfLrvsMmzatMl/rVq1qlfHSAghhAwuXE1Lv79qPW7S2zDOI4QQQgYYNYnxGORVQ01nzs2aNQunn3562TKTJk0KfZ47dy5GjRqFE088sWL9hx56KDZv3oy1a9di7NixsWWy2Syy2WxJugCOrxgCnhEB7yPn+CoeZFEvgqivUbHScLr/spyXdp9qrt1l76UsgTLd/lg2YAlg2YDF5y5Xwhg5AmjbAV1jmpAblUbXcNcPrQkwGwGrHjDrBXZGHP8ZwHlkvWFDGY6Pm4p4QoUI7OyKvmhlqikWiHyMemz4j413+qW08yh5HXikvKEFWtswtMBQrudcwFfO0EWfOaD4uPm8bUArDTPmV7IN5Zc1Xa84AL7PXNRbDgAs0b63XNBjDgDE9RsRW/t+IEHPueL3Lew5luTh1uNzfnS9QL0hT4s477NAXuLj6yOoaP/jPDT8ZadMyG/DRklbwfXCjZUMKdZ7w0+P9cRISI+h6l0QU0dsvdHtHdeI52uiqmy/yrGU5Cd6kBRbTfSdCXxvk8ok9cXzyavG2o6QgcaAjvMyAqQDJ073nBu6jofOtUWPURU9N4kK+ydZxXO3E8O5767nnFHw/OYEqRyQ6rR9X+F0u+srvLED9oaNsOk3VxWp3XbBlimj8NGkFDpbnbTCuDxaRndg1+EbMKlxPSbVrQcAtKU3YExqMxpVHnXKCbw977WcpNBu12GzXY9PzCasM5uxrtAEAPgk34iN+Xps6KpHRyqLTp1BwZ3mYLlec7ZWUFpBGYC4IbrnJ+Zdq6Ck6OPl+c1pACmBpJzYTKUFOmVBp2ykUjYyaRPZlNPXbNpE1jBRZzhecxnDRL3hHFwZ12Muq01oJb7fHADXay4NwInlCmL4vnKmbYR85fK2gZzl/EzMmSnkrRTypuMrZ1pGMc4zNWxTw7a04yPnHfuW4ysHG47vYsDbzP/OVBsPl/FkrYYSr7No3OWlxcUcCSTGB8HkuLhFwuP3Q/w4P7mAj1woPy5ujPY5KZ7zPif44inbOY6V55NoBfqhnP+89cPboFJAVbo9SmLawPiDYyvxl0sYZ1xaSfwb9JvTAV84HdgucTGbN97QyT/QVvRYjYvtKhgXisWbV6TGN+dGjx6N0aNHV11eRDB37lyceeaZSKfTFcsvWLAAdXV1GD58+Db0khBCCBlCiAAVfLwIqQbGeYQQQsgAQ1CbOI+z5yoyqDzn/v73v2PZsmWxUodHHnkEa9aswdSpU1FfX49nnnkGP/rRj3DuuefG/sWUEEIIIYQMHBjnEUIIIWSoMqhuzt19992YNm0a9txzz5K8dDqN2267DRdffDFs28bOO++MOXPm4Hvf+16P2nIeae7pifzUxCnYoRm2UYmrV4c7NVe8G9XRR05702wB/9HqdgqwMgrK1oF6M0gpBZ3SUNkMUg31sNs7AAD21q09Gu/2hjFyhLOw41h0jW1CbnQKueEa+WGAq06A2Siw622gzoJK20hnLBiGs3MMVwbqSUeDiCu5FFGwXQmMJ8cUUc6ujk6dD6ZFUHHTnFVpvop+DvQt2letHDmrUs6yjj6u25WmaiWwlSrJD5YLLtuiYNkaNpx3ALBcyWpUwgrAl7GKrWDbzpxw7/h3ZK0R6WpA8imRz4myUU/6iYT8KEl5MXUCpRLSKCphvaQp+CUyh+D0/qDMIUZuEdeXkun+kW44hUqXY2Ws0en70eWSuqr8C9i2ajKlWIUKJ/uJSpIyA5SReYTLRVYuI//tlmQ1KodIat/vZOAwMfrxr43OSaz/2gs1TIYy/RnnQYtjXxK8hniHoCtDVIGJBcqOSFftonTVk6AFbUoAhCxLtAUoz7qkABgFgS4AOi9QdvHYt9Maqi4D3dIIbWio9izsTc4TZoVWJj6pUaMAAF37TcLG3bLomADkx+exw9iPccDItQCAA5pXYZ+6VdgtvRHjU43QJVbbafcVZoO9GeusjVhjNGGN0YkG7UiLHaloeLbJVve8nlcCSxmAoSGmK+/0JJ7Bc6qCc9x5XXF/b6iUQGkbRtqNQ1M2UoaFTNpCxrBQly4gazgHUJ0rac0YJjLaRFabSLv9SmmrRMrqxXI2NCxRvoS1IBp525WuWmnkLUfK2mWlkCs4nwGgYDoyVl/CampHxwtALOVIWC1Hyqr975AqSjCDUk6g4vW5VFIYiMm6YU0RqS6+7aTfdd0JW2LqDFmYROK1EguT4Do2SmPAQFpsezESyjhrkmiaRKWcQCjGieZF24huV1GIDwuT4tW48UfDaIXkcfsdiYlTg7+pI9LVkKQ18Lvb/26iuC6U+131Yr1QfOx8VoG8UB/8t4Qd5mV5+7s/4zzPW5gMOAbVzbl77703Me/YY4/Fscce24+9IYQQQgghvQXjPEIIIYQMVQbVzTlCCCGE9DEiEHrOEUIIIYRsd0jN4jzO1qsEb84lYbgvSPyszzLHVkn5yBRmbz6sGALxpoFbrozVnV2vC4CVAXRWQZuAUVDQeWc9I2/AyKdh5Ouhu5phdI2CLjhT2HXOgu4qQOUKQFcXkOuCdDpSV2tLJ4qa2u0Po6UFqnUH5Mc2o3OUsyFzIw3khwH5YY6M1WqwgQZnWxlZC3UZ038CVvSJpp58VETBhio+ZdSTdoqCFZC3AoDtSTUBX/JaDVHpbFRmGpS+hpfD5b08jbAc1xblKygKYvhPd/XbixzQwSezemO2A2P1xg2g5GmsAkeyCrjbw9YQ25X82gGZuC/3DkhYPXlROQlEuentER1CWdVltfumG7LVkvZi+hodV+KTV5PqTWoLKJVIxkkZglUFJAuxUga3oVhZa7eUqjGdTdr+UUVpUOYgqtiXQLr3RNNQHeX6lySLcaUJJdtLhbdV7JPj/DIR6WpJXTEDj/Y1btv0q9yBkCFCULrqyVbd65QnYwWK0lVlqZCE1cuDnx+QuQbzvPO6d45NAZZWsNKAWaegbAVlOxJCbaXdOhqhTEBbAm2613jTWdZ5G7rLi/ccqaPq3Ap0dMJub98un/BqjBwBa8pEbNqlHh3jFTrbnI2cbd2CXUd/iAOGv48DGldgv8xq7JJuAICAjLW5W23VKQNa2dAojZkNN34ylPPU+5Rrh2KlbEAUbCUQQwNWMQYMxoJKw5XKuftUC7QhMFI2tFGsL51y5KyZlIm0tlCXMpHRTvxaZ5hIact9MqsdiudsUSg4P2AA8SxJnO1QEA1TDBRsA3nbQN5OIWc6PwXztoEuK4W8mULeMlAwnRcAWK6kVSwFsRzZrgo8lVVZ8d+Z6JNJ/W3gbZduxRFhYtdNqK8kPqiCquPH2DhNheK5WIuSmHgvTvYa7lTk3SuWJGGNxC4lT23VkTIIlo+JhaLLMUjJAsLbKO5YcMcskXX84yRaXzmi8V1wbDqyXXR4m4QkrZ4+W8G1QEBRxhrMU15n3aQ4+5LAmLwF39bH+7HGEI+48OYcIYQQQgLUyIuEwSkhhBBCSN/DOG9AEnVGJYQQQgghhBBCCCGE9BOcOUcIIYSQIgLA5p83CSGEEEK2OxjnDVh4cy4BSdmQVJX+bJU8E8TTyxf9tAA4/iaep4D7yHE/z/U1Uf676+WAgO+JBSjbcN7dp6Yrgf/ZW09brq+FBWgTjl9JQWAUXH+yvONfYnRZ0LkC1NaC410CAJ1bYXdsgb11a3Xboh/Q9fXQo0bCHtUCADBH1KFrRBpdLRr5ZoVCI2A2OmXNRoFdbwP1FoysifqMiWzGfRR9yvS9PFLaRkoV97dW4vutmaJdzw7PY01DKccvQLvec97MYEtpv5wW+L5s1aLKmFxEfeni8H3goKDcucOWqBJPuUp1eeOxAwd30XcOsG0d8KNDyGsu6LsndtFnzvGhK/qRBL3mlP9diHgvhPw4in0J+XdsI2V9RSLtlrRXzmsumhcZW3QMUU+SSn2L9YFL+uyVj/qKuGWDHiOJZZPaq7gB4zqM6rZl0EtOnEw/XxXrLOmBiu9WydcxMo6ob0uJj0tw+wTq8L3m4raTb0yV1Ifqtp/Qc46Q3iXoh1XtKu53XGkULXy18xIBVArJ1yUVf94VDYihin5HBgDD8TiSlDjL7vdfGY5XmTYESmsonYbWbiiv6gCMcFXpCralYbu+YGJqSEFDdWnovEJqq4KRc1ZLdQLpLUC6Q5Bpt5DZZCK10cnUG9sh6zfA6uioeht1F2PkCGdh7BgUdmjC1jEZbB2tkRsFdI10xm2PLKB5RCfGD/8In2lahz0aVmO37BoAwG7pDdjRqEdaeT9pmnrUj63SBQD42MpjrVWHNdYO+NhsxtpCC9YVnDo/yTdiY74em/NZbC1k0GUaMC1XhBS8Nilnv6kY0ymlnWuF9vapth3POde/zvA857SFtGEh5XrbBTFFQ4uNvJ2CrWwURMOI+Ah78ZsV8JwzRcO0DZiikbeK7wBQsA0ULAMF10PYslX8oewd//6lzb12WsrZCJ4my4v9BFAioe9FrJou4fpc1vM25vq5LT52oXqi1UdjwZCPWmD3d8MbTRAetrjplWx6S71yS+O04Pml6LEWiGEC/mux8U3ofBXpUEmnSzsX8tMLVhOK68NpsZ7MgviYv9x2jotvgXCsm3QsBeM2/3NxWUW3ves3pyKxXjkk4VgiBKCslRBCCCGEEEIIIYSQmsGZc4QQQggpIoLaPNmbfz4mhBBCCOlTahXn1eIhFIMM3pxLQKUEKh0zjzZm6mrws4pMj1X+e0wb3hTihDnY/iPYAV9CWMxMnjdbctyHppIHJIZeHbaC2BrKMgAz60hmTSdPFxR0wZXD5p2XkXdWM/KOJDbVBRhdAiNvQ3c5X3Sjy4bOW1AFG6pgQVkW4MlrRQLz4RXEUIDhTKuXtAE7bcDOGrCyGnZWw8y60/HrFcw6BasOsLKAVedU4SwL7IxA6iwga0OnHZ1vKmMhnbKQTZuhR9ID8KWs3iPog1JWD08WEJS1BtOiKCXQgby4fVxO6tpdGayHVSG/nFy2mr4EJawijmxVguU8GY17XPnHblTSGpiy7kla/ceqBx+vHpGzxk2P98fW1+d5FdBWRqfyF2ffh/sSmbGupDSzmB6pw/svKOksKZDU15j2E6b3x0lYJbp+kpQzrs04gvsmsqNK5CLBMUfVAd52Cu6KmG0aarrSVylGwuG9x8p4I7LXErlHjDwkWG+sPCTQRsk1InqdSTGgIaQ3UYYAKYEEgy1R7oWueG3z84LvsRW6L12UTIkWX4qqDIF27VKMlI2UYSGTtlCXMlGfzqMp7QRXwzI5NKdyGJ7eitHpdow0tmBMajMAYJTRgTFGDiO1xgjd0ItbozwFMbHBzuFj24nHPrEasN5qxCdWEzZaDeiw6tDhBmWdVhpbrbQvnwyilSClbGS1iXojj3qjgGbjQwBAk7EUw41O56U7MdLoxHA3XmtRaTTpuoTeNfd4PJtsYL1dh/VWEz6xRgMAPjabsaHQiA1mAzYV6tFRyKKjkHHGVsigy0yhq5CCaWlYpobtylqLNh4q/jgJne8jBdzjzbIVlHsxKMAATMDSGgXbQFpbyGujuB11GhoCrYqvOELxqyjfqsW0NSzRsNx9atnalbTqklhUKVeOCwDKhkBB6eBvCIEyijYmzvYQP36L/i4psfsoR2Rc1cQisWW6GywG4lxnVSnZryp4ngjFr1JMC9TjSTQlINWUas4tfoPhd1+6Gog9/LEHZataQtvEkbpKfNzi11elTDMSy6ng+dPDhp8WlDiXbD/nB29yXjD+6wHBcL7knG4rKC1OM3bRZsCx4lGOnREUREng2Bc/eJNAnAqU/93lWSMVZbHudUf3cGBku4I35wghhBDiIyLOD6t+b7ffmySEEEIIGWLUJs4jlaHnHCGEEEIIIYQQQgghNYIz5wghhBASQFAbzzlCCCGEENKn1MxbmFSCN+cS0CkLOm05UvKAf5xSgNLiLHtltQ2lAEPbUEpguPkAYLg+EF6eVgJDOV8GxzPC8TzzfCO8x6WH0yx/GXAer+58tpFWNnTAN81QgpSyYMD229IBQwCvbQCwAl4gNhQs0SiIAVOcR6kDQJedQpedQt5OIWelkbcM5CznsOmyUsgV0shZBgru4+TNguOHYZsaYqUBS0EsBWUp3xhNuZ4UoUdme3h+CZ7ngSGAu03ESPBuMWyktcAwHA+XlGEj7a5jaNt5udso6MuhlfOoed+Lww57rHkvy/XnkIBnh+cNYsNZjvNk88p6+LY2kTGXfEYpZb3ouuNTsS1E+h8aT8RHzi/j+49EPDm8+jw/ucQ2y+eX5PXEs68a8wrfHCRoGuO1WVwOWawFFkJyPQn4aUTrDFiadMdTIzTs0HLAVy3Bq8RPU5Lg0xLTRqUOxnj0FT1mSutTnpmc59cR2Z6eLUfUy8+vt5sGJCU+c4HloAdfsPOx66BMWmx7Et4mUV+XUD1OWeWuowwGUYT0JkbWgq43iwkxXsFhT2En7gvGfACgtSCtLRhakDIspLXjIwcAdYaJOqOAxlQe9bqAYamtAICmVA4txlaMMjow0ujAKGMLRuoCAGCMkUG9yib0OgWgqVe3QzWkVQo7GE3YwfASAGCL++oruuepVxATW6WAdjHR6cZzmyWDjVY92u06bLQa0W47vnWbzAZ0WFlsNuvQbtah08z4vnJbzTS6CinkLQP5QgqWpWG5vnK2qZ24xn2JDf8EX+KNG/VA0wKlHH823/MLgNIKthb3t4WGqb10QZdKQWs3dnWPO8A59jSc3yQ6ctzGEfUQFkFJ/GrbxdjWSy/Ge+4YvWuWDsQ1ClAagO1YIsAObg8p9Q0L1hf0e+xFQt5iHqK6FysEKvFXjfiVOWGLe12PxMbFMQfadGO82PivUl8QH5+EfIODnmVB7zjtlYnxlVMIe966v3WD9YSIxvGBjoiI+zsg7C1XrNDxbQuG1CqpvhiicWTIEj4mtvTs3Er9opW7TYJ9dD3x3O9qsCJxt5/S3rre/lCBbahCnnGi3IA2ch3x0O71I9Q3s5KDOBkK8OYcIYQQQooI6EVCCCGEELI9UqM4T2guXBF6zhFCCCGEEEIIIYQQUiM4cy4BI23DSFtQOiCDDEwtN3RRnupJGVLKkVCmtI2Um5dx01Paec8aJlLKmbaadtOz2kRaWc5Lm26e5b8yqpjv5JnIKAtpZSINy18GAAOCtLJguDLYDGzowJRZw52/G7wr64mlLCjY4rxb7jzbgit1zYuBnKRRgIGcnQYA5CSDnJ1GTtLostPISQqdliPF8OSwQVmsaTt6iLxtwLQ1TNHOe+Cx7Z7MNDoF3yP4qPjgFH5/H0XmRAfLBB8nDyDUppcfla5Gp/8X84ryVe9zsE5xH50ekqMG5Z7BWe5emRgJrLdeSdk44v4YUaZ4OQlENUTHFkrzq47IWQPbqiKultGfAh+RE7jVhafEx85rr0BPpLD+upWrDfU9mp8gyQzOtE+qN7xC/HKJFDMoa4jWFbee15mktmI7GLOOqLAspDTbkYZ4DQT1rAHFa2xzMfUlEq2k3LYC4iUw0f3pdSB0fAZ3frzExpcH+ZKLYh2+lFVLsVyqH2WtIiheGfoT/kWV9B/Z+gIyjcVroaEdaxHPDiOlbKQNJ+7KaAspbSOjLWQMExltot5wZKhZbaJB59Fg5J133YVmIwcAaNRdaNZb0ay7MFzn0ex+x1t0FlmVDvSmzn0RDxs2OuwuAMBG20S7GGi3M9hoN6DdlaoCcJatOnRYWXRYWWwxs+g0HYlqp5lGzkohZ6aRNw3kLScOdaxYDFimhlgKtqV9OaZvxWIr5zRoq5CcLnIZLSF4LZHQOd29kGkJSRDFPdcjeE1A/HUgKLkOlvGXI8SETcV+RuK1YHzq2ZUEJZqePNWXqQb9J2LiMIFySwQumn6HxJV4qlByUmerClerClV6EO/FBV1lZJUlfYkLI/x4KCEeA0riulCM4i9L6fEWtcoIHFchiw23jIqmlXS2TFo0pvclrcXlYrqbFwgtiuWKyypQd0l6ZLvHdbnU7iaw6MWSClC2Iz31xi/etlDipOtIuva2rydZdb9zuvi9loC01VvH64IKfH+977X2bLLc+wuWXSgdUJ8hoOfcwIQz5wghhBBCCCGEEEIIqRG8OUcIIYQQAEA6nUYeuX5v1xYbBeSRTqcrFyaEEEIIId0mnU6jC1393q6III8c47wKUNaagDJsGIYNrSX0RC5DO08C9WQPgPP0VE/uUHz3pBAm0spGVpu+pLXOfSJXWlnI6gLSykKdct/9vKJ0tU4VfPmqt54jX7WRVuIuO/02oKABGEpBQ8GAAR2YG22EHsHjYLlzkm0ILIjz7k51LcCCJQUUoFAQhYJo5A1HFpCzU47MVdIoSAo5O428OHldkkbOdtMlhYIrbwWAghjoslPOk2FtAwXRvuTVdJdtKJi2DklRPclr8AWE5amm+wTa0idThSWpfl6MXNVbP07G6uehWC5OrloiCQBC5ULL7meHqCw0sBwztb5aiWjMbndVCXFzwqurM5aS6eTh7RJ9slNJ8yG5oPdZIIEMFcxH6WYJSQW6KwPuYdnyT5ztRjveKuXkDQlpsbLM4Ofg074S6ipttwpZZzSvDJWkrU5XghJRFZK2htoI9KEnCu1KEpLyK0cP1ZgB+RVJdd8pVZQleRIn78ngWgvQT09rPffcc3HXHb/FJJmCOtW9pyVuCx9iOQwYOPLII/utTTK0yaZNZNPKl66mtYW0YSHjPm01o01k3Fiu3sij3igEJKxdaNB5AI50tUF3oVF3oVHl0axzaHStRpo10KAMNOksNDK1GegAYqt0YZNdwEZbYaOdxUa7ARutRgDARqsBm6x6bDIbsMXMosPKoKPgSFeD8tScmULBNFAwnbjRsjQs04BtKoitAUtBLFd2ZinAApTtyum8J4nacE7NNqBEOUrTClLEEFGZIeBLDL2nQ4oOSgaD5RXEfXKrv36M9FCi0sNgB0uu9z2I5RLHGBebBpbjpIxueskTa30JLMLyV3eQJeW9HkQlkTH9KSdfTBpbYqyQFCtGpbK9GeslxmrFxoJxj39cBdvyZJlKio4i7nEVfBqrJ6kuSp+Vf6wVfwsEjsdi9eEhVvhtEpKzRmWocTG/116gW8VFCfwfE3pKIKaMI5juDS0qiw10v/hdVcUn4Hr5rmRVlXyvne+yJ3VV2pW5wl1Hw5HHBiSxzmriv7R27LJShg3dT/YlM2fOxE/n/BTtshHNani/tAkAH2M18sjhlFNO6bc2ByOcOUcIIYQQAMCBBx6IHbAj3sNb/damKSaW4i384c/38C+qhBBCCCF9xOTJkzEeu2AJFvZbm7bYWIKFuPW2W9Dc3Nxv7Q5GeHOOEEIIIT4vL38Oa/E+2mVjv7S3Au+gHk38ayohhBBCSB+zYP3L2IRPsF7W9kt7H2IZAODss8/ul/YGM7w5RwghhBCfiRMnYgJ2wWK8Aan68co9o0u2YiXexWMvPlKUeRFCCCGEkD5h5MiRmIw9+yXOM6WApXgb9/7lD1RHVAE953qALQrKfXmfgy9TNLTr2WbaBgxDUBANWCnAAHKupNxyn9NsKw1baaSViYLr2ZZ2/eYyykJOpR2fOff502k4y47XnAkDziOYAcCA7b57aQmGDm6/PSwoWDBgi3KWXe82Gxp5cTzg8pLyPwNAQRzfuIIYyAeWnTzD95nz0j1fuYJomGKgYBtFjzm3L85n7W9HbxlwPNpM0RB3O0c94Tz/uKivnOcfl5QObytFPODiHitfXLe4WYuPlY/7HPHMCPholPNuSH4ke/jHa49/ygZ9JxIqKmfXVtZ4I2HF8v4gMd4i0ZW97RbtcpJ3WTnvuXJ9ietr0nrV5lVTN8ps8xiftbL9iCvnmnPEbpKA/0Z0ndg++f1JGEzZg8dbN6a+6Kpef0NlS+sOebD0lApdDhyCgUad9ZRU9p0L/u+troKedIFxiijHG6asoUrf8s8Nr2CHEWOxHmsxGuP6rJ2leBujMA5Tp07tszYIiaOrkIKyDP9abBvK97b1Phdx/OLCHrhOnOTFOAVJIafSyEkK7a7n3Ea7gAZdQJ3diTolqHPjviwMZFUKaTWww/AuKaBLTHSKhXYb2CJOf7fYGbRLHbbYWbRb9Wi369BpO9uow6xDh5XFFiuLLWYGOSuNTtP5QbbVTCNvpnzfONPSMAtObGib2vGKszRgKsByX3C94SwFZbnvtusbBwA2kHJjMt9LLhBzRX2mSgh6SwXSfI+oGH85z1tOdDDN86QSv89Bn7mQN5ilwu16FzrPX85rLOA/FjYDCw+hmktud4m99ARjhVjf5JjlCnFtcf+Uxsux+05i1gn2LWadxGMguk45enopLrNvgt33POX8dKXC64Y85IppXtng8QV4Y1KBMlI8uII+a4FjL9qvaoac+HulNKCEuFFPyDNaifO9cX87ed9r53eWuPGVU1iC+8s9DuI8rUvixrj+uX2MPTZK9kvRhy7kR+d6R/o+dDqw7bTnQQfHf84QwBZ/PbEUbEOgDRtaK9i2hlUwYzrddyzMvYrhdSOxGivQhkl91s4KvIMGNOPEE0/ssza2JzhzjhBCCCEhhg8fjsnYE0uwsM/+qtohm7AaK/DC4nl9Uj8hhBBCCCklm83iP+79Ld7DW7DE6pM2umQrVmAxnnjlUaojqoQ35wghhBBSwhu5V2DBxGqs6JP6l+BN7Iidseuuu/ZJ/YQQQgghJJ7TTjsNGdRhFRb3Sf3v4S2MQSsOOeSQPql/e2Rgz6evIVbBgDINKC0wXRmC9h55rJzHHhvu1HVDOcuGtqGUIKVsGNqZl5vSNlLKRkrb0G5eSjt3p1PKSUtrCyllOcvK8ttKu2kGnHKerFXDWdautFWr4qOXjcC83GB6EE+K4Y81IM/wlouyVkfi6shdHTmqFZCTFsRwJahOuiddtaF8uarprm/aOpDn1mnrkIzEsnVIguq1DRTlpVGJqpcWkqaG8orLZaWpgfWK5b1PMdP3A9Pqq3q8eKR+JTF1RpfjPvvp3fgLRMmc/WR5hJ+cVL0qs1J3qGac2zBhJ6QILNEkdreybqajZ2rEJBVuqD0VWEbxc2jdRHVl4JgMFJJonTF9SpTKJn9Mriuub34lZZtIrKQv1J/dPmSiMtTQ+cOT6Cq/qLgyEwXnXezAjvBUrbaGaMA2jW0aS0/IZrOYe9/dmHH6TIyV8TB6UYL3iXyEDfgYiz5+o9fqJKQ7bO3III+sIz0CYBg2lBvLGVpgGDbSbrxmaEHKsJBSNtKGhZS2kfFiOW0jo00/vstqE2nlxYCWa1NiIa0taPekkNama01iubGcHbInCcZ7SdjuidPy4zftxmUpP5YLW40YvgS3y0758VqXnYIpGnkrhbxtOC/LXc82ULAc+WnBNlBwz0OWpWHbynn35Kju+Uss5cg23XdloyhPtQBlu/JUV5qaDshTle2eQj3ZaoyMrSQGQ9lLSKkEMLgckKqpuHIxDUhQvuZJW91Olkhhg3JYLz/a4SjBa653zS/pUHiUvX79S7r4lYvTSmK6iJy1XHxRyXqkmvYjbcXKLSPrl5PuRql2G1cbNyQdC6HjBoEyweOnDGXjyKh005O+RjJLjrZqYyH/mI0JHBUAkcjvJVWUrXrr6GIeXNmqciWuUYsgcZeD54WiDLZkWFX/cok9dtz9EvwJJCooG0ZR3grvs3IkrRHJO7SzbGvA0gJlOIOwt8b/bu9LtNZ4+JkHcdQXjkabTEZGZXut7g7ZhDVYicXv9c2Nv+0VzpwjhBBCSCxf+9rXkEU9VvbiX1VFBIuxEJMxBaNHj+61egkhhBBCSPUcccQRGIExWIZFvVrvYizEjtgZO++8c6/Wu73Dm3OEEEIIiUUphf9+7v/DcryDvOR6pc61WIU8cnij89VeqY8QQgghhPSMZ996Gh9gKTqlvVfq+0TWYhPWY8G6l3ulvqEEb84RQgghJJHDDjsMI7EDlvbCX1UtsbAEb+LOe25HfX19L/SOEEIIIYT0lL322gutmIgleHOb6/LUEZMwBaNGjeqF3g0t6DmXgFUwgC7D0Zd74nPPk0IJlPvoZwBQ2v0MuOni+9GpQFntLnseIqG0wDvg+IyEPgeWvc9euSC6SlMEO2Ig4HmXeOnBfFtUwPdNhcqKhJeD/nA2wv5wEqwjxjMOQNE3LlS+WA7BtAR/uLBXHFA0B0D4HQjXF80L5Jds1qhnQmw6SolpO0rV3iGVyoVMWMo7LVT0k+iuoUk5z7Rq2dbtE6lClZhtRD4Gj6cKvm5J1cTWsS2UqSOx/rj0KrzgKvY3yccuUs8208Njp1e2d7XEecSEEgLlgp46gc/K9ZsTBcdrTknxOFMKYkvA+0hgF2r7t7TnFv0Ne++5NybIrmhUzT2u530sQQppfOMb3+jF3hHSAzZmYOez/onL0ih6O2nnXQX8xJw/ZzvfSy/uc/KKsaH20v3vshRtx1RgHRS9iSrFbcF4LClu8tPsQLwlCmKH8zyvJtgBr1zb9YWzlev1VoyhHP83L9/NQ9EPzrCBlLvsD8P1jfPKBL3jgv5QIf+44qYNfU4kyaIs6PcWKBf0ggPg7t+AV1RMXnC9oq9csC7x/edK2nA3RujaEOpXZLCR/vplksbbx9c7lfSE7ti4ViXki/evNK/E51kS6o5vo+gpJmGb10rechW87cp+FZPyuhOnxezf6DESfC/xpQsePwnrSrSN2GMrXE9JflL/Y/DKhGzm/OVIEB3Nh/sdcr3nEMxS7r4NeMuFPecCK3jnNRSPjTj/weJxg+7tey/fq8cbs5cXWCg996jA+SKwonc+0F4eoLb2zRNTq+W1D1/AhLYJ2CjrMFz13HJkDVaigDwWbqU6oidw5hwhhBBCyjJlyhS0YhKWYGGP6yhIHsvwf3jwyf8XhtH/D7gghBBCCCGltLa2YifsjsVYCEm6QV8BSyy8h7dw1x/uQF1dXS/3cGjAm3OEEEIIqcj8NS/iE3yEjbKuR+svwyK0YCSOPvroXu4ZIYQQQgjZFt5ofxVbsQUf48Merb8KS5BGBl//+td7uWdDB8paE5C8hm0Y4Zm40WnAJVOFI+lAibyhND9SJ8JlVbSuKL01tT1StUTmMgdvoEfzSqShkfqkZPp6XFrCtPhyEtRomUC/KslQo3klm7Hc+qH0+B1QUd7XG/K/SnSjjYqHUXdlsds4vl6RR0Yomeof/VhR1ql6NqzurtTT73QVG61fpZ+9TTV97+3jpifbK7SRA1qKkJQD/sldBf8LSUxUqDrJ136m2dixYzERu2Mx3sDB8gUoVf0G2ipb8D7ew4L/XdCHPSSkelIdGtrU4fAjQT6WmI/wZxsJ59nunksqSa5ipFmeBCxYXsdIuzwZWFydKlpvgjwsWE9J/5KWQwOK306BIZSUD74nSQGD8lS/XFTqGq0nmh+RrobaU9F8hAYfK6dFoEywf3ExSTn5anSHlTmmunFqLktVk2cSJbDhToS7L6Wrxuz4Yn5U84iEz+XaLFNPf1GtdLTcvq50funmb8WexIWJ4WaF31olZSLFo/WK+/1y0lXxexU594ifGGkn5ndj9BxXIqet9vdfTF1wu4nYj6p0P6jigijAztV+zlRTUxN+eccvcNH/cwlGSyu0qr5PeenCcvwfnvjb49C69mMZrHDLEUIIIaQq3uh4FVvRiY/wQbfWW4I3MRY7Yb/99uujnhFCCCGEkG3h29/+NhQUPsDSbq3nqCNG4cgjj+yjng0NeHOOEEIIIVXR2NiIX9/1SyzBQtie23wFNskn+Bgf4tVV/9PHvSOEEEIIIT0llUrhTw//EUvxNkwpVLVOp3TgAyzFvIVP9XHvtn8oa01A5TWUoctOBU7MC05xDyR7s3KT6NbU4r7Q/XWzE9sk3Uxqp+w6bru91VaAbm3OWk2H70t6S4ZaC9mk1+Y2jKGqw76vvnODgcEih61RP0NPiwupWhPk+nErOgklH30FVGHg7IR//dd/xYXnXIL38R52wm5ly4oIFuMN7ITdMH78+H7qISGVUSagzYql+qMr8VRxyek1C40y5UJyzyqrKyExXk5oq8w6iU/ALCN5TZIrx8qUVVz5YH5k3cS2qpeh+pq+iMWGL7lTkQZ9LV983SEZX3cP4ZgnClfFNvqbdNuAvoriYSXtwLmGDhRUnLw9SndsfSrKjuPXrSq8VpEDXjn1ifse/d7ESl29osHPCXFaWXukpLRKv2HLlFcAUNuHtYY4/vjj0YhhWI53sCv2qVj+PbyJcdgJ++xTuSwpD2fOEUIIIaRqDMPAA4/+CcuwCAXJly27DquxBe34302v9FPvCCGEEEJIT1FK4anXHsNKLEZOOsuW3STrsQ6r8doHL/RT77ZveHOOEEIIId3iuOOOQxNasALvJJaxxcZiLMQtv7oJw4YN68feEUIIIYSQnnLwwQdjDNrwHt5KLOOoIxZiJ+yOtra2fuzd9gtvzhFCCCGkWyil8PT8x7ESSxL/qvohlgMQnHvuuf3aN0IIIYQQsm28tPRZrMUqtMvG2PyPsRqdaMf/bqY6oreg51wCylJQVk/9CeLXq2R3MBjcEAaM7dZA6QcJw/2yfTJU92sPTsrd86/shsdnj69HfceBBx6IHbAj3sNb2BufDuWZUsBSvIU//flepNPpGvWQkGTsLIAsunV+2+YYaCCdS7fhlFKdT2u5vPgNkVhvXHqc5VWV5UrSYvqzzWNM8mBL9OhViXWqkvSoP2mFA6vKfS2lDVXPgPmBkMC29K+P/Op63KXurlep/9vkId79NmPHXY3vZaACFfGZCxYKew0mNCWlBUJedFX2LSmvspdf6fap8hlb/crkyZMxHrtgMRbiQBwWyrPFxhIsxK233YLm5uYa9XD7gzPnCCGEENIjXl7+HNbi/ZK/qq7Au6hHE0455ZTadIwQQgghhGwTC9a/jM34BOtlTSj9QywDAJx99tm16NZ2C2/OEUIIIaRHTJw4EROwCxbjDT+tS7ZiJd7FYy8+AtXtRwUSQgghhJCBwMiRIzEZe2IxFvpPVXbUEW/j3r/8geqIXoay1iTiHnm8jQz0Gd+EEEICDKRz9kDqS4R/bngFO4wYi/WyBqPUOCzF2xiFcZg6dWqtu0ZIIla9DakfgDoiMqhJjPX7SBrptjqAaiGkB3Tz4Cv9Om17kNS/YVZpa7YauNejhblXMbxuJFZjBdowCSvwLhrQjBNPPLHWXdvu4Mw5QgghhPSY4cOH+39V7ZBNWI0VeGHxvFp3ixBCCCGEbCPZbBb/ce9v8R7eQqd0YCXexROvPEp1RB/Am3OEEEII2SbeyL0CCyb+gf/BjtgZu+66a627RAghhBBCeoHTTjsNGdThdczDaLTikEMOqXWXtksoa43gaantXK7GPSGEEEIcvGuSd40aaGSzWfzhv+7BjH/5Nv7x8Uu17g4hiTDOI4QQMtAY6HGe1hqPzHsIXzriBLywZF6tu7PdomSgHgE14v3338eECRNq3Q1CCCGkhFWrVmH8+PG17gYhgxbGeYQQQgYqjPOGNrw5F8G2bXz44Ydobm4eEDrqzZs3Y8KECVi1ahWGDRtW6+70GUNlnMDQGetQGScwdMY6VMYJDLyxigja29vR1tYGrelIQUhPYZxXG4bKOIGhM9ahMk5g6Ix1qIwTGHhjZZxHAMpaS9BaD8i71cOGDRsQJ46+ZqiMExg6Yx0q4wSGzliHyjiBgTXWlpaWWneBkEEP47zaMlTGCQydsQ6VcQJDZ6xDZZzAwBor4zzC27KEEEIIIYQQQgghhNQI3pwjhBBCCCGEEEIIIaRG8ObcACebzeKKK65ANputdVf6lKEyTmDojHWojBMYOmMdKuMEhtZYCSG1Y6ica4bKOIGhM9ahMk5g6Ix1qIwTGFpjJYMHPhCCEEIIIYQQQgghhJAawZlzhBBCCCGEEEIIIYTUCN6cI4QQQgghhBBCCCGkRvDmHCGEEEIIIYQQQgghNYI35wghhBBCCCGEEEIIqRG8OTdAuOaaazBt2jQ0NDRg+PDhsWWUUiWv22+/PVRm4cKFOPzww1FfX48dd9wRc+bMwUB65kc141y5ciVOOOEENDY2YvTo0Zg9ezby+XyozEAfZxyTJk0q2X8//OEPQ2WqGftg4bbbbsPkyZNRV1eHgw46CP/zP/9T6y5tE1deeWXJ/hs3bpyfLyK48sor0dbWhvr6ehxxxBF46623atjj6nnuuedwwgknoK2tDUop/OUvfwnlVzO2rq4unH/++Rg9ejQaGxtx4okn4v333+/HUVSm0jhnzpxZso8PPfTQUJnBME5CyMBjqMR5AGO9oRLrMc5jnDfQ4h/GeWSww5tzA4R8Po9TTz0V3/nOd8qWmzt3LlavXu2/ZsyY4edt3rwZRx99NNra2vDaa6/hl7/8JW688UbcfPPNfd39qqk0Tsuy8OUvfxlbtmzB888/j/vuuw9//vOfcckll/hlBsM4k5gzZ05o/11++eV+XjVjHyzcf//9uPDCC/GjH/0ICxYswGGHHYbjjjsOK1eurHXXtom99947tP8WLlzo511//fW4+eab8atf/QqvvfYaxo0bh6OPPhrt7e017HF1bNmyBfvvvz9+9atfxeZXM7YLL7wQDz30EO677z48//zz6OjowPHHHw/LsvprGBWpNE4AOPbYY0P7+K9//WsofzCMkxAy8BgqcR7AWG8oxHqM8xjnDcT4h3EeGfQIGVDMnTtXWlpaYvMAyEMPPZS47m233SYtLS2Sy+X8tGuvvVba2trEtu1e7um2kTTOv/71r6K1lg8++MBP+9Of/iTZbFY2bdokIoNrnEEmTpwot9xyS2J+NWMfLBxyyCFy3nnnhdKmTJkiP/zhD2vUo23niiuukP333z82z7ZtGTdunFx33XV+Wi6Xk5aWFrn99tv7qYe9Q/Q8U83YNm7cKOl0Wu677z6/zAcffCBaa3n88cf7re/dIe58OmPGDDnppJMS1xmM4ySEDCyGSpwnwlgvju0l1mOcxzhvoMc/jPPIYIQz5wYZs2bNwujRo/HpT38at99+O2zb9vNeeuklHH744chms37a9OnT8eGHH2L58uU16G33eemll7DPPvugra3NT5s+fTq6urowf/58v8xgHefPf/5zjBo1CgcccACuueaakIyhmrEPBvL5PObPn49jjjkmlH7MMcfgxRdfrFGveofFixejra0NkydPxumnn46lS5cCAJYtW4Y1a9aExpzNZnH44YcP+jFXM7b58+ejUCiEyrS1tWGfffYZdOOfN28edthhB+y+++4455xz8NFHH/l529M4CSEDk+09zgMY6w32WI9xngPjvMEZ/zDOIwOZVK07QKrn6quvxhe/+EXU19fjb3/7Gy655BKsW7fOny6/Zs0aTJo0KbTO2LFj/bzJkyf3d5e7zZo1a/w+e4wYMQKZTAZr1qzxywzGcV5wwQU48MADMWLECLz66qu47LLLsGzZMvz2t78FUN3YBwPr1q2DZVklYxk7duygGkeUz3zmM/j973+P3XffHWvXrsVPf/pTTJs2DW+99ZY/rrgxr1ixohbd7TWqGduaNWuQyWQwYsSIkjKDaZ8fd9xxOPXUUzFx4kQsW7YMP/7xj3HkkUdi/vz5yGaz2804CSEDk6EQ5wGM9QZ7rMc4rwjjvMG1zxnnkYEOZ871IXHGotHX66+/XnV9l19+OaZOnYoDDjgAl1xyCebMmYMbbrghVEYpFfosrnFuNL036e1xxvVVRELptRhnHN0Z+0UXXYTDDz8c++23H84++2zcfvvtuPvuu7F+/Xq/vmrGPliI20eDcRwexx13HL761a9i3333xVFHHYVHH30UAHDPPff4Zba3MQfpydgG2/hPO+00fPnLX8Y+++yDE044AY899hjeffddf18nMdjGSQjpHYZKnAcw1mOsV8r2FvMwzmOcl8RgGycZvHDmXB8ya9YsnH766WXLRP8q2B0OPfRQbN68GWvXrsXYsWMxbty4krv63lTd6F9DepPeHOe4cePwyiuvhNI2bNiAQqHgj6FW44xjW8buPR1oyZIlGDVqVFVjHwyMHj0ahmHE7qPBNI5KNDY2Yt9998XixYtx8sknA3D+stja2uqX2R7G7D2prNzYxo0bh3w+jw0bNoT+2vjRRx9h2rRp/dvhXqS1tRUTJ07E4sWLAWy/4ySE9IyhEucBjPUY6xVhnMc4L1hmMMc/jPPIQIMz5/qQ0aNHY8qUKWVfdXV1Pa5/wYIFqKur8x9TP3XqVDz33HMhb4snn3wSbW1t2xQcVqI3xzl16lS8+eabWL16tZ/25JNPIpvN4qCDDvLL1GKccWzL2BcsWAAA/oWwmrEPBjKZDA466CA89dRTofSnnnpqu7qwdXV1YdGiRWhtbcXkyZMxbty40Jjz+TyeffbZQT/masZ20EEHIZ1Oh8qsXr0ab7755qAe//r167Fq1Sr/O7q9jpMQ0jOGSpwHMNZjrFeEcZ4D47zBH/8wziMDjv5+AgWJZ8WKFbJgwQK56qqrpKmpSRYsWCALFiyQ9vZ2ERF5+OGH5c4775SFCxfKkiVL5K677pJhw4bJ7Nmz/To2btwoY8eOlTPOOEMWLlwoDz74oAwbNkxuvPHGWg2rhErjNE1T9tlnH/niF78o//jHP+Tpp5+W8ePHy6xZs/w6BsM4o7z44oty8803y4IFC2Tp0qVy//33S1tbm5x44ol+mWrGPli47777JJ1Oy9133y1vv/22XHjhhdLY2CjLly+vddd6zCWXXCLz5s2TpUuXyssvvyzHH3+8NDc3+2O67rrrpKWlRR588EFZuHChnHHGGdLa2iqbN2+ucc8r097e7n8XAfjH6ooVK0SkurGdd955Mn78eHn66aflH//4hxx55JGy//77i2matRpWCeXG2d7eLpdccom8+OKLsmzZMnnmmWdk6tSpsuOOOw66cRJCBh5DJc4TYaw3FGI9xnmM8wZi/MM4jwx2eHNugDBjxgwBUPJ65plnRETksccekwMOOECampqkoaFB9tlnH7n11lulUCiE6nnjjTfksMMOk2w2K+PGjZMrr7xyQD1yvtI4RZyg7stf/rLU19fLyJEjZdasWZLL5UL1DPRxRpk/f7585jOfkZaWFqmrq5M99thDrrjiCtmyZUuoXDVjHyz8+te/lokTJ0omk5EDDzxQnn322Vp3aZs47bTTpLW1VdLptLS1tclXvvIVeeutt/x827bliiuukHHjxkk2m5XPf/7zsnDhwhr2uHqeeeaZ2O/ljBkzRKS6sW3dulVmzZolI0eOlPr6ejn++ONl5cqVNRhNMuXG2dnZKcccc4yMGTNG0um07LTTTjJjxoySMQyGcRJCBh5DJc4TYaw3VGI9xnmM8wZa/MM4jwx2lIjrrkoIIYQQQgghhBBCCOlX6DlHCCGEEEIIIYQQQkiN4M05QgghhBBCCCGEEEJqBG/OEUIIIYQQQgghhBBSI3hzjhBCCCGEEEIIIYSQGsGbc4QQQgghhBBCCCGE1AjenCOEEEIIIYQQQgghpEbw5hwhhBBCCCGEEEIIITWCN+cIIYQQQgghhBBCCKkRvDlHCIAjjjgCF1544XbV7syZM3HyySdvUx2TJk2CUgpKKWzcuDGx3O9+9zsMHz58m9oiycycOdPfD3/5y19q3R1CCCFkUME4Lx7GeQMDxnmEEIA35wipKQ8++CCuvvpq//OkSZNw66231q5DMcyZMwerV69GS0tLrbuy3TNv3rzYAPkXv/gFVq9eXZtOEUIIIaRHMM4jQRjnEULKkap1BwgZyowcObLWXahIc3Mzxo0bV+tuAAAKhQLS6XStu9HvtLS0MGgmhBBCBhmM87oH4zxCyFCGM+cIiWHDhg0488wzMWLECDQ0NOC4447D4sWL/Xxvev8TTzyBPffcE01NTTj22GNDf/UyTROzZ8/G8OHDMWrUKFx66aWYMWNGSIIQlDscccQRWLFiBS666CJ/ajsAXHnllTjggANC/bv11lsxadIk/7NlWbj44ov9tn7wgx9ARELriAiuv/567Lzzzqivr8f++++P//qv/+rR9vnd736HnXbaCQ0NDTjllFOwfv36kjKPPPIIDjroINTV1WHnnXfGVVddBdM0/fz/+7//w+c+9znU1dVhr732wtNPPx2azr98+XIopfDAAw/giCOOQF1dHf7zP/8TADB37lzsueeeqKurw5QpU3DbbbeF2v7ggw9w2mmnYcSIERg1ahROOukkLF++3M+fN28eDjnkEDQ2NmL48OH47Gc/ixUrVlQ19krjuvnmm7HvvvuisbEREyZMwHe/+110dHT4+StWrMAJJ5yAESNGoLGxEXvvvTf++te/Yvny5fjCF74AABgxYgSUUpg5c2ZVfSKEEEJI9TDOKw/jPMZ5hJD+hzfnCIlh5syZeP311/Hwww/jpZdegojgS1/6EgqFgl+ms7MTN954I/7whz/gueeew8qVK/H973/fz//5z3+OP/7xj5g7dy5eeOEFbN68uayPxIMPPojx48f78oLuTG+/6aab8B//8R+4++678fzzz+OTTz7BQw89FCpz+eWXY+7cufjNb36Dt956CxdddBG++c1v4tlnn61+wwB45ZVX8O1vfxvf/e538c9//hNf+MIX8NOf/jRU5oknnsA3v/lNzJ49G2+//TbuuOMO/O53v8M111wDALBtGyeffDIaGhrwyiuv4M4778SPfvSj2PYuvfRSzJ49G4sWLcL06dNx11134Uc/+hGuueYaLFq0CD/72c/w4x//GPfccw8AZ7984QtfQFNTE5577jk8//zzflCdz+dhmiZOPvlkHH744XjjjTfw0ksv4dxzz/WD5HJUGhcAaK3x7//+73jzzTdxzz334O9//zt+8IMf+Pnf+9730NXVheeeew4LFy7Ez3/+czQ1NWHChAn485//DAB45513sHr1avziF7/o1r4hhBBCSGUY5yXDOI9xHiGkRgghRA4//HC54IILRETk3XffFQDywgsv+Pnr1q2T+vp6eeCBB0REZO7cuQJAlixZ4pf59a9/LWPHjvU/jx07Vm644Qb/s2mastNOO8lJJ50U266IyMSJE+WWW24J9e2KK66Q/fffP5R2yy23yMSJE/3Pra2tct111/mfC4WCjB8/3m+ro6ND6urq5MUXXwzVc9ZZZ8kZZ5yRuF3i+nPGGWfIscceG0o77bTTpKWlxf982GGHyc9+9rNQmT/84Q/S2toqIiKPPfaYpFIpWb16tZ//1FNPCQB56KGHRERk2bJlAkBuvfXWUD0TJkyQe++9N5R29dVXy9SpU0VE5O6775Y99thDbNv287u6uqS+vl6eeOIJWb9+vQCQefPmJY47iUrjiuOBBx6QUaNG+Z/33XdfufLKK2PLPvPMMwJANmzYEJsf3D6EEEIIqQ7GefEwzgvDOI8QUkvoOUdIhEWLFiGVSuEzn/mMnzZq1CjsscceWLRokZ/W0NCAXXbZxf/c2tqKjz76CACwadMmrF27FocccoifbxgGDjroINi23av93bRpE1avXo2pU6f6aalUCgcffLAveXj77beRy+Vw9NFHh9bN5/P41Kc+1a32Fi1ahFNOOSWUNnXqVDz++OP+5/nz5+O1114L/aXRsizkcjl0dnbinXfewYQJE0IeJ8FtFeTggw/2lz/++GOsWrUKZ511Fs455xw/3TRN36tj/vz5WLJkCZqbm0P15HI5vPfeezjmmGMwc+ZMTJ8+HUcffTSOOuoofO1rX0Nra2vFsVcaV0NDA5555hn87Gc/w9tvv43NmzfDNE3kcjls2bIFjY2NmD17Nr7zne/gySefxFFHHYWvfvWr2G+//Sq2TQghhJBth3FeeRjnMc4jhNQG3pwjJIJEPDyC6cEp8VHDWqVUybrRKfRJdZdDa12yXlB2UQ1eoPjoo49ixx13DOVls9lu1VXNGGzbxlVXXYWvfOUrJXl1dXUl27IcjY2NoXoB4K677goF1YATFHtlDjroIPzxj38sqWvMmDEAHC+T2bNn4/HHH8f999+Pyy+/HE899RQOPfTQbRrXihUr8KUvfQnnnXcerr76aowcORLPP/88zjrrLH+fnX322Zg+fToeffRRPPnkk7j22mtx00034fzzz69qexBCCCGk5zDOKw/jPMZ5hJDawJtzhETYa6+9YJomXnnlFUybNg0AsH79erz77rvYc889q6qjpaUFY8eOxauvvorDDjsMgPOXtwULFpSY/gbJZDKwLCuUNmbMGKxZsyYU6Pzzn/8MtdXa2oqXX34Zn//85wE4f2GcP38+DjzwQH9M2WwWK1euxOGHH17VGJLYa6+98PLLL4fSop8PPPBAvPPOO9h1111j65gyZQpWrlyJtWvXYuzYsQCA1157rWLbY8eOxY477oilS5fiG9/4RmyZAw88EPfffz922GEHDBs2LLGuT33qU/jUpz6Fyy67DFOnTsW9995bMWirNK7XX38dpmnipptugtaOpecDDzxQUm7ChAk477zzcN555+Gyyy7DXXfdhfPPPx+ZTAYASo4BQgghhPQOjPPKwziPcR4hpDbw5hwhEXbbbTecdNJJOOecc3DHHXegubkZP/zhD7HjjjvipJNOqrqe888/H9deey123XVXTJkyBb/85S+xYcOGsn9JnDRpEp577jmcfvrpyGazGD16NI444gh8/PHHuP766/Ev//IvePzxx/HYY4+FApILLrgA1113HXbbbTfsueeeuPnmm7Fx40Y/v7m5Gd///vdx0UUXwbZtfO5zn8PmzZvx4osvoqmpCTNmzKh6XLNnz8a0adNw/fXX4+STT8aTTz4ZkjoAwE9+8hMcf/zxmDBhAk499VRorfHGG29g4cKF+OlPf4qjjz4au+yyC2bMmIHrr78e7e3tvlFwpb+0XnnllZg9ezaGDRuG4447Dl1dXXj99dexYcMGXHzxxfjGN76BG264ASeddBLmzJmD8ePHY+XKlXjwwQfxb//2bygUCrjzzjtx4oknoq2tDe+88w7effddnHnmmRXHXmlcu+yyC0zTxC9/+UuccMIJeOGFF3D77beH6rjwwgtx3HHHYffdd8eGDRvw97//3f8xMHHiRCil8N///d/40pe+hPr6ejQ1NVW9bwghhBBSHsZ55WGcxziPEFIj+tvkjpCBSNSw95NPPpFvfetb0tLSIvX19TJ9+nR59913/fy5c+eGjHFFRB566CEJfqUKhYLMmjVLhg0bJiNGjJBLL71UTj31VDn99NMT233ppZdkv/32k2w2G6rrN7/5jUyYMEEaGxvlzDPPlGuuuSZkFFwoFOSCCy6QYcOGyfDhw+Xiiy+WM888M2RKbNu2/OIXv5A99thD0um0jBkzRqZPny7PPvts4naJMwoWccx4x48fL/X19XLCCSfIjTfeWLI9Hn/8cZk2bZrU19fLsGHD5JBDDpE777zTz1+0aJF89rOflUwmI1OmTJFHHnlEAMjjjz8uIkWj4AULFpS0/8c//lEOOOAAyWQyMmLECPn85z8vDz74oJ+/evVqOfPMM2X06NGSzWZl5513lnPOOUc2bdoka9askZNPPllaW1slk8nIxIkT5Sc/+YlYlpW4HbozrptvvllaW1v94+b3v/99yPx31qxZsssuu0g2m5UxY8bIt771LVm3bp2//pw5c2TcuHGilJIZM2aE2gaNggkhhJBuwzgvHsZ5pTDOI4TUCiXSA3MEQki3sW0be+65J772ta/h6quvrnV3qmLSpEm48MILceGFF/Z5Wy+88AI+97nPYcmSJSEDZlJEKYWHHnoIJ598cq27QgghhJAAjPPKwzivMozzCBna6Fp3gJDtlRUrVuCuu+7Cu+++i4ULF+I73/kOli1bhq9//eu17lq3uPTSS9HU1IRNmzb1ar0PPfQQnnrqKSxfvhxPP/00zj33XHz2s59lwBbDeeedR9kDIYQQMoBgnFcexnnVwziPEAIAnDlHSB+xatUqnH766XjzzTchIthnn31w3XXX+Wa+g4EVK1b4T5/aeeedffPb3uD3v/89rr76aqxatQqjR4/GUUcdhZtuugmjRo3qtTa6y957740VK1bE5t1xxx2J5sR9zUcffYTNmzcDAFpbW0NPNiOEEEJI/8M4rzyM86qHcR4hBODNOUII8QkGqVHGjh2L5ubmfu4RIYQQQgjpDRjnEUIGMrw5RwghhBBCCCGEEEJIjaDnHCGEEEIIIYQQQgghNYI35wghhBBCCCGEEEIIqRG8OUcIIYQQQgghhBBCSI3gzTlCCCGEEEIIIYQQQmoEb84RQgghhBBCCCGEEFIjeHOOEEIIIYQQQgghhJAawZtzhBBCCCGEEEIIIYTUiP8f/MeedVnXSSIAAAAASUVORK5CYII=", "text/plain": [ "
    " ] @@ -872,7 +880,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 12, "id": "58dece11-2fc0-4ce3-b0ad-175c2ee9835c", "metadata": {}, "outputs": [ @@ -882,7 +890,7 @@ "Text(0.5, 1.0, 'GRACE follow on at location 43,3')" ] }, - "execution_count": 10, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" }, @@ -935,7 +943,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.6" + "version": "3.11.7" } }, "nbformat": 4, diff --git a/docs/source/notebooks/visualize_filter.ipynb b/docs/source/notebooks/visualize_filter.ipynb index 8f1810e..c9216a7 100644 --- a/docs/source/notebooks/visualize_filter.ipynb +++ b/docs/source/notebooks/visualize_filter.ipynb @@ -141,7 +141,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "id": "8bd71cd5-91d0-40d3-83f6-b015f04f501b", "metadata": {}, "outputs": [], @@ -149,7 +149,7 @@ "# Note setting truncate to False below keeps coefficients below the minimum degree of the filter to their original values\n", "ddk4=daunit.sh.filter('DDK4',truncate=False)\n", "# assign to dataset variable but make sure they are sorted in the same order\n", - "dsfiltered['ddk4']=ddk4.sel(shi=dsfiltered.shi)\n" + "dsfiltered['ddk4']=ddk4.sel(nm=dsfiltered.nm)\n" ] }, { @@ -162,7 +162,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "id": "725bb29f-9cb7-43ae-aad3-647e6052589e", "metadata": {}, "outputs": [], @@ -179,7 +179,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "id": "bb124eb7-e8cc-48f5-8a3b-1675ae054cd5", "metadata": {}, "outputs": [], @@ -206,7 +206,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 9, "id": "c84fcfa3-8b54-4606-9be7-dba5ea6b8a47", "metadata": {}, "outputs": [ @@ -216,7 +216,7 @@ "Text(0.5, 1.0, 'DDK at lon,lat: (-60,-5)')" ] }, - "execution_count": 8, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" }, @@ -280,7 +280,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.6" + "version": "3.11.7" } }, "nbformat": 4, diff --git a/src/builtin_backend/Ynm.hpp b/src/builtin_backend/Ynm.hpp index 431c827..b94d6ac 100644 --- a/src/builtin_backend/Ynm.hpp +++ b/src/builtin_backend/Ynm.hpp @@ -32,7 +32,7 @@ template class Ynm_cpp{ public: Ynm_cpp(const int nmax); - Ynm_cpp(const size_t size, const int n [],const int m[ ],const int t[]); + Ynm_cpp(const size_t size, const int n [],const int m[ ]); Ynm_cpp(){}; void set(const ftype lon, const ftype lat); @@ -81,7 +81,7 @@ Ynm_cpp::Ynm_cpp(int nmax):legnm(nmax),sz_(2*(legnm.idx(nmax,nmax)+1)-(nm } template -Ynm_cpp::Ynm_cpp(const size_t size, const int n [],const int m[ ],const int t[]):sz_(size),ynmdata_(size,0.0),mnidx_(sz_){ +Ynm_cpp::Ynm_cpp(const size_t size, const int n [],const int m[ ]):sz_(size),ynmdata_(size,0.0),mnidx_(sz_){ ///find nmax int nmax=-1; @@ -89,8 +89,7 @@ Ynm_cpp::Ynm_cpp(const size_t size, const int n [],const int m[ ],const i //map,ssize_t> mninputidx; for (size_t i=0;i(nmax); diff --git a/src/builtin_backend/analysis.pyx b/src/builtin_backend/analysis.pyx index 65b442e..b4482f9 100644 --- a/src/builtin_backend/analysis.pyx +++ b/src/builtin_backend/analysis.pyx @@ -27,7 +27,7 @@ cdef class Analysis: def __cinit__(self, int nmax): #create a spherical harmonic index - self._dsobj=xr.Dataset(coords=SHindexBase.shi(nmax,0)) + self._dsobj=xr.Dataset(coords=SHindexBase.nm(nmax,0)) def __call__(self,dain:xr.DataArray): """Perform spherical harmonic analysis on an input xarray DataArray object""" @@ -72,7 +72,7 @@ cdef class Analysis: cdef int auxsize=np.prod([val for ky,val in dain.sizes.items() if ky not in ["lon","lat"]]) - cdef int shsize=len(self._dsobj.indexes['shi']) + cdef int shsize=len(self._dsobj.indexes['nm']) #memoryview to output data (sh dimension should vary quickest) cdef double [:,:] outv=dout.data.reshape([auxsize,shsize]) #This is the same a s a Fortran contiguous array with dimension shsize,auxsize, lada=shsize @@ -80,9 +80,8 @@ cdef class Analysis: - cdef int[::1] nv = self._dsobj.shi.n.data.astype(np.int32) - cdef int[::1] mv = self._dsobj.shi.m.data.astype(np.int32) - cdef int[::1] tv = self._dsobj.shi.t.data.astype(np.int32) + cdef int[::1] nv = self._dsobj.nm.n.data.astype(np.int32) + cdef int[::1] mv = self._dsobj.nm.m.data.astype(np.int32) cdef Ynm_cpp[double] ynm cdef int ilat,ilon @@ -126,7 +125,7 @@ cdef class Analysis: omp_init_lock(&lock) with nogil, parallel(): - ynm=Ynm_cpp[double](shsize,&nv[0],&mv[0],&tv[0]) + ynm=Ynm_cpp[double](shsize,&nv[0],&mv[0]) for ilat in prange(nlat): alpha=weight*cos(latv[ilat]*d2r) for ilon in range(nlon): diff --git a/src/builtin_backend/legendre.pxd b/src/builtin_backend/legendre.pxd index f5fc4ff..f122c8c 100644 --- a/src/builtin_backend/legendre.pxd +++ b/src/builtin_backend/legendre.pxd @@ -42,9 +42,9 @@ cdef extern from "Ynm.hpp": cdef cppclass Ynm_cpp[T] nogil: Ynm_cpp() except + Ynm_cpp(int nmax) except + - Ynm_cpp(cython.size_t size, const int n[],const int m[], const int t[]) except + + Ynm_cpp(cython.size_t size, const int n[],const int m[]) except + void set( T lon, T lat) nogil - cython.ssize_t idx(int n,int m,int t) + cython.ssize_t idx(int n,int m) T& operator[](size_t i) int nmax() T* data() diff --git a/src/builtin_backend/shlib.cpp b/src/builtin_backend/shlib.cpp index adf9fbf..1e591c1 100644 --- a/src/builtin_backend/shlib.cpp +++ b/src/builtin_backend/shlib.cpp @@ -22,10 +22,10 @@ "src/builtin_backend/Ynm.hpp" ], "extra_compile_args": [ - "-fopenmp -march=native" + "-fopenmp" ], "extra_link_args": [ - "-fopenmp -march=native" + "-fopenmp" ], "include_dirs": [ "src/builtin_backend", @@ -3502,18 +3502,18 @@ static CYTHON_INLINE size_t __Pyx_PyInt_As_size_t(PyObject *); /* CIntToPy.proto */ static CYTHON_INLINE PyObject* __Pyx_PyInt_From_int(int value); -/* CIntToPy.proto */ -static CYTHON_INLINE PyObject* __Pyx_PyInt_From_long(long value); - -/* CIntFromPy.proto */ -static CYTHON_INLINE long __Pyx_PyInt_As_long(PyObject *); - /* TypeInfoToFormat.proto */ struct __pyx_typeinfo_string { char string[3]; }; static struct __pyx_typeinfo_string __Pyx_TypeInfoToFormat(__Pyx_TypeInfo *type); +/* CIntToPy.proto */ +static CYTHON_INLINE PyObject* __Pyx_PyInt_From_long(long value); + +/* CIntFromPy.proto */ +static CYTHON_INLINE long __Pyx_PyInt_As_long(PyObject *); + /* CIntFromPy.proto */ static CYTHON_INLINE char __Pyx_PyInt_As_char(PyObject *); @@ -3687,7 +3687,6 @@ static const char __pyx_k_T[] = "T{"; static const char __pyx_k_j[] = "j"; static const char __pyx_k_m[] = "m"; static const char __pyx_k_n[] = "n"; - static const char __pyx_k_t[] = "t"; static const char __pyx_k_Pn[] = "Pn"; static const char __pyx_k__3[] = ": "; static const char __pyx_k__4[] = "."; @@ -3730,7 +3729,6 @@ static const char __pyx_k_lat[] = "lat"; static const char __pyx_k_lon[] = "lon"; static const char __pyx_k_new[] = "__new__"; static const char __pyx_k_obj[] = "obj"; -static const char __pyx_k_shi[] = "shi"; static const char __pyx_k_syn[] = "syn"; static const char __pyx_k_sys[] = "sys"; static const char __pyx_k_var[] = "var"; @@ -3921,7 +3919,8 @@ static const char __pyx_k_src_builtin_backend_shlib_pyx[] = "src/builtin_backend static const char __pyx_k_unable_to_allocate_array_data[] = "unable to allocate array data."; static const char __pyx_k_Pyx_CFunc_60767c__pair__lAngin[] = "__Pyx_CFunc_60767c__pair__lAngint__comma_int__rAng__lParensize_t__comma_int__rParennoexcept__space_nogil__etc_to_py_3idx_4nmax..wrap"; static const char __pyx_k_strided_and_direct_or_indirect[] = ""; -static const char __pyx_k_Can_only_handle_input_where_the[] = "Can only handle input where the shi dimension is first or last"; +static const char __pyx_k_Can_only_handle_input_where_the[] = "Can only handle input where the nm dimension is first or last"; +static const char __pyx_k_nm_dimension_must_either_be_the[] = "nm dimension must either be the first or last in input"; static const char __pyx_k_numpy_core_multiarray_failed_to[] = "numpy.core.multiarray failed to import"; static const char __pyx_k_shlib_is_shxarray_s_default_bin[] = "\n**shlib** is shxarray's default binary Cython backend. \nSome of the heavy lifting such as synthesis and analysis operations, is done using this the functions of this shared library.\n"; static const char __pyx_k_All_dimensions_preceding_dimensi[] = "All dimensions preceding dimension %d must be indexed and not sliced"; @@ -3946,7 +3945,6 @@ static const char __pyx_k_input_longitude_and_latitude_nee[] = "input longitude static const char __pyx_k_input_type_should_be_a_xarray_Da[] = "input type should be a xarray.DataArray"; static const char __pyx_k_no_default___reduce___due_to_non[] = "no default __reduce__ due to non-trivial __cinit__"; static const char __pyx_k_numpy_core_umath_failed_to_impor[] = "numpy.core.umath failed to import"; -static const char __pyx_k_shi_dimension_must_either_be_the[] = "shi dimension must either be the first or last in input"; static const char __pyx_k_src_builtin_backend_legendre_pyx[] = "src/builtin_backend/legendre.pyx"; static const char __pyx_k_src_builtin_backend_wigner3j_pyx[] = "src/builtin_backend/wigner3j.pyx"; static const char __pyx_k_unable_to_allocate_shape_and_str[] = "unable to allocate shape and strides."; @@ -4354,6 +4352,7 @@ typedef struct { PyObject *__pyx_n_u_nlonlat; PyObject *__pyx_n_s_nm; PyObject *__pyx_n_u_nm; + PyObject *__pyx_kp_u_nm_dimension_must_either_be_the; PyObject *__pyx_n_s_nm_from_i; PyObject *__pyx_n_s_nmax; PyObject *__pyx_n_s_nmax_or_index; @@ -4394,9 +4393,6 @@ typedef struct { PyObject *__pyx_n_s_setstate_cython; PyObject *__pyx_n_s_sh; PyObject *__pyx_n_s_shape; - PyObject *__pyx_n_s_shi; - PyObject *__pyx_n_u_shi; - PyObject *__pyx_kp_u_shi_dimension_must_either_be_the; PyObject *__pyx_n_s_shxarray_core_cf; PyObject *__pyx_n_s_shxarray_core_sh_indexing; PyObject *__pyx_n_s_shxarray_core_shcomputebase; @@ -4422,7 +4418,6 @@ typedef struct { PyObject *__pyx_n_s_synthesis; PyObject *__pyx_n_s_sys; PyObject *__pyx_n_s_sz; - PyObject *__pyx_n_s_t; PyObject *__pyx_n_s_test; PyObject *__pyx_kp_s_unable_to_allocate_array_data; PyObject *__pyx_kp_s_unable_to_allocate_shape_and_str; @@ -4439,6 +4434,7 @@ typedef struct { PyObject *__pyx_n_s_zeros; PyObject *__pyx_int_0; PyObject *__pyx_int_1; + PyObject *__pyx_int_2; PyObject *__pyx_int_3; PyObject *__pyx_int_4; PyObject *__pyx_int_8; @@ -4784,6 +4780,7 @@ static int __pyx_m_clear(PyObject *m) { Py_CLEAR(clear_module_state->__pyx_n_u_nlonlat); Py_CLEAR(clear_module_state->__pyx_n_s_nm); Py_CLEAR(clear_module_state->__pyx_n_u_nm); + Py_CLEAR(clear_module_state->__pyx_kp_u_nm_dimension_must_either_be_the); Py_CLEAR(clear_module_state->__pyx_n_s_nm_from_i); Py_CLEAR(clear_module_state->__pyx_n_s_nmax); Py_CLEAR(clear_module_state->__pyx_n_s_nmax_or_index); @@ -4824,9 +4821,6 @@ static int __pyx_m_clear(PyObject *m) { Py_CLEAR(clear_module_state->__pyx_n_s_setstate_cython); Py_CLEAR(clear_module_state->__pyx_n_s_sh); Py_CLEAR(clear_module_state->__pyx_n_s_shape); - Py_CLEAR(clear_module_state->__pyx_n_s_shi); - Py_CLEAR(clear_module_state->__pyx_n_u_shi); - Py_CLEAR(clear_module_state->__pyx_kp_u_shi_dimension_must_either_be_the); Py_CLEAR(clear_module_state->__pyx_n_s_shxarray_core_cf); Py_CLEAR(clear_module_state->__pyx_n_s_shxarray_core_sh_indexing); Py_CLEAR(clear_module_state->__pyx_n_s_shxarray_core_shcomputebase); @@ -4852,7 +4846,6 @@ static int __pyx_m_clear(PyObject *m) { Py_CLEAR(clear_module_state->__pyx_n_s_synthesis); Py_CLEAR(clear_module_state->__pyx_n_s_sys); Py_CLEAR(clear_module_state->__pyx_n_s_sz); - Py_CLEAR(clear_module_state->__pyx_n_s_t); Py_CLEAR(clear_module_state->__pyx_n_s_test); Py_CLEAR(clear_module_state->__pyx_kp_s_unable_to_allocate_array_data); Py_CLEAR(clear_module_state->__pyx_kp_s_unable_to_allocate_shape_and_str); @@ -4869,6 +4862,7 @@ static int __pyx_m_clear(PyObject *m) { Py_CLEAR(clear_module_state->__pyx_n_s_zeros); Py_CLEAR(clear_module_state->__pyx_int_0); Py_CLEAR(clear_module_state->__pyx_int_1); + Py_CLEAR(clear_module_state->__pyx_int_2); Py_CLEAR(clear_module_state->__pyx_int_3); Py_CLEAR(clear_module_state->__pyx_int_4); Py_CLEAR(clear_module_state->__pyx_int_8); @@ -5192,6 +5186,7 @@ static int __pyx_m_traverse(PyObject *m, visitproc visit, void *arg) { Py_VISIT(traverse_module_state->__pyx_n_u_nlonlat); Py_VISIT(traverse_module_state->__pyx_n_s_nm); Py_VISIT(traverse_module_state->__pyx_n_u_nm); + Py_VISIT(traverse_module_state->__pyx_kp_u_nm_dimension_must_either_be_the); Py_VISIT(traverse_module_state->__pyx_n_s_nm_from_i); Py_VISIT(traverse_module_state->__pyx_n_s_nmax); Py_VISIT(traverse_module_state->__pyx_n_s_nmax_or_index); @@ -5232,9 +5227,6 @@ static int __pyx_m_traverse(PyObject *m, visitproc visit, void *arg) { Py_VISIT(traverse_module_state->__pyx_n_s_setstate_cython); Py_VISIT(traverse_module_state->__pyx_n_s_sh); Py_VISIT(traverse_module_state->__pyx_n_s_shape); - Py_VISIT(traverse_module_state->__pyx_n_s_shi); - Py_VISIT(traverse_module_state->__pyx_n_u_shi); - Py_VISIT(traverse_module_state->__pyx_kp_u_shi_dimension_must_either_be_the); Py_VISIT(traverse_module_state->__pyx_n_s_shxarray_core_cf); Py_VISIT(traverse_module_state->__pyx_n_s_shxarray_core_sh_indexing); Py_VISIT(traverse_module_state->__pyx_n_s_shxarray_core_shcomputebase); @@ -5260,7 +5252,6 @@ static int __pyx_m_traverse(PyObject *m, visitproc visit, void *arg) { Py_VISIT(traverse_module_state->__pyx_n_s_synthesis); Py_VISIT(traverse_module_state->__pyx_n_s_sys); Py_VISIT(traverse_module_state->__pyx_n_s_sz); - Py_VISIT(traverse_module_state->__pyx_n_s_t); Py_VISIT(traverse_module_state->__pyx_n_s_test); Py_VISIT(traverse_module_state->__pyx_kp_s_unable_to_allocate_array_data); Py_VISIT(traverse_module_state->__pyx_kp_s_unable_to_allocate_shape_and_str); @@ -5277,6 +5268,7 @@ static int __pyx_m_traverse(PyObject *m, visitproc visit, void *arg) { Py_VISIT(traverse_module_state->__pyx_n_s_zeros); Py_VISIT(traverse_module_state->__pyx_int_0); Py_VISIT(traverse_module_state->__pyx_int_1); + Py_VISIT(traverse_module_state->__pyx_int_2); Py_VISIT(traverse_module_state->__pyx_int_3); Py_VISIT(traverse_module_state->__pyx_int_4); Py_VISIT(traverse_module_state->__pyx_int_8); @@ -5652,6 +5644,7 @@ static int __pyx_m_traverse(PyObject *m, visitproc visit, void *arg) { #define __pyx_n_u_nlonlat __pyx_mstate_global->__pyx_n_u_nlonlat #define __pyx_n_s_nm __pyx_mstate_global->__pyx_n_s_nm #define __pyx_n_u_nm __pyx_mstate_global->__pyx_n_u_nm +#define __pyx_kp_u_nm_dimension_must_either_be_the __pyx_mstate_global->__pyx_kp_u_nm_dimension_must_either_be_the #define __pyx_n_s_nm_from_i __pyx_mstate_global->__pyx_n_s_nm_from_i #define __pyx_n_s_nmax __pyx_mstate_global->__pyx_n_s_nmax #define __pyx_n_s_nmax_or_index __pyx_mstate_global->__pyx_n_s_nmax_or_index @@ -5692,9 +5685,6 @@ static int __pyx_m_traverse(PyObject *m, visitproc visit, void *arg) { #define __pyx_n_s_setstate_cython __pyx_mstate_global->__pyx_n_s_setstate_cython #define __pyx_n_s_sh __pyx_mstate_global->__pyx_n_s_sh #define __pyx_n_s_shape __pyx_mstate_global->__pyx_n_s_shape -#define __pyx_n_s_shi __pyx_mstate_global->__pyx_n_s_shi -#define __pyx_n_u_shi __pyx_mstate_global->__pyx_n_u_shi -#define __pyx_kp_u_shi_dimension_must_either_be_the __pyx_mstate_global->__pyx_kp_u_shi_dimension_must_either_be_the #define __pyx_n_s_shxarray_core_cf __pyx_mstate_global->__pyx_n_s_shxarray_core_cf #define __pyx_n_s_shxarray_core_sh_indexing __pyx_mstate_global->__pyx_n_s_shxarray_core_sh_indexing #define __pyx_n_s_shxarray_core_shcomputebase __pyx_mstate_global->__pyx_n_s_shxarray_core_shcomputebase @@ -5720,7 +5710,6 @@ static int __pyx_m_traverse(PyObject *m, visitproc visit, void *arg) { #define __pyx_n_s_synthesis __pyx_mstate_global->__pyx_n_s_synthesis #define __pyx_n_s_sys __pyx_mstate_global->__pyx_n_s_sys #define __pyx_n_s_sz __pyx_mstate_global->__pyx_n_s_sz -#define __pyx_n_s_t __pyx_mstate_global->__pyx_n_s_t #define __pyx_n_s_test __pyx_mstate_global->__pyx_n_s_test #define __pyx_kp_s_unable_to_allocate_array_data __pyx_mstate_global->__pyx_kp_s_unable_to_allocate_array_data #define __pyx_kp_s_unable_to_allocate_shape_and_str __pyx_mstate_global->__pyx_kp_s_unable_to_allocate_shape_and_str @@ -5737,6 +5726,7 @@ static int __pyx_m_traverse(PyObject *m, visitproc visit, void *arg) { #define __pyx_n_s_zeros __pyx_mstate_global->__pyx_n_s_zeros #define __pyx_int_0 __pyx_mstate_global->__pyx_int_0 #define __pyx_int_1 __pyx_mstate_global->__pyx_int_1 +#define __pyx_int_2 __pyx_mstate_global->__pyx_int_2 #define __pyx_int_3 __pyx_mstate_global->__pyx_int_3 #define __pyx_int_4 __pyx_mstate_global->__pyx_int_4 #define __pyx_int_8 __pyx_mstate_global->__pyx_int_8 @@ -24613,8 +24603,7 @@ static int __pyx_pw_8shxarray_5shlib_3Ynm_1__cinit__(PyObject *__pyx_v_self, PyO static int __pyx_pf_8shxarray_5shlib_3Ynm___cinit__(struct __pyx_obj_8shxarray_5shlib_Ynm *__pyx_v_self, PyObject *__pyx_v_nmax_or_index) { __Pyx_memviewslice __pyx_v_nv = { 0, 0, { 0 }, { 0 }, { 0 } }; __Pyx_memviewslice __pyx_v_mv = { 0, 0, { 0 }, { 0 }, { 0 } }; - __Pyx_memviewslice __pyx_v_tv = { 0, 0, { 0 }, { 0 }, { 0 } }; - __Pyx_memviewslice __pyx_v_nmt = { 0, 0, { 0 }, { 0 }, { 0 } }; + __Pyx_memviewslice __pyx_v_nm = { 0, 0, { 0 }, { 0 }, { 0 } }; size_t __pyx_v_sz; size_t __pyx_v_idx; int __pyx_v_nmax; @@ -24625,8 +24614,6 @@ static int __pyx_pf_8shxarray_5shlib_3Ynm___cinit__(struct __pyx_obj_8shxarray_5 CYTHON_UNUSED PyObject *__pyx_8genexpr3__pyx_v__ = NULL; CYTHON_UNUSED PyObject *__pyx_8genexpr4__pyx_v__ = NULL; int __pyx_8genexpr4__pyx_v_m; - CYTHON_UNUSED PyObject *__pyx_8genexpr5__pyx_v__ = NULL; - int __pyx_8genexpr5__pyx_v_t; int __pyx_r; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; @@ -24653,38 +24640,37 @@ static int __pyx_pf_8shxarray_5shlib_3Ynm___cinit__(struct __pyx_obj_8shxarray_5 PyObject *(*__pyx_t_22)(PyObject *); __Pyx_memviewslice __pyx_t_23 = { 0, 0, { 0 }, { 0 }, { 0 } }; Py_ssize_t __pyx_t_24; - Py_ssize_t __pyx_t_25; - double *__pyx_t_26; - struct __pyx_array_obj *__pyx_t_27 = NULL; - __Pyx_memviewslice __pyx_t_28 = { 0, 0, { 0 }, { 0 }, { 0 } }; + double *__pyx_t_25; + struct __pyx_array_obj *__pyx_t_26 = NULL; + __Pyx_memviewslice __pyx_t_27 = { 0, 0, { 0 }, { 0 }, { 0 } }; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__cinit__", 1); - /* "src/builtin_backend/ynm.pyx":34 - * cdef int nmax,n,m,t + /* "src/builtin_backend/ynm.pyx":33 + * cdef int nmax,n,m * cdef mni it * if type(nmax_or_index) == int: # <<<<<<<<<<<<<< * nmax=nmax_or_index * self._ynm=Ynm_cpp[double](nmax) */ - __pyx_t_1 = PyObject_RichCompare(((PyObject *)Py_TYPE(__pyx_v_nmax_or_index)), ((PyObject *)(&PyInt_Type)), Py_EQ); __Pyx_XGOTREF(__pyx_t_1); if (unlikely(!__pyx_t_1)) __PYX_ERR(3, 34, __pyx_L1_error) - __pyx_t_2 = __Pyx_PyObject_IsTrue(__pyx_t_1); if (unlikely((__pyx_t_2 < 0))) __PYX_ERR(3, 34, __pyx_L1_error) + __pyx_t_1 = PyObject_RichCompare(((PyObject *)Py_TYPE(__pyx_v_nmax_or_index)), ((PyObject *)(&PyInt_Type)), Py_EQ); __Pyx_XGOTREF(__pyx_t_1); if (unlikely(!__pyx_t_1)) __PYX_ERR(3, 33, __pyx_L1_error) + __pyx_t_2 = __Pyx_PyObject_IsTrue(__pyx_t_1); if (unlikely((__pyx_t_2 < 0))) __PYX_ERR(3, 33, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; if (__pyx_t_2) { - /* "src/builtin_backend/ynm.pyx":35 + /* "src/builtin_backend/ynm.pyx":34 * cdef mni it * if type(nmax_or_index) == int: * nmax=nmax_or_index # <<<<<<<<<<<<<< * self._ynm=Ynm_cpp[double](nmax) * sz=self._ynm.size() */ - __pyx_t_3 = __Pyx_PyInt_As_int(__pyx_v_nmax_or_index); if (unlikely((__pyx_t_3 == (int)-1) && PyErr_Occurred())) __PYX_ERR(3, 35, __pyx_L1_error) + __pyx_t_3 = __Pyx_PyInt_As_int(__pyx_v_nmax_or_index); if (unlikely((__pyx_t_3 == (int)-1) && PyErr_Occurred())) __PYX_ERR(3, 34, __pyx_L1_error) __pyx_v_nmax = __pyx_t_3; - /* "src/builtin_backend/ynm.pyx":36 + /* "src/builtin_backend/ynm.pyx":35 * if type(nmax_or_index) == int: * nmax=nmax_or_index * self._ynm=Ynm_cpp[double](nmax) # <<<<<<<<<<<<<< @@ -24695,69 +24681,69 @@ static int __pyx_pf_8shxarray_5shlib_3Ynm___cinit__(struct __pyx_obj_8shxarray_5 __pyx_t_4 = Ynm_cpp (__pyx_v_nmax); } catch(...) { __Pyx_CppExn2PyErr(); - __PYX_ERR(3, 36, __pyx_L1_error) + __PYX_ERR(3, 35, __pyx_L1_error) } __pyx_v_self->_ynm = __PYX_STD_MOVE_IF_SUPPORTED(__pyx_t_4); - /* "src/builtin_backend/ynm.pyx":37 + /* "src/builtin_backend/ynm.pyx":36 * nmax=nmax_or_index * self._ynm=Ynm_cpp[double](nmax) * sz=self._ynm.size() # <<<<<<<<<<<<<< * #create a sh index - * nmt=np.zeros([sz,3],dtype=np.int32) + * nm=np.zeros([sz,2],dtype=np.int32) */ __pyx_v_sz = __pyx_v_self->_ynm.size(); - /* "src/builtin_backend/ynm.pyx":39 + /* "src/builtin_backend/ynm.pyx":38 * sz=self._ynm.size() * #create a sh index - * nmt=np.zeros([sz,3],dtype=np.int32) # <<<<<<<<<<<<<< + * nm=np.zeros([sz,2],dtype=np.int32) # <<<<<<<<<<<<<< * for it in self._ynm.getmn(): * n=it.n */ - __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_np); if (unlikely(!__pyx_t_1)) __PYX_ERR(3, 39, __pyx_L1_error) + __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_np); if (unlikely(!__pyx_t_1)) __PYX_ERR(3, 38, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); - __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_zeros); if (unlikely(!__pyx_t_5)) __PYX_ERR(3, 39, __pyx_L1_error) + __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_zeros); if (unlikely(!__pyx_t_5)) __PYX_ERR(3, 38, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; - __pyx_t_1 = __Pyx_PyInt_FromSize_t(__pyx_v_sz); if (unlikely(!__pyx_t_1)) __PYX_ERR(3, 39, __pyx_L1_error) + __pyx_t_1 = __Pyx_PyInt_FromSize_t(__pyx_v_sz); if (unlikely(!__pyx_t_1)) __PYX_ERR(3, 38, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); - __pyx_t_6 = PyList_New(2); if (unlikely(!__pyx_t_6)) __PYX_ERR(3, 39, __pyx_L1_error) + __pyx_t_6 = PyList_New(2); if (unlikely(!__pyx_t_6)) __PYX_ERR(3, 38, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_GIVEREF(__pyx_t_1); - if (__Pyx_PyList_SET_ITEM(__pyx_t_6, 0, __pyx_t_1)) __PYX_ERR(3, 39, __pyx_L1_error); - __Pyx_INCREF(__pyx_int_3); - __Pyx_GIVEREF(__pyx_int_3); - if (__Pyx_PyList_SET_ITEM(__pyx_t_6, 1, __pyx_int_3)) __PYX_ERR(3, 39, __pyx_L1_error); + if (__Pyx_PyList_SET_ITEM(__pyx_t_6, 0, __pyx_t_1)) __PYX_ERR(3, 38, __pyx_L1_error); + __Pyx_INCREF(__pyx_int_2); + __Pyx_GIVEREF(__pyx_int_2); + if (__Pyx_PyList_SET_ITEM(__pyx_t_6, 1, __pyx_int_2)) __PYX_ERR(3, 38, __pyx_L1_error); __pyx_t_1 = 0; - __pyx_t_1 = PyTuple_New(1); if (unlikely(!__pyx_t_1)) __PYX_ERR(3, 39, __pyx_L1_error) + __pyx_t_1 = PyTuple_New(1); if (unlikely(!__pyx_t_1)) __PYX_ERR(3, 38, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_GIVEREF(__pyx_t_6); - if (__Pyx_PyTuple_SET_ITEM(__pyx_t_1, 0, __pyx_t_6)) __PYX_ERR(3, 39, __pyx_L1_error); + if (__Pyx_PyTuple_SET_ITEM(__pyx_t_1, 0, __pyx_t_6)) __PYX_ERR(3, 38, __pyx_L1_error); __pyx_t_6 = 0; - __pyx_t_6 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_6)) __PYX_ERR(3, 39, __pyx_L1_error) + __pyx_t_6 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_6)) __PYX_ERR(3, 38, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); - __Pyx_GetModuleGlobalName(__pyx_t_7, __pyx_n_s_np); if (unlikely(!__pyx_t_7)) __PYX_ERR(3, 39, __pyx_L1_error) + __Pyx_GetModuleGlobalName(__pyx_t_7, __pyx_n_s_np); if (unlikely(!__pyx_t_7)) __PYX_ERR(3, 38, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); - __pyx_t_8 = __Pyx_PyObject_GetAttrStr(__pyx_t_7, __pyx_n_s_int32); if (unlikely(!__pyx_t_8)) __PYX_ERR(3, 39, __pyx_L1_error) + __pyx_t_8 = __Pyx_PyObject_GetAttrStr(__pyx_t_7, __pyx_n_s_int32); if (unlikely(!__pyx_t_8)) __PYX_ERR(3, 38, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; - if (PyDict_SetItem(__pyx_t_6, __pyx_n_s_dtype, __pyx_t_8) < 0) __PYX_ERR(3, 39, __pyx_L1_error) + if (PyDict_SetItem(__pyx_t_6, __pyx_n_s_dtype, __pyx_t_8) < 0) __PYX_ERR(3, 38, __pyx_L1_error) __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; - __pyx_t_8 = __Pyx_PyObject_Call(__pyx_t_5, __pyx_t_1, __pyx_t_6); if (unlikely(!__pyx_t_8)) __PYX_ERR(3, 39, __pyx_L1_error) + __pyx_t_8 = __Pyx_PyObject_Call(__pyx_t_5, __pyx_t_1, __pyx_t_6); if (unlikely(!__pyx_t_8)) __PYX_ERR(3, 38, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; - __pyx_t_9 = __Pyx_PyObject_to_MemoryviewSlice_d_dc_int(__pyx_t_8, PyBUF_WRITABLE); if (unlikely(!__pyx_t_9.memview)) __PYX_ERR(3, 39, __pyx_L1_error) + __pyx_t_9 = __Pyx_PyObject_to_MemoryviewSlice_d_dc_int(__pyx_t_8, PyBUF_WRITABLE); if (unlikely(!__pyx_t_9.memview)) __PYX_ERR(3, 38, __pyx_L1_error) __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; - __pyx_v_nmt = __pyx_t_9; + __pyx_v_nm = __pyx_t_9; __pyx_t_9.memview = NULL; __pyx_t_9.data = NULL; - /* "src/builtin_backend/ynm.pyx":40 + /* "src/builtin_backend/ynm.pyx":39 * #create a sh index - * nmt=np.zeros([sz,3],dtype=np.int32) + * nm=np.zeros([sz,2],dtype=np.int32) * for it in self._ynm.getmn(): # <<<<<<<<<<<<<< * n=it.n * m=it.m @@ -24770,8 +24756,8 @@ static int __pyx_pf_8shxarray_5shlib_3Ynm___cinit__(struct __pyx_obj_8shxarray_5 ++__pyx_t_10; __pyx_v_it = __pyx_t_12; - /* "src/builtin_backend/ynm.pyx":41 - * nmt=np.zeros([sz,3],dtype=np.int32) + /* "src/builtin_backend/ynm.pyx":40 + * nm=np.zeros([sz,2],dtype=np.int32) * for it in self._ynm.getmn(): * n=it.n # <<<<<<<<<<<<<< * m=it.m @@ -24780,142 +24766,75 @@ static int __pyx_pf_8shxarray_5shlib_3Ynm___cinit__(struct __pyx_obj_8shxarray_5 __pyx_t_3 = __pyx_v_it.n; __pyx_v_n = __pyx_t_3; - /* "src/builtin_backend/ynm.pyx":42 + /* "src/builtin_backend/ynm.pyx":41 * for it in self._ynm.getmn(): * n=it.n * m=it.m # <<<<<<<<<<<<<< * idx=it.i - * if m<0: + * nm[idx,0]=n */ __pyx_t_3 = __pyx_v_it.m; __pyx_v_m = __pyx_t_3; - /* "src/builtin_backend/ynm.pyx":43 + /* "src/builtin_backend/ynm.pyx":42 * n=it.n * m=it.m * idx=it.i # <<<<<<<<<<<<<< - * if m<0: - * nmt[idx,0]=n + * nm[idx,0]=n + * nm[idx,1]=m */ __pyx_t_13 = __pyx_v_it.i; __pyx_v_idx = __pyx_t_13; - /* "src/builtin_backend/ynm.pyx":44 - * m=it.m - * idx=it.i - * if m<0: # <<<<<<<<<<<<<< - * nmt[idx,0]=n - * nmt[idx,1]=-m - */ - __pyx_t_2 = (__pyx_v_m < 0); - if (__pyx_t_2) { - - /* "src/builtin_backend/ynm.pyx":45 - * idx=it.i - * if m<0: - * nmt[idx,0]=n # <<<<<<<<<<<<<< - * nmt[idx,1]=-m - * nmt[idx,2]=1 - */ - __pyx_t_13 = __pyx_v_idx; - __pyx_t_14 = 0; - *((int *) ( /* dim=1 */ ((char *) (((int *) ( /* dim=0 */ (__pyx_v_nmt.data + __pyx_t_13 * __pyx_v_nmt.strides[0]) )) + __pyx_t_14)) )) = __pyx_v_n; - - /* "src/builtin_backend/ynm.pyx":46 - * if m<0: - * nmt[idx,0]=n - * nmt[idx,1]=-m # <<<<<<<<<<<<<< - * nmt[idx,2]=1 - * else: - */ - __pyx_t_13 = __pyx_v_idx; - __pyx_t_14 = 1; - *((int *) ( /* dim=1 */ ((char *) (((int *) ( /* dim=0 */ (__pyx_v_nmt.data + __pyx_t_13 * __pyx_v_nmt.strides[0]) )) + __pyx_t_14)) )) = (-__pyx_v_m); - - /* "src/builtin_backend/ynm.pyx":47 - * nmt[idx,0]=n - * nmt[idx,1]=-m - * nmt[idx,2]=1 # <<<<<<<<<<<<<< - * else: - * nmt[idx,0]=n - */ - __pyx_t_13 = __pyx_v_idx; - __pyx_t_14 = 2; - *((int *) ( /* dim=1 */ ((char *) (((int *) ( /* dim=0 */ (__pyx_v_nmt.data + __pyx_t_13 * __pyx_v_nmt.strides[0]) )) + __pyx_t_14)) )) = 1; - - /* "src/builtin_backend/ynm.pyx":44 + /* "src/builtin_backend/ynm.pyx":43 * m=it.m * idx=it.i - * if m<0: # <<<<<<<<<<<<<< - * nmt[idx,0]=n - * nmt[idx,1]=-m - */ - goto __pyx_L6; - } - - /* "src/builtin_backend/ynm.pyx":49 - * nmt[idx,2]=1 - * else: - * nmt[idx,0]=n # <<<<<<<<<<<<<< - * nmt[idx,1]=m - * nmt[idx,2]=0 - */ - /*else*/ { - __pyx_t_13 = __pyx_v_idx; - __pyx_t_14 = 0; - *((int *) ( /* dim=1 */ ((char *) (((int *) ( /* dim=0 */ (__pyx_v_nmt.data + __pyx_t_13 * __pyx_v_nmt.strides[0]) )) + __pyx_t_14)) )) = __pyx_v_n; - - /* "src/builtin_backend/ynm.pyx":50 - * else: - * nmt[idx,0]=n - * nmt[idx,1]=m # <<<<<<<<<<<<<< - * nmt[idx,2]=0 + * nm[idx,0]=n # <<<<<<<<<<<<<< + * nm[idx,1]=m * */ - __pyx_t_13 = __pyx_v_idx; - __pyx_t_14 = 1; - *((int *) ( /* dim=1 */ ((char *) (((int *) ( /* dim=0 */ (__pyx_v_nmt.data + __pyx_t_13 * __pyx_v_nmt.strides[0]) )) + __pyx_t_14)) )) = __pyx_v_m; + __pyx_t_13 = __pyx_v_idx; + __pyx_t_14 = 0; + *((int *) ( /* dim=1 */ ((char *) (((int *) ( /* dim=0 */ (__pyx_v_nm.data + __pyx_t_13 * __pyx_v_nm.strides[0]) )) + __pyx_t_14)) )) = __pyx_v_n; - /* "src/builtin_backend/ynm.pyx":51 - * nmt[idx,0]=n - * nmt[idx,1]=m - * nmt[idx,2]=0 # <<<<<<<<<<<<<< + /* "src/builtin_backend/ynm.pyx":44 + * idx=it.i + * nm[idx,0]=n + * nm[idx,1]=m # <<<<<<<<<<<<<< * - * self._shindex=SHindexBase.mi_fromarrays(np.asarray(nmt).T) + * self._shindex=SHindexBase.mi_fromarrays(np.asarray(nm).T) */ - __pyx_t_13 = __pyx_v_idx; - __pyx_t_14 = 2; - *((int *) ( /* dim=1 */ ((char *) (((int *) ( /* dim=0 */ (__pyx_v_nmt.data + __pyx_t_13 * __pyx_v_nmt.strides[0]) )) + __pyx_t_14)) )) = 0; - } - __pyx_L6:; + __pyx_t_13 = __pyx_v_idx; + __pyx_t_14 = 1; + *((int *) ( /* dim=1 */ ((char *) (((int *) ( /* dim=0 */ (__pyx_v_nm.data + __pyx_t_13 * __pyx_v_nm.strides[0]) )) + __pyx_t_14)) )) = __pyx_v_m; - /* "src/builtin_backend/ynm.pyx":40 + /* "src/builtin_backend/ynm.pyx":39 * #create a sh index - * nmt=np.zeros([sz,3],dtype=np.int32) + * nm=np.zeros([sz,2],dtype=np.int32) * for it in self._ynm.getmn(): # <<<<<<<<<<<<<< * n=it.n * m=it.m */ } - /* "src/builtin_backend/ynm.pyx":53 - * nmt[idx,2]=0 + /* "src/builtin_backend/ynm.pyx":46 + * nm[idx,1]=m * - * self._shindex=SHindexBase.mi_fromarrays(np.asarray(nmt).T) # <<<<<<<<<<<<<< + * self._shindex=SHindexBase.mi_fromarrays(np.asarray(nm).T) # <<<<<<<<<<<<<< * else: * nv=np.array([n for n,_,_ in nmax_or_index.values]).astype(np.int32) */ - __Pyx_GetModuleGlobalName(__pyx_t_6, __pyx_n_s_SHindexBase); if (unlikely(!__pyx_t_6)) __PYX_ERR(3, 53, __pyx_L1_error) + __Pyx_GetModuleGlobalName(__pyx_t_6, __pyx_n_s_SHindexBase); if (unlikely(!__pyx_t_6)) __PYX_ERR(3, 46, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); - __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_6, __pyx_n_s_mi_fromarrays); if (unlikely(!__pyx_t_1)) __PYX_ERR(3, 53, __pyx_L1_error) + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_6, __pyx_n_s_mi_fromarrays); if (unlikely(!__pyx_t_1)) __PYX_ERR(3, 46, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; - __Pyx_GetModuleGlobalName(__pyx_t_5, __pyx_n_s_np); if (unlikely(!__pyx_t_5)) __PYX_ERR(3, 53, __pyx_L1_error) + __Pyx_GetModuleGlobalName(__pyx_t_5, __pyx_n_s_np); if (unlikely(!__pyx_t_5)) __PYX_ERR(3, 46, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); - __pyx_t_7 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_asarray); if (unlikely(!__pyx_t_7)) __PYX_ERR(3, 53, __pyx_L1_error) + __pyx_t_7 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_asarray); if (unlikely(!__pyx_t_7)) __PYX_ERR(3, 46, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; - __pyx_t_5 = __pyx_memoryview_fromslice(__pyx_v_nmt, 2, (PyObject *(*)(char *)) __pyx_memview_get_int, (int (*)(char *, PyObject *)) __pyx_memview_set_int, 0);; if (unlikely(!__pyx_t_5)) __PYX_ERR(3, 53, __pyx_L1_error) + __pyx_t_5 = __pyx_memoryview_fromslice(__pyx_v_nm, 2, (PyObject *(*)(char *)) __pyx_memview_get_int, (int (*)(char *, PyObject *)) __pyx_memview_set_int, 0);; if (unlikely(!__pyx_t_5)) __PYX_ERR(3, 46, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __pyx_t_15 = NULL; __pyx_t_3 = 0; @@ -24936,11 +24855,11 @@ static int __pyx_pf_8shxarray_5shlib_3Ynm___cinit__(struct __pyx_obj_8shxarray_5 __pyx_t_6 = __Pyx_PyObject_FastCall(__pyx_t_7, __pyx_callargs+1-__pyx_t_3, 1+__pyx_t_3); __Pyx_XDECREF(__pyx_t_15); __pyx_t_15 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; - if (unlikely(!__pyx_t_6)) __PYX_ERR(3, 53, __pyx_L1_error) + if (unlikely(!__pyx_t_6)) __PYX_ERR(3, 46, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; } - __pyx_t_7 = __Pyx_PyObject_GetAttrStr(__pyx_t_6, __pyx_n_s_T_2); if (unlikely(!__pyx_t_7)) __PYX_ERR(3, 53, __pyx_L1_error) + __pyx_t_7 = __Pyx_PyObject_GetAttrStr(__pyx_t_6, __pyx_n_s_T_2); if (unlikely(!__pyx_t_7)) __PYX_ERR(3, 46, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_t_6 = NULL; @@ -24962,7 +24881,7 @@ static int __pyx_pf_8shxarray_5shlib_3Ynm___cinit__(struct __pyx_obj_8shxarray_5 __pyx_t_8 = __Pyx_PyObject_FastCall(__pyx_t_1, __pyx_callargs+1-__pyx_t_3, 1+__pyx_t_3); __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; - if (unlikely(!__pyx_t_8)) __PYX_ERR(3, 53, __pyx_L1_error) + if (unlikely(!__pyx_t_8)) __PYX_ERR(3, 46, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; } @@ -24972,8 +24891,8 @@ static int __pyx_pf_8shxarray_5shlib_3Ynm___cinit__(struct __pyx_obj_8shxarray_5 __pyx_v_self->_shindex = __pyx_t_8; __pyx_t_8 = 0; - /* "src/builtin_backend/ynm.pyx":34 - * cdef int nmax,n,m,t + /* "src/builtin_backend/ynm.pyx":33 + * cdef int nmax,n,m * cdef mni it * if type(nmax_or_index) == int: # <<<<<<<<<<<<<< * nmax=nmax_or_index @@ -24982,32 +24901,32 @@ static int __pyx_pf_8shxarray_5shlib_3Ynm___cinit__(struct __pyx_obj_8shxarray_5 goto __pyx_L3; } - /* "src/builtin_backend/ynm.pyx":55 - * self._shindex=SHindexBase.mi_fromarrays(np.asarray(nmt).T) + /* "src/builtin_backend/ynm.pyx":48 + * self._shindex=SHindexBase.mi_fromarrays(np.asarray(nm).T) * else: * nv=np.array([n for n,_,_ in nmax_or_index.values]).astype(np.int32) # <<<<<<<<<<<<<< * mv=np.array([m for _,m,_ in nmax_or_index.values]).astype(np.int32) - * tv=np.array([t for _,_,t in nmax_or_index.values]).astype(np.int32) + * */ /*else*/ { - __Pyx_GetModuleGlobalName(__pyx_t_7, __pyx_n_s_np); if (unlikely(!__pyx_t_7)) __PYX_ERR(3, 55, __pyx_L1_error) + __Pyx_GetModuleGlobalName(__pyx_t_7, __pyx_n_s_np); if (unlikely(!__pyx_t_7)) __PYX_ERR(3, 48, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); - __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_t_7, __pyx_n_s_array); if (unlikely(!__pyx_t_6)) __PYX_ERR(3, 55, __pyx_L1_error) + __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_t_7, __pyx_n_s_array); if (unlikely(!__pyx_t_6)) __PYX_ERR(3, 48, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; { /* enter inner scope */ - __pyx_t_7 = PyList_New(0); if (unlikely(!__pyx_t_7)) __PYX_ERR(3, 55, __pyx_L10_error) + __pyx_t_7 = PyList_New(0); if (unlikely(!__pyx_t_7)) __PYX_ERR(3, 48, __pyx_L9_error) __Pyx_GOTREF(__pyx_t_7); - __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_v_nmax_or_index, __pyx_n_s_values); if (unlikely(!__pyx_t_5)) __PYX_ERR(3, 55, __pyx_L10_error) + __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_v_nmax_or_index, __pyx_n_s_values); if (unlikely(!__pyx_t_5)) __PYX_ERR(3, 48, __pyx_L9_error) __Pyx_GOTREF(__pyx_t_5); if (likely(PyList_CheckExact(__pyx_t_5)) || PyTuple_CheckExact(__pyx_t_5)) { __pyx_t_15 = __pyx_t_5; __Pyx_INCREF(__pyx_t_15); __pyx_t_16 = 0; __pyx_t_17 = NULL; } else { - __pyx_t_16 = -1; __pyx_t_15 = PyObject_GetIter(__pyx_t_5); if (unlikely(!__pyx_t_15)) __PYX_ERR(3, 55, __pyx_L10_error) + __pyx_t_16 = -1; __pyx_t_15 = PyObject_GetIter(__pyx_t_5); if (unlikely(!__pyx_t_15)) __PYX_ERR(3, 48, __pyx_L9_error) __Pyx_GOTREF(__pyx_t_15); - __pyx_t_17 = __Pyx_PyObject_GetIterNextFunc(__pyx_t_15); if (unlikely(!__pyx_t_17)) __PYX_ERR(3, 55, __pyx_L10_error) + __pyx_t_17 = __Pyx_PyObject_GetIterNextFunc(__pyx_t_15); if (unlikely(!__pyx_t_17)) __PYX_ERR(3, 48, __pyx_L9_error) } __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; for (;;) { @@ -25016,28 +24935,28 @@ static int __pyx_pf_8shxarray_5shlib_3Ynm___cinit__(struct __pyx_obj_8shxarray_5 { Py_ssize_t __pyx_temp = __Pyx_PyList_GET_SIZE(__pyx_t_15); #if !CYTHON_ASSUME_SAFE_MACROS - if (unlikely((__pyx_temp < 0))) __PYX_ERR(3, 55, __pyx_L10_error) + if (unlikely((__pyx_temp < 0))) __PYX_ERR(3, 48, __pyx_L9_error) #endif if (__pyx_t_16 >= __pyx_temp) break; } #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS - __pyx_t_5 = PyList_GET_ITEM(__pyx_t_15, __pyx_t_16); __Pyx_INCREF(__pyx_t_5); __pyx_t_16++; if (unlikely((0 < 0))) __PYX_ERR(3, 55, __pyx_L10_error) + __pyx_t_5 = PyList_GET_ITEM(__pyx_t_15, __pyx_t_16); __Pyx_INCREF(__pyx_t_5); __pyx_t_16++; if (unlikely((0 < 0))) __PYX_ERR(3, 48, __pyx_L9_error) #else - __pyx_t_5 = __Pyx_PySequence_ITEM(__pyx_t_15, __pyx_t_16); __pyx_t_16++; if (unlikely(!__pyx_t_5)) __PYX_ERR(3, 55, __pyx_L10_error) + __pyx_t_5 = __Pyx_PySequence_ITEM(__pyx_t_15, __pyx_t_16); __pyx_t_16++; if (unlikely(!__pyx_t_5)) __PYX_ERR(3, 48, __pyx_L9_error) __Pyx_GOTREF(__pyx_t_5); #endif } else { { Py_ssize_t __pyx_temp = __Pyx_PyTuple_GET_SIZE(__pyx_t_15); #if !CYTHON_ASSUME_SAFE_MACROS - if (unlikely((__pyx_temp < 0))) __PYX_ERR(3, 55, __pyx_L10_error) + if (unlikely((__pyx_temp < 0))) __PYX_ERR(3, 48, __pyx_L9_error) #endif if (__pyx_t_16 >= __pyx_temp) break; } #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS - __pyx_t_5 = PyTuple_GET_ITEM(__pyx_t_15, __pyx_t_16); __Pyx_INCREF(__pyx_t_5); __pyx_t_16++; if (unlikely((0 < 0))) __PYX_ERR(3, 55, __pyx_L10_error) + __pyx_t_5 = PyTuple_GET_ITEM(__pyx_t_15, __pyx_t_16); __Pyx_INCREF(__pyx_t_5); __pyx_t_16++; if (unlikely((0 < 0))) __PYX_ERR(3, 48, __pyx_L9_error) #else - __pyx_t_5 = __Pyx_PySequence_ITEM(__pyx_t_15, __pyx_t_16); __pyx_t_16++; if (unlikely(!__pyx_t_5)) __PYX_ERR(3, 55, __pyx_L10_error) + __pyx_t_5 = __Pyx_PySequence_ITEM(__pyx_t_15, __pyx_t_16); __pyx_t_16++; if (unlikely(!__pyx_t_5)) __PYX_ERR(3, 48, __pyx_L9_error) __Pyx_GOTREF(__pyx_t_5); #endif } @@ -25047,7 +24966,7 @@ static int __pyx_pf_8shxarray_5shlib_3Ynm___cinit__(struct __pyx_obj_8shxarray_5 PyObject* exc_type = PyErr_Occurred(); if (exc_type) { if (likely(__Pyx_PyErr_GivenExceptionMatches(exc_type, PyExc_StopIteration))) PyErr_Clear(); - else __PYX_ERR(3, 55, __pyx_L10_error) + else __PYX_ERR(3, 48, __pyx_L9_error) } break; } @@ -25059,7 +24978,7 @@ static int __pyx_pf_8shxarray_5shlib_3Ynm___cinit__(struct __pyx_obj_8shxarray_5 if (unlikely(size != 3)) { if (size > 3) __Pyx_RaiseTooManyValuesError(3); else if (size >= 0) __Pyx_RaiseNeedMoreValuesError(size); - __PYX_ERR(3, 55, __pyx_L10_error) + __PYX_ERR(3, 48, __pyx_L9_error) } #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS if (likely(PyTuple_CheckExact(sequence))) { @@ -25075,56 +24994,56 @@ static int __pyx_pf_8shxarray_5shlib_3Ynm___cinit__(struct __pyx_obj_8shxarray_5 __Pyx_INCREF(__pyx_t_19); __Pyx_INCREF(__pyx_t_20); #else - __pyx_t_18 = PySequence_ITEM(sequence, 0); if (unlikely(!__pyx_t_18)) __PYX_ERR(3, 55, __pyx_L10_error) + __pyx_t_18 = PySequence_ITEM(sequence, 0); if (unlikely(!__pyx_t_18)) __PYX_ERR(3, 48, __pyx_L9_error) __Pyx_GOTREF(__pyx_t_18); - __pyx_t_19 = PySequence_ITEM(sequence, 1); if (unlikely(!__pyx_t_19)) __PYX_ERR(3, 55, __pyx_L10_error) + __pyx_t_19 = PySequence_ITEM(sequence, 1); if (unlikely(!__pyx_t_19)) __PYX_ERR(3, 48, __pyx_L9_error) __Pyx_GOTREF(__pyx_t_19); - __pyx_t_20 = PySequence_ITEM(sequence, 2); if (unlikely(!__pyx_t_20)) __PYX_ERR(3, 55, __pyx_L10_error) + __pyx_t_20 = PySequence_ITEM(sequence, 2); if (unlikely(!__pyx_t_20)) __PYX_ERR(3, 48, __pyx_L9_error) __Pyx_GOTREF(__pyx_t_20); #endif __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; } else { Py_ssize_t index = -1; - __pyx_t_21 = PyObject_GetIter(__pyx_t_5); if (unlikely(!__pyx_t_21)) __PYX_ERR(3, 55, __pyx_L10_error) + __pyx_t_21 = PyObject_GetIter(__pyx_t_5); if (unlikely(!__pyx_t_21)) __PYX_ERR(3, 48, __pyx_L9_error) __Pyx_GOTREF(__pyx_t_21); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_22 = __Pyx_PyObject_GetIterNextFunc(__pyx_t_21); - index = 0; __pyx_t_18 = __pyx_t_22(__pyx_t_21); if (unlikely(!__pyx_t_18)) goto __pyx_L13_unpacking_failed; + index = 0; __pyx_t_18 = __pyx_t_22(__pyx_t_21); if (unlikely(!__pyx_t_18)) goto __pyx_L12_unpacking_failed; __Pyx_GOTREF(__pyx_t_18); - index = 1; __pyx_t_19 = __pyx_t_22(__pyx_t_21); if (unlikely(!__pyx_t_19)) goto __pyx_L13_unpacking_failed; + index = 1; __pyx_t_19 = __pyx_t_22(__pyx_t_21); if (unlikely(!__pyx_t_19)) goto __pyx_L12_unpacking_failed; __Pyx_GOTREF(__pyx_t_19); - index = 2; __pyx_t_20 = __pyx_t_22(__pyx_t_21); if (unlikely(!__pyx_t_20)) goto __pyx_L13_unpacking_failed; + index = 2; __pyx_t_20 = __pyx_t_22(__pyx_t_21); if (unlikely(!__pyx_t_20)) goto __pyx_L12_unpacking_failed; __Pyx_GOTREF(__pyx_t_20); - if (__Pyx_IternextUnpackEndCheck(__pyx_t_22(__pyx_t_21), 3) < 0) __PYX_ERR(3, 55, __pyx_L10_error) + if (__Pyx_IternextUnpackEndCheck(__pyx_t_22(__pyx_t_21), 3) < 0) __PYX_ERR(3, 48, __pyx_L9_error) __pyx_t_22 = NULL; __Pyx_DECREF(__pyx_t_21); __pyx_t_21 = 0; - goto __pyx_L14_unpacking_done; - __pyx_L13_unpacking_failed:; + goto __pyx_L13_unpacking_done; + __pyx_L12_unpacking_failed:; __Pyx_DECREF(__pyx_t_21); __pyx_t_21 = 0; __pyx_t_22 = NULL; if (__Pyx_IterFinish() == 0) __Pyx_RaiseNeedMoreValuesError(index); - __PYX_ERR(3, 55, __pyx_L10_error) - __pyx_L14_unpacking_done:; + __PYX_ERR(3, 48, __pyx_L9_error) + __pyx_L13_unpacking_done:; } - __pyx_t_3 = __Pyx_PyInt_As_int(__pyx_t_18); if (unlikely((__pyx_t_3 == (int)-1) && PyErr_Occurred())) __PYX_ERR(3, 55, __pyx_L10_error) + __pyx_t_3 = __Pyx_PyInt_As_int(__pyx_t_18); if (unlikely((__pyx_t_3 == (int)-1) && PyErr_Occurred())) __PYX_ERR(3, 48, __pyx_L9_error) __Pyx_DECREF(__pyx_t_18); __pyx_t_18 = 0; __pyx_8genexpr3__pyx_v_n = __pyx_t_3; __Pyx_XDECREF_SET(__pyx_8genexpr3__pyx_v__, __pyx_t_19); __pyx_t_19 = 0; __Pyx_DECREF_SET(__pyx_8genexpr3__pyx_v__, __pyx_t_20); __pyx_t_20 = 0; - __pyx_t_5 = __Pyx_PyInt_From_int(__pyx_8genexpr3__pyx_v_n); if (unlikely(!__pyx_t_5)) __PYX_ERR(3, 55, __pyx_L10_error) + __pyx_t_5 = __Pyx_PyInt_From_int(__pyx_8genexpr3__pyx_v_n); if (unlikely(!__pyx_t_5)) __PYX_ERR(3, 48, __pyx_L9_error) __Pyx_GOTREF(__pyx_t_5); - if (unlikely(__Pyx_ListComp_Append(__pyx_t_7, (PyObject*)__pyx_t_5))) __PYX_ERR(3, 55, __pyx_L10_error) + if (unlikely(__Pyx_ListComp_Append(__pyx_t_7, (PyObject*)__pyx_t_5))) __PYX_ERR(3, 48, __pyx_L9_error) __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; } __Pyx_DECREF(__pyx_t_15); __pyx_t_15 = 0; __Pyx_XDECREF(__pyx_8genexpr3__pyx_v__); __pyx_8genexpr3__pyx_v__ = 0; - goto __pyx_L16_exit_scope; - __pyx_L10_error:; + goto __pyx_L15_exit_scope; + __pyx_L9_error:; __Pyx_XDECREF(__pyx_8genexpr3__pyx_v__); __pyx_8genexpr3__pyx_v__ = 0; goto __pyx_L1_error; - __pyx_L16_exit_scope:; + __pyx_L15_exit_scope:; } /* exit inner scope */ __pyx_t_15 = NULL; __pyx_t_3 = 0; @@ -25145,16 +25064,16 @@ static int __pyx_pf_8shxarray_5shlib_3Ynm___cinit__(struct __pyx_obj_8shxarray_5 __pyx_t_1 = __Pyx_PyObject_FastCall(__pyx_t_6, __pyx_callargs+1-__pyx_t_3, 1+__pyx_t_3); __Pyx_XDECREF(__pyx_t_15); __pyx_t_15 = 0; __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; - if (unlikely(!__pyx_t_1)) __PYX_ERR(3, 55, __pyx_L1_error) + if (unlikely(!__pyx_t_1)) __PYX_ERR(3, 48, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; } - __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_astype); if (unlikely(!__pyx_t_6)) __PYX_ERR(3, 55, __pyx_L1_error) + __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_astype); if (unlikely(!__pyx_t_6)) __PYX_ERR(3, 48, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; - __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_np); if (unlikely(!__pyx_t_1)) __PYX_ERR(3, 55, __pyx_L1_error) + __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_np); if (unlikely(!__pyx_t_1)) __PYX_ERR(3, 48, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); - __pyx_t_7 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_int32); if (unlikely(!__pyx_t_7)) __PYX_ERR(3, 55, __pyx_L1_error) + __pyx_t_7 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_int32); if (unlikely(!__pyx_t_7)) __PYX_ERR(3, 48, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = NULL; @@ -25176,41 +25095,41 @@ static int __pyx_pf_8shxarray_5shlib_3Ynm___cinit__(struct __pyx_obj_8shxarray_5 __pyx_t_8 = __Pyx_PyObject_FastCall(__pyx_t_6, __pyx_callargs+1-__pyx_t_3, 1+__pyx_t_3); __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; - if (unlikely(!__pyx_t_8)) __PYX_ERR(3, 55, __pyx_L1_error) + if (unlikely(!__pyx_t_8)) __PYX_ERR(3, 48, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; } - __pyx_t_23 = __Pyx_PyObject_to_MemoryviewSlice_dc_int(__pyx_t_8, PyBUF_WRITABLE); if (unlikely(!__pyx_t_23.memview)) __PYX_ERR(3, 55, __pyx_L1_error) + __pyx_t_23 = __Pyx_PyObject_to_MemoryviewSlice_dc_int(__pyx_t_8, PyBUF_WRITABLE); if (unlikely(!__pyx_t_23.memview)) __PYX_ERR(3, 48, __pyx_L1_error) __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __pyx_v_nv = __pyx_t_23; __pyx_t_23.memview = NULL; __pyx_t_23.data = NULL; - /* "src/builtin_backend/ynm.pyx":56 + /* "src/builtin_backend/ynm.pyx":49 * else: * nv=np.array([n for n,_,_ in nmax_or_index.values]).astype(np.int32) * mv=np.array([m for _,m,_ in nmax_or_index.values]).astype(np.int32) # <<<<<<<<<<<<<< - * tv=np.array([t for _,_,t in nmax_or_index.values]).astype(np.int32) * + * sz=len(nmax_or_index) */ - __Pyx_GetModuleGlobalName(__pyx_t_7, __pyx_n_s_np); if (unlikely(!__pyx_t_7)) __PYX_ERR(3, 56, __pyx_L1_error) + __Pyx_GetModuleGlobalName(__pyx_t_7, __pyx_n_s_np); if (unlikely(!__pyx_t_7)) __PYX_ERR(3, 49, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); - __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_7, __pyx_n_s_array); if (unlikely(!__pyx_t_1)) __PYX_ERR(3, 56, __pyx_L1_error) + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_7, __pyx_n_s_array); if (unlikely(!__pyx_t_1)) __PYX_ERR(3, 49, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; { /* enter inner scope */ - __pyx_t_7 = PyList_New(0); if (unlikely(!__pyx_t_7)) __PYX_ERR(3, 56, __pyx_L19_error) + __pyx_t_7 = PyList_New(0); if (unlikely(!__pyx_t_7)) __PYX_ERR(3, 49, __pyx_L18_error) __Pyx_GOTREF(__pyx_t_7); - __pyx_t_15 = __Pyx_PyObject_GetAttrStr(__pyx_v_nmax_or_index, __pyx_n_s_values); if (unlikely(!__pyx_t_15)) __PYX_ERR(3, 56, __pyx_L19_error) + __pyx_t_15 = __Pyx_PyObject_GetAttrStr(__pyx_v_nmax_or_index, __pyx_n_s_values); if (unlikely(!__pyx_t_15)) __PYX_ERR(3, 49, __pyx_L18_error) __Pyx_GOTREF(__pyx_t_15); if (likely(PyList_CheckExact(__pyx_t_15)) || PyTuple_CheckExact(__pyx_t_15)) { __pyx_t_5 = __pyx_t_15; __Pyx_INCREF(__pyx_t_5); __pyx_t_16 = 0; __pyx_t_17 = NULL; } else { - __pyx_t_16 = -1; __pyx_t_5 = PyObject_GetIter(__pyx_t_15); if (unlikely(!__pyx_t_5)) __PYX_ERR(3, 56, __pyx_L19_error) + __pyx_t_16 = -1; __pyx_t_5 = PyObject_GetIter(__pyx_t_15); if (unlikely(!__pyx_t_5)) __PYX_ERR(3, 49, __pyx_L18_error) __Pyx_GOTREF(__pyx_t_5); - __pyx_t_17 = __Pyx_PyObject_GetIterNextFunc(__pyx_t_5); if (unlikely(!__pyx_t_17)) __PYX_ERR(3, 56, __pyx_L19_error) + __pyx_t_17 = __Pyx_PyObject_GetIterNextFunc(__pyx_t_5); if (unlikely(!__pyx_t_17)) __PYX_ERR(3, 49, __pyx_L18_error) } __Pyx_DECREF(__pyx_t_15); __pyx_t_15 = 0; for (;;) { @@ -25219,28 +25138,28 @@ static int __pyx_pf_8shxarray_5shlib_3Ynm___cinit__(struct __pyx_obj_8shxarray_5 { Py_ssize_t __pyx_temp = __Pyx_PyList_GET_SIZE(__pyx_t_5); #if !CYTHON_ASSUME_SAFE_MACROS - if (unlikely((__pyx_temp < 0))) __PYX_ERR(3, 56, __pyx_L19_error) + if (unlikely((__pyx_temp < 0))) __PYX_ERR(3, 49, __pyx_L18_error) #endif if (__pyx_t_16 >= __pyx_temp) break; } #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS - __pyx_t_15 = PyList_GET_ITEM(__pyx_t_5, __pyx_t_16); __Pyx_INCREF(__pyx_t_15); __pyx_t_16++; if (unlikely((0 < 0))) __PYX_ERR(3, 56, __pyx_L19_error) + __pyx_t_15 = PyList_GET_ITEM(__pyx_t_5, __pyx_t_16); __Pyx_INCREF(__pyx_t_15); __pyx_t_16++; if (unlikely((0 < 0))) __PYX_ERR(3, 49, __pyx_L18_error) #else - __pyx_t_15 = __Pyx_PySequence_ITEM(__pyx_t_5, __pyx_t_16); __pyx_t_16++; if (unlikely(!__pyx_t_15)) __PYX_ERR(3, 56, __pyx_L19_error) + __pyx_t_15 = __Pyx_PySequence_ITEM(__pyx_t_5, __pyx_t_16); __pyx_t_16++; if (unlikely(!__pyx_t_15)) __PYX_ERR(3, 49, __pyx_L18_error) __Pyx_GOTREF(__pyx_t_15); #endif } else { { Py_ssize_t __pyx_temp = __Pyx_PyTuple_GET_SIZE(__pyx_t_5); #if !CYTHON_ASSUME_SAFE_MACROS - if (unlikely((__pyx_temp < 0))) __PYX_ERR(3, 56, __pyx_L19_error) + if (unlikely((__pyx_temp < 0))) __PYX_ERR(3, 49, __pyx_L18_error) #endif if (__pyx_t_16 >= __pyx_temp) break; } #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS - __pyx_t_15 = PyTuple_GET_ITEM(__pyx_t_5, __pyx_t_16); __Pyx_INCREF(__pyx_t_15); __pyx_t_16++; if (unlikely((0 < 0))) __PYX_ERR(3, 56, __pyx_L19_error) + __pyx_t_15 = PyTuple_GET_ITEM(__pyx_t_5, __pyx_t_16); __Pyx_INCREF(__pyx_t_15); __pyx_t_16++; if (unlikely((0 < 0))) __PYX_ERR(3, 49, __pyx_L18_error) #else - __pyx_t_15 = __Pyx_PySequence_ITEM(__pyx_t_5, __pyx_t_16); __pyx_t_16++; if (unlikely(!__pyx_t_15)) __PYX_ERR(3, 56, __pyx_L19_error) + __pyx_t_15 = __Pyx_PySequence_ITEM(__pyx_t_5, __pyx_t_16); __pyx_t_16++; if (unlikely(!__pyx_t_15)) __PYX_ERR(3, 49, __pyx_L18_error) __Pyx_GOTREF(__pyx_t_15); #endif } @@ -25250,7 +25169,7 @@ static int __pyx_pf_8shxarray_5shlib_3Ynm___cinit__(struct __pyx_obj_8shxarray_5 PyObject* exc_type = PyErr_Occurred(); if (exc_type) { if (likely(__Pyx_PyErr_GivenExceptionMatches(exc_type, PyExc_StopIteration))) PyErr_Clear(); - else __PYX_ERR(3, 56, __pyx_L19_error) + else __PYX_ERR(3, 49, __pyx_L18_error) } break; } @@ -25262,7 +25181,7 @@ static int __pyx_pf_8shxarray_5shlib_3Ynm___cinit__(struct __pyx_obj_8shxarray_5 if (unlikely(size != 3)) { if (size > 3) __Pyx_RaiseTooManyValuesError(3); else if (size >= 0) __Pyx_RaiseNeedMoreValuesError(size); - __PYX_ERR(3, 56, __pyx_L19_error) + __PYX_ERR(3, 49, __pyx_L18_error) } #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS if (likely(PyTuple_CheckExact(sequence))) { @@ -25278,56 +25197,56 @@ static int __pyx_pf_8shxarray_5shlib_3Ynm___cinit__(struct __pyx_obj_8shxarray_5 __Pyx_INCREF(__pyx_t_19); __Pyx_INCREF(__pyx_t_18); #else - __pyx_t_20 = PySequence_ITEM(sequence, 0); if (unlikely(!__pyx_t_20)) __PYX_ERR(3, 56, __pyx_L19_error) + __pyx_t_20 = PySequence_ITEM(sequence, 0); if (unlikely(!__pyx_t_20)) __PYX_ERR(3, 49, __pyx_L18_error) __Pyx_GOTREF(__pyx_t_20); - __pyx_t_19 = PySequence_ITEM(sequence, 1); if (unlikely(!__pyx_t_19)) __PYX_ERR(3, 56, __pyx_L19_error) + __pyx_t_19 = PySequence_ITEM(sequence, 1); if (unlikely(!__pyx_t_19)) __PYX_ERR(3, 49, __pyx_L18_error) __Pyx_GOTREF(__pyx_t_19); - __pyx_t_18 = PySequence_ITEM(sequence, 2); if (unlikely(!__pyx_t_18)) __PYX_ERR(3, 56, __pyx_L19_error) + __pyx_t_18 = PySequence_ITEM(sequence, 2); if (unlikely(!__pyx_t_18)) __PYX_ERR(3, 49, __pyx_L18_error) __Pyx_GOTREF(__pyx_t_18); #endif __Pyx_DECREF(__pyx_t_15); __pyx_t_15 = 0; } else { Py_ssize_t index = -1; - __pyx_t_21 = PyObject_GetIter(__pyx_t_15); if (unlikely(!__pyx_t_21)) __PYX_ERR(3, 56, __pyx_L19_error) + __pyx_t_21 = PyObject_GetIter(__pyx_t_15); if (unlikely(!__pyx_t_21)) __PYX_ERR(3, 49, __pyx_L18_error) __Pyx_GOTREF(__pyx_t_21); __Pyx_DECREF(__pyx_t_15); __pyx_t_15 = 0; __pyx_t_22 = __Pyx_PyObject_GetIterNextFunc(__pyx_t_21); - index = 0; __pyx_t_20 = __pyx_t_22(__pyx_t_21); if (unlikely(!__pyx_t_20)) goto __pyx_L22_unpacking_failed; + index = 0; __pyx_t_20 = __pyx_t_22(__pyx_t_21); if (unlikely(!__pyx_t_20)) goto __pyx_L21_unpacking_failed; __Pyx_GOTREF(__pyx_t_20); - index = 1; __pyx_t_19 = __pyx_t_22(__pyx_t_21); if (unlikely(!__pyx_t_19)) goto __pyx_L22_unpacking_failed; + index = 1; __pyx_t_19 = __pyx_t_22(__pyx_t_21); if (unlikely(!__pyx_t_19)) goto __pyx_L21_unpacking_failed; __Pyx_GOTREF(__pyx_t_19); - index = 2; __pyx_t_18 = __pyx_t_22(__pyx_t_21); if (unlikely(!__pyx_t_18)) goto __pyx_L22_unpacking_failed; + index = 2; __pyx_t_18 = __pyx_t_22(__pyx_t_21); if (unlikely(!__pyx_t_18)) goto __pyx_L21_unpacking_failed; __Pyx_GOTREF(__pyx_t_18); - if (__Pyx_IternextUnpackEndCheck(__pyx_t_22(__pyx_t_21), 3) < 0) __PYX_ERR(3, 56, __pyx_L19_error) + if (__Pyx_IternextUnpackEndCheck(__pyx_t_22(__pyx_t_21), 3) < 0) __PYX_ERR(3, 49, __pyx_L18_error) __pyx_t_22 = NULL; __Pyx_DECREF(__pyx_t_21); __pyx_t_21 = 0; - goto __pyx_L23_unpacking_done; - __pyx_L22_unpacking_failed:; + goto __pyx_L22_unpacking_done; + __pyx_L21_unpacking_failed:; __Pyx_DECREF(__pyx_t_21); __pyx_t_21 = 0; __pyx_t_22 = NULL; if (__Pyx_IterFinish() == 0) __Pyx_RaiseNeedMoreValuesError(index); - __PYX_ERR(3, 56, __pyx_L19_error) - __pyx_L23_unpacking_done:; + __PYX_ERR(3, 49, __pyx_L18_error) + __pyx_L22_unpacking_done:; } - __pyx_t_3 = __Pyx_PyInt_As_int(__pyx_t_19); if (unlikely((__pyx_t_3 == (int)-1) && PyErr_Occurred())) __PYX_ERR(3, 56, __pyx_L19_error) + __pyx_t_3 = __Pyx_PyInt_As_int(__pyx_t_19); if (unlikely((__pyx_t_3 == (int)-1) && PyErr_Occurred())) __PYX_ERR(3, 49, __pyx_L18_error) __Pyx_DECREF(__pyx_t_19); __pyx_t_19 = 0; __Pyx_XDECREF_SET(__pyx_8genexpr4__pyx_v__, __pyx_t_20); __pyx_t_20 = 0; __pyx_8genexpr4__pyx_v_m = __pyx_t_3; __Pyx_DECREF_SET(__pyx_8genexpr4__pyx_v__, __pyx_t_18); __pyx_t_18 = 0; - __pyx_t_15 = __Pyx_PyInt_From_int(__pyx_8genexpr4__pyx_v_m); if (unlikely(!__pyx_t_15)) __PYX_ERR(3, 56, __pyx_L19_error) + __pyx_t_15 = __Pyx_PyInt_From_int(__pyx_8genexpr4__pyx_v_m); if (unlikely(!__pyx_t_15)) __PYX_ERR(3, 49, __pyx_L18_error) __Pyx_GOTREF(__pyx_t_15); - if (unlikely(__Pyx_ListComp_Append(__pyx_t_7, (PyObject*)__pyx_t_15))) __PYX_ERR(3, 56, __pyx_L19_error) + if (unlikely(__Pyx_ListComp_Append(__pyx_t_7, (PyObject*)__pyx_t_15))) __PYX_ERR(3, 49, __pyx_L18_error) __Pyx_DECREF(__pyx_t_15); __pyx_t_15 = 0; } __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_XDECREF(__pyx_8genexpr4__pyx_v__); __pyx_8genexpr4__pyx_v__ = 0; - goto __pyx_L25_exit_scope; - __pyx_L19_error:; + goto __pyx_L24_exit_scope; + __pyx_L18_error:; __Pyx_XDECREF(__pyx_8genexpr4__pyx_v__); __pyx_8genexpr4__pyx_v__ = 0; goto __pyx_L1_error; - __pyx_L25_exit_scope:; + __pyx_L24_exit_scope:; } /* exit inner scope */ __pyx_t_5 = NULL; __pyx_t_3 = 0; @@ -25348,16 +25267,16 @@ static int __pyx_pf_8shxarray_5shlib_3Ynm___cinit__(struct __pyx_obj_8shxarray_5 __pyx_t_6 = __Pyx_PyObject_FastCall(__pyx_t_1, __pyx_callargs+1-__pyx_t_3, 1+__pyx_t_3); __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; - if (unlikely(!__pyx_t_6)) __PYX_ERR(3, 56, __pyx_L1_error) + if (unlikely(!__pyx_t_6)) __PYX_ERR(3, 49, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; } - __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_6, __pyx_n_s_astype); if (unlikely(!__pyx_t_1)) __PYX_ERR(3, 56, __pyx_L1_error) + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_6, __pyx_n_s_astype); if (unlikely(!__pyx_t_1)) __PYX_ERR(3, 49, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; - __Pyx_GetModuleGlobalName(__pyx_t_6, __pyx_n_s_np); if (unlikely(!__pyx_t_6)) __PYX_ERR(3, 56, __pyx_L1_error) + __Pyx_GetModuleGlobalName(__pyx_t_6, __pyx_n_s_np); if (unlikely(!__pyx_t_6)) __PYX_ERR(3, 49, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); - __pyx_t_7 = __Pyx_PyObject_GetAttrStr(__pyx_t_6, __pyx_n_s_int32); if (unlikely(!__pyx_t_7)) __PYX_ERR(3, 56, __pyx_L1_error) + __pyx_t_7 = __Pyx_PyObject_GetAttrStr(__pyx_t_6, __pyx_n_s_int32); if (unlikely(!__pyx_t_7)) __PYX_ERR(3, 49, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_t_6 = NULL; @@ -25379,250 +25298,46 @@ static int __pyx_pf_8shxarray_5shlib_3Ynm___cinit__(struct __pyx_obj_8shxarray_5 __pyx_t_8 = __Pyx_PyObject_FastCall(__pyx_t_1, __pyx_callargs+1-__pyx_t_3, 1+__pyx_t_3); __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; - if (unlikely(!__pyx_t_8)) __PYX_ERR(3, 56, __pyx_L1_error) + if (unlikely(!__pyx_t_8)) __PYX_ERR(3, 49, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; } - __pyx_t_23 = __Pyx_PyObject_to_MemoryviewSlice_dc_int(__pyx_t_8, PyBUF_WRITABLE); if (unlikely(!__pyx_t_23.memview)) __PYX_ERR(3, 56, __pyx_L1_error) + __pyx_t_23 = __Pyx_PyObject_to_MemoryviewSlice_dc_int(__pyx_t_8, PyBUF_WRITABLE); if (unlikely(!__pyx_t_23.memview)) __PYX_ERR(3, 49, __pyx_L1_error) __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __pyx_v_mv = __pyx_t_23; __pyx_t_23.memview = NULL; __pyx_t_23.data = NULL; - /* "src/builtin_backend/ynm.pyx":57 - * nv=np.array([n for n,_,_ in nmax_or_index.values]).astype(np.int32) + /* "src/builtin_backend/ynm.pyx":51 * mv=np.array([m for _,m,_ in nmax_or_index.values]).astype(np.int32) - * tv=np.array([t for _,_,t in nmax_or_index.values]).astype(np.int32) # <<<<<<<<<<<<<< - * - * sz=len(nmax_or_index) - */ - __Pyx_GetModuleGlobalName(__pyx_t_7, __pyx_n_s_np); if (unlikely(!__pyx_t_7)) __PYX_ERR(3, 57, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_7); - __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_t_7, __pyx_n_s_array); if (unlikely(!__pyx_t_6)) __PYX_ERR(3, 57, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_6); - __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; - { /* enter inner scope */ - __pyx_t_7 = PyList_New(0); if (unlikely(!__pyx_t_7)) __PYX_ERR(3, 57, __pyx_L28_error) - __Pyx_GOTREF(__pyx_t_7); - __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_v_nmax_or_index, __pyx_n_s_values); if (unlikely(!__pyx_t_5)) __PYX_ERR(3, 57, __pyx_L28_error) - __Pyx_GOTREF(__pyx_t_5); - if (likely(PyList_CheckExact(__pyx_t_5)) || PyTuple_CheckExact(__pyx_t_5)) { - __pyx_t_15 = __pyx_t_5; __Pyx_INCREF(__pyx_t_15); - __pyx_t_16 = 0; - __pyx_t_17 = NULL; - } else { - __pyx_t_16 = -1; __pyx_t_15 = PyObject_GetIter(__pyx_t_5); if (unlikely(!__pyx_t_15)) __PYX_ERR(3, 57, __pyx_L28_error) - __Pyx_GOTREF(__pyx_t_15); - __pyx_t_17 = __Pyx_PyObject_GetIterNextFunc(__pyx_t_15); if (unlikely(!__pyx_t_17)) __PYX_ERR(3, 57, __pyx_L28_error) - } - __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; - for (;;) { - if (likely(!__pyx_t_17)) { - if (likely(PyList_CheckExact(__pyx_t_15))) { - { - Py_ssize_t __pyx_temp = __Pyx_PyList_GET_SIZE(__pyx_t_15); - #if !CYTHON_ASSUME_SAFE_MACROS - if (unlikely((__pyx_temp < 0))) __PYX_ERR(3, 57, __pyx_L28_error) - #endif - if (__pyx_t_16 >= __pyx_temp) break; - } - #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS - __pyx_t_5 = PyList_GET_ITEM(__pyx_t_15, __pyx_t_16); __Pyx_INCREF(__pyx_t_5); __pyx_t_16++; if (unlikely((0 < 0))) __PYX_ERR(3, 57, __pyx_L28_error) - #else - __pyx_t_5 = __Pyx_PySequence_ITEM(__pyx_t_15, __pyx_t_16); __pyx_t_16++; if (unlikely(!__pyx_t_5)) __PYX_ERR(3, 57, __pyx_L28_error) - __Pyx_GOTREF(__pyx_t_5); - #endif - } else { - { - Py_ssize_t __pyx_temp = __Pyx_PyTuple_GET_SIZE(__pyx_t_15); - #if !CYTHON_ASSUME_SAFE_MACROS - if (unlikely((__pyx_temp < 0))) __PYX_ERR(3, 57, __pyx_L28_error) - #endif - if (__pyx_t_16 >= __pyx_temp) break; - } - #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS - __pyx_t_5 = PyTuple_GET_ITEM(__pyx_t_15, __pyx_t_16); __Pyx_INCREF(__pyx_t_5); __pyx_t_16++; if (unlikely((0 < 0))) __PYX_ERR(3, 57, __pyx_L28_error) - #else - __pyx_t_5 = __Pyx_PySequence_ITEM(__pyx_t_15, __pyx_t_16); __pyx_t_16++; if (unlikely(!__pyx_t_5)) __PYX_ERR(3, 57, __pyx_L28_error) - __Pyx_GOTREF(__pyx_t_5); - #endif - } - } else { - __pyx_t_5 = __pyx_t_17(__pyx_t_15); - if (unlikely(!__pyx_t_5)) { - PyObject* exc_type = PyErr_Occurred(); - if (exc_type) { - if (likely(__Pyx_PyErr_GivenExceptionMatches(exc_type, PyExc_StopIteration))) PyErr_Clear(); - else __PYX_ERR(3, 57, __pyx_L28_error) - } - break; - } - __Pyx_GOTREF(__pyx_t_5); - } - if ((likely(PyTuple_CheckExact(__pyx_t_5))) || (PyList_CheckExact(__pyx_t_5))) { - PyObject* sequence = __pyx_t_5; - Py_ssize_t size = __Pyx_PySequence_SIZE(sequence); - if (unlikely(size != 3)) { - if (size > 3) __Pyx_RaiseTooManyValuesError(3); - else if (size >= 0) __Pyx_RaiseNeedMoreValuesError(size); - __PYX_ERR(3, 57, __pyx_L28_error) - } - #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS - if (likely(PyTuple_CheckExact(sequence))) { - __pyx_t_18 = PyTuple_GET_ITEM(sequence, 0); - __pyx_t_19 = PyTuple_GET_ITEM(sequence, 1); - __pyx_t_20 = PyTuple_GET_ITEM(sequence, 2); - } else { - __pyx_t_18 = PyList_GET_ITEM(sequence, 0); - __pyx_t_19 = PyList_GET_ITEM(sequence, 1); - __pyx_t_20 = PyList_GET_ITEM(sequence, 2); - } - __Pyx_INCREF(__pyx_t_18); - __Pyx_INCREF(__pyx_t_19); - __Pyx_INCREF(__pyx_t_20); - #else - __pyx_t_18 = PySequence_ITEM(sequence, 0); if (unlikely(!__pyx_t_18)) __PYX_ERR(3, 57, __pyx_L28_error) - __Pyx_GOTREF(__pyx_t_18); - __pyx_t_19 = PySequence_ITEM(sequence, 1); if (unlikely(!__pyx_t_19)) __PYX_ERR(3, 57, __pyx_L28_error) - __Pyx_GOTREF(__pyx_t_19); - __pyx_t_20 = PySequence_ITEM(sequence, 2); if (unlikely(!__pyx_t_20)) __PYX_ERR(3, 57, __pyx_L28_error) - __Pyx_GOTREF(__pyx_t_20); - #endif - __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; - } else { - Py_ssize_t index = -1; - __pyx_t_21 = PyObject_GetIter(__pyx_t_5); if (unlikely(!__pyx_t_21)) __PYX_ERR(3, 57, __pyx_L28_error) - __Pyx_GOTREF(__pyx_t_21); - __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; - __pyx_t_22 = __Pyx_PyObject_GetIterNextFunc(__pyx_t_21); - index = 0; __pyx_t_18 = __pyx_t_22(__pyx_t_21); if (unlikely(!__pyx_t_18)) goto __pyx_L31_unpacking_failed; - __Pyx_GOTREF(__pyx_t_18); - index = 1; __pyx_t_19 = __pyx_t_22(__pyx_t_21); if (unlikely(!__pyx_t_19)) goto __pyx_L31_unpacking_failed; - __Pyx_GOTREF(__pyx_t_19); - index = 2; __pyx_t_20 = __pyx_t_22(__pyx_t_21); if (unlikely(!__pyx_t_20)) goto __pyx_L31_unpacking_failed; - __Pyx_GOTREF(__pyx_t_20); - if (__Pyx_IternextUnpackEndCheck(__pyx_t_22(__pyx_t_21), 3) < 0) __PYX_ERR(3, 57, __pyx_L28_error) - __pyx_t_22 = NULL; - __Pyx_DECREF(__pyx_t_21); __pyx_t_21 = 0; - goto __pyx_L32_unpacking_done; - __pyx_L31_unpacking_failed:; - __Pyx_DECREF(__pyx_t_21); __pyx_t_21 = 0; - __pyx_t_22 = NULL; - if (__Pyx_IterFinish() == 0) __Pyx_RaiseNeedMoreValuesError(index); - __PYX_ERR(3, 57, __pyx_L28_error) - __pyx_L32_unpacking_done:; - } - __pyx_t_3 = __Pyx_PyInt_As_int(__pyx_t_20); if (unlikely((__pyx_t_3 == (int)-1) && PyErr_Occurred())) __PYX_ERR(3, 57, __pyx_L28_error) - __Pyx_DECREF(__pyx_t_20); __pyx_t_20 = 0; - __Pyx_XDECREF_SET(__pyx_8genexpr5__pyx_v__, __pyx_t_18); - __pyx_t_18 = 0; - __Pyx_DECREF_SET(__pyx_8genexpr5__pyx_v__, __pyx_t_19); - __pyx_t_19 = 0; - __pyx_8genexpr5__pyx_v_t = __pyx_t_3; - __pyx_t_5 = __Pyx_PyInt_From_int(__pyx_8genexpr5__pyx_v_t); if (unlikely(!__pyx_t_5)) __PYX_ERR(3, 57, __pyx_L28_error) - __Pyx_GOTREF(__pyx_t_5); - if (unlikely(__Pyx_ListComp_Append(__pyx_t_7, (PyObject*)__pyx_t_5))) __PYX_ERR(3, 57, __pyx_L28_error) - __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; - } - __Pyx_DECREF(__pyx_t_15); __pyx_t_15 = 0; - __Pyx_XDECREF(__pyx_8genexpr5__pyx_v__); __pyx_8genexpr5__pyx_v__ = 0; - goto __pyx_L34_exit_scope; - __pyx_L28_error:; - __Pyx_XDECREF(__pyx_8genexpr5__pyx_v__); __pyx_8genexpr5__pyx_v__ = 0; - goto __pyx_L1_error; - __pyx_L34_exit_scope:; - } /* exit inner scope */ - __pyx_t_15 = NULL; - __pyx_t_3 = 0; - #if CYTHON_UNPACK_METHODS - if (unlikely(PyMethod_Check(__pyx_t_6))) { - __pyx_t_15 = PyMethod_GET_SELF(__pyx_t_6); - if (likely(__pyx_t_15)) { - PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_6); - __Pyx_INCREF(__pyx_t_15); - __Pyx_INCREF(function); - __Pyx_DECREF_SET(__pyx_t_6, function); - __pyx_t_3 = 1; - } - } - #endif - { - PyObject *__pyx_callargs[2] = {__pyx_t_15, __pyx_t_7}; - __pyx_t_1 = __Pyx_PyObject_FastCall(__pyx_t_6, __pyx_callargs+1-__pyx_t_3, 1+__pyx_t_3); - __Pyx_XDECREF(__pyx_t_15); __pyx_t_15 = 0; - __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; - if (unlikely(!__pyx_t_1)) __PYX_ERR(3, 57, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_1); - __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; - } - __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_astype); if (unlikely(!__pyx_t_6)) __PYX_ERR(3, 57, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_6); - __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; - __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_np); if (unlikely(!__pyx_t_1)) __PYX_ERR(3, 57, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_1); - __pyx_t_7 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_int32); if (unlikely(!__pyx_t_7)) __PYX_ERR(3, 57, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_7); - __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; - __pyx_t_1 = NULL; - __pyx_t_3 = 0; - #if CYTHON_UNPACK_METHODS - if (likely(PyMethod_Check(__pyx_t_6))) { - __pyx_t_1 = PyMethod_GET_SELF(__pyx_t_6); - if (likely(__pyx_t_1)) { - PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_6); - __Pyx_INCREF(__pyx_t_1); - __Pyx_INCREF(function); - __Pyx_DECREF_SET(__pyx_t_6, function); - __pyx_t_3 = 1; - } - } - #endif - { - PyObject *__pyx_callargs[2] = {__pyx_t_1, __pyx_t_7}; - __pyx_t_8 = __Pyx_PyObject_FastCall(__pyx_t_6, __pyx_callargs+1-__pyx_t_3, 1+__pyx_t_3); - __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0; - __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; - if (unlikely(!__pyx_t_8)) __PYX_ERR(3, 57, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_8); - __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; - } - __pyx_t_23 = __Pyx_PyObject_to_MemoryviewSlice_dc_int(__pyx_t_8, PyBUF_WRITABLE); if (unlikely(!__pyx_t_23.memview)) __PYX_ERR(3, 57, __pyx_L1_error) - __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; - __pyx_v_tv = __pyx_t_23; - __pyx_t_23.memview = NULL; - __pyx_t_23.data = NULL; - - /* "src/builtin_backend/ynm.pyx":59 - * tv=np.array([t for _,_,t in nmax_or_index.values]).astype(np.int32) * * sz=len(nmax_or_index) # <<<<<<<<<<<<<< - * self._ynm=Ynm_cpp[double](sz,&nv[0],&mv[0],&tv[0]) + * self._ynm=Ynm_cpp[double](sz,&nv[0],&mv[0]) * self._shindex=nmax_or_index */ - __pyx_t_16 = PyObject_Length(__pyx_v_nmax_or_index); if (unlikely(__pyx_t_16 == ((Py_ssize_t)-1))) __PYX_ERR(3, 59, __pyx_L1_error) + __pyx_t_16 = PyObject_Length(__pyx_v_nmax_or_index); if (unlikely(__pyx_t_16 == ((Py_ssize_t)-1))) __PYX_ERR(3, 51, __pyx_L1_error) __pyx_v_sz = __pyx_t_16; - /* "src/builtin_backend/ynm.pyx":60 + /* "src/builtin_backend/ynm.pyx":52 * * sz=len(nmax_or_index) - * self._ynm=Ynm_cpp[double](sz,&nv[0],&mv[0],&tv[0]) # <<<<<<<<<<<<<< + * self._ynm=Ynm_cpp[double](sz,&nv[0],&mv[0]) # <<<<<<<<<<<<<< * self._shindex=nmax_or_index * */ __pyx_t_14 = 0; __pyx_t_24 = 0; - __pyx_t_25 = 0; try { - __pyx_t_4 = Ynm_cpp (__pyx_v_sz, (&(*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_nv.data) + __pyx_t_14)) )))), (&(*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_mv.data) + __pyx_t_24)) )))), (&(*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_tv.data) + __pyx_t_25)) ))))); + __pyx_t_4 = Ynm_cpp (__pyx_v_sz, (&(*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_nv.data) + __pyx_t_14)) )))), (&(*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_mv.data) + __pyx_t_24)) ))))); } catch(...) { __Pyx_CppExn2PyErr(); - __PYX_ERR(3, 60, __pyx_L1_error) + __PYX_ERR(3, 52, __pyx_L1_error) } __pyx_v_self->_ynm = __PYX_STD_MOVE_IF_SUPPORTED(__pyx_t_4); - /* "src/builtin_backend/ynm.pyx":61 + /* "src/builtin_backend/ynm.pyx":53 * sz=len(nmax_or_index) - * self._ynm=Ynm_cpp[double](sz,&nv[0],&mv[0],&tv[0]) + * self._ynm=Ynm_cpp[double](sz,&nv[0],&mv[0]) * self._shindex=nmax_or_index # <<<<<<<<<<<<<< * * #have data memory view point to the memory of the cpp class @@ -25635,32 +25350,32 @@ static int __pyx_pf_8shxarray_5shlib_3Ynm___cinit__(struct __pyx_obj_8shxarray_5 } __pyx_L3:; - /* "src/builtin_backend/ynm.pyx":64 + /* "src/builtin_backend/ynm.pyx":56 * * #have data memory view point to the memory of the cpp class * self.data = (self._ynm.data()) # <<<<<<<<<<<<<< * * */ - __pyx_t_26 = __pyx_v_self->_ynm.data(); - if (!__pyx_t_26) { + __pyx_t_25 = __pyx_v_self->_ynm.data(); + if (!__pyx_t_25) { PyErr_SetString(PyExc_ValueError,"Cannot create cython.array from NULL pointer"); - __PYX_ERR(3, 64, __pyx_L1_error) + __PYX_ERR(3, 56, __pyx_L1_error) } - __pyx_t_6 = __pyx_format_from_typeinfo(&__Pyx_TypeInfo_double); if (unlikely(!__pyx_t_6)) __PYX_ERR(3, 64, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_6); - __pyx_t_8 = Py_BuildValue((char*) "(" __PYX_BUILD_PY_SSIZE_T ")", ((Py_ssize_t)__pyx_v_sz)); if (unlikely(!__pyx_t_8)) __PYX_ERR(3, 64, __pyx_L1_error) + __pyx_t_1 = __pyx_format_from_typeinfo(&__Pyx_TypeInfo_double); if (unlikely(!__pyx_t_1)) __PYX_ERR(3, 56, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_8 = Py_BuildValue((char*) "(" __PYX_BUILD_PY_SSIZE_T ")", ((Py_ssize_t)__pyx_v_sz)); if (unlikely(!__pyx_t_8)) __PYX_ERR(3, 56, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); - __pyx_t_27 = __pyx_array_new(__pyx_t_8, sizeof(double), PyBytes_AS_STRING(__pyx_t_6), (char *) "fortran", (char *) __pyx_t_26); if (unlikely(!__pyx_t_27)) __PYX_ERR(3, 64, __pyx_L1_error) - __Pyx_GOTREF((PyObject *)__pyx_t_27); + __pyx_t_26 = __pyx_array_new(__pyx_t_8, sizeof(double), PyBytes_AS_STRING(__pyx_t_1), (char *) "fortran", (char *) __pyx_t_25); if (unlikely(!__pyx_t_26)) __PYX_ERR(3, 56, __pyx_L1_error) + __Pyx_GOTREF((PyObject *)__pyx_t_26); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; - __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; - __pyx_t_28 = __Pyx_PyObject_to_MemoryviewSlice_dc_double(((PyObject *)__pyx_t_27), PyBUF_WRITABLE); if (unlikely(!__pyx_t_28.memview)) __PYX_ERR(3, 64, __pyx_L1_error) - __Pyx_DECREF((PyObject *)__pyx_t_27); __pyx_t_27 = 0; + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __pyx_t_27 = __Pyx_PyObject_to_MemoryviewSlice_dc_double(((PyObject *)__pyx_t_26), PyBUF_WRITABLE); if (unlikely(!__pyx_t_27.memview)) __PYX_ERR(3, 56, __pyx_L1_error) + __Pyx_DECREF((PyObject *)__pyx_t_26); __pyx_t_26 = 0; __PYX_XCLEAR_MEMVIEW(&__pyx_v_self->data, 0); - __pyx_v_self->data = __pyx_t_28; - __pyx_t_28.memview = NULL; - __pyx_t_28.data = NULL; + __pyx_v_self->data = __pyx_t_27; + __pyx_t_27.memview = NULL; + __pyx_t_27.data = NULL; /* "src/builtin_backend/ynm.pyx":25 * cdef double[::1] data @@ -25686,23 +25401,21 @@ static int __pyx_pf_8shxarray_5shlib_3Ynm___cinit__(struct __pyx_obj_8shxarray_5 __Pyx_XDECREF(__pyx_t_20); __Pyx_XDECREF(__pyx_t_21); __PYX_XCLEAR_MEMVIEW(&__pyx_t_23, 1); - __Pyx_XDECREF((PyObject *)__pyx_t_27); - __PYX_XCLEAR_MEMVIEW(&__pyx_t_28, 1); + __Pyx_XDECREF((PyObject *)__pyx_t_26); + __PYX_XCLEAR_MEMVIEW(&__pyx_t_27, 1); __Pyx_AddTraceback("shxarray.shlib.Ynm.__cinit__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = -1; __pyx_L0:; __PYX_XCLEAR_MEMVIEW(&__pyx_v_nv, 1); __PYX_XCLEAR_MEMVIEW(&__pyx_v_mv, 1); - __PYX_XCLEAR_MEMVIEW(&__pyx_v_tv, 1); - __PYX_XCLEAR_MEMVIEW(&__pyx_v_nmt, 1); + __PYX_XCLEAR_MEMVIEW(&__pyx_v_nm, 1); __Pyx_XDECREF(__pyx_8genexpr3__pyx_v__); __Pyx_XDECREF(__pyx_8genexpr4__pyx_v__); - __Pyx_XDECREF(__pyx_8genexpr5__pyx_v__); __Pyx_RefNannyFinishContext(); return __pyx_r; } -/* "src/builtin_backend/ynm.pyx":67 +/* "src/builtin_backend/ynm.pyx":59 * * * @property # <<<<<<<<<<<<<< @@ -25734,7 +25447,7 @@ static PyObject *__pyx_pf_8shxarray_5shlib_3Ynm_4nmax___get__(struct __pyx_obj_8 int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__get__", 1); - /* "src/builtin_backend/ynm.pyx":69 + /* "src/builtin_backend/ynm.pyx":61 * @property * def nmax(self): * return self._ynm.nmax() # <<<<<<<<<<<<<< @@ -25742,13 +25455,13 @@ static PyObject *__pyx_pf_8shxarray_5shlib_3Ynm_4nmax___get__(struct __pyx_obj_8 * def __len__(self): */ __Pyx_XDECREF(__pyx_r); - __pyx_t_1 = __Pyx_PyInt_From_int(__pyx_v_self->_ynm.nmax()); if (unlikely(!__pyx_t_1)) __PYX_ERR(3, 69, __pyx_L1_error) + __pyx_t_1 = __Pyx_PyInt_From_int(__pyx_v_self->_ynm.nmax()); if (unlikely(!__pyx_t_1)) __PYX_ERR(3, 61, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_r = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L0; - /* "src/builtin_backend/ynm.pyx":67 + /* "src/builtin_backend/ynm.pyx":59 * * * @property # <<<<<<<<<<<<<< @@ -25767,7 +25480,7 @@ static PyObject *__pyx_pf_8shxarray_5shlib_3Ynm_4nmax___get__(struct __pyx_obj_8 return __pyx_r; } -/* "src/builtin_backend/ynm.pyx":71 +/* "src/builtin_backend/ynm.pyx":63 * return self._ynm.nmax() * * def __len__(self): # <<<<<<<<<<<<<< @@ -25793,7 +25506,7 @@ static Py_ssize_t __pyx_pw_8shxarray_5shlib_3Ynm_3__len__(PyObject *__pyx_v_self static Py_ssize_t __pyx_pf_8shxarray_5shlib_3Ynm_2__len__(struct __pyx_obj_8shxarray_5shlib_Ynm *__pyx_v_self) { Py_ssize_t __pyx_r; - /* "src/builtin_backend/ynm.pyx":72 + /* "src/builtin_backend/ynm.pyx":64 * * def __len__(self): * return self._ynm.size() # <<<<<<<<<<<<<< @@ -25803,7 +25516,7 @@ static Py_ssize_t __pyx_pf_8shxarray_5shlib_3Ynm_2__len__(struct __pyx_obj_8shxa __pyx_r = __pyx_v_self->_ynm.size(); goto __pyx_L0; - /* "src/builtin_backend/ynm.pyx":71 + /* "src/builtin_backend/ynm.pyx":63 * return self._ynm.nmax() * * def __len__(self): # <<<<<<<<<<<<<< @@ -25816,7 +25529,7 @@ static Py_ssize_t __pyx_pf_8shxarray_5shlib_3Ynm_2__len__(struct __pyx_obj_8shxa return __pyx_r; } -/* "src/builtin_backend/ynm.pyx":74 +/* "src/builtin_backend/ynm.pyx":66 * return self._ynm.size() * * def __call__(self,lon, lat): # <<<<<<<<<<<<<< @@ -25863,7 +25576,7 @@ static PyObject *__pyx_pw_8shxarray_5shlib_3Ynm_5__call__(PyObject *__pyx_v_self (void)__Pyx_Arg_NewRef_VARARGS(values[0]); kw_args--; } - else if (unlikely(PyErr_Occurred())) __PYX_ERR(3, 74, __pyx_L3_error) + else if (unlikely(PyErr_Occurred())) __PYX_ERR(3, 66, __pyx_L3_error) else goto __pyx_L5_argtuple_error; CYTHON_FALLTHROUGH; case 1: @@ -25871,14 +25584,14 @@ static PyObject *__pyx_pw_8shxarray_5shlib_3Ynm_5__call__(PyObject *__pyx_v_self (void)__Pyx_Arg_NewRef_VARARGS(values[1]); kw_args--; } - else if (unlikely(PyErr_Occurred())) __PYX_ERR(3, 74, __pyx_L3_error) + else if (unlikely(PyErr_Occurred())) __PYX_ERR(3, 66, __pyx_L3_error) else { - __Pyx_RaiseArgtupleInvalid("__call__", 1, 2, 2, 1); __PYX_ERR(3, 74, __pyx_L3_error) + __Pyx_RaiseArgtupleInvalid("__call__", 1, 2, 2, 1); __PYX_ERR(3, 66, __pyx_L3_error) } } if (unlikely(kw_args > 0)) { const Py_ssize_t kwd_pos_args = __pyx_nargs; - if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_kwvalues, __pyx_pyargnames, 0, values + 0, kwd_pos_args, "__call__") < 0)) __PYX_ERR(3, 74, __pyx_L3_error) + if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_kwvalues, __pyx_pyargnames, 0, values + 0, kwd_pos_args, "__call__") < 0)) __PYX_ERR(3, 66, __pyx_L3_error) } } else if (unlikely(__pyx_nargs != 2)) { goto __pyx_L5_argtuple_error; @@ -25891,7 +25604,7 @@ static PyObject *__pyx_pw_8shxarray_5shlib_3Ynm_5__call__(PyObject *__pyx_v_self } goto __pyx_L6_skip; __pyx_L5_argtuple_error:; - __Pyx_RaiseArgtupleInvalid("__call__", 1, 2, 2, __pyx_nargs); __PYX_ERR(3, 74, __pyx_L3_error) + __Pyx_RaiseArgtupleInvalid("__call__", 1, 2, 2, __pyx_nargs); __PYX_ERR(3, 66, __pyx_L3_error) __pyx_L6_skip:; goto __pyx_L4_argument_unpacking_done; __pyx_L3_error:; @@ -25947,16 +25660,16 @@ static PyObject *__pyx_pf_8shxarray_5shlib_3Ynm_4__call__(struct __pyx_obj_8shxa int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__call__", 1); - /* "src/builtin_backend/ynm.pyx":79 + /* "src/builtin_backend/ynm.pyx":71 * cdef double[:,::1] data; * * if np.isscalar(lon) and np.isscalar(lat): # <<<<<<<<<<<<<< * * self._ynm.set(lon,lat) */ - __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_np); if (unlikely(!__pyx_t_3)) __PYX_ERR(3, 79, __pyx_L1_error) + __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_np); if (unlikely(!__pyx_t_3)) __PYX_ERR(3, 71, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); - __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_isscalar); if (unlikely(!__pyx_t_4)) __PYX_ERR(3, 79, __pyx_L1_error) + __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_isscalar); if (unlikely(!__pyx_t_4)) __PYX_ERR(3, 71, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = NULL; @@ -25977,20 +25690,20 @@ static PyObject *__pyx_pf_8shxarray_5shlib_3Ynm_4__call__(struct __pyx_obj_8shxa PyObject *__pyx_callargs[2] = {__pyx_t_3, __pyx_v_lon}; __pyx_t_2 = __Pyx_PyObject_FastCall(__pyx_t_4, __pyx_callargs+1-__pyx_t_5, 1+__pyx_t_5); __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; - if (unlikely(!__pyx_t_2)) __PYX_ERR(3, 79, __pyx_L1_error) + if (unlikely(!__pyx_t_2)) __PYX_ERR(3, 71, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; } - __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_2); if (unlikely((__pyx_t_6 < 0))) __PYX_ERR(3, 79, __pyx_L1_error) + __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_2); if (unlikely((__pyx_t_6 < 0))) __PYX_ERR(3, 71, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (__pyx_t_6) { } else { __pyx_t_1 = __pyx_t_6; goto __pyx_L4_bool_binop_done; } - __Pyx_GetModuleGlobalName(__pyx_t_4, __pyx_n_s_np); if (unlikely(!__pyx_t_4)) __PYX_ERR(3, 79, __pyx_L1_error) + __Pyx_GetModuleGlobalName(__pyx_t_4, __pyx_n_s_np); if (unlikely(!__pyx_t_4)) __PYX_ERR(3, 71, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); - __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_isscalar); if (unlikely(!__pyx_t_3)) __PYX_ERR(3, 79, __pyx_L1_error) + __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_isscalar); if (unlikely(!__pyx_t_3)) __PYX_ERR(3, 71, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = NULL; @@ -26011,64 +25724,64 @@ static PyObject *__pyx_pf_8shxarray_5shlib_3Ynm_4__call__(struct __pyx_obj_8shxa PyObject *__pyx_callargs[2] = {__pyx_t_4, __pyx_v_lat}; __pyx_t_2 = __Pyx_PyObject_FastCall(__pyx_t_3, __pyx_callargs+1-__pyx_t_5, 1+__pyx_t_5); __Pyx_XDECREF(__pyx_t_4); __pyx_t_4 = 0; - if (unlikely(!__pyx_t_2)) __PYX_ERR(3, 79, __pyx_L1_error) + if (unlikely(!__pyx_t_2)) __PYX_ERR(3, 71, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; } - __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_2); if (unlikely((__pyx_t_6 < 0))) __PYX_ERR(3, 79, __pyx_L1_error) + __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_2); if (unlikely((__pyx_t_6 < 0))) __PYX_ERR(3, 71, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_1 = __pyx_t_6; __pyx_L4_bool_binop_done:; if (__pyx_t_1) { - /* "src/builtin_backend/ynm.pyx":81 + /* "src/builtin_backend/ynm.pyx":73 * if np.isscalar(lon) and np.isscalar(lat): * * self._ynm.set(lon,lat) # <<<<<<<<<<<<<< - * dsout=xr.DataArray(self.data,coords={"shi":self._shindex,"lon":lon,"lat":lat},dims=["shi"],name="Ynm") + * dsout=xr.DataArray(self.data,coords={"nm":self._shindex,"lon":lon,"lat":lat},dims=["nm"],name="Ynm") * else: */ - __pyx_t_7 = __pyx_PyFloat_AsDouble(__pyx_v_lon); if (unlikely((__pyx_t_7 == (double)-1) && PyErr_Occurred())) __PYX_ERR(3, 81, __pyx_L1_error) - __pyx_t_8 = __pyx_PyFloat_AsDouble(__pyx_v_lat); if (unlikely((__pyx_t_8 == (double)-1) && PyErr_Occurred())) __PYX_ERR(3, 81, __pyx_L1_error) + __pyx_t_7 = __pyx_PyFloat_AsDouble(__pyx_v_lon); if (unlikely((__pyx_t_7 == (double)-1) && PyErr_Occurred())) __PYX_ERR(3, 73, __pyx_L1_error) + __pyx_t_8 = __pyx_PyFloat_AsDouble(__pyx_v_lat); if (unlikely((__pyx_t_8 == (double)-1) && PyErr_Occurred())) __PYX_ERR(3, 73, __pyx_L1_error) __pyx_v_self->_ynm.set(__pyx_t_7, __pyx_t_8); - /* "src/builtin_backend/ynm.pyx":82 + /* "src/builtin_backend/ynm.pyx":74 * * self._ynm.set(lon,lat) - * dsout=xr.DataArray(self.data,coords={"shi":self._shindex,"lon":lon,"lat":lat},dims=["shi"],name="Ynm") # <<<<<<<<<<<<<< + * dsout=xr.DataArray(self.data,coords={"nm":self._shindex,"lon":lon,"lat":lat},dims=["nm"],name="Ynm") # <<<<<<<<<<<<<< * else: * #multiple sets requested */ - __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_xr); if (unlikely(!__pyx_t_2)) __PYX_ERR(3, 82, __pyx_L1_error) + __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_xr); if (unlikely(!__pyx_t_2)) __PYX_ERR(3, 74, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); - __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_DataArray); if (unlikely(!__pyx_t_3)) __PYX_ERR(3, 82, __pyx_L1_error) + __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_DataArray); if (unlikely(!__pyx_t_3)) __PYX_ERR(3, 74, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; - __pyx_t_2 = __pyx_memoryview_fromslice(__pyx_v_self->data, 1, (PyObject *(*)(char *)) __pyx_memview_get_double, (int (*)(char *, PyObject *)) __pyx_memview_set_double, 0);; if (unlikely(!__pyx_t_2)) __PYX_ERR(3, 82, __pyx_L1_error) + __pyx_t_2 = __pyx_memoryview_fromslice(__pyx_v_self->data, 1, (PyObject *(*)(char *)) __pyx_memview_get_double, (int (*)(char *, PyObject *)) __pyx_memview_set_double, 0);; if (unlikely(!__pyx_t_2)) __PYX_ERR(3, 74, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); - __pyx_t_4 = PyTuple_New(1); if (unlikely(!__pyx_t_4)) __PYX_ERR(3, 82, __pyx_L1_error) + __pyx_t_4 = PyTuple_New(1); if (unlikely(!__pyx_t_4)) __PYX_ERR(3, 74, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_GIVEREF(__pyx_t_2); - if (__Pyx_PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_2)) __PYX_ERR(3, 82, __pyx_L1_error); + if (__Pyx_PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_2)) __PYX_ERR(3, 74, __pyx_L1_error); __pyx_t_2 = 0; - __pyx_t_2 = __Pyx_PyDict_NewPresized(3); if (unlikely(!__pyx_t_2)) __PYX_ERR(3, 82, __pyx_L1_error) + __pyx_t_2 = __Pyx_PyDict_NewPresized(3); if (unlikely(!__pyx_t_2)) __PYX_ERR(3, 74, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); - __pyx_t_9 = __Pyx_PyDict_NewPresized(3); if (unlikely(!__pyx_t_9)) __PYX_ERR(3, 82, __pyx_L1_error) + __pyx_t_9 = __Pyx_PyDict_NewPresized(3); if (unlikely(!__pyx_t_9)) __PYX_ERR(3, 74, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); - if (PyDict_SetItem(__pyx_t_9, __pyx_n_u_shi, __pyx_v_self->_shindex) < 0) __PYX_ERR(3, 82, __pyx_L1_error) - if (PyDict_SetItem(__pyx_t_9, __pyx_n_u_lon, __pyx_v_lon) < 0) __PYX_ERR(3, 82, __pyx_L1_error) - if (PyDict_SetItem(__pyx_t_9, __pyx_n_u_lat, __pyx_v_lat) < 0) __PYX_ERR(3, 82, __pyx_L1_error) - if (PyDict_SetItem(__pyx_t_2, __pyx_n_s_coords, __pyx_t_9) < 0) __PYX_ERR(3, 82, __pyx_L1_error) + if (PyDict_SetItem(__pyx_t_9, __pyx_n_u_nm, __pyx_v_self->_shindex) < 0) __PYX_ERR(3, 74, __pyx_L1_error) + if (PyDict_SetItem(__pyx_t_9, __pyx_n_u_lon, __pyx_v_lon) < 0) __PYX_ERR(3, 74, __pyx_L1_error) + if (PyDict_SetItem(__pyx_t_9, __pyx_n_u_lat, __pyx_v_lat) < 0) __PYX_ERR(3, 74, __pyx_L1_error) + if (PyDict_SetItem(__pyx_t_2, __pyx_n_s_coords, __pyx_t_9) < 0) __PYX_ERR(3, 74, __pyx_L1_error) __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; - __pyx_t_9 = PyList_New(1); if (unlikely(!__pyx_t_9)) __PYX_ERR(3, 82, __pyx_L1_error) + __pyx_t_9 = PyList_New(1); if (unlikely(!__pyx_t_9)) __PYX_ERR(3, 74, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); - __Pyx_INCREF(__pyx_n_u_shi); - __Pyx_GIVEREF(__pyx_n_u_shi); - if (__Pyx_PyList_SET_ITEM(__pyx_t_9, 0, __pyx_n_u_shi)) __PYX_ERR(3, 82, __pyx_L1_error); - if (PyDict_SetItem(__pyx_t_2, __pyx_n_s_dims, __pyx_t_9) < 0) __PYX_ERR(3, 82, __pyx_L1_error) + __Pyx_INCREF(__pyx_n_u_nm); + __Pyx_GIVEREF(__pyx_n_u_nm); + if (__Pyx_PyList_SET_ITEM(__pyx_t_9, 0, __pyx_n_u_nm)) __PYX_ERR(3, 74, __pyx_L1_error); + if (PyDict_SetItem(__pyx_t_2, __pyx_n_s_dims, __pyx_t_9) < 0) __PYX_ERR(3, 74, __pyx_L1_error) __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; - if (PyDict_SetItem(__pyx_t_2, __pyx_n_s_name, __pyx_n_u_Ynm) < 0) __PYX_ERR(3, 82, __pyx_L1_error) - __pyx_t_9 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_4, __pyx_t_2); if (unlikely(!__pyx_t_9)) __PYX_ERR(3, 82, __pyx_L1_error) + if (PyDict_SetItem(__pyx_t_2, __pyx_n_s_name, __pyx_n_u_Ynm) < 0) __PYX_ERR(3, 74, __pyx_L1_error) + __pyx_t_9 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_4, __pyx_t_2); if (unlikely(!__pyx_t_9)) __PYX_ERR(3, 74, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; @@ -26076,7 +25789,7 @@ static PyObject *__pyx_pf_8shxarray_5shlib_3Ynm_4__call__(struct __pyx_obj_8shxa __pyx_v_dsout = __pyx_t_9; __pyx_t_9 = 0; - /* "src/builtin_backend/ynm.pyx":79 + /* "src/builtin_backend/ynm.pyx":71 * cdef double[:,::1] data; * * if np.isscalar(lon) and np.isscalar(lat): # <<<<<<<<<<<<<< @@ -26086,7 +25799,7 @@ static PyObject *__pyx_pf_8shxarray_5shlib_3Ynm_4__call__(struct __pyx_obj_8shxa goto __pyx_L3; } - /* "src/builtin_backend/ynm.pyx":85 + /* "src/builtin_backend/ynm.pyx":77 * else: * #multiple sets requested * if len(lon) != len(lat): # <<<<<<<<<<<<<< @@ -26094,25 +25807,25 @@ static PyObject *__pyx_pf_8shxarray_5shlib_3Ynm_4__call__(struct __pyx_obj_8shxa * npos=len(lon) */ /*else*/ { - __pyx_t_10 = PyObject_Length(__pyx_v_lon); if (unlikely(__pyx_t_10 == ((Py_ssize_t)-1))) __PYX_ERR(3, 85, __pyx_L1_error) - __pyx_t_11 = PyObject_Length(__pyx_v_lat); if (unlikely(__pyx_t_11 == ((Py_ssize_t)-1))) __PYX_ERR(3, 85, __pyx_L1_error) + __pyx_t_10 = PyObject_Length(__pyx_v_lon); if (unlikely(__pyx_t_10 == ((Py_ssize_t)-1))) __PYX_ERR(3, 77, __pyx_L1_error) + __pyx_t_11 = PyObject_Length(__pyx_v_lat); if (unlikely(__pyx_t_11 == ((Py_ssize_t)-1))) __PYX_ERR(3, 77, __pyx_L1_error) __pyx_t_1 = (__pyx_t_10 != __pyx_t_11); if (unlikely(__pyx_t_1)) { - /* "src/builtin_backend/ynm.pyx":86 + /* "src/builtin_backend/ynm.pyx":78 * #multiple sets requested * if len(lon) != len(lat): * raise RuntimeError("input longitude and latitude needs to be of the same length") # <<<<<<<<<<<<<< * npos=len(lon) * data=np.empty([npos,self._ynm.size()]) */ - __pyx_t_9 = __Pyx_PyObject_Call(__pyx_builtin_RuntimeError, __pyx_tuple__21, NULL); if (unlikely(!__pyx_t_9)) __PYX_ERR(3, 86, __pyx_L1_error) + __pyx_t_9 = __Pyx_PyObject_Call(__pyx_builtin_RuntimeError, __pyx_tuple__21, NULL); if (unlikely(!__pyx_t_9)) __PYX_ERR(3, 78, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __Pyx_Raise(__pyx_t_9, 0, 0, 0); __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; - __PYX_ERR(3, 86, __pyx_L1_error) + __PYX_ERR(3, 78, __pyx_L1_error) - /* "src/builtin_backend/ynm.pyx":85 + /* "src/builtin_backend/ynm.pyx":77 * else: * #multiple sets requested * if len(lon) != len(lat): # <<<<<<<<<<<<<< @@ -26121,38 +25834,38 @@ static PyObject *__pyx_pf_8shxarray_5shlib_3Ynm_4__call__(struct __pyx_obj_8shxa */ } - /* "src/builtin_backend/ynm.pyx":87 + /* "src/builtin_backend/ynm.pyx":79 * if len(lon) != len(lat): * raise RuntimeError("input longitude and latitude needs to be of the same length") * npos=len(lon) # <<<<<<<<<<<<<< * data=np.empty([npos,self._ynm.size()]) * */ - __pyx_t_11 = PyObject_Length(__pyx_v_lon); if (unlikely(__pyx_t_11 == ((Py_ssize_t)-1))) __PYX_ERR(3, 87, __pyx_L1_error) + __pyx_t_11 = PyObject_Length(__pyx_v_lon); if (unlikely(__pyx_t_11 == ((Py_ssize_t)-1))) __PYX_ERR(3, 79, __pyx_L1_error) __pyx_v_npos = __pyx_t_11; - /* "src/builtin_backend/ynm.pyx":88 + /* "src/builtin_backend/ynm.pyx":80 * raise RuntimeError("input longitude and latitude needs to be of the same length") * npos=len(lon) * data=np.empty([npos,self._ynm.size()]) # <<<<<<<<<<<<<< * * for i in range(npos): */ - __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_np); if (unlikely(!__pyx_t_2)) __PYX_ERR(3, 88, __pyx_L1_error) + __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_np); if (unlikely(!__pyx_t_2)) __PYX_ERR(3, 80, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); - __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_empty); if (unlikely(!__pyx_t_4)) __PYX_ERR(3, 88, __pyx_L1_error) + __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_empty); if (unlikely(!__pyx_t_4)) __PYX_ERR(3, 80, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; - __pyx_t_2 = __Pyx_PyInt_From_int(__pyx_v_npos); if (unlikely(!__pyx_t_2)) __PYX_ERR(3, 88, __pyx_L1_error) + __pyx_t_2 = __Pyx_PyInt_From_int(__pyx_v_npos); if (unlikely(!__pyx_t_2)) __PYX_ERR(3, 80, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); - __pyx_t_3 = __Pyx_PyInt_FromSize_t(__pyx_v_self->_ynm.size()); if (unlikely(!__pyx_t_3)) __PYX_ERR(3, 88, __pyx_L1_error) + __pyx_t_3 = __Pyx_PyInt_FromSize_t(__pyx_v_self->_ynm.size()); if (unlikely(!__pyx_t_3)) __PYX_ERR(3, 80, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); - __pyx_t_12 = PyList_New(2); if (unlikely(!__pyx_t_12)) __PYX_ERR(3, 88, __pyx_L1_error) + __pyx_t_12 = PyList_New(2); if (unlikely(!__pyx_t_12)) __PYX_ERR(3, 80, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_12); __Pyx_GIVEREF(__pyx_t_2); - if (__Pyx_PyList_SET_ITEM(__pyx_t_12, 0, __pyx_t_2)) __PYX_ERR(3, 88, __pyx_L1_error); + if (__Pyx_PyList_SET_ITEM(__pyx_t_12, 0, __pyx_t_2)) __PYX_ERR(3, 80, __pyx_L1_error); __Pyx_GIVEREF(__pyx_t_3); - if (__Pyx_PyList_SET_ITEM(__pyx_t_12, 1, __pyx_t_3)) __PYX_ERR(3, 88, __pyx_L1_error); + if (__Pyx_PyList_SET_ITEM(__pyx_t_12, 1, __pyx_t_3)) __PYX_ERR(3, 80, __pyx_L1_error); __pyx_t_2 = 0; __pyx_t_3 = 0; __pyx_t_3 = NULL; @@ -26174,17 +25887,17 @@ static PyObject *__pyx_pf_8shxarray_5shlib_3Ynm_4__call__(struct __pyx_obj_8shxa __pyx_t_9 = __Pyx_PyObject_FastCall(__pyx_t_4, __pyx_callargs+1-__pyx_t_5, 1+__pyx_t_5); __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_12); __pyx_t_12 = 0; - if (unlikely(!__pyx_t_9)) __PYX_ERR(3, 88, __pyx_L1_error) + if (unlikely(!__pyx_t_9)) __PYX_ERR(3, 80, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; } - __pyx_t_13 = __Pyx_PyObject_to_MemoryviewSlice_d_dc_double(__pyx_t_9, PyBUF_WRITABLE); if (unlikely(!__pyx_t_13.memview)) __PYX_ERR(3, 88, __pyx_L1_error) + __pyx_t_13 = __Pyx_PyObject_to_MemoryviewSlice_d_dc_double(__pyx_t_9, PyBUF_WRITABLE); if (unlikely(!__pyx_t_13.memview)) __PYX_ERR(3, 80, __pyx_L1_error) __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; __pyx_v_data = __pyx_t_13; __pyx_t_13.memview = NULL; __pyx_t_13.data = NULL; - /* "src/builtin_backend/ynm.pyx":90 + /* "src/builtin_backend/ynm.pyx":82 * data=np.empty([npos,self._ynm.size()]) * * for i in range(npos): # <<<<<<<<<<<<<< @@ -26196,29 +25909,29 @@ static PyObject *__pyx_pf_8shxarray_5shlib_3Ynm_4__call__(struct __pyx_obj_8shxa for (__pyx_t_15 = 0; __pyx_t_15 < __pyx_t_14; __pyx_t_15+=1) { __pyx_v_i = __pyx_t_15; - /* "src/builtin_backend/ynm.pyx":91 + /* "src/builtin_backend/ynm.pyx":83 * * for i in range(npos): * self._ynm.set(lon[i],lat[i]) # <<<<<<<<<<<<<< * data[i,:]=self.data * */ - __pyx_t_9 = __Pyx_GetItemInt(__pyx_v_lon, __pyx_v_i, int, 1, __Pyx_PyInt_From_int, 0, 0, 0); if (unlikely(!__pyx_t_9)) __PYX_ERR(3, 91, __pyx_L1_error) + __pyx_t_9 = __Pyx_GetItemInt(__pyx_v_lon, __pyx_v_i, int, 1, __Pyx_PyInt_From_int, 0, 0, 0); if (unlikely(!__pyx_t_9)) __PYX_ERR(3, 83, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); - __pyx_t_8 = __pyx_PyFloat_AsDouble(__pyx_t_9); if (unlikely((__pyx_t_8 == (double)-1) && PyErr_Occurred())) __PYX_ERR(3, 91, __pyx_L1_error) + __pyx_t_8 = __pyx_PyFloat_AsDouble(__pyx_t_9); if (unlikely((__pyx_t_8 == (double)-1) && PyErr_Occurred())) __PYX_ERR(3, 83, __pyx_L1_error) __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; - __pyx_t_9 = __Pyx_GetItemInt(__pyx_v_lat, __pyx_v_i, int, 1, __Pyx_PyInt_From_int, 0, 0, 0); if (unlikely(!__pyx_t_9)) __PYX_ERR(3, 91, __pyx_L1_error) + __pyx_t_9 = __Pyx_GetItemInt(__pyx_v_lat, __pyx_v_i, int, 1, __Pyx_PyInt_From_int, 0, 0, 0); if (unlikely(!__pyx_t_9)) __PYX_ERR(3, 83, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); - __pyx_t_7 = __pyx_PyFloat_AsDouble(__pyx_t_9); if (unlikely((__pyx_t_7 == (double)-1) && PyErr_Occurred())) __PYX_ERR(3, 91, __pyx_L1_error) + __pyx_t_7 = __pyx_PyFloat_AsDouble(__pyx_t_9); if (unlikely((__pyx_t_7 == (double)-1) && PyErr_Occurred())) __PYX_ERR(3, 83, __pyx_L1_error) __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; __pyx_v_self->_ynm.set(__pyx_t_8, __pyx_t_7); - /* "src/builtin_backend/ynm.pyx":92 + /* "src/builtin_backend/ynm.pyx":84 * for i in range(npos): * self._ynm.set(lon[i],lat[i]) * data[i,:]=self.data # <<<<<<<<<<<<<< * - * dsout=xr.DataArray(data,coords={"shi":("shi",self._shindex),"lon":("nlonlat",lon),"lat":("nlonlat",lat)},dims=["nlonlat","shi"],name="Ynm") + * dsout=xr.DataArray(data,coords={"nm":("nm",self._shindex),"lon":("nlonlat",lon),"lat":("nlonlat",lat)},dims=["nlonlat","nm"],name="Ynm") */ __pyx_t_16 = __pyx_v_self->data; __PYX_INC_MEMVIEW(&__pyx_t_16, 1); @@ -26235,80 +25948,80 @@ __pyx_t_17.shape[0] = __pyx_v_data.shape[1]; __pyx_t_17.strides[0] = __pyx_v_data.strides[1]; __pyx_t_17.suboffsets[0] = -1; -if (unlikely((__pyx_memoryview_copy_contents(__pyx_t_16, __pyx_t_17, 1, 1, 0) < 0))) __PYX_ERR(3, 92, __pyx_L1_error) +if (unlikely((__pyx_memoryview_copy_contents(__pyx_t_16, __pyx_t_17, 1, 1, 0) < 0))) __PYX_ERR(3, 84, __pyx_L1_error) __PYX_XCLEAR_MEMVIEW(&__pyx_t_17, 1); __pyx_t_17.memview = NULL; __pyx_t_17.data = NULL; __PYX_XCLEAR_MEMVIEW(&__pyx_t_16, 1); __pyx_t_16.memview = NULL; __pyx_t_16.data = NULL; } - /* "src/builtin_backend/ynm.pyx":94 + /* "src/builtin_backend/ynm.pyx":86 * data[i,:]=self.data * - * dsout=xr.DataArray(data,coords={"shi":("shi",self._shindex),"lon":("nlonlat",lon),"lat":("nlonlat",lat)},dims=["nlonlat","shi"],name="Ynm") # <<<<<<<<<<<<<< + * dsout=xr.DataArray(data,coords={"nm":("nm",self._shindex),"lon":("nlonlat",lon),"lat":("nlonlat",lat)},dims=["nlonlat","nm"],name="Ynm") # <<<<<<<<<<<<<< * * return dsout */ - __Pyx_GetModuleGlobalName(__pyx_t_9, __pyx_n_s_xr); if (unlikely(!__pyx_t_9)) __PYX_ERR(3, 94, __pyx_L1_error) + __Pyx_GetModuleGlobalName(__pyx_t_9, __pyx_n_s_xr); if (unlikely(!__pyx_t_9)) __PYX_ERR(3, 86, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); - __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_9, __pyx_n_s_DataArray); if (unlikely(!__pyx_t_4)) __PYX_ERR(3, 94, __pyx_L1_error) + __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_9, __pyx_n_s_DataArray); if (unlikely(!__pyx_t_4)) __PYX_ERR(3, 86, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; - __pyx_t_9 = __pyx_memoryview_fromslice(__pyx_v_data, 2, (PyObject *(*)(char *)) __pyx_memview_get_double, (int (*)(char *, PyObject *)) __pyx_memview_set_double, 0);; if (unlikely(!__pyx_t_9)) __PYX_ERR(3, 94, __pyx_L1_error) + __pyx_t_9 = __pyx_memoryview_fromslice(__pyx_v_data, 2, (PyObject *(*)(char *)) __pyx_memview_get_double, (int (*)(char *, PyObject *)) __pyx_memview_set_double, 0);; if (unlikely(!__pyx_t_9)) __PYX_ERR(3, 86, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); - __pyx_t_12 = PyTuple_New(1); if (unlikely(!__pyx_t_12)) __PYX_ERR(3, 94, __pyx_L1_error) + __pyx_t_12 = PyTuple_New(1); if (unlikely(!__pyx_t_12)) __PYX_ERR(3, 86, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_12); __Pyx_GIVEREF(__pyx_t_9); - if (__Pyx_PyTuple_SET_ITEM(__pyx_t_12, 0, __pyx_t_9)) __PYX_ERR(3, 94, __pyx_L1_error); + if (__Pyx_PyTuple_SET_ITEM(__pyx_t_12, 0, __pyx_t_9)) __PYX_ERR(3, 86, __pyx_L1_error); __pyx_t_9 = 0; - __pyx_t_9 = __Pyx_PyDict_NewPresized(3); if (unlikely(!__pyx_t_9)) __PYX_ERR(3, 94, __pyx_L1_error) + __pyx_t_9 = __Pyx_PyDict_NewPresized(3); if (unlikely(!__pyx_t_9)) __PYX_ERR(3, 86, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); - __pyx_t_3 = __Pyx_PyDict_NewPresized(3); if (unlikely(!__pyx_t_3)) __PYX_ERR(3, 94, __pyx_L1_error) + __pyx_t_3 = __Pyx_PyDict_NewPresized(3); if (unlikely(!__pyx_t_3)) __PYX_ERR(3, 86, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); - __pyx_t_2 = PyTuple_New(2); if (unlikely(!__pyx_t_2)) __PYX_ERR(3, 94, __pyx_L1_error) + __pyx_t_2 = PyTuple_New(2); if (unlikely(!__pyx_t_2)) __PYX_ERR(3, 86, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); - __Pyx_INCREF(__pyx_n_u_shi); - __Pyx_GIVEREF(__pyx_n_u_shi); - if (__Pyx_PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_n_u_shi)) __PYX_ERR(3, 94, __pyx_L1_error); + __Pyx_INCREF(__pyx_n_u_nm); + __Pyx_GIVEREF(__pyx_n_u_nm); + if (__Pyx_PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_n_u_nm)) __PYX_ERR(3, 86, __pyx_L1_error); __Pyx_INCREF(__pyx_v_self->_shindex); __Pyx_GIVEREF(__pyx_v_self->_shindex); - if (__Pyx_PyTuple_SET_ITEM(__pyx_t_2, 1, __pyx_v_self->_shindex)) __PYX_ERR(3, 94, __pyx_L1_error); - if (PyDict_SetItem(__pyx_t_3, __pyx_n_u_shi, __pyx_t_2) < 0) __PYX_ERR(3, 94, __pyx_L1_error) + if (__Pyx_PyTuple_SET_ITEM(__pyx_t_2, 1, __pyx_v_self->_shindex)) __PYX_ERR(3, 86, __pyx_L1_error); + if (PyDict_SetItem(__pyx_t_3, __pyx_n_u_nm, __pyx_t_2) < 0) __PYX_ERR(3, 86, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; - __pyx_t_2 = PyTuple_New(2); if (unlikely(!__pyx_t_2)) __PYX_ERR(3, 94, __pyx_L1_error) + __pyx_t_2 = PyTuple_New(2); if (unlikely(!__pyx_t_2)) __PYX_ERR(3, 86, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_INCREF(__pyx_n_u_nlonlat); __Pyx_GIVEREF(__pyx_n_u_nlonlat); - if (__Pyx_PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_n_u_nlonlat)) __PYX_ERR(3, 94, __pyx_L1_error); + if (__Pyx_PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_n_u_nlonlat)) __PYX_ERR(3, 86, __pyx_L1_error); __Pyx_INCREF(__pyx_v_lon); __Pyx_GIVEREF(__pyx_v_lon); - if (__Pyx_PyTuple_SET_ITEM(__pyx_t_2, 1, __pyx_v_lon)) __PYX_ERR(3, 94, __pyx_L1_error); - if (PyDict_SetItem(__pyx_t_3, __pyx_n_u_lon, __pyx_t_2) < 0) __PYX_ERR(3, 94, __pyx_L1_error) + if (__Pyx_PyTuple_SET_ITEM(__pyx_t_2, 1, __pyx_v_lon)) __PYX_ERR(3, 86, __pyx_L1_error); + if (PyDict_SetItem(__pyx_t_3, __pyx_n_u_lon, __pyx_t_2) < 0) __PYX_ERR(3, 86, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; - __pyx_t_2 = PyTuple_New(2); if (unlikely(!__pyx_t_2)) __PYX_ERR(3, 94, __pyx_L1_error) + __pyx_t_2 = PyTuple_New(2); if (unlikely(!__pyx_t_2)) __PYX_ERR(3, 86, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_INCREF(__pyx_n_u_nlonlat); __Pyx_GIVEREF(__pyx_n_u_nlonlat); - if (__Pyx_PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_n_u_nlonlat)) __PYX_ERR(3, 94, __pyx_L1_error); + if (__Pyx_PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_n_u_nlonlat)) __PYX_ERR(3, 86, __pyx_L1_error); __Pyx_INCREF(__pyx_v_lat); __Pyx_GIVEREF(__pyx_v_lat); - if (__Pyx_PyTuple_SET_ITEM(__pyx_t_2, 1, __pyx_v_lat)) __PYX_ERR(3, 94, __pyx_L1_error); - if (PyDict_SetItem(__pyx_t_3, __pyx_n_u_lat, __pyx_t_2) < 0) __PYX_ERR(3, 94, __pyx_L1_error) + if (__Pyx_PyTuple_SET_ITEM(__pyx_t_2, 1, __pyx_v_lat)) __PYX_ERR(3, 86, __pyx_L1_error); + if (PyDict_SetItem(__pyx_t_3, __pyx_n_u_lat, __pyx_t_2) < 0) __PYX_ERR(3, 86, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; - if (PyDict_SetItem(__pyx_t_9, __pyx_n_s_coords, __pyx_t_3) < 0) __PYX_ERR(3, 94, __pyx_L1_error) + if (PyDict_SetItem(__pyx_t_9, __pyx_n_s_coords, __pyx_t_3) < 0) __PYX_ERR(3, 86, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - __pyx_t_3 = PyList_New(2); if (unlikely(!__pyx_t_3)) __PYX_ERR(3, 94, __pyx_L1_error) + __pyx_t_3 = PyList_New(2); if (unlikely(!__pyx_t_3)) __PYX_ERR(3, 86, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_INCREF(__pyx_n_u_nlonlat); __Pyx_GIVEREF(__pyx_n_u_nlonlat); - if (__Pyx_PyList_SET_ITEM(__pyx_t_3, 0, __pyx_n_u_nlonlat)) __PYX_ERR(3, 94, __pyx_L1_error); - __Pyx_INCREF(__pyx_n_u_shi); - __Pyx_GIVEREF(__pyx_n_u_shi); - if (__Pyx_PyList_SET_ITEM(__pyx_t_3, 1, __pyx_n_u_shi)) __PYX_ERR(3, 94, __pyx_L1_error); - if (PyDict_SetItem(__pyx_t_9, __pyx_n_s_dims, __pyx_t_3) < 0) __PYX_ERR(3, 94, __pyx_L1_error) + if (__Pyx_PyList_SET_ITEM(__pyx_t_3, 0, __pyx_n_u_nlonlat)) __PYX_ERR(3, 86, __pyx_L1_error); + __Pyx_INCREF(__pyx_n_u_nm); + __Pyx_GIVEREF(__pyx_n_u_nm); + if (__Pyx_PyList_SET_ITEM(__pyx_t_3, 1, __pyx_n_u_nm)) __PYX_ERR(3, 86, __pyx_L1_error); + if (PyDict_SetItem(__pyx_t_9, __pyx_n_s_dims, __pyx_t_3) < 0) __PYX_ERR(3, 86, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - if (PyDict_SetItem(__pyx_t_9, __pyx_n_s_name, __pyx_n_u_Ynm) < 0) __PYX_ERR(3, 94, __pyx_L1_error) - __pyx_t_3 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_12, __pyx_t_9); if (unlikely(!__pyx_t_3)) __PYX_ERR(3, 94, __pyx_L1_error) + if (PyDict_SetItem(__pyx_t_9, __pyx_n_s_name, __pyx_n_u_Ynm) < 0) __PYX_ERR(3, 86, __pyx_L1_error) + __pyx_t_3 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_12, __pyx_t_9); if (unlikely(!__pyx_t_3)) __PYX_ERR(3, 86, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_12); __pyx_t_12 = 0; @@ -26318,8 +26031,8 @@ if (unlikely((__pyx_memoryview_copy_contents(__pyx_t_16, __pyx_t_17, 1, 1, 0) < } __pyx_L3:; - /* "src/builtin_backend/ynm.pyx":96 - * dsout=xr.DataArray(data,coords={"shi":("shi",self._shindex),"lon":("nlonlat",lon),"lat":("nlonlat",lat)},dims=["nlonlat","shi"],name="Ynm") + /* "src/builtin_backend/ynm.pyx":88 + * dsout=xr.DataArray(data,coords={"nm":("nm",self._shindex),"lon":("nlonlat",lon),"lat":("nlonlat",lat)},dims=["nlonlat","nm"],name="Ynm") * * return dsout # <<<<<<<<<<<<<< * @@ -26329,7 +26042,7 @@ if (unlikely((__pyx_memoryview_copy_contents(__pyx_t_16, __pyx_t_17, 1, 1, 0) < __pyx_r = __pyx_v_dsout; goto __pyx_L0; - /* "src/builtin_backend/ynm.pyx":74 + /* "src/builtin_backend/ynm.pyx":66 * return self._ynm.size() * * def __call__(self,lon, lat): # <<<<<<<<<<<<<< @@ -27340,16 +27053,16 @@ static PyObject *__pyx_pf_8shxarray_5shlib_9Synthesis_2__call__(struct __pyx_obj PyObject *__pyx_v_dimsin = NULL; PyObject *__pyx_v_dimsout = NULL; PyObject *__pyx_v_daout = NULL; + PyObject *__pyx_8genexpr5__pyx_v_ky = NULL; + PyObject *__pyx_8genexpr5__pyx_v_val = NULL; PyObject *__pyx_8genexpr6__pyx_v_ky = NULL; PyObject *__pyx_8genexpr6__pyx_v_val = NULL; - PyObject *__pyx_8genexpr7__pyx_v_ky = NULL; - PyObject *__pyx_8genexpr7__pyx_v_val = NULL; + PyObject *__pyx_8genexpr7__pyx_v_dim = NULL; + PyObject *__pyx_8genexpr7__pyx_v_sz = NULL; PyObject *__pyx_8genexpr8__pyx_v_dim = NULL; PyObject *__pyx_8genexpr8__pyx_v_sz = NULL; - PyObject *__pyx_8genexpr9__pyx_v_dim = NULL; - PyObject *__pyx_8genexpr9__pyx_v_sz = NULL; + PyObject *__pyx_8genexpr9__pyx_v_val = NULL; PyObject *__pyx_9genexpr10__pyx_v_val = NULL; - PyObject *__pyx_9genexpr11__pyx_v_val = NULL; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; @@ -27392,7 +27105,7 @@ static PyObject *__pyx_pf_8shxarray_5shlib_9Synthesis_2__call__(struct __pyx_obj * if type(dain) != xr.DataArray: * raise RuntimeError("input type should be a xarray.DataArray") # <<<<<<<<<<<<<< * - * if "shi" not in dain.indexes: + * if "nm" not in dain.indexes: */ __pyx_t_1 = __Pyx_PyObject_Call(__pyx_builtin_RuntimeError, __pyx_tuple__23, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(7, 47, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); @@ -27412,21 +27125,21 @@ static PyObject *__pyx_pf_8shxarray_5shlib_9Synthesis_2__call__(struct __pyx_obj /* "src/builtin_backend/synthesis.pyx":49 * raise RuntimeError("input type should be a xarray.DataArray") * - * if "shi" not in dain.indexes: # <<<<<<<<<<<<<< + * if "nm" not in dain.indexes: # <<<<<<<<<<<<<< * raise RuntimeError("Spherical harmonic index not found in input, cannot apply synthesis operator to object") - * shidim= dain.get_axis_num('shi') + * shidim= dain.get_axis_num('nm') */ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_dain, __pyx_n_s_indexes); if (unlikely(!__pyx_t_1)) __PYX_ERR(7, 49, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); - __pyx_t_3 = (__Pyx_PySequence_ContainsTF(__pyx_n_u_shi, __pyx_t_1, Py_NE)); if (unlikely((__pyx_t_3 < 0))) __PYX_ERR(7, 49, __pyx_L1_error) + __pyx_t_3 = (__Pyx_PySequence_ContainsTF(__pyx_n_u_nm, __pyx_t_1, Py_NE)); if (unlikely((__pyx_t_3 < 0))) __PYX_ERR(7, 49, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; if (unlikely(__pyx_t_3)) { /* "src/builtin_backend/synthesis.pyx":50 * - * if "shi" not in dain.indexes: + * if "nm" not in dain.indexes: * raise RuntimeError("Spherical harmonic index not found in input, cannot apply synthesis operator to object") # <<<<<<<<<<<<<< - * shidim= dain.get_axis_num('shi') + * shidim= dain.get_axis_num('nm') * if shidim != dain.ndim-1 and shidim != 0: */ __pyx_t_1 = __Pyx_PyObject_Call(__pyx_builtin_RuntimeError, __pyx_tuple__24, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(7, 50, __pyx_L1_error) @@ -27438,18 +27151,18 @@ static PyObject *__pyx_pf_8shxarray_5shlib_9Synthesis_2__call__(struct __pyx_obj /* "src/builtin_backend/synthesis.pyx":49 * raise RuntimeError("input type should be a xarray.DataArray") * - * if "shi" not in dain.indexes: # <<<<<<<<<<<<<< + * if "nm" not in dain.indexes: # <<<<<<<<<<<<<< * raise RuntimeError("Spherical harmonic index not found in input, cannot apply synthesis operator to object") - * shidim= dain.get_axis_num('shi') + * shidim= dain.get_axis_num('nm') */ } /* "src/builtin_backend/synthesis.pyx":51 - * if "shi" not in dain.indexes: + * if "nm" not in dain.indexes: * raise RuntimeError("Spherical harmonic index not found in input, cannot apply synthesis operator to object") - * shidim= dain.get_axis_num('shi') # <<<<<<<<<<<<<< + * shidim= dain.get_axis_num('nm') # <<<<<<<<<<<<<< * if shidim != dain.ndim-1 and shidim != 0: - * raise RuntimeError ("shi dimension must either be the first or last in input") + * raise RuntimeError ("nm dimension must either be the first or last in input") */ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_dain, __pyx_n_s_get_axis_num); if (unlikely(!__pyx_t_2)) __PYX_ERR(7, 51, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); @@ -27468,7 +27181,7 @@ static PyObject *__pyx_pf_8shxarray_5shlib_9Synthesis_2__call__(struct __pyx_obj } #endif { - PyObject *__pyx_callargs[2] = {__pyx_t_4, __pyx_n_u_shi}; + PyObject *__pyx_callargs[2] = {__pyx_t_4, __pyx_n_u_nm}; __pyx_t_1 = __Pyx_PyObject_FastCall(__pyx_t_2, __pyx_callargs+1-__pyx_t_5, 1+__pyx_t_5); __Pyx_XDECREF(__pyx_t_4); __pyx_t_4 = 0; if (unlikely(!__pyx_t_1)) __PYX_ERR(7, 51, __pyx_L1_error) @@ -27480,9 +27193,9 @@ static PyObject *__pyx_pf_8shxarray_5shlib_9Synthesis_2__call__(struct __pyx_obj /* "src/builtin_backend/synthesis.pyx":52 * raise RuntimeError("Spherical harmonic index not found in input, cannot apply synthesis operator to object") - * shidim= dain.get_axis_num('shi') + * shidim= dain.get_axis_num('nm') * if shidim != dain.ndim-1 and shidim != 0: # <<<<<<<<<<<<<< - * raise RuntimeError ("shi dimension must either be the first or last in input") + * raise RuntimeError ("nm dimension must either be the first or last in input") * */ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_dain, __pyx_n_s_ndim); if (unlikely(!__pyx_t_1)) __PYX_ERR(7, 52, __pyx_L1_error) @@ -27505,9 +27218,9 @@ static PyObject *__pyx_pf_8shxarray_5shlib_9Synthesis_2__call__(struct __pyx_obj if (unlikely(__pyx_t_3)) { /* "src/builtin_backend/synthesis.pyx":53 - * shidim= dain.get_axis_num('shi') + * shidim= dain.get_axis_num('nm') * if shidim != dain.ndim-1 and shidim != 0: - * raise RuntimeError ("shi dimension must either be the first or last in input") # <<<<<<<<<<<<<< + * raise RuntimeError ("nm dimension must either be the first or last in input") # <<<<<<<<<<<<<< * * # if not (dain.data.flags['C_CONTIGUOUS'] or dain.data.flags['F_CONTIGUOUS']): */ @@ -27519,9 +27232,9 @@ static PyObject *__pyx_pf_8shxarray_5shlib_9Synthesis_2__call__(struct __pyx_obj /* "src/builtin_backend/synthesis.pyx":52 * raise RuntimeError("Spherical harmonic index not found in input, cannot apply synthesis operator to object") - * shidim= dain.get_axis_num('shi') + * shidim= dain.get_axis_num('nm') * if shidim != dain.ndim-1 and shidim != 0: # <<<<<<<<<<<<<< - * raise RuntimeError ("shi dimension must either be the first or last in input") + * raise RuntimeError ("nm dimension must either be the first or last in input") * */ } @@ -27529,7 +27242,7 @@ static PyObject *__pyx_pf_8shxarray_5shlib_9Synthesis_2__call__(struct __pyx_obj /* "src/builtin_backend/synthesis.pyx":58 * # raise RuntimeError("Cannot work with non-contiguous input arrays yet") * - * coordsout={ky:val for ky,val in dain.coords.items() if val.ndim == 1 and val.dims[0] != "shi"} # <<<<<<<<<<<<<< + * coordsout={ky:val for ky,val in dain.coords.items() if val.ndim == 1 and val.dims[0] != "nm"} # <<<<<<<<<<<<<< * coordsout.update({ky:val for ky,val in self._dsobj.coords.items()}) * */ @@ -27555,11 +27268,11 @@ static PyObject *__pyx_pf_8shxarray_5shlib_9Synthesis_2__call__(struct __pyx_obj if (unlikely(__pyx_t_10 == -1)) __PYX_ERR(7, 58, __pyx_L10_error) __Pyx_GOTREF(__pyx_t_9); __Pyx_GOTREF(__pyx_t_4); - __Pyx_XDECREF_SET(__pyx_8genexpr6__pyx_v_ky, __pyx_t_9); + __Pyx_XDECREF_SET(__pyx_8genexpr5__pyx_v_ky, __pyx_t_9); __pyx_t_9 = 0; - __Pyx_XDECREF_SET(__pyx_8genexpr6__pyx_v_val, __pyx_t_4); + __Pyx_XDECREF_SET(__pyx_8genexpr5__pyx_v_val, __pyx_t_4); __pyx_t_4 = 0; - __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_8genexpr6__pyx_v_val, __pyx_n_s_ndim); if (unlikely(!__pyx_t_4)) __PYX_ERR(7, 58, __pyx_L10_error) + __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_8genexpr5__pyx_v_val, __pyx_n_s_ndim); if (unlikely(!__pyx_t_4)) __PYX_ERR(7, 58, __pyx_L10_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_6 = (__Pyx_PyInt_BoolEqObjC(__pyx_t_4, __pyx_int_1, 1, 0)); if (unlikely((__pyx_t_6 < 0))) __PYX_ERR(7, 58, __pyx_L10_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; @@ -27568,26 +27281,26 @@ static PyObject *__pyx_pf_8shxarray_5shlib_9Synthesis_2__call__(struct __pyx_obj __pyx_t_3 = __pyx_t_6; goto __pyx_L14_bool_binop_done; } - __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_8genexpr6__pyx_v_val, __pyx_n_s_dims); if (unlikely(!__pyx_t_4)) __PYX_ERR(7, 58, __pyx_L10_error) + __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_8genexpr5__pyx_v_val, __pyx_n_s_dims); if (unlikely(!__pyx_t_4)) __PYX_ERR(7, 58, __pyx_L10_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_9 = __Pyx_GetItemInt(__pyx_t_4, 0, long, 1, __Pyx_PyInt_From_long, 0, 0, 0); if (unlikely(!__pyx_t_9)) __PYX_ERR(7, 58, __pyx_L10_error) __Pyx_GOTREF(__pyx_t_9); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - __pyx_t_6 = (__Pyx_PyUnicode_Equals(__pyx_t_9, __pyx_n_u_shi, Py_NE)); if (unlikely((__pyx_t_6 < 0))) __PYX_ERR(7, 58, __pyx_L10_error) + __pyx_t_6 = (__Pyx_PyUnicode_Equals(__pyx_t_9, __pyx_n_u_nm, Py_NE)); if (unlikely((__pyx_t_6 < 0))) __PYX_ERR(7, 58, __pyx_L10_error) __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; __pyx_t_3 = __pyx_t_6; __pyx_L14_bool_binop_done:; if (__pyx_t_3) { - if (unlikely(PyDict_SetItem(__pyx_t_1, (PyObject*)__pyx_8genexpr6__pyx_v_ky, (PyObject*)__pyx_8genexpr6__pyx_v_val))) __PYX_ERR(7, 58, __pyx_L10_error) + if (unlikely(PyDict_SetItem(__pyx_t_1, (PyObject*)__pyx_8genexpr5__pyx_v_ky, (PyObject*)__pyx_8genexpr5__pyx_v_val))) __PYX_ERR(7, 58, __pyx_L10_error) } } __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; - __Pyx_XDECREF(__pyx_8genexpr6__pyx_v_ky); __pyx_8genexpr6__pyx_v_ky = 0; - __Pyx_XDECREF(__pyx_8genexpr6__pyx_v_val); __pyx_8genexpr6__pyx_v_val = 0; + __Pyx_XDECREF(__pyx_8genexpr5__pyx_v_ky); __pyx_8genexpr5__pyx_v_ky = 0; + __Pyx_XDECREF(__pyx_8genexpr5__pyx_v_val); __pyx_8genexpr5__pyx_v_val = 0; goto __pyx_L16_exit_scope; __pyx_L10_error:; - __Pyx_XDECREF(__pyx_8genexpr6__pyx_v_ky); __pyx_8genexpr6__pyx_v_ky = 0; - __Pyx_XDECREF(__pyx_8genexpr6__pyx_v_val); __pyx_8genexpr6__pyx_v_val = 0; + __Pyx_XDECREF(__pyx_8genexpr5__pyx_v_ky); __pyx_8genexpr5__pyx_v_ky = 0; + __Pyx_XDECREF(__pyx_8genexpr5__pyx_v_val); __pyx_8genexpr5__pyx_v_val = 0; goto __pyx_L1_error; __pyx_L16_exit_scope:; } /* exit inner scope */ @@ -27596,10 +27309,10 @@ static PyObject *__pyx_pf_8shxarray_5shlib_9Synthesis_2__call__(struct __pyx_obj /* "src/builtin_backend/synthesis.pyx":59 * - * coordsout={ky:val for ky,val in dain.coords.items() if val.ndim == 1 and val.dims[0] != "shi"} + * coordsout={ky:val for ky,val in dain.coords.items() if val.ndim == 1 and val.dims[0] != "nm"} * coordsout.update({ky:val for ky,val in self._dsobj.coords.items()}) # <<<<<<<<<<<<<< * - * dimsin=[(dim,sz) for dim,sz in dain.sizes.items() if dim != "shi"] + * dimsin=[(dim,sz) for dim,sz in dain.sizes.items() if dim != "nm"] */ { /* enter inner scope */ __pyx_t_1 = PyDict_New(); if (unlikely(!__pyx_t_1)) __PYX_ERR(7, 59, __pyx_L19_error) @@ -27623,19 +27336,19 @@ static PyObject *__pyx_pf_8shxarray_5shlib_9Synthesis_2__call__(struct __pyx_obj if (unlikely(__pyx_t_10 == -1)) __PYX_ERR(7, 59, __pyx_L19_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_GOTREF(__pyx_t_9); - __Pyx_XDECREF_SET(__pyx_8genexpr7__pyx_v_ky, __pyx_t_4); + __Pyx_XDECREF_SET(__pyx_8genexpr6__pyx_v_ky, __pyx_t_4); __pyx_t_4 = 0; - __Pyx_XDECREF_SET(__pyx_8genexpr7__pyx_v_val, __pyx_t_9); + __Pyx_XDECREF_SET(__pyx_8genexpr6__pyx_v_val, __pyx_t_9); __pyx_t_9 = 0; - if (unlikely(PyDict_SetItem(__pyx_t_1, (PyObject*)__pyx_8genexpr7__pyx_v_ky, (PyObject*)__pyx_8genexpr7__pyx_v_val))) __PYX_ERR(7, 59, __pyx_L19_error) + if (unlikely(PyDict_SetItem(__pyx_t_1, (PyObject*)__pyx_8genexpr6__pyx_v_ky, (PyObject*)__pyx_8genexpr6__pyx_v_val))) __PYX_ERR(7, 59, __pyx_L19_error) } __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; - __Pyx_XDECREF(__pyx_8genexpr7__pyx_v_ky); __pyx_8genexpr7__pyx_v_ky = 0; - __Pyx_XDECREF(__pyx_8genexpr7__pyx_v_val); __pyx_8genexpr7__pyx_v_val = 0; + __Pyx_XDECREF(__pyx_8genexpr6__pyx_v_ky); __pyx_8genexpr6__pyx_v_ky = 0; + __Pyx_XDECREF(__pyx_8genexpr6__pyx_v_val); __pyx_8genexpr6__pyx_v_val = 0; goto __pyx_L22_exit_scope; __pyx_L19_error:; - __Pyx_XDECREF(__pyx_8genexpr7__pyx_v_ky); __pyx_8genexpr7__pyx_v_ky = 0; - __Pyx_XDECREF(__pyx_8genexpr7__pyx_v_val); __pyx_8genexpr7__pyx_v_val = 0; + __Pyx_XDECREF(__pyx_8genexpr6__pyx_v_ky); __pyx_8genexpr6__pyx_v_ky = 0; + __Pyx_XDECREF(__pyx_8genexpr6__pyx_v_val); __pyx_8genexpr6__pyx_v_val = 0; goto __pyx_L1_error; __pyx_L22_exit_scope:; } /* exit inner scope */ @@ -27647,7 +27360,7 @@ static PyObject *__pyx_pf_8shxarray_5shlib_9Synthesis_2__call__(struct __pyx_obj /* "src/builtin_backend/synthesis.pyx":61 * coordsout.update({ky:val for ky,val in self._dsobj.coords.items()}) * - * dimsin=[(dim,sz) for dim,sz in dain.sizes.items() if dim != "shi"] # <<<<<<<<<<<<<< + * dimsin=[(dim,sz) for dim,sz in dain.sizes.items() if dim != "nm"] # <<<<<<<<<<<<<< * #it is import to have lat, and lon as first dimensions (slowest varying index) * dimsout=[(dim,sz) for dim,sz in self._dsobj.sizes.items()]+dimsin */ @@ -27673,31 +27386,31 @@ static PyObject *__pyx_pf_8shxarray_5shlib_9Synthesis_2__call__(struct __pyx_obj if (unlikely(__pyx_t_10 == -1)) __PYX_ERR(7, 61, __pyx_L25_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_GOTREF(__pyx_t_9); - __Pyx_XDECREF_SET(__pyx_8genexpr8__pyx_v_dim, __pyx_t_4); + __Pyx_XDECREF_SET(__pyx_8genexpr7__pyx_v_dim, __pyx_t_4); __pyx_t_4 = 0; - __Pyx_XDECREF_SET(__pyx_8genexpr8__pyx_v_sz, __pyx_t_9); + __Pyx_XDECREF_SET(__pyx_8genexpr7__pyx_v_sz, __pyx_t_9); __pyx_t_9 = 0; - __pyx_t_3 = (__Pyx_PyUnicode_Equals(__pyx_8genexpr8__pyx_v_dim, __pyx_n_u_shi, Py_NE)); if (unlikely((__pyx_t_3 < 0))) __PYX_ERR(7, 61, __pyx_L25_error) + __pyx_t_3 = (__Pyx_PyUnicode_Equals(__pyx_8genexpr7__pyx_v_dim, __pyx_n_u_nm, Py_NE)); if (unlikely((__pyx_t_3 < 0))) __PYX_ERR(7, 61, __pyx_L25_error) if (__pyx_t_3) { __pyx_t_9 = PyTuple_New(2); if (unlikely(!__pyx_t_9)) __PYX_ERR(7, 61, __pyx_L25_error) __Pyx_GOTREF(__pyx_t_9); - __Pyx_INCREF(__pyx_8genexpr8__pyx_v_dim); - __Pyx_GIVEREF(__pyx_8genexpr8__pyx_v_dim); - if (__Pyx_PyTuple_SET_ITEM(__pyx_t_9, 0, __pyx_8genexpr8__pyx_v_dim)) __PYX_ERR(7, 61, __pyx_L25_error); - __Pyx_INCREF(__pyx_8genexpr8__pyx_v_sz); - __Pyx_GIVEREF(__pyx_8genexpr8__pyx_v_sz); - if (__Pyx_PyTuple_SET_ITEM(__pyx_t_9, 1, __pyx_8genexpr8__pyx_v_sz)) __PYX_ERR(7, 61, __pyx_L25_error); + __Pyx_INCREF(__pyx_8genexpr7__pyx_v_dim); + __Pyx_GIVEREF(__pyx_8genexpr7__pyx_v_dim); + if (__Pyx_PyTuple_SET_ITEM(__pyx_t_9, 0, __pyx_8genexpr7__pyx_v_dim)) __PYX_ERR(7, 61, __pyx_L25_error); + __Pyx_INCREF(__pyx_8genexpr7__pyx_v_sz); + __Pyx_GIVEREF(__pyx_8genexpr7__pyx_v_sz); + if (__Pyx_PyTuple_SET_ITEM(__pyx_t_9, 1, __pyx_8genexpr7__pyx_v_sz)) __PYX_ERR(7, 61, __pyx_L25_error); if (unlikely(__Pyx_ListComp_Append(__pyx_t_2, (PyObject*)__pyx_t_9))) __PYX_ERR(7, 61, __pyx_L25_error) __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; } } __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; - __Pyx_XDECREF(__pyx_8genexpr8__pyx_v_dim); __pyx_8genexpr8__pyx_v_dim = 0; - __Pyx_XDECREF(__pyx_8genexpr8__pyx_v_sz); __pyx_8genexpr8__pyx_v_sz = 0; + __Pyx_XDECREF(__pyx_8genexpr7__pyx_v_dim); __pyx_8genexpr7__pyx_v_dim = 0; + __Pyx_XDECREF(__pyx_8genexpr7__pyx_v_sz); __pyx_8genexpr7__pyx_v_sz = 0; goto __pyx_L29_exit_scope; __pyx_L25_error:; - __Pyx_XDECREF(__pyx_8genexpr8__pyx_v_dim); __pyx_8genexpr8__pyx_v_dim = 0; - __Pyx_XDECREF(__pyx_8genexpr8__pyx_v_sz); __pyx_8genexpr8__pyx_v_sz = 0; + __Pyx_XDECREF(__pyx_8genexpr7__pyx_v_dim); __pyx_8genexpr7__pyx_v_dim = 0; + __Pyx_XDECREF(__pyx_8genexpr7__pyx_v_sz); __pyx_8genexpr7__pyx_v_sz = 0; goto __pyx_L1_error; __pyx_L29_exit_scope:; } /* exit inner scope */ @@ -27705,7 +27418,7 @@ static PyObject *__pyx_pf_8shxarray_5shlib_9Synthesis_2__call__(struct __pyx_obj __pyx_t_2 = 0; /* "src/builtin_backend/synthesis.pyx":63 - * dimsin=[(dim,sz) for dim,sz in dain.sizes.items() if dim != "shi"] + * dimsin=[(dim,sz) for dim,sz in dain.sizes.items() if dim != "nm"] * #it is import to have lat, and lon as first dimensions (slowest varying index) * dimsout=[(dim,sz) for dim,sz in self._dsobj.sizes.items()]+dimsin # <<<<<<<<<<<<<< * @@ -27733,28 +27446,28 @@ static PyObject *__pyx_pf_8shxarray_5shlib_9Synthesis_2__call__(struct __pyx_obj if (unlikely(__pyx_t_10 == -1)) __PYX_ERR(7, 63, __pyx_L32_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_GOTREF(__pyx_t_9); - __Pyx_XDECREF_SET(__pyx_8genexpr9__pyx_v_dim, __pyx_t_4); + __Pyx_XDECREF_SET(__pyx_8genexpr8__pyx_v_dim, __pyx_t_4); __pyx_t_4 = 0; - __Pyx_XDECREF_SET(__pyx_8genexpr9__pyx_v_sz, __pyx_t_9); + __Pyx_XDECREF_SET(__pyx_8genexpr8__pyx_v_sz, __pyx_t_9); __pyx_t_9 = 0; __pyx_t_9 = PyTuple_New(2); if (unlikely(!__pyx_t_9)) __PYX_ERR(7, 63, __pyx_L32_error) __Pyx_GOTREF(__pyx_t_9); - __Pyx_INCREF(__pyx_8genexpr9__pyx_v_dim); - __Pyx_GIVEREF(__pyx_8genexpr9__pyx_v_dim); - if (__Pyx_PyTuple_SET_ITEM(__pyx_t_9, 0, __pyx_8genexpr9__pyx_v_dim)) __PYX_ERR(7, 63, __pyx_L32_error); - __Pyx_INCREF(__pyx_8genexpr9__pyx_v_sz); - __Pyx_GIVEREF(__pyx_8genexpr9__pyx_v_sz); - if (__Pyx_PyTuple_SET_ITEM(__pyx_t_9, 1, __pyx_8genexpr9__pyx_v_sz)) __PYX_ERR(7, 63, __pyx_L32_error); + __Pyx_INCREF(__pyx_8genexpr8__pyx_v_dim); + __Pyx_GIVEREF(__pyx_8genexpr8__pyx_v_dim); + if (__Pyx_PyTuple_SET_ITEM(__pyx_t_9, 0, __pyx_8genexpr8__pyx_v_dim)) __PYX_ERR(7, 63, __pyx_L32_error); + __Pyx_INCREF(__pyx_8genexpr8__pyx_v_sz); + __Pyx_GIVEREF(__pyx_8genexpr8__pyx_v_sz); + if (__Pyx_PyTuple_SET_ITEM(__pyx_t_9, 1, __pyx_8genexpr8__pyx_v_sz)) __PYX_ERR(7, 63, __pyx_L32_error); if (unlikely(__Pyx_ListComp_Append(__pyx_t_2, (PyObject*)__pyx_t_9))) __PYX_ERR(7, 63, __pyx_L32_error) __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; } __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; - __Pyx_XDECREF(__pyx_8genexpr9__pyx_v_dim); __pyx_8genexpr9__pyx_v_dim = 0; - __Pyx_XDECREF(__pyx_8genexpr9__pyx_v_sz); __pyx_8genexpr9__pyx_v_sz = 0; + __Pyx_XDECREF(__pyx_8genexpr8__pyx_v_dim); __pyx_8genexpr8__pyx_v_dim = 0; + __Pyx_XDECREF(__pyx_8genexpr8__pyx_v_sz); __pyx_8genexpr8__pyx_v_sz = 0; goto __pyx_L35_exit_scope; __pyx_L32_error:; - __Pyx_XDECREF(__pyx_8genexpr9__pyx_v_dim); __pyx_8genexpr9__pyx_v_dim = 0; - __Pyx_XDECREF(__pyx_8genexpr9__pyx_v_sz); __pyx_8genexpr9__pyx_v_sz = 0; + __Pyx_XDECREF(__pyx_8genexpr8__pyx_v_dim); __pyx_8genexpr8__pyx_v_dim = 0; + __Pyx_XDECREF(__pyx_8genexpr8__pyx_v_sz); __pyx_8genexpr8__pyx_v_sz = 0; goto __pyx_L1_error; __pyx_L35_exit_scope:; } /* exit inner scope */ @@ -27800,18 +27513,18 @@ static PyObject *__pyx_pf_8shxarray_5shlib_9Synthesis_2__call__(struct __pyx_obj __pyx_t_12 = __Pyx_PySequence_ITEM(__pyx_t_11, __pyx_t_7); __pyx_t_7++; if (unlikely(!__pyx_t_12)) __PYX_ERR(7, 66, __pyx_L38_error) __Pyx_GOTREF(__pyx_t_12); #endif - __Pyx_XDECREF_SET(__pyx_9genexpr10__pyx_v_val, __pyx_t_12); + __Pyx_XDECREF_SET(__pyx_8genexpr9__pyx_v_val, __pyx_t_12); __pyx_t_12 = 0; - __pyx_t_12 = __Pyx_GetItemInt(__pyx_9genexpr10__pyx_v_val, 1, long, 1, __Pyx_PyInt_From_long, 0, 0, 0); if (unlikely(!__pyx_t_12)) __PYX_ERR(7, 66, __pyx_L38_error) + __pyx_t_12 = __Pyx_GetItemInt(__pyx_8genexpr9__pyx_v_val, 1, long, 1, __Pyx_PyInt_From_long, 0, 0, 0); if (unlikely(!__pyx_t_12)) __PYX_ERR(7, 66, __pyx_L38_error) __Pyx_GOTREF(__pyx_t_12); if (unlikely(__Pyx_ListComp_Append(__pyx_t_9, (PyObject*)__pyx_t_12))) __PYX_ERR(7, 66, __pyx_L38_error) __Pyx_DECREF(__pyx_t_12); __pyx_t_12 = 0; } __Pyx_DECREF(__pyx_t_11); __pyx_t_11 = 0; - __Pyx_XDECREF(__pyx_9genexpr10__pyx_v_val); __pyx_9genexpr10__pyx_v_val = 0; + __Pyx_XDECREF(__pyx_8genexpr9__pyx_v_val); __pyx_8genexpr9__pyx_v_val = 0; goto __pyx_L42_exit_scope; __pyx_L38_error:; - __Pyx_XDECREF(__pyx_9genexpr10__pyx_v_val); __pyx_9genexpr10__pyx_v_val = 0; + __Pyx_XDECREF(__pyx_8genexpr9__pyx_v_val); __pyx_8genexpr9__pyx_v_val = 0; goto __pyx_L1_error; __pyx_L42_exit_scope:; } /* exit inner scope */ @@ -27865,18 +27578,18 @@ static PyObject *__pyx_pf_8shxarray_5shlib_9Synthesis_2__call__(struct __pyx_obj __pyx_t_12 = __Pyx_PySequence_ITEM(__pyx_t_11, __pyx_t_7); __pyx_t_7++; if (unlikely(!__pyx_t_12)) __PYX_ERR(7, 66, __pyx_L45_error) __Pyx_GOTREF(__pyx_t_12); #endif - __Pyx_XDECREF_SET(__pyx_9genexpr11__pyx_v_val, __pyx_t_12); + __Pyx_XDECREF_SET(__pyx_9genexpr10__pyx_v_val, __pyx_t_12); __pyx_t_12 = 0; - __pyx_t_12 = __Pyx_GetItemInt(__pyx_9genexpr11__pyx_v_val, 0, long, 1, __Pyx_PyInt_From_long, 0, 0, 0); if (unlikely(!__pyx_t_12)) __PYX_ERR(7, 66, __pyx_L45_error) + __pyx_t_12 = __Pyx_GetItemInt(__pyx_9genexpr10__pyx_v_val, 0, long, 1, __Pyx_PyInt_From_long, 0, 0, 0); if (unlikely(!__pyx_t_12)) __PYX_ERR(7, 66, __pyx_L45_error) __Pyx_GOTREF(__pyx_t_12); if (unlikely(__Pyx_ListComp_Append(__pyx_t_9, (PyObject*)__pyx_t_12))) __PYX_ERR(7, 66, __pyx_L45_error) __Pyx_DECREF(__pyx_t_12); __pyx_t_12 = 0; } __Pyx_DECREF(__pyx_t_11); __pyx_t_11 = 0; - __Pyx_XDECREF(__pyx_9genexpr11__pyx_v_val); __pyx_9genexpr11__pyx_v_val = 0; + __Pyx_XDECREF(__pyx_9genexpr10__pyx_v_val); __pyx_9genexpr10__pyx_v_val = 0; goto __pyx_L49_exit_scope; __pyx_L45_error:; - __Pyx_XDECREF(__pyx_9genexpr11__pyx_v_val); __pyx_9genexpr11__pyx_v_val = 0; + __Pyx_XDECREF(__pyx_9genexpr10__pyx_v_val); __pyx_9genexpr10__pyx_v_val = 0; goto __pyx_L1_error; __pyx_L49_exit_scope:; } /* exit inner scope */ @@ -27937,16 +27650,16 @@ static PyObject *__pyx_pf_8shxarray_5shlib_9Synthesis_2__call__(struct __pyx_obj __Pyx_XDECREF(__pyx_v_dimsin); __Pyx_XDECREF(__pyx_v_dimsout); __Pyx_XDECREF(__pyx_v_daout); + __Pyx_XDECREF(__pyx_8genexpr5__pyx_v_ky); + __Pyx_XDECREF(__pyx_8genexpr5__pyx_v_val); __Pyx_XDECREF(__pyx_8genexpr6__pyx_v_ky); __Pyx_XDECREF(__pyx_8genexpr6__pyx_v_val); - __Pyx_XDECREF(__pyx_8genexpr7__pyx_v_ky); - __Pyx_XDECREF(__pyx_8genexpr7__pyx_v_val); + __Pyx_XDECREF(__pyx_8genexpr7__pyx_v_dim); + __Pyx_XDECREF(__pyx_8genexpr7__pyx_v_sz); __Pyx_XDECREF(__pyx_8genexpr8__pyx_v_dim); __Pyx_XDECREF(__pyx_8genexpr8__pyx_v_sz); - __Pyx_XDECREF(__pyx_8genexpr9__pyx_v_dim); - __Pyx_XDECREF(__pyx_8genexpr9__pyx_v_sz); + __Pyx_XDECREF(__pyx_8genexpr9__pyx_v_val); __Pyx_XDECREF(__pyx_9genexpr10__pyx_v_val); - __Pyx_XDECREF(__pyx_9genexpr11__pyx_v_val); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; @@ -27983,13 +27696,12 @@ static PyObject *__pyx_f_8shxarray_5shlib_9Synthesis__apply_dgemv(struct __pyx_o __Pyx_memviewslice __pyx_v_outv = { 0, 0, { 0 }, { 0 }, { 0 } }; __Pyx_memviewslice __pyx_v_nv = { 0, 0, { 0 }, { 0 }, { 0 } }; __Pyx_memviewslice __pyx_v_mv = { 0, 0, { 0 }, { 0 }, { 0 } }; - __Pyx_memviewslice __pyx_v_tv = { 0, 0, { 0 }, { 0 }, { 0 } }; Ynm_cpp __pyx_v_ynm; int __pyx_v_ilat; int __pyx_v_ilon; int __pyx_v_idx; - PyObject *__pyx_9genexpr12__pyx_v_ky = NULL; - PyObject *__pyx_9genexpr12__pyx_v_val = NULL; + PyObject *__pyx_9genexpr11__pyx_v_ky = NULL; + PyObject *__pyx_9genexpr11__pyx_v_val = NULL; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; @@ -28008,12 +27720,12 @@ static PyObject *__pyx_f_8shxarray_5shlib_9Synthesis__apply_dgemv(struct __pyx_o __Pyx_memviewslice __pyx_t_14 = { 0, 0, { 0 }, { 0 }, { 0 } }; Py_ssize_t __pyx_t_15; Py_ssize_t __pyx_t_16; - Py_ssize_t __pyx_t_17; - Ynm_cpp __pyx_t_18; + Ynm_cpp __pyx_t_17; + int __pyx_t_18; int __pyx_t_19; int __pyx_t_20; int __pyx_t_21; - int __pyx_t_22; + Py_ssize_t __pyx_t_22; Py_ssize_t __pyx_t_23; int __pyx_lineno = 0; const char *__pyx_filename = NULL; @@ -28173,13 +27885,13 @@ static PyObject *__pyx_f_8shxarray_5shlib_9Synthesis__apply_dgemv(struct __pyx_o /* "src/builtin_backend/synthesis.pyx":81 * * - * cdef int shsize=len(dain.indexes['shi']) # <<<<<<<<<<<<<< + * cdef int shsize=len(dain.indexes['nm']) # <<<<<<<<<<<<<< * # product of the non-shi dimension lengths * # note auxsize will be 1 (good!) when no other dimensions are present except for shi */ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_dain, __pyx_n_s_indexes); if (unlikely(!__pyx_t_1)) __PYX_ERR(7, 81, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); - __pyx_t_2 = __Pyx_PyObject_Dict_GetItem(__pyx_t_1, __pyx_n_u_shi); if (unlikely(!__pyx_t_2)) __PYX_ERR(7, 81, __pyx_L1_error) + __pyx_t_2 = __Pyx_PyObject_Dict_GetItem(__pyx_t_1, __pyx_n_u_nm); if (unlikely(!__pyx_t_2)) __PYX_ERR(7, 81, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_7 = PyObject_Length(__pyx_t_2); if (unlikely(__pyx_t_7 == ((Py_ssize_t)-1))) __PYX_ERR(7, 81, __pyx_L1_error) @@ -28189,7 +27901,7 @@ static PyObject *__pyx_f_8shxarray_5shlib_9Synthesis__apply_dgemv(struct __pyx_o /* "src/builtin_backend/synthesis.pyx":84 * # product of the non-shi dimension lengths * # note auxsize will be 1 (good!) when no other dimensions are present except for shi - * cdef int auxsize=np.prod([val for ky,val in dain.sizes.items() if ky != "shi"]) # <<<<<<<<<<<<<< + * cdef int auxsize=np.prod([val for ky,val in dain.sizes.items() if ky != "nm"]) # <<<<<<<<<<<<<< * * cdef int npoints */ @@ -28220,22 +27932,22 @@ static PyObject *__pyx_f_8shxarray_5shlib_9Synthesis__apply_dgemv(struct __pyx_o if (unlikely(__pyx_t_11 == -1)) __PYX_ERR(7, 84, __pyx_L5_error) __Pyx_GOTREF(__pyx_t_10); __Pyx_GOTREF(__pyx_t_9); - __Pyx_XDECREF_SET(__pyx_9genexpr12__pyx_v_ky, __pyx_t_10); + __Pyx_XDECREF_SET(__pyx_9genexpr11__pyx_v_ky, __pyx_t_10); __pyx_t_10 = 0; - __Pyx_XDECREF_SET(__pyx_9genexpr12__pyx_v_val, __pyx_t_9); + __Pyx_XDECREF_SET(__pyx_9genexpr11__pyx_v_val, __pyx_t_9); __pyx_t_9 = 0; - __pyx_t_12 = (__Pyx_PyUnicode_Equals(__pyx_9genexpr12__pyx_v_ky, __pyx_n_u_shi, Py_NE)); if (unlikely((__pyx_t_12 < 0))) __PYX_ERR(7, 84, __pyx_L5_error) + __pyx_t_12 = (__Pyx_PyUnicode_Equals(__pyx_9genexpr11__pyx_v_ky, __pyx_n_u_nm, Py_NE)); if (unlikely((__pyx_t_12 < 0))) __PYX_ERR(7, 84, __pyx_L5_error) if (__pyx_t_12) { - if (unlikely(__Pyx_ListComp_Append(__pyx_t_1, (PyObject*)__pyx_9genexpr12__pyx_v_val))) __PYX_ERR(7, 84, __pyx_L5_error) + if (unlikely(__Pyx_ListComp_Append(__pyx_t_1, (PyObject*)__pyx_9genexpr11__pyx_v_val))) __PYX_ERR(7, 84, __pyx_L5_error) } } __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; - __Pyx_XDECREF(__pyx_9genexpr12__pyx_v_ky); __pyx_9genexpr12__pyx_v_ky = 0; - __Pyx_XDECREF(__pyx_9genexpr12__pyx_v_val); __pyx_9genexpr12__pyx_v_val = 0; + __Pyx_XDECREF(__pyx_9genexpr11__pyx_v_ky); __pyx_9genexpr11__pyx_v_ky = 0; + __Pyx_XDECREF(__pyx_9genexpr11__pyx_v_val); __pyx_9genexpr11__pyx_v_val = 0; goto __pyx_L9_exit_scope; __pyx_L5_error:; - __Pyx_XDECREF(__pyx_9genexpr12__pyx_v_ky); __pyx_9genexpr12__pyx_v_ky = 0; - __Pyx_XDECREF(__pyx_9genexpr12__pyx_v_val); __pyx_9genexpr12__pyx_v_val = 0; + __Pyx_XDECREF(__pyx_9genexpr11__pyx_v_ky); __pyx_9genexpr11__pyx_v_ky = 0; + __Pyx_XDECREF(__pyx_9genexpr11__pyx_v_val); __pyx_9genexpr11__pyx_v_val = 0; goto __pyx_L1_error; __pyx_L9_exit_scope:; } /* exit inner scope */ @@ -28461,7 +28173,7 @@ static PyObject *__pyx_f_8shxarray_5shlib_9Synthesis__apply_dgemv(struct __pyx_o * else: * inval=dain.data.reshape([shsize,auxsize]).T # <<<<<<<<<<<<<< * - * elif dain.get_axis_num('shi') == dain.ndim -1: + * elif dain.get_axis_num('nm') == dain.ndim -1: */ /*else*/ { __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_v_dain, __pyx_n_s_data); if (unlikely(!__pyx_t_4)) __PYX_ERR(7, 104, __pyx_L1_error) @@ -28528,8 +28240,8 @@ static PyObject *__pyx_f_8shxarray_5shlib_9Synthesis__apply_dgemv(struct __pyx_o /* "src/builtin_backend/synthesis.pyx":106 * inval=dain.data.reshape([shsize,auxsize]).T * - * elif dain.get_axis_num('shi') == dain.ndim -1: # <<<<<<<<<<<<<< - * #shi dimension is last + * elif dain.get_axis_num('nm') == dain.ndim -1: # <<<<<<<<<<<<<< + * #nm dimension is last * inval=dain.data.reshape([auxsize,shsize]) # keep the sh dimension last */ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_dain, __pyx_n_s_get_axis_num); if (unlikely(!__pyx_t_2)) __PYX_ERR(7, 106, __pyx_L1_error) @@ -28549,7 +28261,7 @@ static PyObject *__pyx_f_8shxarray_5shlib_9Synthesis__apply_dgemv(struct __pyx_o } #endif { - PyObject *__pyx_callargs[2] = {__pyx_t_1, __pyx_n_u_shi}; + PyObject *__pyx_callargs[2] = {__pyx_t_1, __pyx_n_u_nm}; __pyx_t_9 = __Pyx_PyObject_FastCall(__pyx_t_2, __pyx_callargs+1-__pyx_t_3, 1+__pyx_t_3); __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0; if (unlikely(!__pyx_t_9)) __PYX_ERR(7, 106, __pyx_L1_error) @@ -28569,10 +28281,10 @@ static PyObject *__pyx_f_8shxarray_5shlib_9Synthesis__apply_dgemv(struct __pyx_o if (__pyx_t_12) { /* "src/builtin_backend/synthesis.pyx":108 - * elif dain.get_axis_num('shi') == dain.ndim -1: - * #shi dimension is last + * elif dain.get_axis_num('nm') == dain.ndim -1: + * #nm dimension is last * inval=dain.data.reshape([auxsize,shsize]) # keep the sh dimension last # <<<<<<<<<<<<<< - * elif dain.get_axis_num('shi') == 0: + * elif dain.get_axis_num('nm') == 0: * #transpose input so the SHI dimension is last */ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_dain, __pyx_n_s_data); if (unlikely(!__pyx_t_1)) __PYX_ERR(7, 108, __pyx_L1_error) @@ -28624,17 +28336,17 @@ static PyObject *__pyx_f_8shxarray_5shlib_9Synthesis__apply_dgemv(struct __pyx_o /* "src/builtin_backend/synthesis.pyx":106 * inval=dain.data.reshape([shsize,auxsize]).T * - * elif dain.get_axis_num('shi') == dain.ndim -1: # <<<<<<<<<<<<<< - * #shi dimension is last + * elif dain.get_axis_num('nm') == dain.ndim -1: # <<<<<<<<<<<<<< + * #nm dimension is last * inval=dain.data.reshape([auxsize,shsize]) # keep the sh dimension last */ goto __pyx_L11; } /* "src/builtin_backend/synthesis.pyx":109 - * #shi dimension is last + * #nm dimension is last * inval=dain.data.reshape([auxsize,shsize]) # keep the sh dimension last - * elif dain.get_axis_num('shi') == 0: # <<<<<<<<<<<<<< + * elif dain.get_axis_num('nm') == 0: # <<<<<<<<<<<<<< * #transpose input so the SHI dimension is last * inval=dain.data.reshape([shsize,auxsize]).T # transpose to make the sh dimension last */ @@ -28655,7 +28367,7 @@ static PyObject *__pyx_f_8shxarray_5shlib_9Synthesis__apply_dgemv(struct __pyx_o } #endif { - PyObject *__pyx_callargs[2] = {__pyx_t_4, __pyx_n_u_shi}; + PyObject *__pyx_callargs[2] = {__pyx_t_4, __pyx_n_u_nm}; __pyx_t_2 = __Pyx_PyObject_FastCall(__pyx_t_9, __pyx_callargs+1-__pyx_t_3, 1+__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __pyx_t_4 = 0; if (unlikely(!__pyx_t_2)) __PYX_ERR(7, 109, __pyx_L1_error) @@ -28667,11 +28379,11 @@ static PyObject *__pyx_f_8shxarray_5shlib_9Synthesis__apply_dgemv(struct __pyx_o if (likely(__pyx_t_12)) { /* "src/builtin_backend/synthesis.pyx":111 - * elif dain.get_axis_num('shi') == 0: + * elif dain.get_axis_num('nm') == 0: * #transpose input so the SHI dimension is last * inval=dain.data.reshape([shsize,auxsize]).T # transpose to make the sh dimension last # <<<<<<<<<<<<<< * else: - * raise RuntimeError("Can only handle input where the shi dimension is first or last") + * raise RuntimeError("Can only handle input where the nm dimension is first or last") */ __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_dain, __pyx_n_s_data); if (unlikely(!__pyx_t_9)) __PYX_ERR(7, 111, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); @@ -28723,9 +28435,9 @@ static PyObject *__pyx_f_8shxarray_5shlib_9Synthesis__apply_dgemv(struct __pyx_o __pyx_t_13.data = NULL; /* "src/builtin_backend/synthesis.pyx":109 - * #shi dimension is last + * #nm dimension is last * inval=dain.data.reshape([auxsize,shsize]) # keep the sh dimension last - * elif dain.get_axis_num('shi') == 0: # <<<<<<<<<<<<<< + * elif dain.get_axis_num('nm') == 0: # <<<<<<<<<<<<<< * #transpose input so the SHI dimension is last * inval=dain.data.reshape([shsize,auxsize]).T # transpose to make the sh dimension last */ @@ -28735,7 +28447,7 @@ static PyObject *__pyx_f_8shxarray_5shlib_9Synthesis__apply_dgemv(struct __pyx_o /* "src/builtin_backend/synthesis.pyx":113 * inval=dain.data.reshape([shsize,auxsize]).T # transpose to make the sh dimension last * else: - * raise RuntimeError("Can only handle input where the shi dimension is first or last") # <<<<<<<<<<<<<< + * raise RuntimeError("Can only handle input where the nm dimension is first or last") # <<<<<<<<<<<<<< * * # cdef int sz1,sz2 */ @@ -28944,11 +28656,11 @@ static PyObject *__pyx_f_8shxarray_5shlib_9Synthesis__apply_dgemv(struct __pyx_o /* "src/builtin_backend/synthesis.pyx":163 * #integer incy * - * cdef int[::1] nv = dain.shi.n.data.astype(np.int32) # <<<<<<<<<<<<<< - * cdef int[::1] mv = dain.shi.m.data.astype(np.int32) - * cdef int[::1] tv = dain.shi.t.data.astype(np.int32) + * cdef int[::1] nv = dain.nm.n.data.astype(np.int32) # <<<<<<<<<<<<<< + * cdef int[::1] mv = dain.nm.m.data.astype(np.int32) + * # cdef int[::1] tv = dain.shi.t.data.astype(np.int32) */ - __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_dain, __pyx_n_s_shi); if (unlikely(!__pyx_t_1)) __PYX_ERR(7, 163, __pyx_L1_error) + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_dain, __pyx_n_s_nm); if (unlikely(!__pyx_t_1)) __PYX_ERR(7, 163, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_n); if (unlikely(!__pyx_t_9)) __PYX_ERR(7, 163, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); @@ -28995,12 +28707,12 @@ static PyObject *__pyx_f_8shxarray_5shlib_9Synthesis__apply_dgemv(struct __pyx_o /* "src/builtin_backend/synthesis.pyx":164 * - * cdef int[::1] nv = dain.shi.n.data.astype(np.int32) - * cdef int[::1] mv = dain.shi.m.data.astype(np.int32) # <<<<<<<<<<<<<< - * cdef int[::1] tv = dain.shi.t.data.astype(np.int32) + * cdef int[::1] nv = dain.nm.n.data.astype(np.int32) + * cdef int[::1] mv = dain.nm.m.data.astype(np.int32) # <<<<<<<<<<<<<< + * # cdef int[::1] tv = dain.shi.t.data.astype(np.int32) * */ - __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_dain, __pyx_n_s_shi); if (unlikely(!__pyx_t_9)) __PYX_ERR(7, 164, __pyx_L1_error) + __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_dain, __pyx_n_s_nm); if (unlikely(!__pyx_t_9)) __PYX_ERR(7, 164, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_9, __pyx_n_s_m); if (unlikely(!__pyx_t_5)) __PYX_ERR(7, 164, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); @@ -29045,63 +28757,11 @@ static PyObject *__pyx_f_8shxarray_5shlib_9Synthesis__apply_dgemv(struct __pyx_o __pyx_t_14.memview = NULL; __pyx_t_14.data = NULL; - /* "src/builtin_backend/synthesis.pyx":165 - * cdef int[::1] nv = dain.shi.n.data.astype(np.int32) - * cdef int[::1] mv = dain.shi.m.data.astype(np.int32) - * cdef int[::1] tv = dain.shi.t.data.astype(np.int32) # <<<<<<<<<<<<<< - * - * cdef Ynm_cpp[double] ynm - */ - __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_v_dain, __pyx_n_s_shi); if (unlikely(!__pyx_t_5)) __PYX_ERR(7, 165, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_5); - __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_t); if (unlikely(!__pyx_t_1)) __PYX_ERR(7, 165, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_1); - __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; - __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_data); if (unlikely(!__pyx_t_5)) __PYX_ERR(7, 165, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_5); - __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; - __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_astype); if (unlikely(!__pyx_t_1)) __PYX_ERR(7, 165, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_1); - __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; - __Pyx_GetModuleGlobalName(__pyx_t_5, __pyx_n_s_np); if (unlikely(!__pyx_t_5)) __PYX_ERR(7, 165, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_5); - __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_int32); if (unlikely(!__pyx_t_9)) __PYX_ERR(7, 165, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_9); - __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; - __pyx_t_5 = NULL; - __pyx_t_3 = 0; - #if CYTHON_UNPACK_METHODS - if (likely(PyMethod_Check(__pyx_t_1))) { - __pyx_t_5 = PyMethod_GET_SELF(__pyx_t_1); - if (likely(__pyx_t_5)) { - PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_1); - __Pyx_INCREF(__pyx_t_5); - __Pyx_INCREF(function); - __Pyx_DECREF_SET(__pyx_t_1, function); - __pyx_t_3 = 1; - } - } - #endif - { - PyObject *__pyx_callargs[2] = {__pyx_t_5, __pyx_t_9}; - __pyx_t_4 = __Pyx_PyObject_FastCall(__pyx_t_1, __pyx_callargs+1-__pyx_t_3, 1+__pyx_t_3); - __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; - __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; - if (unlikely(!__pyx_t_4)) __PYX_ERR(7, 165, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_4); - __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; - } - __pyx_t_14 = __Pyx_PyObject_to_MemoryviewSlice_dc_int(__pyx_t_4, PyBUF_WRITABLE); if (unlikely(!__pyx_t_14.memview)) __PYX_ERR(7, 165, __pyx_L1_error) - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - __pyx_v_tv = __pyx_t_14; - __pyx_t_14.memview = NULL; - __pyx_t_14.data = NULL; - /* "src/builtin_backend/synthesis.pyx":170 * cdef int ilat,ilon,idx * * with nogil, parallel(): # <<<<<<<<<<<<<< - * ynm=Ynm_cpp[double](shsize,&nv[0],&mv[0],&tv[0]) + * ynm=Ynm_cpp[double](shsize,&nv[0],&mv[0]) * if grid: */ { @@ -29137,15 +28797,14 @@ static PyObject *__pyx_f_8shxarray_5shlib_9Synthesis__apply_dgemv(struct __pyx_o /* "src/builtin_backend/synthesis.pyx":171 * * with nogil, parallel(): - * ynm=Ynm_cpp[double](shsize,&nv[0],&mv[0],&tv[0]) # <<<<<<<<<<<<<< + * ynm=Ynm_cpp[double](shsize,&nv[0],&mv[0]) # <<<<<<<<<<<<<< * if grid: * #use gridded approach (can be significantly faster because the latitudes will be in the outer loop) */ __pyx_t_15 = 0; __pyx_t_16 = 0; - __pyx_t_17 = 0; try { - __pyx_t_18 = Ynm_cpp (__pyx_v_shsize, (&(*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_nv.data) + __pyx_t_15)) )))), (&(*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_mv.data) + __pyx_t_16)) )))), (&(*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_tv.data) + __pyx_t_17)) ))))); + __pyx_t_17 = Ynm_cpp (__pyx_v_shsize, (&(*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_nv.data) + __pyx_t_15)) )))), (&(*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_mv.data) + __pyx_t_16)) ))))); } catch(...) { #ifdef WITH_THREAD PyGILState_STATE __pyx_gilstate_save = __Pyx_PyGILState_Ensure(); @@ -29156,11 +28815,11 @@ static PyObject *__pyx_f_8shxarray_5shlib_9Synthesis__apply_dgemv(struct __pyx_o #endif __PYX_ERR(7, 171, __pyx_L19_error) } - __pyx_v_ynm = __PYX_STD_MOVE_IF_SUPPORTED(__pyx_t_18); + __pyx_v_ynm = __PYX_STD_MOVE_IF_SUPPORTED(__pyx_t_17); /* "src/builtin_backend/synthesis.pyx":172 * with nogil, parallel(): - * ynm=Ynm_cpp[double](shsize,&nv[0],&mv[0],&tv[0]) + * ynm=Ynm_cpp[double](shsize,&nv[0],&mv[0]) * if grid: # <<<<<<<<<<<<<< * #use gridded approach (can be significantly faster because the latitudes will be in the outer loop) * for ilat in prange(nlat): @@ -29176,13 +28835,13 @@ static PyObject *__pyx_f_8shxarray_5shlib_9Synthesis__apply_dgemv(struct __pyx_o */ __pyx_t_3 = __pyx_v_nlat; { - __pyx_t_19 = (__pyx_t_3 - 0 + 1 - 1/abs(1)) / 1; - if (__pyx_t_19 > 0) + __pyx_t_18 = (__pyx_t_3 - 0 + 1 - 1/abs(1)) / 1; + if (__pyx_t_18 > 0) { #ifdef _OPENMP #pragma omp for firstprivate(__pyx_v_ilat) lastprivate(__pyx_v_ilat) lastprivate(__pyx_v_ilon) #endif /* _OPENMP */ - for (__pyx_t_11 = 0; __pyx_t_11 < __pyx_t_19; __pyx_t_11++){ + for (__pyx_t_11 = 0; __pyx_t_11 < __pyx_t_18; __pyx_t_11++){ { __pyx_v_ilat = (int)(0 + 1 * __pyx_t_11); /* Initialize private variables to invalid values */ @@ -29195,10 +28854,10 @@ static PyObject *__pyx_f_8shxarray_5shlib_9Synthesis__apply_dgemv(struct __pyx_o * ynm.set(lonv[ilon],latv[ilat]) * # dgemv(&trans,&m,&n,&alpha,&inval[0,0],&lda,&ynm.data[0],&incx,&beta,&outv[ilat*nlon+ilon,0],&incy) */ - __pyx_t_20 = __pyx_v_nlon; - __pyx_t_21 = __pyx_t_20; - for (__pyx_t_22 = 0; __pyx_t_22 < __pyx_t_21; __pyx_t_22+=1) { - __pyx_v_ilon = __pyx_t_22; + __pyx_t_19 = __pyx_v_nlon; + __pyx_t_20 = __pyx_t_19; + for (__pyx_t_21 = 0; __pyx_t_21 < __pyx_t_20; __pyx_t_21+=1) { + __pyx_v_ilon = __pyx_t_21; /* "src/builtin_backend/synthesis.pyx":176 * for ilat in prange(nlat): @@ -29207,9 +28866,9 @@ static PyObject *__pyx_f_8shxarray_5shlib_9Synthesis__apply_dgemv(struct __pyx_o * # dgemv(&trans,&m,&n,&alpha,&inval[0,0],&lda,&ynm.data[0],&incx,&beta,&outv[ilat*nlon+ilon,0],&incy) * dgemv(&trans,&m,&n,&alpha,&inval[0,0],&lda,ynm.data(),&incx,&beta,&outv[ilat*nlon+ilon,0],&incy) */ - __pyx_t_17 = __pyx_v_ilon; - __pyx_t_16 = __pyx_v_ilat; - __pyx_v_ynm.set((*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_lonv.data) + __pyx_t_17)) ))), (*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_latv.data) + __pyx_t_16)) )))); + __pyx_t_16 = __pyx_v_ilon; + __pyx_t_15 = __pyx_v_ilat; + __pyx_v_ynm.set((*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_lonv.data) + __pyx_t_16)) ))), (*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_latv.data) + __pyx_t_15)) )))); /* "src/builtin_backend/synthesis.pyx":178 * ynm.set(lonv[ilon],latv[ilat]) @@ -29218,11 +28877,11 @@ static PyObject *__pyx_f_8shxarray_5shlib_9Synthesis__apply_dgemv(struct __pyx_o * * else: */ + __pyx_t_15 = 0; __pyx_t_16 = 0; - __pyx_t_17 = 0; - __pyx_t_15 = ((__pyx_v_ilat * __pyx_v_nlon) + __pyx_v_ilon); + __pyx_t_22 = ((__pyx_v_ilat * __pyx_v_nlon) + __pyx_v_ilon); __pyx_t_23 = 0; - __pyx_f_5scipy_6linalg_11cython_blas_dgemv((&__pyx_v_trans), (&__pyx_v_m), (&__pyx_v_n), (&__pyx_v_alpha), (&(*((double *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_inval.data + __pyx_t_16 * __pyx_v_inval.strides[0]) ) + __pyx_t_17 * __pyx_v_inval.strides[1]) )))), (&__pyx_v_lda), __pyx_v_ynm.data(), (&__pyx_v_incx), (&__pyx_v_beta), (&(*((double *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_outv.data + __pyx_t_15 * __pyx_v_outv.strides[0]) ) + __pyx_t_23 * __pyx_v_outv.strides[1]) )))), (&__pyx_v_incy)); + __pyx_f_5scipy_6linalg_11cython_blas_dgemv((&__pyx_v_trans), (&__pyx_v_m), (&__pyx_v_n), (&__pyx_v_alpha), (&(*((double *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_inval.data + __pyx_t_15 * __pyx_v_inval.strides[0]) ) + __pyx_t_16 * __pyx_v_inval.strides[1]) )))), (&__pyx_v_lda), __pyx_v_ynm.data(), (&__pyx_v_incx), (&__pyx_v_beta), (&(*((double *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_outv.data + __pyx_t_22 * __pyx_v_outv.strides[0]) ) + __pyx_t_23 * __pyx_v_outv.strides[1]) )))), (&__pyx_v_incy)); } } } @@ -29231,7 +28890,7 @@ static PyObject *__pyx_f_8shxarray_5shlib_9Synthesis__apply_dgemv(struct __pyx_o /* "src/builtin_backend/synthesis.pyx":172 * with nogil, parallel(): - * ynm=Ynm_cpp[double](shsize,&nv[0],&mv[0],&tv[0]) + * ynm=Ynm_cpp[double](shsize,&nv[0],&mv[0]) * if grid: # <<<<<<<<<<<<<< * #use gridded approach (can be significantly faster because the latitudes will be in the outer loop) * for ilat in prange(nlat): @@ -29247,9 +28906,9 @@ static PyObject *__pyx_f_8shxarray_5shlib_9Synthesis__apply_dgemv(struct __pyx_o * # dgemv(&trans,&m,&n,&alpha,&inval[0,0],&lda,&ynm.data[0],&incx,&beta,&outv[idx,0],&incy) */ /*else*/ { - __pyx_t_19 = __pyx_v_npoints; + __pyx_t_18 = __pyx_v_npoints; { - __pyx_t_3 = (__pyx_t_19 - 0 + 1 - 1/abs(1)) / 1; + __pyx_t_3 = (__pyx_t_18 - 0 + 1 - 1/abs(1)) / 1; if (__pyx_t_3 > 0) { #ifdef _OPENMP @@ -29267,21 +28926,20 @@ static PyObject *__pyx_f_8shxarray_5shlib_9Synthesis__apply_dgemv(struct __pyx_o * dgemv(&trans,&m,&n,&alpha,&inval[0,0],&lda,ynm.data(),&incx,&beta,&outv[idx,0],&incy) */ __pyx_t_23 = __pyx_v_idx; - __pyx_t_15 = __pyx_v_idx; - __pyx_v_ynm.set((*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_lonv.data) + __pyx_t_23)) ))), (*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_latv.data) + __pyx_t_15)) )))); + __pyx_t_22 = __pyx_v_idx; + __pyx_v_ynm.set((*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_lonv.data) + __pyx_t_23)) ))), (*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_latv.data) + __pyx_t_22)) )))); /* "src/builtin_backend/synthesis.pyx":184 * ynm.set(lonv[idx],latv[idx]) * # dgemv(&trans,&m,&n,&alpha,&inval[0,0],&lda,&ynm.data[0],&incx,&beta,&outv[idx,0],&incy) * dgemv(&trans,&m,&n,&alpha,&inval[0,0],&lda,ynm.data(),&incx,&beta,&outv[idx,0],&incy) # <<<<<<<<<<<<<< * - * # @cython.profile(True) */ - __pyx_t_15 = 0; + __pyx_t_22 = 0; __pyx_t_23 = 0; - __pyx_t_17 = __pyx_v_idx; - __pyx_t_16 = 0; - __pyx_f_5scipy_6linalg_11cython_blas_dgemv((&__pyx_v_trans), (&__pyx_v_m), (&__pyx_v_n), (&__pyx_v_alpha), (&(*((double *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_inval.data + __pyx_t_15 * __pyx_v_inval.strides[0]) ) + __pyx_t_23 * __pyx_v_inval.strides[1]) )))), (&__pyx_v_lda), __pyx_v_ynm.data(), (&__pyx_v_incx), (&__pyx_v_beta), (&(*((double *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_outv.data + __pyx_t_17 * __pyx_v_outv.strides[0]) ) + __pyx_t_16 * __pyx_v_outv.strides[1]) )))), (&__pyx_v_incy)); + __pyx_t_16 = __pyx_v_idx; + __pyx_t_15 = 0; + __pyx_f_5scipy_6linalg_11cython_blas_dgemv((&__pyx_v_trans), (&__pyx_v_m), (&__pyx_v_n), (&__pyx_v_alpha), (&(*((double *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_inval.data + __pyx_t_22 * __pyx_v_inval.strides[0]) ) + __pyx_t_23 * __pyx_v_inval.strides[1]) )))), (&__pyx_v_lda), __pyx_v_ynm.data(), (&__pyx_v_incx), (&__pyx_v_beta), (&(*((double *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_outv.data + __pyx_t_16 * __pyx_v_outv.strides[0]) ) + __pyx_t_15 * __pyx_v_outv.strides[1]) )))), (&__pyx_v_incy)); } } } @@ -29359,7 +29017,7 @@ static PyObject *__pyx_f_8shxarray_5shlib_9Synthesis__apply_dgemv(struct __pyx_o * cdef int ilat,ilon,idx * * with nogil, parallel(): # <<<<<<<<<<<<<< - * ynm=Ynm_cpp[double](shsize,&nv[0],&mv[0],&tv[0]) + * ynm=Ynm_cpp[double](shsize,&nv[0],&mv[0]) * if grid: */ /*finally:*/ { @@ -29411,9 +29069,8 @@ static PyObject *__pyx_f_8shxarray_5shlib_9Synthesis__apply_dgemv(struct __pyx_o __PYX_XCLEAR_MEMVIEW(&__pyx_v_outv, 1); __PYX_XCLEAR_MEMVIEW(&__pyx_v_nv, 1); __PYX_XCLEAR_MEMVIEW(&__pyx_v_mv, 1); - __PYX_XCLEAR_MEMVIEW(&__pyx_v_tv, 1); - __Pyx_XDECREF(__pyx_9genexpr12__pyx_v_ky); - __Pyx_XDECREF(__pyx_9genexpr12__pyx_v_val); + __Pyx_XDECREF(__pyx_9genexpr11__pyx_v_ky); + __Pyx_XDECREF(__pyx_9genexpr11__pyx_v_val); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; @@ -29839,7 +29496,7 @@ static int __pyx_pf_8shxarray_5shlib_8Analysis___cinit__(struct __pyx_obj_8shxar /* "src/builtin_backend/analysis.pyx":30 * * #create a spherical harmonic index - * self._dsobj=xr.Dataset(coords=SHindexBase.shi(nmax,0)) # <<<<<<<<<<<<<< + * self._dsobj=xr.Dataset(coords=SHindexBase.nm(nmax,0)) # <<<<<<<<<<<<<< * * def __call__(self,dain:xr.DataArray): */ @@ -29852,7 +29509,7 @@ static int __pyx_pf_8shxarray_5shlib_8Analysis___cinit__(struct __pyx_obj_8shxar __Pyx_GOTREF(__pyx_t_1); __Pyx_GetModuleGlobalName(__pyx_t_4, __pyx_n_s_SHindexBase); if (unlikely(!__pyx_t_4)) __PYX_ERR(8, 30, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); - __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_shi); if (unlikely(!__pyx_t_5)) __PYX_ERR(8, 30, __pyx_L1_error) + __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_nm); if (unlikely(!__pyx_t_5)) __PYX_ERR(8, 30, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __Pyx_PyInt_From_int(__pyx_v_nmax); if (unlikely(!__pyx_t_4)) __PYX_ERR(8, 30, __pyx_L1_error) @@ -29918,7 +29575,7 @@ static int __pyx_pf_8shxarray_5shlib_8Analysis___cinit__(struct __pyx_obj_8shxar } /* "src/builtin_backend/analysis.pyx":32 - * self._dsobj=xr.Dataset(coords=SHindexBase.shi(nmax,0)) + * self._dsobj=xr.Dataset(coords=SHindexBase.nm(nmax,0)) * * def __call__(self,dain:xr.DataArray): # <<<<<<<<<<<<<< * """Perform spherical harmonic analysis on an input xarray DataArray object""" @@ -30018,16 +29675,16 @@ static PyObject *__pyx_pf_8shxarray_5shlib_8Analysis_2__call__(struct __pyx_obj_ double __pyx_v_stepx; double __pyx_v_stepy; double __pyx_v_weight; + PyObject *__pyx_9genexpr12__pyx_v_ky = NULL; + PyObject *__pyx_9genexpr12__pyx_v_val = NULL; PyObject *__pyx_9genexpr13__pyx_v_ky = NULL; PyObject *__pyx_9genexpr13__pyx_v_val = NULL; - PyObject *__pyx_9genexpr14__pyx_v_ky = NULL; - PyObject *__pyx_9genexpr14__pyx_v_val = NULL; + PyObject *__pyx_9genexpr14__pyx_v_dim = NULL; + PyObject *__pyx_9genexpr14__pyx_v_sz = NULL; PyObject *__pyx_9genexpr15__pyx_v_dim = NULL; PyObject *__pyx_9genexpr15__pyx_v_sz = NULL; - PyObject *__pyx_9genexpr16__pyx_v_dim = NULL; - PyObject *__pyx_9genexpr16__pyx_v_sz = NULL; + PyObject *__pyx_9genexpr16__pyx_v_val = NULL; PyObject *__pyx_9genexpr17__pyx_v_val = NULL; - PyObject *__pyx_9genexpr18__pyx_v_val = NULL; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; @@ -30290,11 +29947,11 @@ static PyObject *__pyx_pf_8shxarray_5shlib_8Analysis_2__call__(struct __pyx_obj_ if (unlikely(__pyx_t_11 == -1)) __PYX_ERR(8, 45, __pyx_L9_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_GOTREF(__pyx_t_4); - __Pyx_XDECREF_SET(__pyx_9genexpr13__pyx_v_ky, __pyx_t_5); + __Pyx_XDECREF_SET(__pyx_9genexpr12__pyx_v_ky, __pyx_t_5); __pyx_t_5 = 0; - __Pyx_XDECREF_SET(__pyx_9genexpr13__pyx_v_val, __pyx_t_4); + __Pyx_XDECREF_SET(__pyx_9genexpr12__pyx_v_val, __pyx_t_4); __pyx_t_4 = 0; - __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_9genexpr13__pyx_v_val, __pyx_n_s_ndim); if (unlikely(!__pyx_t_4)) __PYX_ERR(8, 45, __pyx_L9_error) + __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_9genexpr12__pyx_v_val, __pyx_n_s_ndim); if (unlikely(!__pyx_t_4)) __PYX_ERR(8, 45, __pyx_L9_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_7 = (__Pyx_PyInt_BoolEqObjC(__pyx_t_4, __pyx_int_1, 1, 0)); if (unlikely((__pyx_t_7 < 0))) __PYX_ERR(8, 45, __pyx_L9_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; @@ -30303,7 +29960,7 @@ static PyObject *__pyx_pf_8shxarray_5shlib_8Analysis_2__call__(struct __pyx_obj_ __pyx_t_3 = __pyx_t_7; goto __pyx_L13_bool_binop_done; } - __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_9genexpr13__pyx_v_val, __pyx_n_s_dims); if (unlikely(!__pyx_t_4)) __PYX_ERR(8, 45, __pyx_L9_error) + __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_9genexpr12__pyx_v_val, __pyx_n_s_dims); if (unlikely(!__pyx_t_4)) __PYX_ERR(8, 45, __pyx_L9_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_5 = __Pyx_GetItemInt(__pyx_t_4, 0, long, 1, __Pyx_PyInt_From_long, 0, 0, 0); if (unlikely(!__pyx_t_5)) __PYX_ERR(8, 45, __pyx_L9_error) __Pyx_GOTREF(__pyx_t_5); @@ -30322,16 +29979,16 @@ static PyObject *__pyx_pf_8shxarray_5shlib_8Analysis_2__call__(struct __pyx_obj_ __pyx_t_3 = __pyx_t_12; __pyx_L13_bool_binop_done:; if (__pyx_t_3) { - if (unlikely(PyDict_SetItem(__pyx_t_1, (PyObject*)__pyx_9genexpr13__pyx_v_ky, (PyObject*)__pyx_9genexpr13__pyx_v_val))) __PYX_ERR(8, 45, __pyx_L9_error) + if (unlikely(PyDict_SetItem(__pyx_t_1, (PyObject*)__pyx_9genexpr12__pyx_v_ky, (PyObject*)__pyx_9genexpr12__pyx_v_val))) __PYX_ERR(8, 45, __pyx_L9_error) } } __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; - __Pyx_XDECREF(__pyx_9genexpr13__pyx_v_ky); __pyx_9genexpr13__pyx_v_ky = 0; - __Pyx_XDECREF(__pyx_9genexpr13__pyx_v_val); __pyx_9genexpr13__pyx_v_val = 0; + __Pyx_XDECREF(__pyx_9genexpr12__pyx_v_ky); __pyx_9genexpr12__pyx_v_ky = 0; + __Pyx_XDECREF(__pyx_9genexpr12__pyx_v_val); __pyx_9genexpr12__pyx_v_val = 0; goto __pyx_L17_exit_scope; __pyx_L9_error:; - __Pyx_XDECREF(__pyx_9genexpr13__pyx_v_ky); __pyx_9genexpr13__pyx_v_ky = 0; - __Pyx_XDECREF(__pyx_9genexpr13__pyx_v_val); __pyx_9genexpr13__pyx_v_val = 0; + __Pyx_XDECREF(__pyx_9genexpr12__pyx_v_ky); __pyx_9genexpr12__pyx_v_ky = 0; + __Pyx_XDECREF(__pyx_9genexpr12__pyx_v_val); __pyx_9genexpr12__pyx_v_val = 0; goto __pyx_L1_error; __pyx_L17_exit_scope:; } /* exit inner scope */ @@ -30367,19 +30024,19 @@ static PyObject *__pyx_pf_8shxarray_5shlib_8Analysis_2__call__(struct __pyx_obj_ if (unlikely(__pyx_t_11 == -1)) __PYX_ERR(8, 48, __pyx_L20_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_GOTREF(__pyx_t_5); - __Pyx_XDECREF_SET(__pyx_9genexpr14__pyx_v_ky, __pyx_t_4); + __Pyx_XDECREF_SET(__pyx_9genexpr13__pyx_v_ky, __pyx_t_4); __pyx_t_4 = 0; - __Pyx_XDECREF_SET(__pyx_9genexpr14__pyx_v_val, __pyx_t_5); + __Pyx_XDECREF_SET(__pyx_9genexpr13__pyx_v_val, __pyx_t_5); __pyx_t_5 = 0; - if (unlikely(PyDict_SetItem(__pyx_t_1, (PyObject*)__pyx_9genexpr14__pyx_v_ky, (PyObject*)__pyx_9genexpr14__pyx_v_val))) __PYX_ERR(8, 48, __pyx_L20_error) + if (unlikely(PyDict_SetItem(__pyx_t_1, (PyObject*)__pyx_9genexpr13__pyx_v_ky, (PyObject*)__pyx_9genexpr13__pyx_v_val))) __PYX_ERR(8, 48, __pyx_L20_error) } __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; - __Pyx_XDECREF(__pyx_9genexpr14__pyx_v_ky); __pyx_9genexpr14__pyx_v_ky = 0; - __Pyx_XDECREF(__pyx_9genexpr14__pyx_v_val); __pyx_9genexpr14__pyx_v_val = 0; + __Pyx_XDECREF(__pyx_9genexpr13__pyx_v_ky); __pyx_9genexpr13__pyx_v_ky = 0; + __Pyx_XDECREF(__pyx_9genexpr13__pyx_v_val); __pyx_9genexpr13__pyx_v_val = 0; goto __pyx_L23_exit_scope; __pyx_L20_error:; - __Pyx_XDECREF(__pyx_9genexpr14__pyx_v_ky); __pyx_9genexpr14__pyx_v_ky = 0; - __Pyx_XDECREF(__pyx_9genexpr14__pyx_v_val); __pyx_9genexpr14__pyx_v_val = 0; + __Pyx_XDECREF(__pyx_9genexpr13__pyx_v_ky); __pyx_9genexpr13__pyx_v_ky = 0; + __Pyx_XDECREF(__pyx_9genexpr13__pyx_v_val); __pyx_9genexpr13__pyx_v_val = 0; goto __pyx_L1_error; __pyx_L23_exit_scope:; } /* exit inner scope */ @@ -30417,12 +30074,12 @@ static PyObject *__pyx_pf_8shxarray_5shlib_8Analysis_2__call__(struct __pyx_obj_ if (unlikely(__pyx_t_11 == -1)) __PYX_ERR(8, 50, __pyx_L26_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_GOTREF(__pyx_t_5); - __Pyx_XDECREF_SET(__pyx_9genexpr15__pyx_v_dim, __pyx_t_4); + __Pyx_XDECREF_SET(__pyx_9genexpr14__pyx_v_dim, __pyx_t_4); __pyx_t_4 = 0; - __Pyx_XDECREF_SET(__pyx_9genexpr15__pyx_v_sz, __pyx_t_5); + __Pyx_XDECREF_SET(__pyx_9genexpr14__pyx_v_sz, __pyx_t_5); __pyx_t_5 = 0; - __Pyx_INCREF(__pyx_9genexpr15__pyx_v_dim); - __pyx_t_5 = __pyx_9genexpr15__pyx_v_dim; + __Pyx_INCREF(__pyx_9genexpr14__pyx_v_dim); + __pyx_t_5 = __pyx_9genexpr14__pyx_v_dim; __pyx_t_12 = (__Pyx_PyUnicode_Equals(__pyx_t_5, __pyx_n_u_lon, Py_NE)); if (unlikely((__pyx_t_12 < 0))) __PYX_ERR(8, 50, __pyx_L26_error) if (__pyx_t_12) { } else { @@ -30437,23 +30094,23 @@ static PyObject *__pyx_pf_8shxarray_5shlib_8Analysis_2__call__(struct __pyx_obj_ if (__pyx_t_12) { __pyx_t_5 = PyTuple_New(2); if (unlikely(!__pyx_t_5)) __PYX_ERR(8, 50, __pyx_L26_error) __Pyx_GOTREF(__pyx_t_5); - __Pyx_INCREF(__pyx_9genexpr15__pyx_v_dim); - __Pyx_GIVEREF(__pyx_9genexpr15__pyx_v_dim); - if (__Pyx_PyTuple_SET_ITEM(__pyx_t_5, 0, __pyx_9genexpr15__pyx_v_dim)) __PYX_ERR(8, 50, __pyx_L26_error); - __Pyx_INCREF(__pyx_9genexpr15__pyx_v_sz); - __Pyx_GIVEREF(__pyx_9genexpr15__pyx_v_sz); - if (__Pyx_PyTuple_SET_ITEM(__pyx_t_5, 1, __pyx_9genexpr15__pyx_v_sz)) __PYX_ERR(8, 50, __pyx_L26_error); + __Pyx_INCREF(__pyx_9genexpr14__pyx_v_dim); + __Pyx_GIVEREF(__pyx_9genexpr14__pyx_v_dim); + if (__Pyx_PyTuple_SET_ITEM(__pyx_t_5, 0, __pyx_9genexpr14__pyx_v_dim)) __PYX_ERR(8, 50, __pyx_L26_error); + __Pyx_INCREF(__pyx_9genexpr14__pyx_v_sz); + __Pyx_GIVEREF(__pyx_9genexpr14__pyx_v_sz); + if (__Pyx_PyTuple_SET_ITEM(__pyx_t_5, 1, __pyx_9genexpr14__pyx_v_sz)) __PYX_ERR(8, 50, __pyx_L26_error); if (unlikely(__Pyx_ListComp_Append(__pyx_t_2, (PyObject*)__pyx_t_5))) __PYX_ERR(8, 50, __pyx_L26_error) __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; } } __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; - __Pyx_XDECREF(__pyx_9genexpr15__pyx_v_dim); __pyx_9genexpr15__pyx_v_dim = 0; - __Pyx_XDECREF(__pyx_9genexpr15__pyx_v_sz); __pyx_9genexpr15__pyx_v_sz = 0; + __Pyx_XDECREF(__pyx_9genexpr14__pyx_v_dim); __pyx_9genexpr14__pyx_v_dim = 0; + __Pyx_XDECREF(__pyx_9genexpr14__pyx_v_sz); __pyx_9genexpr14__pyx_v_sz = 0; goto __pyx_L32_exit_scope; __pyx_L26_error:; - __Pyx_XDECREF(__pyx_9genexpr15__pyx_v_dim); __pyx_9genexpr15__pyx_v_dim = 0; - __Pyx_XDECREF(__pyx_9genexpr15__pyx_v_sz); __pyx_9genexpr15__pyx_v_sz = 0; + __Pyx_XDECREF(__pyx_9genexpr14__pyx_v_dim); __pyx_9genexpr14__pyx_v_dim = 0; + __Pyx_XDECREF(__pyx_9genexpr14__pyx_v_sz); __pyx_9genexpr14__pyx_v_sz = 0; goto __pyx_L1_error; __pyx_L32_exit_scope:; } /* exit inner scope */ @@ -30489,28 +30146,28 @@ static PyObject *__pyx_pf_8shxarray_5shlib_8Analysis_2__call__(struct __pyx_obj_ if (unlikely(__pyx_t_11 == -1)) __PYX_ERR(8, 52, __pyx_L35_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_GOTREF(__pyx_t_5); - __Pyx_XDECREF_SET(__pyx_9genexpr16__pyx_v_dim, __pyx_t_4); + __Pyx_XDECREF_SET(__pyx_9genexpr15__pyx_v_dim, __pyx_t_4); __pyx_t_4 = 0; - __Pyx_XDECREF_SET(__pyx_9genexpr16__pyx_v_sz, __pyx_t_5); + __Pyx_XDECREF_SET(__pyx_9genexpr15__pyx_v_sz, __pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = PyTuple_New(2); if (unlikely(!__pyx_t_5)) __PYX_ERR(8, 52, __pyx_L35_error) __Pyx_GOTREF(__pyx_t_5); - __Pyx_INCREF(__pyx_9genexpr16__pyx_v_dim); - __Pyx_GIVEREF(__pyx_9genexpr16__pyx_v_dim); - if (__Pyx_PyTuple_SET_ITEM(__pyx_t_5, 0, __pyx_9genexpr16__pyx_v_dim)) __PYX_ERR(8, 52, __pyx_L35_error); - __Pyx_INCREF(__pyx_9genexpr16__pyx_v_sz); - __Pyx_GIVEREF(__pyx_9genexpr16__pyx_v_sz); - if (__Pyx_PyTuple_SET_ITEM(__pyx_t_5, 1, __pyx_9genexpr16__pyx_v_sz)) __PYX_ERR(8, 52, __pyx_L35_error); + __Pyx_INCREF(__pyx_9genexpr15__pyx_v_dim); + __Pyx_GIVEREF(__pyx_9genexpr15__pyx_v_dim); + if (__Pyx_PyTuple_SET_ITEM(__pyx_t_5, 0, __pyx_9genexpr15__pyx_v_dim)) __PYX_ERR(8, 52, __pyx_L35_error); + __Pyx_INCREF(__pyx_9genexpr15__pyx_v_sz); + __Pyx_GIVEREF(__pyx_9genexpr15__pyx_v_sz); + if (__Pyx_PyTuple_SET_ITEM(__pyx_t_5, 1, __pyx_9genexpr15__pyx_v_sz)) __PYX_ERR(8, 52, __pyx_L35_error); if (unlikely(__Pyx_ListComp_Append(__pyx_t_2, (PyObject*)__pyx_t_5))) __PYX_ERR(8, 52, __pyx_L35_error) __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; } __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; - __Pyx_XDECREF(__pyx_9genexpr16__pyx_v_dim); __pyx_9genexpr16__pyx_v_dim = 0; - __Pyx_XDECREF(__pyx_9genexpr16__pyx_v_sz); __pyx_9genexpr16__pyx_v_sz = 0; + __Pyx_XDECREF(__pyx_9genexpr15__pyx_v_dim); __pyx_9genexpr15__pyx_v_dim = 0; + __Pyx_XDECREF(__pyx_9genexpr15__pyx_v_sz); __pyx_9genexpr15__pyx_v_sz = 0; goto __pyx_L38_exit_scope; __pyx_L35_error:; - __Pyx_XDECREF(__pyx_9genexpr16__pyx_v_dim); __pyx_9genexpr16__pyx_v_dim = 0; - __Pyx_XDECREF(__pyx_9genexpr16__pyx_v_sz); __pyx_9genexpr16__pyx_v_sz = 0; + __Pyx_XDECREF(__pyx_9genexpr15__pyx_v_dim); __pyx_9genexpr15__pyx_v_dim = 0; + __Pyx_XDECREF(__pyx_9genexpr15__pyx_v_sz); __pyx_9genexpr15__pyx_v_sz = 0; goto __pyx_L1_error; __pyx_L38_exit_scope:; } /* exit inner scope */ @@ -30556,18 +30213,18 @@ static PyObject *__pyx_pf_8shxarray_5shlib_8Analysis_2__call__(struct __pyx_obj_ __pyx_t_13 = __Pyx_PySequence_ITEM(__pyx_t_8, __pyx_t_9); __pyx_t_9++; if (unlikely(!__pyx_t_13)) __PYX_ERR(8, 55, __pyx_L41_error) __Pyx_GOTREF(__pyx_t_13); #endif - __Pyx_XDECREF_SET(__pyx_9genexpr17__pyx_v_val, __pyx_t_13); + __Pyx_XDECREF_SET(__pyx_9genexpr16__pyx_v_val, __pyx_t_13); __pyx_t_13 = 0; - __pyx_t_13 = __Pyx_GetItemInt(__pyx_9genexpr17__pyx_v_val, 1, long, 1, __Pyx_PyInt_From_long, 0, 0, 0); if (unlikely(!__pyx_t_13)) __PYX_ERR(8, 55, __pyx_L41_error) + __pyx_t_13 = __Pyx_GetItemInt(__pyx_9genexpr16__pyx_v_val, 1, long, 1, __Pyx_PyInt_From_long, 0, 0, 0); if (unlikely(!__pyx_t_13)) __PYX_ERR(8, 55, __pyx_L41_error) __Pyx_GOTREF(__pyx_t_13); if (unlikely(__Pyx_ListComp_Append(__pyx_t_5, (PyObject*)__pyx_t_13))) __PYX_ERR(8, 55, __pyx_L41_error) __Pyx_DECREF(__pyx_t_13); __pyx_t_13 = 0; } __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; - __Pyx_XDECREF(__pyx_9genexpr17__pyx_v_val); __pyx_9genexpr17__pyx_v_val = 0; + __Pyx_XDECREF(__pyx_9genexpr16__pyx_v_val); __pyx_9genexpr16__pyx_v_val = 0; goto __pyx_L45_exit_scope; __pyx_L41_error:; - __Pyx_XDECREF(__pyx_9genexpr17__pyx_v_val); __pyx_9genexpr17__pyx_v_val = 0; + __Pyx_XDECREF(__pyx_9genexpr16__pyx_v_val); __pyx_9genexpr16__pyx_v_val = 0; goto __pyx_L1_error; __pyx_L45_exit_scope:; } /* exit inner scope */ @@ -30621,18 +30278,18 @@ static PyObject *__pyx_pf_8shxarray_5shlib_8Analysis_2__call__(struct __pyx_obj_ __pyx_t_13 = __Pyx_PySequence_ITEM(__pyx_t_8, __pyx_t_9); __pyx_t_9++; if (unlikely(!__pyx_t_13)) __PYX_ERR(8, 55, __pyx_L48_error) __Pyx_GOTREF(__pyx_t_13); #endif - __Pyx_XDECREF_SET(__pyx_9genexpr18__pyx_v_val, __pyx_t_13); + __Pyx_XDECREF_SET(__pyx_9genexpr17__pyx_v_val, __pyx_t_13); __pyx_t_13 = 0; - __pyx_t_13 = __Pyx_GetItemInt(__pyx_9genexpr18__pyx_v_val, 0, long, 1, __Pyx_PyInt_From_long, 0, 0, 0); if (unlikely(!__pyx_t_13)) __PYX_ERR(8, 55, __pyx_L48_error) + __pyx_t_13 = __Pyx_GetItemInt(__pyx_9genexpr17__pyx_v_val, 0, long, 1, __Pyx_PyInt_From_long, 0, 0, 0); if (unlikely(!__pyx_t_13)) __PYX_ERR(8, 55, __pyx_L48_error) __Pyx_GOTREF(__pyx_t_13); if (unlikely(__Pyx_ListComp_Append(__pyx_t_5, (PyObject*)__pyx_t_13))) __PYX_ERR(8, 55, __pyx_L48_error) __Pyx_DECREF(__pyx_t_13); __pyx_t_13 = 0; } __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; - __Pyx_XDECREF(__pyx_9genexpr18__pyx_v_val); __pyx_9genexpr18__pyx_v_val = 0; + __Pyx_XDECREF(__pyx_9genexpr17__pyx_v_val); __pyx_9genexpr17__pyx_v_val = 0; goto __pyx_L52_exit_scope; __pyx_L48_error:; - __Pyx_XDECREF(__pyx_9genexpr18__pyx_v_val); __pyx_9genexpr18__pyx_v_val = 0; + __Pyx_XDECREF(__pyx_9genexpr17__pyx_v_val); __pyx_9genexpr17__pyx_v_val = 0; goto __pyx_L1_error; __pyx_L52_exit_scope:; } /* exit inner scope */ @@ -30745,7 +30402,7 @@ static PyObject *__pyx_pf_8shxarray_5shlib_8Analysis_2__call__(struct __pyx_obj_ goto __pyx_L0; /* "src/builtin_backend/analysis.pyx":32 - * self._dsobj=xr.Dataset(coords=SHindexBase.shi(nmax,0)) + * self._dsobj=xr.Dataset(coords=SHindexBase.nm(nmax,0)) * * def __call__(self,dain:xr.DataArray): # <<<<<<<<<<<<<< * """Perform spherical harmonic analysis on an input xarray DataArray object""" @@ -30769,16 +30426,16 @@ static PyObject *__pyx_pf_8shxarray_5shlib_8Analysis_2__call__(struct __pyx_obj_ __Pyx_XDECREF(__pyx_v_dimsin); __Pyx_XDECREF(__pyx_v_dimsout); __Pyx_XDECREF(__pyx_v_daout); + __Pyx_XDECREF(__pyx_9genexpr12__pyx_v_ky); + __Pyx_XDECREF(__pyx_9genexpr12__pyx_v_val); __Pyx_XDECREF(__pyx_9genexpr13__pyx_v_ky); __Pyx_XDECREF(__pyx_9genexpr13__pyx_v_val); - __Pyx_XDECREF(__pyx_9genexpr14__pyx_v_ky); - __Pyx_XDECREF(__pyx_9genexpr14__pyx_v_val); + __Pyx_XDECREF(__pyx_9genexpr14__pyx_v_dim); + __Pyx_XDECREF(__pyx_9genexpr14__pyx_v_sz); __Pyx_XDECREF(__pyx_9genexpr15__pyx_v_dim); __Pyx_XDECREF(__pyx_9genexpr15__pyx_v_sz); - __Pyx_XDECREF(__pyx_9genexpr16__pyx_v_dim); - __Pyx_XDECREF(__pyx_9genexpr16__pyx_v_sz); + __Pyx_XDECREF(__pyx_9genexpr16__pyx_v_val); __Pyx_XDECREF(__pyx_9genexpr17__pyx_v_val); - __Pyx_XDECREF(__pyx_9genexpr18__pyx_v_val); __Pyx_XDECREF(__pyx_v_dain); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); @@ -30803,7 +30460,6 @@ static PyObject *__pyx_f_8shxarray_5shlib_8Analysis__apply_ana(struct __pyx_obj_ __Pyx_memviewslice __pyx_v_outv = { 0, 0, { 0 }, { 0 }, { 0 } }; __Pyx_memviewslice __pyx_v_nv = { 0, 0, { 0 }, { 0 }, { 0 } }; __Pyx_memviewslice __pyx_v_mv = { 0, 0, { 0 }, { 0 }, { 0 } }; - __Pyx_memviewslice __pyx_v_tv = { 0, 0, { 0 }, { 0 }, { 0 } }; Ynm_cpp __pyx_v_ynm; int __pyx_v_ilat; int __pyx_v_ilon; @@ -30819,8 +30475,8 @@ static PyObject *__pyx_f_8shxarray_5shlib_8Analysis__apply_ana(struct __pyx_obj_ int __pyx_v_latfirst; double __pyx_v_d2r; omp_lock_t __pyx_v_lock; - PyObject *__pyx_9genexpr19__pyx_v_ky = NULL; - PyObject *__pyx_9genexpr19__pyx_v_val = NULL; + PyObject *__pyx_9genexpr18__pyx_v_ky = NULL; + PyObject *__pyx_9genexpr18__pyx_v_val = NULL; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; @@ -30842,12 +30498,12 @@ static PyObject *__pyx_f_8shxarray_5shlib_8Analysis__apply_ana(struct __pyx_obj_ double __pyx_t_17; Py_ssize_t __pyx_t_18; Py_ssize_t __pyx_t_19; - Py_ssize_t __pyx_t_20; - Ynm_cpp __pyx_t_21; + Ynm_cpp __pyx_t_20; + int __pyx_t_21; int __pyx_t_22; int __pyx_t_23; int __pyx_t_24; - int __pyx_t_25; + Py_ssize_t __pyx_t_25; Py_ssize_t __pyx_t_26; Py_ssize_t __pyx_t_27; int __pyx_lineno = 0; @@ -30978,7 +30634,7 @@ static PyObject *__pyx_f_8shxarray_5shlib_8Analysis__apply_ana(struct __pyx_obj_ * * cdef int auxsize=np.prod([val for ky,val in dain.sizes.items() if ky not in ["lon","lat"]]) # <<<<<<<<<<<<<< * - * cdef int shsize=len(self._dsobj.indexes['shi']) + * cdef int shsize=len(self._dsobj.indexes['nm']) */ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_np); if (unlikely(!__pyx_t_2)) __PYX_ERR(8, 73, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); @@ -31007,12 +30663,12 @@ static PyObject *__pyx_f_8shxarray_5shlib_8Analysis__apply_ana(struct __pyx_obj_ if (unlikely(__pyx_t_11 == -1)) __PYX_ERR(8, 73, __pyx_L5_error) __Pyx_GOTREF(__pyx_t_10); __Pyx_GOTREF(__pyx_t_9); - __Pyx_XDECREF_SET(__pyx_9genexpr19__pyx_v_ky, __pyx_t_10); + __Pyx_XDECREF_SET(__pyx_9genexpr18__pyx_v_ky, __pyx_t_10); __pyx_t_10 = 0; - __Pyx_XDECREF_SET(__pyx_9genexpr19__pyx_v_val, __pyx_t_9); + __Pyx_XDECREF_SET(__pyx_9genexpr18__pyx_v_val, __pyx_t_9); __pyx_t_9 = 0; - __Pyx_INCREF(__pyx_9genexpr19__pyx_v_ky); - __pyx_t_9 = __pyx_9genexpr19__pyx_v_ky; + __Pyx_INCREF(__pyx_9genexpr18__pyx_v_ky); + __pyx_t_9 = __pyx_9genexpr18__pyx_v_ky; __pyx_t_13 = (__Pyx_PyUnicode_Equals(__pyx_t_9, __pyx_n_u_lon, Py_NE)); if (unlikely((__pyx_t_13 < 0))) __PYX_ERR(8, 73, __pyx_L5_error) if (__pyx_t_13) { } else { @@ -31025,16 +30681,16 @@ static PyObject *__pyx_f_8shxarray_5shlib_8Analysis__apply_ana(struct __pyx_obj_ __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; __pyx_t_13 = __pyx_t_12; if (__pyx_t_13) { - if (unlikely(__Pyx_ListComp_Append(__pyx_t_2, (PyObject*)__pyx_9genexpr19__pyx_v_val))) __PYX_ERR(8, 73, __pyx_L5_error) + if (unlikely(__Pyx_ListComp_Append(__pyx_t_2, (PyObject*)__pyx_9genexpr18__pyx_v_val))) __PYX_ERR(8, 73, __pyx_L5_error) } } __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - __Pyx_XDECREF(__pyx_9genexpr19__pyx_v_ky); __pyx_9genexpr19__pyx_v_ky = 0; - __Pyx_XDECREF(__pyx_9genexpr19__pyx_v_val); __pyx_9genexpr19__pyx_v_val = 0; + __Pyx_XDECREF(__pyx_9genexpr18__pyx_v_ky); __pyx_9genexpr18__pyx_v_ky = 0; + __Pyx_XDECREF(__pyx_9genexpr18__pyx_v_val); __pyx_9genexpr18__pyx_v_val = 0; goto __pyx_L11_exit_scope; __pyx_L5_error:; - __Pyx_XDECREF(__pyx_9genexpr19__pyx_v_ky); __pyx_9genexpr19__pyx_v_ky = 0; - __Pyx_XDECREF(__pyx_9genexpr19__pyx_v_val); __pyx_9genexpr19__pyx_v_val = 0; + __Pyx_XDECREF(__pyx_9genexpr18__pyx_v_ky); __pyx_9genexpr18__pyx_v_ky = 0; + __Pyx_XDECREF(__pyx_9genexpr18__pyx_v_val); __pyx_9genexpr18__pyx_v_val = 0; goto __pyx_L1_error; __pyx_L11_exit_scope:; } /* exit inner scope */ @@ -31068,13 +30724,13 @@ static PyObject *__pyx_f_8shxarray_5shlib_8Analysis__apply_ana(struct __pyx_obj_ /* "src/builtin_backend/analysis.pyx":75 * cdef int auxsize=np.prod([val for ky,val in dain.sizes.items() if ky not in ["lon","lat"]]) * - * cdef int shsize=len(self._dsobj.indexes['shi']) # <<<<<<<<<<<<<< + * cdef int shsize=len(self._dsobj.indexes['nm']) # <<<<<<<<<<<<<< * #memoryview to output data (sh dimension should vary quickest) * cdef double [:,:] outv=dout.data.reshape([auxsize,shsize]) */ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_self->_dsobj, __pyx_n_s_indexes); if (unlikely(!__pyx_t_1)) __PYX_ERR(8, 75, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); - __pyx_t_3 = __Pyx_PyObject_Dict_GetItem(__pyx_t_1, __pyx_n_u_shi); if (unlikely(!__pyx_t_3)) __PYX_ERR(8, 75, __pyx_L1_error) + __pyx_t_3 = __Pyx_PyObject_Dict_GetItem(__pyx_t_1, __pyx_n_u_nm); if (unlikely(!__pyx_t_3)) __PYX_ERR(8, 75, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_8 = PyObject_Length(__pyx_t_3); if (unlikely(__pyx_t_8 == ((Py_ssize_t)-1))) __PYX_ERR(8, 75, __pyx_L1_error) @@ -31082,7 +30738,7 @@ static PyObject *__pyx_f_8shxarray_5shlib_8Analysis__apply_ana(struct __pyx_obj_ __pyx_v_shsize = __pyx_t_8; /* "src/builtin_backend/analysis.pyx":77 - * cdef int shsize=len(self._dsobj.indexes['shi']) + * cdef int shsize=len(self._dsobj.indexes['nm']) * #memoryview to output data (sh dimension should vary quickest) * cdef double [:,:] outv=dout.data.reshape([auxsize,shsize]) # <<<<<<<<<<<<<< * #This is the same a s a Fortran contiguous array with dimension shsize,auxsize, lada=shsize @@ -31137,11 +30793,11 @@ static PyObject *__pyx_f_8shxarray_5shlib_8Analysis__apply_ana(struct __pyx_obj_ /* "src/builtin_backend/analysis.pyx":83 * * - * cdef int[::1] nv = self._dsobj.shi.n.data.astype(np.int32) # <<<<<<<<<<<<<< - * cdef int[::1] mv = self._dsobj.shi.m.data.astype(np.int32) - * cdef int[::1] tv = self._dsobj.shi.t.data.astype(np.int32) + * cdef int[::1] nv = self._dsobj.nm.n.data.astype(np.int32) # <<<<<<<<<<<<<< + * cdef int[::1] mv = self._dsobj.nm.m.data.astype(np.int32) + * */ - __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_self->_dsobj, __pyx_n_s_shi); if (unlikely(!__pyx_t_2)) __PYX_ERR(8, 83, __pyx_L1_error) + __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_self->_dsobj, __pyx_n_s_nm); if (unlikely(!__pyx_t_2)) __PYX_ERR(8, 83, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_n); if (unlikely(!__pyx_t_9)) __PYX_ERR(8, 83, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); @@ -31188,12 +30844,12 @@ static PyObject *__pyx_f_8shxarray_5shlib_8Analysis__apply_ana(struct __pyx_obj_ /* "src/builtin_backend/analysis.pyx":84 * - * cdef int[::1] nv = self._dsobj.shi.n.data.astype(np.int32) - * cdef int[::1] mv = self._dsobj.shi.m.data.astype(np.int32) # <<<<<<<<<<<<<< - * cdef int[::1] tv = self._dsobj.shi.t.data.astype(np.int32) + * cdef int[::1] nv = self._dsobj.nm.n.data.astype(np.int32) + * cdef int[::1] mv = self._dsobj.nm.m.data.astype(np.int32) # <<<<<<<<<<<<<< * + * cdef Ynm_cpp[double] ynm */ - __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_self->_dsobj, __pyx_n_s_shi); if (unlikely(!__pyx_t_9)) __PYX_ERR(8, 84, __pyx_L1_error) + __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_self->_dsobj, __pyx_n_s_nm); if (unlikely(!__pyx_t_9)) __PYX_ERR(8, 84, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_9, __pyx_n_s_m); if (unlikely(!__pyx_t_4)) __PYX_ERR(8, 84, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); @@ -31238,59 +30894,7 @@ static PyObject *__pyx_f_8shxarray_5shlib_8Analysis__apply_ana(struct __pyx_obj_ __pyx_t_15.memview = NULL; __pyx_t_15.data = NULL; - /* "src/builtin_backend/analysis.pyx":85 - * cdef int[::1] nv = self._dsobj.shi.n.data.astype(np.int32) - * cdef int[::1] mv = self._dsobj.shi.m.data.astype(np.int32) - * cdef int[::1] tv = self._dsobj.shi.t.data.astype(np.int32) # <<<<<<<<<<<<<< - * - * cdef Ynm_cpp[double] ynm - */ - __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_v_self->_dsobj, __pyx_n_s_shi); if (unlikely(!__pyx_t_4)) __PYX_ERR(8, 85, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_4); - __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_t); if (unlikely(!__pyx_t_2)) __PYX_ERR(8, 85, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_2); - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_data); if (unlikely(!__pyx_t_4)) __PYX_ERR(8, 85, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_4); - __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; - __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_astype); if (unlikely(!__pyx_t_2)) __PYX_ERR(8, 85, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_2); - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - __Pyx_GetModuleGlobalName(__pyx_t_4, __pyx_n_s_np); if (unlikely(!__pyx_t_4)) __PYX_ERR(8, 85, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_4); - __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_int32); if (unlikely(!__pyx_t_9)) __PYX_ERR(8, 85, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_9); - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - __pyx_t_4 = NULL; - __pyx_t_5 = 0; - #if CYTHON_UNPACK_METHODS - if (likely(PyMethod_Check(__pyx_t_2))) { - __pyx_t_4 = PyMethod_GET_SELF(__pyx_t_2); - if (likely(__pyx_t_4)) { - PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_2); - __Pyx_INCREF(__pyx_t_4); - __Pyx_INCREF(function); - __Pyx_DECREF_SET(__pyx_t_2, function); - __pyx_t_5 = 1; - } - } - #endif - { - PyObject *__pyx_callargs[2] = {__pyx_t_4, __pyx_t_9}; - __pyx_t_3 = __Pyx_PyObject_FastCall(__pyx_t_2, __pyx_callargs+1-__pyx_t_5, 1+__pyx_t_5); - __Pyx_XDECREF(__pyx_t_4); __pyx_t_4 = 0; - __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; - if (unlikely(!__pyx_t_3)) __PYX_ERR(8, 85, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_3); - __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; - } - __pyx_t_15 = __Pyx_PyObject_to_MemoryviewSlice_dc_int(__pyx_t_3, PyBUF_WRITABLE); if (unlikely(!__pyx_t_15.memview)) __PYX_ERR(8, 85, __pyx_L1_error) - __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - __pyx_v_tv = __pyx_t_15; - __pyx_t_15.memview = NULL; - __pyx_t_15.data = NULL; - - /* "src/builtin_backend/analysis.pyx":91 + /* "src/builtin_backend/analysis.pyx":90 * * cdef: * int m=shsize # <<<<<<<<<<<<<< @@ -31299,7 +30903,7 @@ static PyObject *__pyx_f_8shxarray_5shlib_8Analysis__apply_ana(struct __pyx_obj_ */ __pyx_v_m = __pyx_v_shsize; - /* "src/builtin_backend/analysis.pyx":92 + /* "src/builtin_backend/analysis.pyx":91 * cdef: * int m=shsize * int n=auxsize # <<<<<<<<<<<<<< @@ -31308,7 +30912,7 @@ static PyObject *__pyx_f_8shxarray_5shlib_8Analysis__apply_ana(struct __pyx_obj_ */ __pyx_v_n = __pyx_v_auxsize; - /* "src/builtin_backend/analysis.pyx":93 + /* "src/builtin_backend/analysis.pyx":92 * int m=shsize * int n=auxsize * double alpha=1.0 # <<<<<<<<<<<<<< @@ -31317,7 +30921,7 @@ static PyObject *__pyx_f_8shxarray_5shlib_8Analysis__apply_ana(struct __pyx_obj_ */ __pyx_v_alpha = 1.0; - /* "src/builtin_backend/analysis.pyx":94 + /* "src/builtin_backend/analysis.pyx":93 * int n=auxsize * double alpha=1.0 * int lda=shsize # <<<<<<<<<<<<<< @@ -31326,7 +30930,7 @@ static PyObject *__pyx_f_8shxarray_5shlib_8Analysis__apply_ana(struct __pyx_obj_ */ __pyx_v_lda = __pyx_v_shsize; - /* "src/builtin_backend/analysis.pyx":95 + /* "src/builtin_backend/analysis.pyx":94 * double alpha=1.0 * int lda=shsize * int incx=1 # <<<<<<<<<<<<<< @@ -31335,7 +30939,7 @@ static PyObject *__pyx_f_8shxarray_5shlib_8Analysis__apply_ana(struct __pyx_obj_ */ __pyx_v_incx = 1; - /* "src/builtin_backend/analysis.pyx":96 + /* "src/builtin_backend/analysis.pyx":95 * int lda=shsize * int incx=1 * int incy=1 # <<<<<<<<<<<<<< @@ -31344,104 +30948,104 @@ static PyObject *__pyx_f_8shxarray_5shlib_8Analysis__apply_ana(struct __pyx_obj_ */ __pyx_v_incy = 1; - /* "src/builtin_backend/analysis.pyx":102 + /* "src/builtin_backend/analysis.pyx":101 * * #check the order of lon lat * londim=dain.get_axis_num('lon') # <<<<<<<<<<<<<< * latdim=dain.get_axis_num('lat') * */ - __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_dain, __pyx_n_s_get_axis_num); if (unlikely(!__pyx_t_2)) __PYX_ERR(8, 102, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_2); - __pyx_t_9 = NULL; + __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_v_dain, __pyx_n_s_get_axis_num); if (unlikely(!__pyx_t_4)) __PYX_ERR(8, 101, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_2 = NULL; __pyx_t_5 = 0; #if CYTHON_UNPACK_METHODS - if (likely(PyMethod_Check(__pyx_t_2))) { - __pyx_t_9 = PyMethod_GET_SELF(__pyx_t_2); - if (likely(__pyx_t_9)) { - PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_2); - __Pyx_INCREF(__pyx_t_9); + if (likely(PyMethod_Check(__pyx_t_4))) { + __pyx_t_2 = PyMethod_GET_SELF(__pyx_t_4); + if (likely(__pyx_t_2)) { + PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_4); + __Pyx_INCREF(__pyx_t_2); __Pyx_INCREF(function); - __Pyx_DECREF_SET(__pyx_t_2, function); + __Pyx_DECREF_SET(__pyx_t_4, function); __pyx_t_5 = 1; } } #endif { - PyObject *__pyx_callargs[2] = {__pyx_t_9, __pyx_n_u_lon}; - __pyx_t_3 = __Pyx_PyObject_FastCall(__pyx_t_2, __pyx_callargs+1-__pyx_t_5, 1+__pyx_t_5); - __Pyx_XDECREF(__pyx_t_9); __pyx_t_9 = 0; - if (unlikely(!__pyx_t_3)) __PYX_ERR(8, 102, __pyx_L1_error) + PyObject *__pyx_callargs[2] = {__pyx_t_2, __pyx_n_u_lon}; + __pyx_t_3 = __Pyx_PyObject_FastCall(__pyx_t_4, __pyx_callargs+1-__pyx_t_5, 1+__pyx_t_5); + __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; + if (unlikely(!__pyx_t_3)) __PYX_ERR(8, 101, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); - __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; } __pyx_v_londim = __pyx_t_3; __pyx_t_3 = 0; - /* "src/builtin_backend/analysis.pyx":103 + /* "src/builtin_backend/analysis.pyx":102 * #check the order of lon lat * londim=dain.get_axis_num('lon') * latdim=dain.get_axis_num('lat') # <<<<<<<<<<<<<< * * if abs(londim -latdim) != 1: */ - __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_dain, __pyx_n_s_get_axis_num); if (unlikely(!__pyx_t_2)) __PYX_ERR(8, 103, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_2); - __pyx_t_9 = NULL; + __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_v_dain, __pyx_n_s_get_axis_num); if (unlikely(!__pyx_t_4)) __PYX_ERR(8, 102, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_2 = NULL; __pyx_t_5 = 0; #if CYTHON_UNPACK_METHODS - if (likely(PyMethod_Check(__pyx_t_2))) { - __pyx_t_9 = PyMethod_GET_SELF(__pyx_t_2); - if (likely(__pyx_t_9)) { - PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_2); - __Pyx_INCREF(__pyx_t_9); + if (likely(PyMethod_Check(__pyx_t_4))) { + __pyx_t_2 = PyMethod_GET_SELF(__pyx_t_4); + if (likely(__pyx_t_2)) { + PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_4); + __Pyx_INCREF(__pyx_t_2); __Pyx_INCREF(function); - __Pyx_DECREF_SET(__pyx_t_2, function); + __Pyx_DECREF_SET(__pyx_t_4, function); __pyx_t_5 = 1; } } #endif { - PyObject *__pyx_callargs[2] = {__pyx_t_9, __pyx_n_u_lat}; - __pyx_t_3 = __Pyx_PyObject_FastCall(__pyx_t_2, __pyx_callargs+1-__pyx_t_5, 1+__pyx_t_5); - __Pyx_XDECREF(__pyx_t_9); __pyx_t_9 = 0; - if (unlikely(!__pyx_t_3)) __PYX_ERR(8, 103, __pyx_L1_error) + PyObject *__pyx_callargs[2] = {__pyx_t_2, __pyx_n_u_lat}; + __pyx_t_3 = __Pyx_PyObject_FastCall(__pyx_t_4, __pyx_callargs+1-__pyx_t_5, 1+__pyx_t_5); + __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; + if (unlikely(!__pyx_t_3)) __PYX_ERR(8, 102, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); - __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; } __pyx_v_latdim = __pyx_t_3; __pyx_t_3 = 0; - /* "src/builtin_backend/analysis.pyx":105 + /* "src/builtin_backend/analysis.pyx":104 * latdim=dain.get_axis_num('lat') * * if abs(londim -latdim) != 1: # <<<<<<<<<<<<<< * raise RuntimeError("Longitude and latitude dimensions of input are not neighbouring, cannot handle this layout") * */ - __pyx_t_3 = PyNumber_Subtract(__pyx_v_londim, __pyx_v_latdim); if (unlikely(!__pyx_t_3)) __PYX_ERR(8, 105, __pyx_L1_error) + __pyx_t_3 = PyNumber_Subtract(__pyx_v_londim, __pyx_v_latdim); if (unlikely(!__pyx_t_3)) __PYX_ERR(8, 104, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); - __pyx_t_2 = __Pyx_PyNumber_Absolute(__pyx_t_3); if (unlikely(!__pyx_t_2)) __PYX_ERR(8, 105, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_2); + __pyx_t_4 = __Pyx_PyNumber_Absolute(__pyx_t_3); if (unlikely(!__pyx_t_4)) __PYX_ERR(8, 104, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - __pyx_t_13 = (__Pyx_PyInt_BoolNeObjC(__pyx_t_2, __pyx_int_1, 1, 0)); if (unlikely((__pyx_t_13 < 0))) __PYX_ERR(8, 105, __pyx_L1_error) - __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + __pyx_t_13 = (__Pyx_PyInt_BoolNeObjC(__pyx_t_4, __pyx_int_1, 1, 0)); if (unlikely((__pyx_t_13 < 0))) __PYX_ERR(8, 104, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (unlikely(__pyx_t_13)) { - /* "src/builtin_backend/analysis.pyx":106 + /* "src/builtin_backend/analysis.pyx":105 * * if abs(londim -latdim) != 1: * raise RuntimeError("Longitude and latitude dimensions of input are not neighbouring, cannot handle this layout") # <<<<<<<<<<<<<< * * cdef bint latfirst=False */ - __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_RuntimeError, __pyx_tuple__28, NULL); if (unlikely(!__pyx_t_2)) __PYX_ERR(8, 106, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_2); - __Pyx_Raise(__pyx_t_2, 0, 0, 0); - __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; - __PYX_ERR(8, 106, __pyx_L1_error) + __pyx_t_4 = __Pyx_PyObject_Call(__pyx_builtin_RuntimeError, __pyx_tuple__28, NULL); if (unlikely(!__pyx_t_4)) __PYX_ERR(8, 105, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_Raise(__pyx_t_4, 0, 0, 0); + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __PYX_ERR(8, 105, __pyx_L1_error) - /* "src/builtin_backend/analysis.pyx":105 + /* "src/builtin_backend/analysis.pyx":104 * latdim=dain.get_axis_num('lat') * * if abs(londim -latdim) != 1: # <<<<<<<<<<<<<< @@ -31450,7 +31054,7 @@ static PyObject *__pyx_f_8shxarray_5shlib_8Analysis__apply_ana(struct __pyx_obj_ */ } - /* "src/builtin_backend/analysis.pyx":108 + /* "src/builtin_backend/analysis.pyx":107 * raise RuntimeError("Longitude and latitude dimensions of input are not neighbouring, cannot handle this layout") * * cdef bint latfirst=False # <<<<<<<<<<<<<< @@ -31459,85 +31063,85 @@ static PyObject *__pyx_f_8shxarray_5shlib_8Analysis__apply_ana(struct __pyx_obj_ */ __pyx_v_latfirst = 0; - /* "src/builtin_backend/analysis.pyx":109 + /* "src/builtin_backend/analysis.pyx":108 * * cdef bint latfirst=False * if londim == 0 or latdim == 0: # <<<<<<<<<<<<<< * if londim < latdim: * inval=dain.data.reshape([nlon,nlat,auxsize],order='C') */ - __pyx_t_12 = (__Pyx_PyInt_BoolEqObjC(__pyx_v_londim, __pyx_int_0, 0, 0)); if (unlikely((__pyx_t_12 < 0))) __PYX_ERR(8, 109, __pyx_L1_error) + __pyx_t_12 = (__Pyx_PyInt_BoolEqObjC(__pyx_v_londim, __pyx_int_0, 0, 0)); if (unlikely((__pyx_t_12 < 0))) __PYX_ERR(8, 108, __pyx_L1_error) if (!__pyx_t_12) { } else { __pyx_t_13 = __pyx_t_12; goto __pyx_L14_bool_binop_done; } - __pyx_t_12 = (__Pyx_PyInt_BoolEqObjC(__pyx_v_latdim, __pyx_int_0, 0, 0)); if (unlikely((__pyx_t_12 < 0))) __PYX_ERR(8, 109, __pyx_L1_error) + __pyx_t_12 = (__Pyx_PyInt_BoolEqObjC(__pyx_v_latdim, __pyx_int_0, 0, 0)); if (unlikely((__pyx_t_12 < 0))) __PYX_ERR(8, 108, __pyx_L1_error) __pyx_t_13 = __pyx_t_12; __pyx_L14_bool_binop_done:; if (__pyx_t_13) { - /* "src/builtin_backend/analysis.pyx":110 + /* "src/builtin_backend/analysis.pyx":109 * cdef bint latfirst=False * if londim == 0 or latdim == 0: * if londim < latdim: # <<<<<<<<<<<<<< * inval=dain.data.reshape([nlon,nlat,auxsize],order='C') * latfirst=False */ - __pyx_t_2 = PyObject_RichCompare(__pyx_v_londim, __pyx_v_latdim, Py_LT); __Pyx_XGOTREF(__pyx_t_2); if (unlikely(!__pyx_t_2)) __PYX_ERR(8, 110, __pyx_L1_error) - __pyx_t_13 = __Pyx_PyObject_IsTrue(__pyx_t_2); if (unlikely((__pyx_t_13 < 0))) __PYX_ERR(8, 110, __pyx_L1_error) - __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + __pyx_t_4 = PyObject_RichCompare(__pyx_v_londim, __pyx_v_latdim, Py_LT); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) __PYX_ERR(8, 109, __pyx_L1_error) + __pyx_t_13 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely((__pyx_t_13 < 0))) __PYX_ERR(8, 109, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (__pyx_t_13) { - /* "src/builtin_backend/analysis.pyx":111 + /* "src/builtin_backend/analysis.pyx":110 * if londim == 0 or latdim == 0: * if londim < latdim: * inval=dain.data.reshape([nlon,nlat,auxsize],order='C') # <<<<<<<<<<<<<< * latfirst=False * else: */ - __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_dain, __pyx_n_s_data); if (unlikely(!__pyx_t_2)) __PYX_ERR(8, 111, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_2); - __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_reshape); if (unlikely(!__pyx_t_3)) __PYX_ERR(8, 111, __pyx_L1_error) + __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_v_dain, __pyx_n_s_data); if (unlikely(!__pyx_t_4)) __PYX_ERR(8, 110, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_reshape); if (unlikely(!__pyx_t_3)) __PYX_ERR(8, 110, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); - __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; - __pyx_t_2 = __Pyx_PyInt_From_int(__pyx_v_nlon); if (unlikely(!__pyx_t_2)) __PYX_ERR(8, 111, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_4 = __Pyx_PyInt_From_int(__pyx_v_nlon); if (unlikely(!__pyx_t_4)) __PYX_ERR(8, 110, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_2 = __Pyx_PyInt_From_int(__pyx_v_nlat); if (unlikely(!__pyx_t_2)) __PYX_ERR(8, 110, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); - __pyx_t_9 = __Pyx_PyInt_From_int(__pyx_v_nlat); if (unlikely(!__pyx_t_9)) __PYX_ERR(8, 111, __pyx_L1_error) + __pyx_t_9 = __Pyx_PyInt_From_int(__pyx_v_auxsize); if (unlikely(!__pyx_t_9)) __PYX_ERR(8, 110, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); - __pyx_t_4 = __Pyx_PyInt_From_int(__pyx_v_auxsize); if (unlikely(!__pyx_t_4)) __PYX_ERR(8, 111, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_4); - __pyx_t_1 = PyList_New(3); if (unlikely(!__pyx_t_1)) __PYX_ERR(8, 111, __pyx_L1_error) + __pyx_t_1 = PyList_New(3); if (unlikely(!__pyx_t_1)) __PYX_ERR(8, 110, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); + __Pyx_GIVEREF(__pyx_t_4); + if (__Pyx_PyList_SET_ITEM(__pyx_t_1, 0, __pyx_t_4)) __PYX_ERR(8, 110, __pyx_L1_error); __Pyx_GIVEREF(__pyx_t_2); - if (__Pyx_PyList_SET_ITEM(__pyx_t_1, 0, __pyx_t_2)) __PYX_ERR(8, 111, __pyx_L1_error); + if (__Pyx_PyList_SET_ITEM(__pyx_t_1, 1, __pyx_t_2)) __PYX_ERR(8, 110, __pyx_L1_error); __Pyx_GIVEREF(__pyx_t_9); - if (__Pyx_PyList_SET_ITEM(__pyx_t_1, 1, __pyx_t_9)) __PYX_ERR(8, 111, __pyx_L1_error); - __Pyx_GIVEREF(__pyx_t_4); - if (__Pyx_PyList_SET_ITEM(__pyx_t_1, 2, __pyx_t_4)) __PYX_ERR(8, 111, __pyx_L1_error); + if (__Pyx_PyList_SET_ITEM(__pyx_t_1, 2, __pyx_t_9)) __PYX_ERR(8, 110, __pyx_L1_error); + __pyx_t_4 = 0; __pyx_t_2 = 0; __pyx_t_9 = 0; - __pyx_t_4 = 0; - __pyx_t_4 = PyTuple_New(1); if (unlikely(!__pyx_t_4)) __PYX_ERR(8, 111, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_4); + __pyx_t_9 = PyTuple_New(1); if (unlikely(!__pyx_t_9)) __PYX_ERR(8, 110, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_9); __Pyx_GIVEREF(__pyx_t_1); - if (__Pyx_PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_1)) __PYX_ERR(8, 111, __pyx_L1_error); + if (__Pyx_PyTuple_SET_ITEM(__pyx_t_9, 0, __pyx_t_1)) __PYX_ERR(8, 110, __pyx_L1_error); __pyx_t_1 = 0; - __pyx_t_1 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_1)) __PYX_ERR(8, 111, __pyx_L1_error) + __pyx_t_1 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_1)) __PYX_ERR(8, 110, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); - if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_order, __pyx_n_u_C) < 0) __PYX_ERR(8, 111, __pyx_L1_error) - __pyx_t_9 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_4, __pyx_t_1); if (unlikely(!__pyx_t_9)) __PYX_ERR(8, 111, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_9); + if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_order, __pyx_n_u_C) < 0) __PYX_ERR(8, 110, __pyx_L1_error) + __pyx_t_2 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_9, __pyx_t_1); if (unlikely(!__pyx_t_2)) __PYX_ERR(8, 110, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; - __pyx_t_16 = __Pyx_PyObject_to_MemoryviewSlice_dsdsds_double(__pyx_t_9, PyBUF_WRITABLE); if (unlikely(!__pyx_t_16.memview)) __PYX_ERR(8, 111, __pyx_L1_error) __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __pyx_t_16 = __Pyx_PyObject_to_MemoryviewSlice_dsdsds_double(__pyx_t_2, PyBUF_WRITABLE); if (unlikely(!__pyx_t_16.memview)) __PYX_ERR(8, 110, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_v_inval = __pyx_t_16; __pyx_t_16.memview = NULL; __pyx_t_16.data = NULL; - /* "src/builtin_backend/analysis.pyx":112 + /* "src/builtin_backend/analysis.pyx":111 * if londim < latdim: * inval=dain.data.reshape([nlon,nlat,auxsize],order='C') * latfirst=False # <<<<<<<<<<<<<< @@ -31546,7 +31150,7 @@ static PyObject *__pyx_f_8shxarray_5shlib_8Analysis__apply_ana(struct __pyx_obj_ */ __pyx_v_latfirst = 0; - /* "src/builtin_backend/analysis.pyx":110 + /* "src/builtin_backend/analysis.pyx":109 * cdef bint latfirst=False * if londim == 0 or latdim == 0: * if londim < latdim: # <<<<<<<<<<<<<< @@ -31556,7 +31160,7 @@ static PyObject *__pyx_f_8shxarray_5shlib_8Analysis__apply_ana(struct __pyx_obj_ goto __pyx_L16; } - /* "src/builtin_backend/analysis.pyx":114 + /* "src/builtin_backend/analysis.pyx":113 * latfirst=False * else: * inval=dain.data.reshape([nlat,nlon,auxsize],order='C') # <<<<<<<<<<<<<< @@ -31564,48 +31168,48 @@ static PyObject *__pyx_f_8shxarray_5shlib_8Analysis__apply_ana(struct __pyx_obj_ * elif londim == dain.ndim -1 or latdim == dain.ndim-1: */ /*else*/ { - __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_dain, __pyx_n_s_data); if (unlikely(!__pyx_t_9)) __PYX_ERR(8, 114, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_9); - __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_9, __pyx_n_s_reshape); if (unlikely(!__pyx_t_1)) __PYX_ERR(8, 114, __pyx_L1_error) + __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_dain, __pyx_n_s_data); if (unlikely(!__pyx_t_2)) __PYX_ERR(8, 113, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_reshape); if (unlikely(!__pyx_t_1)) __PYX_ERR(8, 113, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); - __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; - __pyx_t_9 = __Pyx_PyInt_From_int(__pyx_v_nlat); if (unlikely(!__pyx_t_9)) __PYX_ERR(8, 114, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + __pyx_t_2 = __Pyx_PyInt_From_int(__pyx_v_nlat); if (unlikely(!__pyx_t_2)) __PYX_ERR(8, 113, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __pyx_t_9 = __Pyx_PyInt_From_int(__pyx_v_nlon); if (unlikely(!__pyx_t_9)) __PYX_ERR(8, 113, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); - __pyx_t_4 = __Pyx_PyInt_From_int(__pyx_v_nlon); if (unlikely(!__pyx_t_4)) __PYX_ERR(8, 114, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_4); - __pyx_t_3 = __Pyx_PyInt_From_int(__pyx_v_auxsize); if (unlikely(!__pyx_t_3)) __PYX_ERR(8, 114, __pyx_L1_error) + __pyx_t_3 = __Pyx_PyInt_From_int(__pyx_v_auxsize); if (unlikely(!__pyx_t_3)) __PYX_ERR(8, 113, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); - __pyx_t_2 = PyList_New(3); if (unlikely(!__pyx_t_2)) __PYX_ERR(8, 114, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_2); + __pyx_t_4 = PyList_New(3); if (unlikely(!__pyx_t_4)) __PYX_ERR(8, 113, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_GIVEREF(__pyx_t_2); + if (__Pyx_PyList_SET_ITEM(__pyx_t_4, 0, __pyx_t_2)) __PYX_ERR(8, 113, __pyx_L1_error); __Pyx_GIVEREF(__pyx_t_9); - if (__Pyx_PyList_SET_ITEM(__pyx_t_2, 0, __pyx_t_9)) __PYX_ERR(8, 114, __pyx_L1_error); - __Pyx_GIVEREF(__pyx_t_4); - if (__Pyx_PyList_SET_ITEM(__pyx_t_2, 1, __pyx_t_4)) __PYX_ERR(8, 114, __pyx_L1_error); + if (__Pyx_PyList_SET_ITEM(__pyx_t_4, 1, __pyx_t_9)) __PYX_ERR(8, 113, __pyx_L1_error); __Pyx_GIVEREF(__pyx_t_3); - if (__Pyx_PyList_SET_ITEM(__pyx_t_2, 2, __pyx_t_3)) __PYX_ERR(8, 114, __pyx_L1_error); + if (__Pyx_PyList_SET_ITEM(__pyx_t_4, 2, __pyx_t_3)) __PYX_ERR(8, 113, __pyx_L1_error); + __pyx_t_2 = 0; __pyx_t_9 = 0; - __pyx_t_4 = 0; __pyx_t_3 = 0; - __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) __PYX_ERR(8, 114, __pyx_L1_error) + __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) __PYX_ERR(8, 113, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); - __Pyx_GIVEREF(__pyx_t_2); - if (__Pyx_PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_2)) __PYX_ERR(8, 114, __pyx_L1_error); - __pyx_t_2 = 0; - __pyx_t_2 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_2)) __PYX_ERR(8, 114, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_2); - if (PyDict_SetItem(__pyx_t_2, __pyx_n_s_order, __pyx_n_u_C) < 0) __PYX_ERR(8, 114, __pyx_L1_error) - __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_t_3, __pyx_t_2); if (unlikely(!__pyx_t_4)) __PYX_ERR(8, 114, __pyx_L1_error) + __Pyx_GIVEREF(__pyx_t_4); + if (__Pyx_PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_4)) __PYX_ERR(8, 113, __pyx_L1_error); + __pyx_t_4 = 0; + __pyx_t_4 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_4)) __PYX_ERR(8, 113, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); + if (PyDict_SetItem(__pyx_t_4, __pyx_n_s_order, __pyx_n_u_C) < 0) __PYX_ERR(8, 113, __pyx_L1_error) + __pyx_t_9 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_t_3, __pyx_t_4); if (unlikely(!__pyx_t_9)) __PYX_ERR(8, 113, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_9); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; - __pyx_t_16 = __Pyx_PyObject_to_MemoryviewSlice_dsdsds_double(__pyx_t_4, PyBUF_WRITABLE); if (unlikely(!__pyx_t_16.memview)) __PYX_ERR(8, 114, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_16 = __Pyx_PyObject_to_MemoryviewSlice_dsdsds_double(__pyx_t_9, PyBUF_WRITABLE); if (unlikely(!__pyx_t_16.memview)) __PYX_ERR(8, 113, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; __pyx_v_inval = __pyx_t_16; __pyx_t_16.memview = NULL; __pyx_t_16.data = NULL; - /* "src/builtin_backend/analysis.pyx":115 + /* "src/builtin_backend/analysis.pyx":114 * else: * inval=dain.data.reshape([nlat,nlon,auxsize],order='C') * latfirst=True # <<<<<<<<<<<<<< @@ -31616,7 +31220,7 @@ static PyObject *__pyx_f_8shxarray_5shlib_8Analysis__apply_ana(struct __pyx_obj_ } __pyx_L16:; - /* "src/builtin_backend/analysis.pyx":109 + /* "src/builtin_backend/analysis.pyx":108 * * cdef bint latfirst=False * if londim == 0 or latdim == 0: # <<<<<<<<<<<<<< @@ -31626,104 +31230,104 @@ static PyObject *__pyx_f_8shxarray_5shlib_8Analysis__apply_ana(struct __pyx_obj_ goto __pyx_L13; } - /* "src/builtin_backend/analysis.pyx":116 + /* "src/builtin_backend/analysis.pyx":115 * inval=dain.data.reshape([nlat,nlon,auxsize],order='C') * latfirst=True * elif londim == dain.ndim -1 or latdim == dain.ndim-1: # <<<<<<<<<<<<<< * if londim < latdim: * inval=dain.data.reshape([auxsize,nlon,nlat],order='C').T */ - __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_v_dain, __pyx_n_s_ndim); if (unlikely(!__pyx_t_4)) __PYX_ERR(8, 116, __pyx_L1_error) + __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_dain, __pyx_n_s_ndim); if (unlikely(!__pyx_t_9)) __PYX_ERR(8, 115, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_9); + __pyx_t_4 = __Pyx_PyInt_SubtractObjC(__pyx_t_9, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_4)) __PYX_ERR(8, 115, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); - __pyx_t_2 = __Pyx_PyInt_SubtractObjC(__pyx_t_4, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_2)) __PYX_ERR(8, 116, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_2); - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - __pyx_t_4 = PyObject_RichCompare(__pyx_v_londim, __pyx_t_2, Py_EQ); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) __PYX_ERR(8, 116, __pyx_L1_error) - __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; - __pyx_t_12 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely((__pyx_t_12 < 0))) __PYX_ERR(8, 116, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; + __pyx_t_9 = PyObject_RichCompare(__pyx_v_londim, __pyx_t_4, Py_EQ); __Pyx_XGOTREF(__pyx_t_9); if (unlikely(!__pyx_t_9)) __PYX_ERR(8, 115, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_12 = __Pyx_PyObject_IsTrue(__pyx_t_9); if (unlikely((__pyx_t_12 < 0))) __PYX_ERR(8, 115, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; if (!__pyx_t_12) { } else { __pyx_t_13 = __pyx_t_12; goto __pyx_L17_bool_binop_done; } - __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_v_dain, __pyx_n_s_ndim); if (unlikely(!__pyx_t_4)) __PYX_ERR(8, 116, __pyx_L1_error) + __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_dain, __pyx_n_s_ndim); if (unlikely(!__pyx_t_9)) __PYX_ERR(8, 115, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_9); + __pyx_t_4 = __Pyx_PyInt_SubtractObjC(__pyx_t_9, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_4)) __PYX_ERR(8, 115, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); - __pyx_t_2 = __Pyx_PyInt_SubtractObjC(__pyx_t_4, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_2)) __PYX_ERR(8, 116, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_2); - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - __pyx_t_4 = PyObject_RichCompare(__pyx_v_latdim, __pyx_t_2, Py_EQ); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) __PYX_ERR(8, 116, __pyx_L1_error) - __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; - __pyx_t_12 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely((__pyx_t_12 < 0))) __PYX_ERR(8, 116, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; + __pyx_t_9 = PyObject_RichCompare(__pyx_v_latdim, __pyx_t_4, Py_EQ); __Pyx_XGOTREF(__pyx_t_9); if (unlikely(!__pyx_t_9)) __PYX_ERR(8, 115, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_12 = __Pyx_PyObject_IsTrue(__pyx_t_9); if (unlikely((__pyx_t_12 < 0))) __PYX_ERR(8, 115, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; __pyx_t_13 = __pyx_t_12; __pyx_L17_bool_binop_done:; if (__pyx_t_13) { - /* "src/builtin_backend/analysis.pyx":117 + /* "src/builtin_backend/analysis.pyx":116 * latfirst=True * elif londim == dain.ndim -1 or latdim == dain.ndim-1: * if londim < latdim: # <<<<<<<<<<<<<< * inval=dain.data.reshape([auxsize,nlon,nlat],order='C').T * latfirst=True */ - __pyx_t_4 = PyObject_RichCompare(__pyx_v_londim, __pyx_v_latdim, Py_LT); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) __PYX_ERR(8, 117, __pyx_L1_error) - __pyx_t_13 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely((__pyx_t_13 < 0))) __PYX_ERR(8, 117, __pyx_L1_error) - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_9 = PyObject_RichCompare(__pyx_v_londim, __pyx_v_latdim, Py_LT); __Pyx_XGOTREF(__pyx_t_9); if (unlikely(!__pyx_t_9)) __PYX_ERR(8, 116, __pyx_L1_error) + __pyx_t_13 = __Pyx_PyObject_IsTrue(__pyx_t_9); if (unlikely((__pyx_t_13 < 0))) __PYX_ERR(8, 116, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; if (__pyx_t_13) { - /* "src/builtin_backend/analysis.pyx":118 + /* "src/builtin_backend/analysis.pyx":117 * elif londim == dain.ndim -1 or latdim == dain.ndim-1: * if londim < latdim: * inval=dain.data.reshape([auxsize,nlon,nlat],order='C').T # <<<<<<<<<<<<<< * latfirst=True * else: */ - __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_v_dain, __pyx_n_s_data); if (unlikely(!__pyx_t_4)) __PYX_ERR(8, 118, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_4); - __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_reshape); if (unlikely(!__pyx_t_2)) __PYX_ERR(8, 118, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_2); - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - __pyx_t_4 = __Pyx_PyInt_From_int(__pyx_v_auxsize); if (unlikely(!__pyx_t_4)) __PYX_ERR(8, 118, __pyx_L1_error) + __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_dain, __pyx_n_s_data); if (unlikely(!__pyx_t_9)) __PYX_ERR(8, 117, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_9); + __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_9, __pyx_n_s_reshape); if (unlikely(!__pyx_t_4)) __PYX_ERR(8, 117, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); - __pyx_t_3 = __Pyx_PyInt_From_int(__pyx_v_nlon); if (unlikely(!__pyx_t_3)) __PYX_ERR(8, 118, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; + __pyx_t_9 = __Pyx_PyInt_From_int(__pyx_v_auxsize); if (unlikely(!__pyx_t_9)) __PYX_ERR(8, 117, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_9); + __pyx_t_3 = __Pyx_PyInt_From_int(__pyx_v_nlon); if (unlikely(!__pyx_t_3)) __PYX_ERR(8, 117, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); - __pyx_t_1 = __Pyx_PyInt_From_int(__pyx_v_nlat); if (unlikely(!__pyx_t_1)) __PYX_ERR(8, 118, __pyx_L1_error) + __pyx_t_1 = __Pyx_PyInt_From_int(__pyx_v_nlat); if (unlikely(!__pyx_t_1)) __PYX_ERR(8, 117, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); - __pyx_t_9 = PyList_New(3); if (unlikely(!__pyx_t_9)) __PYX_ERR(8, 118, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_9); - __Pyx_GIVEREF(__pyx_t_4); - if (__Pyx_PyList_SET_ITEM(__pyx_t_9, 0, __pyx_t_4)) __PYX_ERR(8, 118, __pyx_L1_error); + __pyx_t_2 = PyList_New(3); if (unlikely(!__pyx_t_2)) __PYX_ERR(8, 117, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __Pyx_GIVEREF(__pyx_t_9); + if (__Pyx_PyList_SET_ITEM(__pyx_t_2, 0, __pyx_t_9)) __PYX_ERR(8, 117, __pyx_L1_error); __Pyx_GIVEREF(__pyx_t_3); - if (__Pyx_PyList_SET_ITEM(__pyx_t_9, 1, __pyx_t_3)) __PYX_ERR(8, 118, __pyx_L1_error); + if (__Pyx_PyList_SET_ITEM(__pyx_t_2, 1, __pyx_t_3)) __PYX_ERR(8, 117, __pyx_L1_error); __Pyx_GIVEREF(__pyx_t_1); - if (__Pyx_PyList_SET_ITEM(__pyx_t_9, 2, __pyx_t_1)) __PYX_ERR(8, 118, __pyx_L1_error); - __pyx_t_4 = 0; + if (__Pyx_PyList_SET_ITEM(__pyx_t_2, 2, __pyx_t_1)) __PYX_ERR(8, 117, __pyx_L1_error); + __pyx_t_9 = 0; __pyx_t_3 = 0; __pyx_t_1 = 0; - __pyx_t_1 = PyTuple_New(1); if (unlikely(!__pyx_t_1)) __PYX_ERR(8, 118, __pyx_L1_error) + __pyx_t_1 = PyTuple_New(1); if (unlikely(!__pyx_t_1)) __PYX_ERR(8, 117, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); - __Pyx_GIVEREF(__pyx_t_9); - if (__Pyx_PyTuple_SET_ITEM(__pyx_t_1, 0, __pyx_t_9)) __PYX_ERR(8, 118, __pyx_L1_error); - __pyx_t_9 = 0; - __pyx_t_9 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_9)) __PYX_ERR(8, 118, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_9); - if (PyDict_SetItem(__pyx_t_9, __pyx_n_s_order, __pyx_n_u_C) < 0) __PYX_ERR(8, 118, __pyx_L1_error) - __pyx_t_3 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_1, __pyx_t_9); if (unlikely(!__pyx_t_3)) __PYX_ERR(8, 118, __pyx_L1_error) + __Pyx_GIVEREF(__pyx_t_2); + if (__Pyx_PyTuple_SET_ITEM(__pyx_t_1, 0, __pyx_t_2)) __PYX_ERR(8, 117, __pyx_L1_error); + __pyx_t_2 = 0; + __pyx_t_2 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_2)) __PYX_ERR(8, 117, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + if (PyDict_SetItem(__pyx_t_2, __pyx_n_s_order, __pyx_n_u_C) < 0) __PYX_ERR(8, 117, __pyx_L1_error) + __pyx_t_3 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_1, __pyx_t_2); if (unlikely(!__pyx_t_3)) __PYX_ERR(8, 117, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); - __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; - __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; - __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_T_2); if (unlikely(!__pyx_t_9)) __PYX_ERR(8, 118, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_9); + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_T_2); if (unlikely(!__pyx_t_2)) __PYX_ERR(8, 117, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - __pyx_t_16 = __Pyx_PyObject_to_MemoryviewSlice_dsdsds_double(__pyx_t_9, PyBUF_WRITABLE); if (unlikely(!__pyx_t_16.memview)) __PYX_ERR(8, 118, __pyx_L1_error) - __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; + __pyx_t_16 = __Pyx_PyObject_to_MemoryviewSlice_dsdsds_double(__pyx_t_2, PyBUF_WRITABLE); if (unlikely(!__pyx_t_16.memview)) __PYX_ERR(8, 117, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_v_inval = __pyx_t_16; __pyx_t_16.memview = NULL; __pyx_t_16.data = NULL; - /* "src/builtin_backend/analysis.pyx":119 + /* "src/builtin_backend/analysis.pyx":118 * if londim < latdim: * inval=dain.data.reshape([auxsize,nlon,nlat],order='C').T * latfirst=True # <<<<<<<<<<<<<< @@ -31732,7 +31336,7 @@ static PyObject *__pyx_f_8shxarray_5shlib_8Analysis__apply_ana(struct __pyx_obj_ */ __pyx_v_latfirst = 1; - /* "src/builtin_backend/analysis.pyx":117 + /* "src/builtin_backend/analysis.pyx":116 * latfirst=True * elif londim == dain.ndim -1 or latdim == dain.ndim-1: * if londim < latdim: # <<<<<<<<<<<<<< @@ -31742,7 +31346,7 @@ static PyObject *__pyx_f_8shxarray_5shlib_8Analysis__apply_ana(struct __pyx_obj_ goto __pyx_L19; } - /* "src/builtin_backend/analysis.pyx":121 + /* "src/builtin_backend/analysis.pyx":120 * latfirst=True * else: * inval=dain.data.reshape([auxsize,nlat,nlon],order='C').T # <<<<<<<<<<<<<< @@ -31750,51 +31354,51 @@ static PyObject *__pyx_f_8shxarray_5shlib_8Analysis__apply_ana(struct __pyx_obj_ * cdef double d2r =np.pi/180 */ /*else*/ { - __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_dain, __pyx_n_s_data); if (unlikely(!__pyx_t_9)) __PYX_ERR(8, 121, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_9); - __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_9, __pyx_n_s_reshape); if (unlikely(!__pyx_t_3)) __PYX_ERR(8, 121, __pyx_L1_error) + __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_dain, __pyx_n_s_data); if (unlikely(!__pyx_t_2)) __PYX_ERR(8, 120, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_reshape); if (unlikely(!__pyx_t_3)) __PYX_ERR(8, 120, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); - __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; - __pyx_t_9 = __Pyx_PyInt_From_int(__pyx_v_auxsize); if (unlikely(!__pyx_t_9)) __PYX_ERR(8, 121, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_9); - __pyx_t_1 = __Pyx_PyInt_From_int(__pyx_v_nlat); if (unlikely(!__pyx_t_1)) __PYX_ERR(8, 121, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_1); - __pyx_t_2 = __Pyx_PyInt_From_int(__pyx_v_nlon); if (unlikely(!__pyx_t_2)) __PYX_ERR(8, 121, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + __pyx_t_2 = __Pyx_PyInt_From_int(__pyx_v_auxsize); if (unlikely(!__pyx_t_2)) __PYX_ERR(8, 120, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); - __pyx_t_4 = PyList_New(3); if (unlikely(!__pyx_t_4)) __PYX_ERR(8, 121, __pyx_L1_error) + __pyx_t_1 = __Pyx_PyInt_From_int(__pyx_v_nlat); if (unlikely(!__pyx_t_1)) __PYX_ERR(8, 120, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_4 = __Pyx_PyInt_From_int(__pyx_v_nlon); if (unlikely(!__pyx_t_4)) __PYX_ERR(8, 120, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); - __Pyx_GIVEREF(__pyx_t_9); - if (__Pyx_PyList_SET_ITEM(__pyx_t_4, 0, __pyx_t_9)) __PYX_ERR(8, 121, __pyx_L1_error); - __Pyx_GIVEREF(__pyx_t_1); - if (__Pyx_PyList_SET_ITEM(__pyx_t_4, 1, __pyx_t_1)) __PYX_ERR(8, 121, __pyx_L1_error); + __pyx_t_9 = PyList_New(3); if (unlikely(!__pyx_t_9)) __PYX_ERR(8, 120, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_9); __Pyx_GIVEREF(__pyx_t_2); - if (__Pyx_PyList_SET_ITEM(__pyx_t_4, 2, __pyx_t_2)) __PYX_ERR(8, 121, __pyx_L1_error); - __pyx_t_9 = 0; - __pyx_t_1 = 0; - __pyx_t_2 = 0; - __pyx_t_2 = PyTuple_New(1); if (unlikely(!__pyx_t_2)) __PYX_ERR(8, 121, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_2); + if (__Pyx_PyList_SET_ITEM(__pyx_t_9, 0, __pyx_t_2)) __PYX_ERR(8, 120, __pyx_L1_error); + __Pyx_GIVEREF(__pyx_t_1); + if (__Pyx_PyList_SET_ITEM(__pyx_t_9, 1, __pyx_t_1)) __PYX_ERR(8, 120, __pyx_L1_error); __Pyx_GIVEREF(__pyx_t_4); - if (__Pyx_PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_t_4)) __PYX_ERR(8, 121, __pyx_L1_error); + if (__Pyx_PyList_SET_ITEM(__pyx_t_9, 2, __pyx_t_4)) __PYX_ERR(8, 120, __pyx_L1_error); + __pyx_t_2 = 0; + __pyx_t_1 = 0; __pyx_t_4 = 0; - __pyx_t_4 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_4)) __PYX_ERR(8, 121, __pyx_L1_error) + __pyx_t_4 = PyTuple_New(1); if (unlikely(!__pyx_t_4)) __PYX_ERR(8, 120, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); - if (PyDict_SetItem(__pyx_t_4, __pyx_n_s_order, __pyx_n_u_C) < 0) __PYX_ERR(8, 121, __pyx_L1_error) - __pyx_t_1 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_2, __pyx_t_4); if (unlikely(!__pyx_t_1)) __PYX_ERR(8, 121, __pyx_L1_error) + __Pyx_GIVEREF(__pyx_t_9); + if (__Pyx_PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_9)) __PYX_ERR(8, 120, __pyx_L1_error); + __pyx_t_9 = 0; + __pyx_t_9 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_9)) __PYX_ERR(8, 120, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_9); + if (PyDict_SetItem(__pyx_t_9, __pyx_n_s_order, __pyx_n_u_C) < 0) __PYX_ERR(8, 120, __pyx_L1_error) + __pyx_t_1 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_4, __pyx_t_9); if (unlikely(!__pyx_t_1)) __PYX_ERR(8, 120, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_T_2); if (unlikely(!__pyx_t_4)) __PYX_ERR(8, 121, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_4); + __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; + __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_T_2); if (unlikely(!__pyx_t_9)) __PYX_ERR(8, 120, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_9); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; - __pyx_t_16 = __Pyx_PyObject_to_MemoryviewSlice_dsdsds_double(__pyx_t_4, PyBUF_WRITABLE); if (unlikely(!__pyx_t_16.memview)) __PYX_ERR(8, 121, __pyx_L1_error) - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_16 = __Pyx_PyObject_to_MemoryviewSlice_dsdsds_double(__pyx_t_9, PyBUF_WRITABLE); if (unlikely(!__pyx_t_16.memview)) __PYX_ERR(8, 120, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; __pyx_v_inval = __pyx_t_16; __pyx_t_16.memview = NULL; __pyx_t_16.data = NULL; - /* "src/builtin_backend/analysis.pyx":122 + /* "src/builtin_backend/analysis.pyx":121 * else: * inval=dain.data.reshape([auxsize,nlat,nlon],order='C').T * latfirst=False # <<<<<<<<<<<<<< @@ -31805,7 +31409,7 @@ static PyObject *__pyx_f_8shxarray_5shlib_8Analysis__apply_ana(struct __pyx_obj_ } __pyx_L19:; - /* "src/builtin_backend/analysis.pyx":116 + /* "src/builtin_backend/analysis.pyx":115 * inval=dain.data.reshape([nlat,nlon,auxsize],order='C') * latfirst=True * elif londim == dain.ndim -1 or latdim == dain.ndim-1: # <<<<<<<<<<<<<< @@ -31815,26 +31419,26 @@ static PyObject *__pyx_f_8shxarray_5shlib_8Analysis__apply_ana(struct __pyx_obj_ } __pyx_L13:; - /* "src/builtin_backend/analysis.pyx":123 + /* "src/builtin_backend/analysis.pyx":122 * inval=dain.data.reshape([auxsize,nlat,nlon],order='C').T * latfirst=False * cdef double d2r =np.pi/180 # <<<<<<<<<<<<<< * incy=int(inval.strides[2]/8) * cdef omp_lock_t lock */ - __Pyx_GetModuleGlobalName(__pyx_t_4, __pyx_n_s_np); if (unlikely(!__pyx_t_4)) __PYX_ERR(8, 123, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_4); - __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_pi); if (unlikely(!__pyx_t_1)) __PYX_ERR(8, 123, __pyx_L1_error) + __Pyx_GetModuleGlobalName(__pyx_t_9, __pyx_n_s_np); if (unlikely(!__pyx_t_9)) __PYX_ERR(8, 122, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_9); + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_9, __pyx_n_s_pi); if (unlikely(!__pyx_t_1)) __PYX_ERR(8, 122, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - __pyx_t_4 = __Pyx_PyInt_TrueDivideObjC(__pyx_t_1, __pyx_int_180, 0xB4, 0, 0); if (unlikely(!__pyx_t_4)) __PYX_ERR(8, 123, __pyx_L1_error) - __Pyx_GOTREF(__pyx_t_4); + __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; + __pyx_t_9 = __Pyx_PyInt_TrueDivideObjC(__pyx_t_1, __pyx_int_180, 0xB4, 0, 0); if (unlikely(!__pyx_t_9)) __PYX_ERR(8, 122, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_9); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; - __pyx_t_17 = __pyx_PyFloat_AsDouble(__pyx_t_4); if (unlikely((__pyx_t_17 == (double)-1) && PyErr_Occurred())) __PYX_ERR(8, 123, __pyx_L1_error) - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_17 = __pyx_PyFloat_AsDouble(__pyx_t_9); if (unlikely((__pyx_t_17 == (double)-1) && PyErr_Occurred())) __PYX_ERR(8, 122, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; __pyx_v_d2r = __pyx_t_17; - /* "src/builtin_backend/analysis.pyx":124 + /* "src/builtin_backend/analysis.pyx":123 * latfirst=False * cdef double d2r =np.pi/180 * incy=int(inval.strides[2]/8) # <<<<<<<<<<<<<< @@ -31843,7 +31447,7 @@ static PyObject *__pyx_f_8shxarray_5shlib_8Analysis__apply_ana(struct __pyx_obj_ */ __pyx_v_incy = ((int)(((double)(__pyx_v_inval.strides[2])) / 8.0)); - /* "src/builtin_backend/analysis.pyx":126 + /* "src/builtin_backend/analysis.pyx":125 * incy=int(inval.strides[2]/8) * cdef omp_lock_t lock * omp_init_lock(&lock) # <<<<<<<<<<<<<< @@ -31852,12 +31456,12 @@ static PyObject *__pyx_f_8shxarray_5shlib_8Analysis__apply_ana(struct __pyx_obj_ */ omp_init_lock((&__pyx_v_lock)); - /* "src/builtin_backend/analysis.pyx":127 + /* "src/builtin_backend/analysis.pyx":126 * cdef omp_lock_t lock * omp_init_lock(&lock) * with nogil, parallel(): # <<<<<<<<<<<<<< * - * ynm=Ynm_cpp[double](shsize,&nv[0],&mv[0],&tv[0]) + * ynm=Ynm_cpp[double](shsize,&nv[0],&mv[0]) */ { #ifdef WITH_THREAD @@ -31889,18 +31493,17 @@ static PyObject *__pyx_f_8shxarray_5shlib_8Analysis__apply_ana(struct __pyx_obj_ Py_BEGIN_ALLOW_THREADS #endif /* _OPENMP */ - /* "src/builtin_backend/analysis.pyx":129 + /* "src/builtin_backend/analysis.pyx":128 * with nogil, parallel(): * - * ynm=Ynm_cpp[double](shsize,&nv[0],&mv[0],&tv[0]) # <<<<<<<<<<<<<< + * ynm=Ynm_cpp[double](shsize,&nv[0],&mv[0]) # <<<<<<<<<<<<<< * for ilat in prange(nlat): * alpha=weight*cos(latv[ilat]*d2r) */ __pyx_t_18 = 0; __pyx_t_19 = 0; - __pyx_t_20 = 0; try { - __pyx_t_21 = Ynm_cpp (__pyx_v_shsize, (&(*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_nv.data) + __pyx_t_18)) )))), (&(*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_mv.data) + __pyx_t_19)) )))), (&(*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_tv.data) + __pyx_t_20)) ))))); + __pyx_t_20 = Ynm_cpp (__pyx_v_shsize, (&(*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_nv.data) + __pyx_t_18)) )))), (&(*((int *) ( /* dim=0 */ ((char *) (((int *) __pyx_v_mv.data) + __pyx_t_19)) ))))); } catch(...) { #ifdef WITH_THREAD PyGILState_STATE __pyx_gilstate_save = __Pyx_PyGILState_Ensure(); @@ -31909,66 +31512,66 @@ static PyObject *__pyx_f_8shxarray_5shlib_8Analysis__apply_ana(struct __pyx_obj_ #ifdef WITH_THREAD __Pyx_PyGILState_Release(__pyx_gilstate_save); #endif - __PYX_ERR(8, 129, __pyx_L25_error) + __PYX_ERR(8, 128, __pyx_L25_error) } - __pyx_v_ynm = __PYX_STD_MOVE_IF_SUPPORTED(__pyx_t_21); + __pyx_v_ynm = __PYX_STD_MOVE_IF_SUPPORTED(__pyx_t_20); - /* "src/builtin_backend/analysis.pyx":130 + /* "src/builtin_backend/analysis.pyx":129 * - * ynm=Ynm_cpp[double](shsize,&nv[0],&mv[0],&tv[0]) + * ynm=Ynm_cpp[double](shsize,&nv[0],&mv[0]) * for ilat in prange(nlat): # <<<<<<<<<<<<<< * alpha=weight*cos(latv[ilat]*d2r) * for ilon in range(nlon): */ __pyx_t_5 = __pyx_v_nlat; { - __pyx_t_22 = (__pyx_t_5 - 0 + 1 - 1/abs(1)) / 1; - if (__pyx_t_22 > 0) + __pyx_t_21 = (__pyx_t_5 - 0 + 1 - 1/abs(1)) / 1; + if (__pyx_t_21 > 0) { #ifdef _OPENMP #pragma omp for lastprivate(__pyx_v_alpha) firstprivate(__pyx_v_ilat) lastprivate(__pyx_v_ilat) lastprivate(__pyx_v_ilon) #endif /* _OPENMP */ - for (__pyx_t_11 = 0; __pyx_t_11 < __pyx_t_22; __pyx_t_11++){ + for (__pyx_t_11 = 0; __pyx_t_11 < __pyx_t_21; __pyx_t_11++){ { __pyx_v_ilat = (int)(0 + 1 * __pyx_t_11); /* Initialize private variables to invalid values */ __pyx_v_alpha = ((double)__PYX_NAN()); __pyx_v_ilon = ((int)0xbad0bad0); - /* "src/builtin_backend/analysis.pyx":131 - * ynm=Ynm_cpp[double](shsize,&nv[0],&mv[0],&tv[0]) + /* "src/builtin_backend/analysis.pyx":130 + * ynm=Ynm_cpp[double](shsize,&nv[0],&mv[0]) * for ilat in prange(nlat): * alpha=weight*cos(latv[ilat]*d2r) # <<<<<<<<<<<<<< * for ilon in range(nlon): * ynm.set(lonv[ilon],latv[ilat]) */ - __pyx_t_20 = __pyx_v_ilat; - __pyx_v_alpha = (__pyx_v_weight * cos(((*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_latv.data) + __pyx_t_20)) ))) * __pyx_v_d2r))); + __pyx_t_19 = __pyx_v_ilat; + __pyx_v_alpha = (__pyx_v_weight * cos(((*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_latv.data) + __pyx_t_19)) ))) * __pyx_v_d2r))); - /* "src/builtin_backend/analysis.pyx":132 + /* "src/builtin_backend/analysis.pyx":131 * for ilat in prange(nlat): * alpha=weight*cos(latv[ilat]*d2r) * for ilon in range(nlon): # <<<<<<<<<<<<<< * ynm.set(lonv[ilon],latv[ilat]) * # void dger(int *m, int *n, d *alpha, d *x, int *incx, d *y, int *incy, d *a, int *lda) */ - __pyx_t_23 = __pyx_v_nlon; - __pyx_t_24 = __pyx_t_23; - for (__pyx_t_25 = 0; __pyx_t_25 < __pyx_t_24; __pyx_t_25+=1) { - __pyx_v_ilon = __pyx_t_25; + __pyx_t_22 = __pyx_v_nlon; + __pyx_t_23 = __pyx_t_22; + for (__pyx_t_24 = 0; __pyx_t_24 < __pyx_t_23; __pyx_t_24+=1) { + __pyx_v_ilon = __pyx_t_24; - /* "src/builtin_backend/analysis.pyx":133 + /* "src/builtin_backend/analysis.pyx":132 * alpha=weight*cos(latv[ilat]*d2r) * for ilon in range(nlon): * ynm.set(lonv[ilon],latv[ilat]) # <<<<<<<<<<<<<< * # void dger(int *m, int *n, d *alpha, d *x, int *incx, d *y, int *incy, d *a, int *lda) * #critical section for openmp because outv gets updated by all threads */ - __pyx_t_20 = __pyx_v_ilon; - __pyx_t_19 = __pyx_v_ilat; - __pyx_v_ynm.set((*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_lonv.data) + __pyx_t_20)) ))), (*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_latv.data) + __pyx_t_19)) )))); + __pyx_t_19 = __pyx_v_ilon; + __pyx_t_18 = __pyx_v_ilat; + __pyx_v_ynm.set((*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_lonv.data) + __pyx_t_19)) ))), (*((double *) ( /* dim=0 */ ((char *) (((double *) __pyx_v_latv.data) + __pyx_t_18)) )))); - /* "src/builtin_backend/analysis.pyx":136 + /* "src/builtin_backend/analysis.pyx":135 * # void dger(int *m, int *n, d *alpha, d *x, int *incx, d *y, int *incy, d *a, int *lda) * #critical section for openmp because outv gets updated by all threads * omp_set_lock(&lock) # <<<<<<<<<<<<<< @@ -31977,7 +31580,7 @@ static PyObject *__pyx_f_8shxarray_5shlib_8Analysis__apply_ana(struct __pyx_obj_ */ omp_set_lock((&__pyx_v_lock)); - /* "src/builtin_backend/analysis.pyx":137 + /* "src/builtin_backend/analysis.pyx":136 * #critical section for openmp because outv gets updated by all threads * omp_set_lock(&lock) * if latfirst: # <<<<<<<<<<<<<< @@ -31986,21 +31589,21 @@ static PyObject *__pyx_f_8shxarray_5shlib_8Analysis__apply_ana(struct __pyx_obj_ */ if (__pyx_v_latfirst) { - /* "src/builtin_backend/analysis.pyx":138 + /* "src/builtin_backend/analysis.pyx":137 * omp_set_lock(&lock) * if latfirst: * dger(&m,&n,&alpha,ynm.data(),&incx,&inval[ilat,ilon,0],&incy,&outv[0,0],&lda) # <<<<<<<<<<<<<< * else: * dger(&m,&n,&alpha,ynm.data(),&incx,&inval[ilon,ilat,0],&incy,&outv[0,0],&lda) */ - __pyx_t_19 = __pyx_v_ilat; - __pyx_t_20 = __pyx_v_ilon; - __pyx_t_18 = 0; + __pyx_t_18 = __pyx_v_ilat; + __pyx_t_19 = __pyx_v_ilon; + __pyx_t_25 = 0; __pyx_t_26 = 0; __pyx_t_27 = 0; - __pyx_f_5scipy_6linalg_11cython_blas_dger((&__pyx_v_m), (&__pyx_v_n), (&__pyx_v_alpha), __pyx_v_ynm.data(), (&__pyx_v_incx), (&(*((double *) ( /* dim=2 */ (( /* dim=1 */ (( /* dim=0 */ (__pyx_v_inval.data + __pyx_t_19 * __pyx_v_inval.strides[0]) ) + __pyx_t_20 * __pyx_v_inval.strides[1]) ) + __pyx_t_18 * __pyx_v_inval.strides[2]) )))), (&__pyx_v_incy), (&(*((double *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_outv.data + __pyx_t_26 * __pyx_v_outv.strides[0]) ) + __pyx_t_27 * __pyx_v_outv.strides[1]) )))), (&__pyx_v_lda)); + __pyx_f_5scipy_6linalg_11cython_blas_dger((&__pyx_v_m), (&__pyx_v_n), (&__pyx_v_alpha), __pyx_v_ynm.data(), (&__pyx_v_incx), (&(*((double *) ( /* dim=2 */ (( /* dim=1 */ (( /* dim=0 */ (__pyx_v_inval.data + __pyx_t_18 * __pyx_v_inval.strides[0]) ) + __pyx_t_19 * __pyx_v_inval.strides[1]) ) + __pyx_t_25 * __pyx_v_inval.strides[2]) )))), (&__pyx_v_incy), (&(*((double *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_outv.data + __pyx_t_26 * __pyx_v_outv.strides[0]) ) + __pyx_t_27 * __pyx_v_outv.strides[1]) )))), (&__pyx_v_lda)); - /* "src/builtin_backend/analysis.pyx":137 + /* "src/builtin_backend/analysis.pyx":136 * #critical section for openmp because outv gets updated by all threads * omp_set_lock(&lock) * if latfirst: # <<<<<<<<<<<<<< @@ -32010,7 +31613,7 @@ static PyObject *__pyx_f_8shxarray_5shlib_8Analysis__apply_ana(struct __pyx_obj_ goto __pyx_L33; } - /* "src/builtin_backend/analysis.pyx":140 + /* "src/builtin_backend/analysis.pyx":139 * dger(&m,&n,&alpha,ynm.data(),&incx,&inval[ilat,ilon,0],&incy,&outv[0,0],&lda) * else: * dger(&m,&n,&alpha,ynm.data(),&incx,&inval[ilon,ilat,0],&incy,&outv[0,0],&lda) # <<<<<<<<<<<<<< @@ -32020,14 +31623,14 @@ static PyObject *__pyx_f_8shxarray_5shlib_8Analysis__apply_ana(struct __pyx_obj_ /*else*/ { __pyx_t_27 = __pyx_v_ilon; __pyx_t_26 = __pyx_v_ilat; - __pyx_t_18 = 0; - __pyx_t_20 = 0; + __pyx_t_25 = 0; __pyx_t_19 = 0; - __pyx_f_5scipy_6linalg_11cython_blas_dger((&__pyx_v_m), (&__pyx_v_n), (&__pyx_v_alpha), __pyx_v_ynm.data(), (&__pyx_v_incx), (&(*((double *) ( /* dim=2 */ (( /* dim=1 */ (( /* dim=0 */ (__pyx_v_inval.data + __pyx_t_27 * __pyx_v_inval.strides[0]) ) + __pyx_t_26 * __pyx_v_inval.strides[1]) ) + __pyx_t_18 * __pyx_v_inval.strides[2]) )))), (&__pyx_v_incy), (&(*((double *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_outv.data + __pyx_t_20 * __pyx_v_outv.strides[0]) ) + __pyx_t_19 * __pyx_v_outv.strides[1]) )))), (&__pyx_v_lda)); + __pyx_t_18 = 0; + __pyx_f_5scipy_6linalg_11cython_blas_dger((&__pyx_v_m), (&__pyx_v_n), (&__pyx_v_alpha), __pyx_v_ynm.data(), (&__pyx_v_incx), (&(*((double *) ( /* dim=2 */ (( /* dim=1 */ (( /* dim=0 */ (__pyx_v_inval.data + __pyx_t_27 * __pyx_v_inval.strides[0]) ) + __pyx_t_26 * __pyx_v_inval.strides[1]) ) + __pyx_t_25 * __pyx_v_inval.strides[2]) )))), (&__pyx_v_incy), (&(*((double *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_outv.data + __pyx_t_19 * __pyx_v_outv.strides[0]) ) + __pyx_t_18 * __pyx_v_outv.strides[1]) )))), (&__pyx_v_lda)); } __pyx_L33:; - /* "src/builtin_backend/analysis.pyx":141 + /* "src/builtin_backend/analysis.pyx":140 * else: * dger(&m,&n,&alpha,ynm.data(),&incx,&inval[ilon,ilat,0],&incy,&outv[0,0],&lda) * omp_unset_lock(&lock) # <<<<<<<<<<<<<< @@ -32107,12 +31710,12 @@ static PyObject *__pyx_f_8shxarray_5shlib_8Analysis__apply_ana(struct __pyx_obj_ #endif } - /* "src/builtin_backend/analysis.pyx":127 + /* "src/builtin_backend/analysis.pyx":126 * cdef omp_lock_t lock * omp_init_lock(&lock) * with nogil, parallel(): # <<<<<<<<<<<<<< * - * ynm=Ynm_cpp[double](shsize,&nv[0],&mv[0],&tv[0]) + * ynm=Ynm_cpp[double](shsize,&nv[0],&mv[0]) */ /*finally:*/ { /*normal exit:*/{ @@ -32163,12 +31766,11 @@ static PyObject *__pyx_f_8shxarray_5shlib_8Analysis__apply_ana(struct __pyx_obj_ __PYX_XCLEAR_MEMVIEW(&__pyx_v_outv, 1); __PYX_XCLEAR_MEMVIEW(&__pyx_v_nv, 1); __PYX_XCLEAR_MEMVIEW(&__pyx_v_mv, 1); - __PYX_XCLEAR_MEMVIEW(&__pyx_v_tv, 1); __PYX_XCLEAR_MEMVIEW(&__pyx_v_inval, 1); __Pyx_XDECREF(__pyx_v_londim); __Pyx_XDECREF(__pyx_v_latdim); - __Pyx_XDECREF(__pyx_9genexpr19__pyx_v_ky); - __Pyx_XDECREF(__pyx_9genexpr19__pyx_v_val); + __Pyx_XDECREF(__pyx_9genexpr18__pyx_v_ky); + __Pyx_XDECREF(__pyx_9genexpr18__pyx_v_val); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; @@ -35967,6 +35569,7 @@ static int __Pyx_CreateStringTabAndInitStrings(void) { {&__pyx_n_u_nlonlat, __pyx_k_nlonlat, sizeof(__pyx_k_nlonlat), 0, 1, 0, 1}, {&__pyx_n_s_nm, __pyx_k_nm, sizeof(__pyx_k_nm), 0, 0, 1, 1}, {&__pyx_n_u_nm, __pyx_k_nm, sizeof(__pyx_k_nm), 0, 1, 0, 1}, + {&__pyx_kp_u_nm_dimension_must_either_be_the, __pyx_k_nm_dimension_must_either_be_the, sizeof(__pyx_k_nm_dimension_must_either_be_the), 0, 1, 0, 0}, {&__pyx_n_s_nm_from_i, __pyx_k_nm_from_i, sizeof(__pyx_k_nm_from_i), 0, 0, 1, 1}, {&__pyx_n_s_nmax, __pyx_k_nmax, sizeof(__pyx_k_nmax), 0, 0, 1, 1}, {&__pyx_n_s_nmax_or_index, __pyx_k_nmax_or_index, sizeof(__pyx_k_nmax_or_index), 0, 0, 1, 1}, @@ -36007,9 +35610,6 @@ static int __Pyx_CreateStringTabAndInitStrings(void) { {&__pyx_n_s_setstate_cython, __pyx_k_setstate_cython, sizeof(__pyx_k_setstate_cython), 0, 0, 1, 1}, {&__pyx_n_s_sh, __pyx_k_sh, sizeof(__pyx_k_sh), 0, 0, 1, 1}, {&__pyx_n_s_shape, __pyx_k_shape, sizeof(__pyx_k_shape), 0, 0, 1, 1}, - {&__pyx_n_s_shi, __pyx_k_shi, sizeof(__pyx_k_shi), 0, 0, 1, 1}, - {&__pyx_n_u_shi, __pyx_k_shi, sizeof(__pyx_k_shi), 0, 1, 0, 1}, - {&__pyx_kp_u_shi_dimension_must_either_be_the, __pyx_k_shi_dimension_must_either_be_the, sizeof(__pyx_k_shi_dimension_must_either_be_the), 0, 1, 0, 0}, {&__pyx_n_s_shxarray_core_cf, __pyx_k_shxarray_core_cf, sizeof(__pyx_k_shxarray_core_cf), 0, 0, 1, 1}, {&__pyx_n_s_shxarray_core_sh_indexing, __pyx_k_shxarray_core_sh_indexing, sizeof(__pyx_k_shxarray_core_sh_indexing), 0, 0, 1, 1}, {&__pyx_n_s_shxarray_core_shcomputebase, __pyx_k_shxarray_core_shcomputebase, sizeof(__pyx_k_shxarray_core_shcomputebase), 0, 0, 1, 1}, @@ -36035,7 +35635,6 @@ static int __Pyx_CreateStringTabAndInitStrings(void) { {&__pyx_n_s_synthesis, __pyx_k_synthesis, sizeof(__pyx_k_synthesis), 0, 0, 1, 1}, {&__pyx_n_s_sys, __pyx_k_sys, sizeof(__pyx_k_sys), 0, 0, 1, 1}, {&__pyx_n_s_sz, __pyx_k_sz, sizeof(__pyx_k_sz), 0, 0, 1, 1}, - {&__pyx_n_s_t, __pyx_k_t, sizeof(__pyx_k_t), 0, 0, 1, 1}, {&__pyx_n_s_test, __pyx_k_test, sizeof(__pyx_k_test), 0, 0, 1, 1}, {&__pyx_kp_s_unable_to_allocate_array_data, __pyx_k_unable_to_allocate_array_data, sizeof(__pyx_k_unable_to_allocate_array_data), 0, 0, 1, 0}, {&__pyx_kp_s_unable_to_allocate_shape_and_str, __pyx_k_unable_to_allocate_shape_and_str, sizeof(__pyx_k_unable_to_allocate_shape_and_str), 0, 0, 1, 0}, @@ -36059,7 +35658,7 @@ static CYTHON_SMALL_CODE int __Pyx_InitCachedBuiltins(void) { __pyx_builtin_TypeError = __Pyx_GetBuiltinName(__pyx_n_s_TypeError); if (!__pyx_builtin_TypeError) __PYX_ERR(0, 2, __pyx_L1_error) __pyx_builtin_range = __Pyx_GetBuiltinName(__pyx_n_s_range); if (!__pyx_builtin_range) __PYX_ERR(1, 60, __pyx_L1_error) __pyx_builtin_AssertionError = __Pyx_GetBuiltinName(__pyx_n_s_AssertionError); if (!__pyx_builtin_AssertionError) __PYX_ERR(2, 25, __pyx_L1_error) - __pyx_builtin_RuntimeError = __Pyx_GetBuiltinName(__pyx_n_s_RuntimeError); if (!__pyx_builtin_RuntimeError) __PYX_ERR(3, 86, __pyx_L1_error) + __pyx_builtin_RuntimeError = __Pyx_GetBuiltinName(__pyx_n_s_RuntimeError); if (!__pyx_builtin_RuntimeError) __PYX_ERR(3, 78, __pyx_L1_error) __pyx_builtin_MemoryError = __Pyx_GetBuiltinName(__pyx_n_s_MemoryError); if (!__pyx_builtin_MemoryError) __PYX_ERR(0, 68, __pyx_L1_error) __pyx_builtin___import__ = __Pyx_GetBuiltinName(__pyx_n_s_import); if (!__pyx_builtin___import__) __PYX_ERR(0, 100, __pyx_L1_error) __pyx_builtin_ValueError = __Pyx_GetBuiltinName(__pyx_n_s_ValueError); if (!__pyx_builtin_ValueError) __PYX_ERR(0, 141, __pyx_L1_error) @@ -36170,14 +35769,14 @@ static CYTHON_SMALL_CODE int __Pyx_InitCachedConstants(void) { __Pyx_GOTREF(__pyx_tuple__20); __Pyx_GIVEREF(__pyx_tuple__20); - /* "src/builtin_backend/ynm.pyx":86 + /* "src/builtin_backend/ynm.pyx":78 * #multiple sets requested * if len(lon) != len(lat): * raise RuntimeError("input longitude and latitude needs to be of the same length") # <<<<<<<<<<<<<< * npos=len(lon) * data=np.empty([npos,self._ynm.size()]) */ - __pyx_tuple__21 = PyTuple_Pack(1, __pyx_kp_u_input_longitude_and_latitude_nee); if (unlikely(!__pyx_tuple__21)) __PYX_ERR(3, 86, __pyx_L1_error) + __pyx_tuple__21 = PyTuple_Pack(1, __pyx_kp_u_input_longitude_and_latitude_nee); if (unlikely(!__pyx_tuple__21)) __PYX_ERR(3, 78, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__21); __Pyx_GIVEREF(__pyx_tuple__21); @@ -36197,7 +35796,7 @@ static CYTHON_SMALL_CODE int __Pyx_InitCachedConstants(void) { * if type(dain) != xr.DataArray: * raise RuntimeError("input type should be a xarray.DataArray") # <<<<<<<<<<<<<< * - * if "shi" not in dain.indexes: + * if "nm" not in dain.indexes: */ __pyx_tuple__23 = PyTuple_Pack(1, __pyx_kp_u_input_type_should_be_a_xarray_Da); if (unlikely(!__pyx_tuple__23)) __PYX_ERR(7, 47, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__23); @@ -36205,9 +35804,9 @@ static CYTHON_SMALL_CODE int __Pyx_InitCachedConstants(void) { /* "src/builtin_backend/synthesis.pyx":50 * - * if "shi" not in dain.indexes: + * if "nm" not in dain.indexes: * raise RuntimeError("Spherical harmonic index not found in input, cannot apply synthesis operator to object") # <<<<<<<<<<<<<< - * shidim= dain.get_axis_num('shi') + * shidim= dain.get_axis_num('nm') * if shidim != dain.ndim-1 and shidim != 0: */ __pyx_tuple__24 = PyTuple_Pack(1, __pyx_kp_u_Spherical_harmonic_index_not_fou); if (unlikely(!__pyx_tuple__24)) __PYX_ERR(7, 50, __pyx_L1_error) @@ -36215,20 +35814,20 @@ static CYTHON_SMALL_CODE int __Pyx_InitCachedConstants(void) { __Pyx_GIVEREF(__pyx_tuple__24); /* "src/builtin_backend/synthesis.pyx":53 - * shidim= dain.get_axis_num('shi') + * shidim= dain.get_axis_num('nm') * if shidim != dain.ndim-1 and shidim != 0: - * raise RuntimeError ("shi dimension must either be the first or last in input") # <<<<<<<<<<<<<< + * raise RuntimeError ("nm dimension must either be the first or last in input") # <<<<<<<<<<<<<< * * # if not (dain.data.flags['C_CONTIGUOUS'] or dain.data.flags['F_CONTIGUOUS']): */ - __pyx_tuple__25 = PyTuple_Pack(1, __pyx_kp_u_shi_dimension_must_either_be_the); if (unlikely(!__pyx_tuple__25)) __PYX_ERR(7, 53, __pyx_L1_error) + __pyx_tuple__25 = PyTuple_Pack(1, __pyx_kp_u_nm_dimension_must_either_be_the); if (unlikely(!__pyx_tuple__25)) __PYX_ERR(7, 53, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__25); __Pyx_GIVEREF(__pyx_tuple__25); /* "src/builtin_backend/synthesis.pyx":113 * inval=dain.data.reshape([shsize,auxsize]).T # transpose to make the sh dimension last * else: - * raise RuntimeError("Can only handle input where the shi dimension is first or last") # <<<<<<<<<<<<<< + * raise RuntimeError("Can only handle input where the nm dimension is first or last") # <<<<<<<<<<<<<< * * # cdef int sz1,sz2 */ @@ -36247,14 +35846,14 @@ static CYTHON_SMALL_CODE int __Pyx_InitCachedConstants(void) { __Pyx_GOTREF(__pyx_tuple__27); __Pyx_GIVEREF(__pyx_tuple__27); - /* "src/builtin_backend/analysis.pyx":106 + /* "src/builtin_backend/analysis.pyx":105 * * if abs(londim -latdim) != 1: * raise RuntimeError("Longitude and latitude dimensions of input are not neighbouring, cannot handle this layout") # <<<<<<<<<<<<<< * * cdef bint latfirst=False */ - __pyx_tuple__28 = PyTuple_Pack(1, __pyx_kp_u_Longitude_and_latitude_dimension); if (unlikely(!__pyx_tuple__28)) __PYX_ERR(8, 106, __pyx_L1_error) + __pyx_tuple__28 = PyTuple_Pack(1, __pyx_kp_u_Longitude_and_latitude_dimension); if (unlikely(!__pyx_tuple__28)) __PYX_ERR(8, 105, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__28); __Pyx_GIVEREF(__pyx_tuple__28); @@ -36584,6 +36183,7 @@ static CYTHON_SMALL_CODE int __Pyx_InitConstants(void) { if (__Pyx_CreateStringTabAndInitStrings() < 0) __PYX_ERR(4, 1, __pyx_L1_error); __pyx_int_0 = PyInt_FromLong(0); if (unlikely(!__pyx_int_0)) __PYX_ERR(4, 1, __pyx_L1_error) __pyx_int_1 = PyInt_FromLong(1); if (unlikely(!__pyx_int_1)) __PYX_ERR(4, 1, __pyx_L1_error) + __pyx_int_2 = PyInt_FromLong(2); if (unlikely(!__pyx_int_2)) __PYX_ERR(4, 1, __pyx_L1_error) __pyx_int_3 = PyInt_FromLong(3); if (unlikely(!__pyx_int_3)) __PYX_ERR(4, 1, __pyx_L1_error) __pyx_int_4 = PyInt_FromLong(4); if (unlikely(!__pyx_int_4)) __PYX_ERR(4, 1, __pyx_L1_error) __pyx_int_8 = PyInt_FromLong(8); if (unlikely(!__pyx_int_8)) __PYX_ERR(4, 1, __pyx_L1_error) @@ -46595,6 +46195,50 @@ static CYTHON_INLINE void __Pyx_XCLEAR_MEMVIEW(__Pyx_memviewslice *memslice, } } +/* TypeInfoToFormat */ + static struct __pyx_typeinfo_string __Pyx_TypeInfoToFormat(__Pyx_TypeInfo *type) { + struct __pyx_typeinfo_string result = { {0} }; + char *buf = (char *) result.string; + size_t size = type->size; + switch (type->typegroup) { + case 'H': + *buf = 'c'; + break; + case 'I': + case 'U': + if (size == 1) + *buf = (type->is_unsigned) ? 'B' : 'b'; + else if (size == 2) + *buf = (type->is_unsigned) ? 'H' : 'h'; + else if (size == 4) + *buf = (type->is_unsigned) ? 'I' : 'i'; + else if (size == 8) + *buf = (type->is_unsigned) ? 'Q' : 'q'; + break; + case 'P': + *buf = 'P'; + break; + case 'C': + { + __Pyx_TypeInfo complex_type = *type; + complex_type.typegroup = 'R'; + complex_type.size /= 2; + *buf++ = 'Z'; + *buf = __Pyx_TypeInfoToFormat(&complex_type).string[0]; + break; + } + case 'R': + if (size == 4) + *buf = 'f'; + else if (size == 8) + *buf = 'd'; + else + *buf = 'g'; + break; + } + return result; +} + /* CIntToPy */ static CYTHON_INLINE PyObject* __Pyx_PyInt_From_long(long value) { #ifdef __Pyx_HAS_GCC_DIAGNOSTIC @@ -46932,50 +46576,6 @@ static CYTHON_INLINE void __Pyx_XCLEAR_MEMVIEW(__Pyx_memviewslice *memslice, return (long) -1; } -/* TypeInfoToFormat */ - static struct __pyx_typeinfo_string __Pyx_TypeInfoToFormat(__Pyx_TypeInfo *type) { - struct __pyx_typeinfo_string result = { {0} }; - char *buf = (char *) result.string; - size_t size = type->size; - switch (type->typegroup) { - case 'H': - *buf = 'c'; - break; - case 'I': - case 'U': - if (size == 1) - *buf = (type->is_unsigned) ? 'B' : 'b'; - else if (size == 2) - *buf = (type->is_unsigned) ? 'H' : 'h'; - else if (size == 4) - *buf = (type->is_unsigned) ? 'I' : 'i'; - else if (size == 8) - *buf = (type->is_unsigned) ? 'Q' : 'q'; - break; - case 'P': - *buf = 'P'; - break; - case 'C': - { - __Pyx_TypeInfo complex_type = *type; - complex_type.typegroup = 'R'; - complex_type.size /= 2; - *buf++ = 'Z'; - *buf = __Pyx_TypeInfoToFormat(&complex_type).string[0]; - break; - } - case 'R': - if (size == 4) - *buf = 'f'; - else if (size == 8) - *buf = 'd'; - else - *buf = 'g'; - break; - } - return result; -} - /* CIntFromPy */ static CYTHON_INLINE char __Pyx_PyInt_As_char(PyObject *x) { #ifdef __Pyx_HAS_GCC_DIAGNOSTIC diff --git a/src/builtin_backend/synthesis.pyx b/src/builtin_backend/synthesis.pyx index 0d5500d..aa49977 100644 --- a/src/builtin_backend/synthesis.pyx +++ b/src/builtin_backend/synthesis.pyx @@ -46,19 +46,19 @@ cdef class Synthesis: if type(dain) != xr.DataArray: raise RuntimeError("input type should be a xarray.DataArray") - if "shi" not in dain.indexes: + if "nm" not in dain.indexes: raise RuntimeError("Spherical harmonic index not found in input, cannot apply synthesis operator to object") - shidim= dain.get_axis_num('shi') + shidim= dain.get_axis_num('nm') if shidim != dain.ndim-1 and shidim != 0: - raise RuntimeError ("shi dimension must either be the first or last in input") + raise RuntimeError ("nm dimension must either be the first or last in input") # if not (dain.data.flags['C_CONTIGUOUS'] or dain.data.flags['F_CONTIGUOUS']): # raise RuntimeError("Cannot work with non-contiguous input arrays yet") - coordsout={ky:val for ky,val in dain.coords.items() if val.ndim == 1 and val.dims[0] != "shi"} + coordsout={ky:val for ky,val in dain.coords.items() if val.ndim == 1 and val.dims[0] != "nm"} coordsout.update({ky:val for ky,val in self._dsobj.coords.items()}) - dimsin=[(dim,sz) for dim,sz in dain.sizes.items() if dim != "shi"] + dimsin=[(dim,sz) for dim,sz in dain.sizes.items() if dim != "nm"] #it is import to have lat, and lon as first dimensions (slowest varying index) dimsout=[(dim,sz) for dim,sz in self._dsobj.sizes.items()]+dimsin @@ -78,10 +78,10 @@ cdef class Synthesis: cdef bint grid - cdef int shsize=len(dain.indexes['shi']) + cdef int shsize=len(dain.indexes['nm']) # product of the non-shi dimension lengths # note auxsize will be 1 (good!) when no other dimensions are present except for shi - cdef int auxsize=np.prod([val for ky,val in dain.sizes.items() if ky != "shi"]) + cdef int auxsize=np.prod([val for ky,val in dain.sizes.items() if ky != "nm"]) cdef int npoints if self._dsobj.coords['lat'].dims[0] == self._dsobj.coords['lon'].dims[0]: @@ -103,14 +103,14 @@ cdef class Synthesis: else: inval=dain.data.reshape([shsize,auxsize]).T - elif dain.get_axis_num('shi') == dain.ndim -1: - #shi dimension is last + elif dain.get_axis_num('nm') == dain.ndim -1: + #nm dimension is last inval=dain.data.reshape([auxsize,shsize]) # keep the sh dimension last - elif dain.get_axis_num('shi') == 0: + elif dain.get_axis_num('nm') == 0: #transpose input so the SHI dimension is last inval=dain.data.reshape([shsize,auxsize]).T # transpose to make the sh dimension last else: - raise RuntimeError("Can only handle input where the shi dimension is first or last") + raise RuntimeError("Can only handle input where the nm dimension is first or last") # cdef int sz1,sz2 # sz1=int(inval.strides[0]/8) @@ -160,15 +160,15 @@ cdef class Synthesis: #double precision, dimension(*) y, #integer incy - cdef int[::1] nv = dain.shi.n.data.astype(np.int32) - cdef int[::1] mv = dain.shi.m.data.astype(np.int32) - cdef int[::1] tv = dain.shi.t.data.astype(np.int32) + cdef int[::1] nv = dain.nm.n.data.astype(np.int32) + cdef int[::1] mv = dain.nm.m.data.astype(np.int32) + # cdef int[::1] tv = dain.shi.t.data.astype(np.int32) cdef Ynm_cpp[double] ynm cdef int ilat,ilon,idx with nogil, parallel(): - ynm=Ynm_cpp[double](shsize,&nv[0],&mv[0],&tv[0]) + ynm=Ynm_cpp[double](shsize,&nv[0],&mv[0]) if grid: #use gridded approach (can be significantly faster because the latitudes will be in the outer loop) for ilat in prange(nlat): @@ -183,76 +183,3 @@ cdef class Synthesis: # dgemv(&trans,&m,&n,&alpha,&inval[0,0],&lda,&ynm.data[0],&incx,&beta,&outv[idx,0],&incy) dgemv(&trans,&m,&n,&alpha,&inval[0,0],&lda,ynm.data(),&incx,&beta,&outv[idx,0],&incy) -# @cython.profile(True) -# @cython.boundscheck(False) -# @cython.wraparound(False) -# @cython.initializedcheck(False) -# def threadedynm(): - - # cdef int num_threads - # cdef int ithread - # cdef int max_threads=omp_get_max_threads() - # cdef np.ndarray ynms = np.empty([max_threads,],dtype=Ynm) - # cdef double * ynmdata - # cdef double [::1] lat=np.arange(-90.0,90.0,0.5) - # cdef double [::1] lon=np.arange(-180.0,180.0,0.5) - # cdef int nlat=len(lat) - # cdef int nlon=len(lon) - # cdef int ilat,ilon - - # printf("max threads %d\n",max_threads) - # ynmlist = [] - # # cdef Ynm_cpp[double] * ynm - # cdef Ynm_cpp[double] ynm - # with nogil, parallel(): - # num_threads = omp_get_num_threads() - # ithread = omp_get_thread_num() - - # ynm = Ynm_cpp[double](300) - # # ynm = new Ynm_cpp[double](150) - # # printf("num_threads %d,threadid %d assigned nmax %d\n",num_threads,ithread,1) - # # printf("thread id %d, ynmdata address %p, nmax %d\n",ithread,ynm.data(),ynm.nmax()) - # for ilat in prange(nlat): - # # printf("thread id %d, doing latitude %f\n",ithread,lat[ilat]) - - # for ilon in range(nlon): - # # deref(ynm).set(lon[ilon],lat[ilat]) - # ynm.set(lon[ilon],lat[ilat]) - - - # return ynms - # # printf("memory address of ynm %p\n",ynm_ptr) - -# def checkynm(): - # nmax=20 - # da=xr.DataArray.sh.ones(20) - # shi=da.sh.truncate(12,3).shi - # ynm1=Ynm(shi) - - # cdef int[::1] nv = np.array([n for n,_,_ in ynm1._shindex.values]).astype(np.int32) - # cdef int[::1] mv = np.array([m for _,m,_ in ynm1._shindex.values]).astype(np.int32) - # cdef int[::1] tv = np.array([t for _,_,t in ynm1._shindex.values]).astype(np.int32) - - # cdef Ynm_cpp[double] ynm2= Ynm_cpp[double](len(ynm1),&nv[0],&mv[0],&tv[0]) - - # # cdef Ynm_cpp[double] ynm2= Ynm_cpp[double](nmax) - # cdef lon=40.3 - # cdef lat=20.5 - # cdef cython.size_t idx - # cdef int i,n,m,t - # # ynm1.set(lon,lat) - # ynm2.set(lon,lat) - # for it in ynm2.getmn(): - # m=it.m - # n=it.n - # idx=it.i - # printf("%d n:%d m:%d\n",idx,n,m) - - # # for i,(n,m,t) in enumerate(ynm1._shindex.values): - # # idx=ynm2.idx(n,m,t) - # # printf("%d n:%d m:%d t:%d %f %f\n",i,n,m,t,ynm1.data[i],ynm2[idx]) - - - - - diff --git a/src/builtin_backend/ynm.pyx b/src/builtin_backend/ynm.pyx index 8b5dfef..5dbb89c 100644 --- a/src/builtin_backend/ynm.pyx +++ b/src/builtin_backend/ynm.pyx @@ -26,38 +26,30 @@ cdef class Ynm: cdef int[::1] nv cdef int[::1] mv - cdef int[::1] tv - cdef int [:,::1] nmt + cdef int [:,::1] nm cdef cython.size_t sz,idx - cdef int nmax,n,m,t + cdef int nmax,n,m cdef mni it if type(nmax_or_index) == int: nmax=nmax_or_index self._ynm=Ynm_cpp[double](nmax) sz=self._ynm.size() #create a sh index - nmt=np.zeros([sz,3],dtype=np.int32) + nm=np.zeros([sz,2],dtype=np.int32) for it in self._ynm.getmn(): n=it.n m=it.m idx=it.i - if m<0: - nmt[idx,0]=n - nmt[idx,1]=-m - nmt[idx,2]=1 - else: - nmt[idx,0]=n - nmt[idx,1]=m - nmt[idx,2]=0 + nm[idx,0]=n + nm[idx,1]=m - self._shindex=SHindexBase.mi_fromarrays(np.asarray(nmt).T) + self._shindex=SHindexBase.mi_fromarrays(np.asarray(nm).T) else: nv=np.array([n for n,_,_ in nmax_or_index.values]).astype(np.int32) mv=np.array([m for _,m,_ in nmax_or_index.values]).astype(np.int32) - tv=np.array([t for _,_,t in nmax_or_index.values]).astype(np.int32) sz=len(nmax_or_index) - self._ynm=Ynm_cpp[double](sz,&nv[0],&mv[0],&tv[0]) + self._ynm=Ynm_cpp[double](sz,&nv[0],&mv[0]) self._shindex=nmax_or_index #have data memory view point to the memory of the cpp class @@ -79,7 +71,7 @@ cdef class Ynm: if np.isscalar(lon) and np.isscalar(lat): self._ynm.set(lon,lat) - dsout=xr.DataArray(self.data,coords={"shi":self._shindex,"lon":lon,"lat":lat},dims=["shi"],name="Ynm") + dsout=xr.DataArray(self.data,coords={"nm":self._shindex,"lon":lon,"lat":lat},dims=["nm"],name="Ynm") else: #multiple sets requested if len(lon) != len(lat): @@ -91,7 +83,7 @@ cdef class Ynm: self._ynm.set(lon[i],lat[i]) data[i,:]=self.data - dsout=xr.DataArray(data,coords={"shi":("shi",self._shindex),"lon":("nlonlat",lon),"lat":("nlonlat",lat)},dims=["nlonlat","shi"],name="Ynm") + dsout=xr.DataArray(data,coords={"nm":("nm",self._shindex),"lon":("nlonlat",lon),"lat":("nlonlat",lat)},dims=["nlonlat","nm"],name="Ynm") return dsout diff --git a/src/shxarray/core/sh_indexing.py b/src/shxarray/core/sh_indexing.py index 782a272..489bd21 100644 --- a/src/shxarray/core/sh_indexing.py +++ b/src/shxarray/core/sh_indexing.py @@ -5,33 +5,30 @@ import pandas as pd -from enum import IntEnum -from functools import total_ordering - - -@total_ordering -class trig(IntEnum): - c=0 - s=1 class SHindexBase: - # _nmax=None - # _nmin=None - # _squeeze=True - # def __init__(self,nmax=None,nmin=None,squeeze=True): - # _nmax=nmax - # _nmin=nmin - # _squeeze=squeeze - + name="nm" + name_t="nm_" @staticmethod - def nsh(nmax,nmin=0,squeeze=True): + def nsh(nmax,nmin=0, squeeze=True): """ - Compute the total amount of spherical harmonic coefficients - :param nmax: maximum spherical harmonic degree - :param nmin: minimum spherical harmonic degree - :param squeeze: When true, don't store zero order Sine coefficients (will be zero) - :return Amount of spherical harmonic coefficients + Compute the total amount of spherical harmonic coefficients for a given range + + Parameters + ---------- + nmax : int + maximum spherical harmonic degree + nmin : int, optional + minimum spherical harmonic degree + squeeze: bool,optional + Legacy option used when Sine coefficients which have m=0 need to be included + + + Returns + ------- + int + The amount of spherical harmonic coefficients in this range """ assert nmax>=nmin @@ -45,34 +42,114 @@ def nsh(nmax,nmin=0,squeeze=True): return sz + @staticmethod - def nmt_mi(nmax,nmin=0,squeeze=True): - """ create a multindex guide which varies with n, then m, and than trigonometric sign""" - if squeeze: - nmt=[(n,m,t) for t in [trig.c,trig.s] for n in range(nmin,nmax+1) for m in range(n+1) if not (m == 0 and t == trig.s) ] - else: - nmt=[(n,m,t) for t in [trig.c,trig.s] for n in range(nmin,nmax+1) for m in range(n+1)] - return SHindexBase.mi_fromtuples(nmt) + def nm_mi(nmax,nmin=0): + """ + Generate a MultiIndex of degree and order which span a spherical harmonic degree range + + In the case of real spherical harmonic, orders m < 0 denote Sine coefficients + + Parameters + ---------- + nmax : int + maximum spherical harmonic degree + nmin : int, optional + minimum spherical harmonic degree + + Returns + ------- + pandas.MultiIndex + A MultiIndex with degrees "n" and orders "m" + """ + nm=[(n,m) for n in range(nmin,nmax+1) for m in range(-n,n+1)] + return SHindexBase.mi_fromtuples(nm) @staticmethod - def shi(nmax,nmin=0,squeeze=True,dim="shi"): - """Convenience function which returns a dictionary which can be used as input for xarray constructors""" - return {dim:(dim,SHindexBase.nmt_mi(nmax,nmin,squeeze))} + def nm(nmax,nmin=0): + """ + Convenience function which returns a dictionary which can be used as input for xarray constructors + + Parameters + ---------- + nmax : int + maximum spherical harmonic degree + nmin : int, optional + minimum spherical harmonic degree + + Returns + ------- + dictionary + A dictionary specifying the degree and orders and corresponding dimension names + in the form of {dim:(dim,nm)} + """ + return {SHindexBase.name:(SHindexBase.name,SHindexBase.nm_mi(nmax,nmin))} @staticmethod - def mi_fromtuples(nmt): - return pd.MultiIndex.from_tuples(nmt,names=["n","m","t"]) + def mi_fromtuples(nm): + """ + Generate a MultiIndex of degree and order from a list of (degree,order) tuples + + In the case of real spherical harmonic, orders m < 0 denote Sine coefficients + + Parameters + ---------- + nm : list + A list of tuples with degree and order + + Returns + ------- + pandas.MultiIndex + A MultiIndex with degrees "n" and orders "m" + """ + + return pd.MultiIndex.from_tuples(nm,names=["n","m"]) @staticmethod - def mi_fromarrays(nmt): - return pd.MultiIndex.from_arrays(nmt,names=["n","m","t"]) + def mi_fromarrays(nm): + """ + Generate a MultiIndex of degree and order from an array of degree and order [[n..],[..m]] + + In the case of real spherical harmonic, orders m < 0 denote Sine coefficients + + Parameters + ---------- + nm : array-like + An array which hold a vector of degrees and orders + + Returns + ------- + pandas.MultiIndex + A MultiIndex with degrees "n" and orders "m" + """ + return pd.MultiIndex.from_arrays(nm,names=["n","m"]) @staticmethod - def mi_toggle(mi): - """Rename the levels of the multindex so that they can be use as transposed versions""" + def mi_toggle(mi,ending=''): + """ + Rename the levels of a (nm)-multindex so that they can be use as alternative coordinates (e.g. transposed versions) + + The levels will be swicthed back and fort between the following formats + oldname <-> oldname_[ending] + + Parameters + ---------- + mi : pandas.MultiIndex + A MultiIndex with degree and orders + ending: str, optional + A string which can be additionally appended + + Returns + ------- + pandas.MultiIndex + A MultiIndex with renamed levels + """ + + app="_"+ending + applen=len(app) if "n" in mi.names: - return mi.rename([nm+"_" for nm in mi.names]) + return mi.rename([nm+app for nm in mi.names]) else: - return mi.rename([nm[:-1] for nm in mi.names]) + return mi.rename([nm[:-applen] for nm in mi.names]) diff --git a/src/shxarray/core/shxarbase.py b/src/shxarray/core/shxarbase.py index 77ef6f8..c1ee82b 100644 --- a/src/shxarray/core/shxarbase.py +++ b/src/shxarray/core/shxarbase.py @@ -7,7 +7,7 @@ import xarray as xr import numpy as np -from .sh_indexing import SHindexBase,trig +from .sh_indexing import SHindexBase loaded_engines={} @@ -31,8 +31,8 @@ def nmin(self): :return: minimum degree :rtype: int """ - if "shi" in self._obj.indexes: - return self._obj.shi.n.min().item() + if SHindexBase.name in self._obj.indexes: + return self._obj.nm.n.min().item() if "n" in self._obj.indexes: return self._obj.n.min().item() @@ -46,8 +46,8 @@ def nmax(self): :return: maximum degree :rtype: int """ - if "shi" in self._obj.indexes: - return self._obj.shi.n.max().item() + if SHindexBase.name in self._obj.indexes: + return self._obj.nm.n.max().item() if "n" in self._obj.indexes: return self._obj.n.max().item() @@ -63,7 +63,7 @@ def gravtype(self): # defaults to Stokes coefficients return "stokes" - def truncate(self,nmax=None,nmin=None,dims=["shi"]): + def truncate(self,nmax=None,nmin=None,dims=[SHindexBase.name]): """ Truncate the maximum and/or minimum degree of the spherical harmonic coordinate and corresponding variables :param nmax: (int) maximum spherical harmonic degree to keep @@ -74,57 +74,39 @@ def truncate(self,nmax=None,nmin=None,dims=["shi"]): """ indx=None da=None - # if "shi" in self._obj.indexes: - # if nmax is not None: - # indx=(self._obj.shi.n <= nmax) - # if nmin is not None: - # if indx is not None: - # indx=indx*(self._obj.shi.n >= nmin) - # else: - # indx=(self._obj.shi.n >= nmin) - # selector["shi"]=indx - # elif "n" in self._obj.indexes: - # if nmax is not None: - # indx=(self._obj.n <= nmax) - # if nmin is not None: - # if indx is not None: - # indx=indx*(self._obj.n >= nmin) - # else: - # indx=(self._obj.n >= nmin) - # selector={"n":indx} - if "shi" in dims: + if SHindexBase.name in dims: if nmax is not None: - indx=(self._obj.shi.n <= nmax) + indx=(self._obj.nm.n <= nmax) if nmin is not None: if indx is not None: - indx=indx*(self._obj.shi.n >= nmin) + indx=indx*(self._obj.nm.n >= nmin) else: - indx=(self._obj.shi.n >= nmin) - da=self._obj.isel(shi=indx) + indx=(self._obj.nm.n >= nmin) + da=self._obj.isel(nm=indx) - if "shi_" in dims: + if "nm_" in dims: if nmax is not None: - indx=(self._obj.shi_.n_ <= nmax) + indx=(self._obj.nm_.n_ <= nmax) if nmin is not None: if indx is not None: - indx=indx*(self._obj.shi_.n_ >= nmin) + indx=indx*(self._obj.nm_.n_ >= nmin) else: - indx=(self._obj.shi_.n_ >= nmin) + indx=(self._obj.nm_.n_ >= nmin) if da is None: - da=self._obj.isel(shi_=indx) + da=self._obj.isel(nm_=indx) else: - da=da.isel(shi_=indx) + da=da.isel(nm_=indx) if da is not None: return da else: - raise RuntimeError("No spherical harmonic index ('shi' or 'n') was found in the xarray object") + raise RuntimeError("No spherical harmonic index ('nm' or 'n') was found in the xarray object") @staticmethod - def _initWithScalar(nmax,nmin=0,scalar=0,squeeze=True,name="cnm",auxcoords={},order='C'): + def _initWithScalar(nmax,nmin=0,scalar=0,name="cnm",auxcoords={},order='C'): """Initialize an spherical harmonic DataArray based on nmax and nmin""" - coords={"shi":SHindexBase.nmt_mi(nmax,nmin,squeeze=squeeze)} + coords={SHindexBase.name:SHindexBase.nm_mi(nmax,nmin)} dims=[] shp=[] @@ -136,8 +118,8 @@ def _initWithScalar(nmax,nmin=0,scalar=0,squeeze=True,name="cnm",auxcoords={},or coords[dim]=coord # add shi dimension and shape last (so it varies quikest in memory - dims.append("shi") - shp.append(len(coords['shi'])) + dims.append(SHindexBase.name) + shp.append(len(coords[SHindexBase.name])) if scalar == 0: return xr.DataArray(data=np.zeros(shp,order=order),dims=dims,name=name,coords=coords) @@ -163,37 +145,35 @@ def _initWithScalar(nmax,nmin=0,scalar=0,squeeze=True,name="cnm",auxcoords={},or - def drop_shindex(self): - ds=self._obj.reset_index("shi") - return ds.assign_coords(t=(["shi"],[t for t in ds.t.values])) + def drop_nmindex(self): + ds=self._obj.reset_index(SHindexBase.name) + return ds.assign_coords(t=([SHindexBase.name],[t for t in ds.t.values])) - def build_shindex(self): - if "shi" in self._obj.indexes: + def build_nmindex(self): + if SHindexBase.name in self._obj.indexes: #already build, so don't bother return self._obj #either build from separate coordinate variables (n,m,t) if "n" in self._obj.coords and "m" in self._obj.coords and "t" in self._obj.coords: - shimi=SHindexBase.mi_fromtuples([(n,m,trig(t)) for n,m,t in zip(self._obj.n.values,self._obj.m.values,self._obj.t.values)]) - return self._obj.drop_vars(["n","m","t"]).assign_coords(shi=shimi) - elif "shi" in self._obj.coords: + shimi=SHindexBase.mi_fromtuples([(n,m) for n,m in zip(self._obj.n.values,self._obj.m.values)]) + return self._obj.drop_vars(["n","m"]).assign_coords(nm=shimi) + elif SHindexBase.name in self._obj.coords: #rebuild multiindex from an array of "left-over" tuples - shimi=SHindexBase.mi_fromtuples(self._obj.shi.values) - return self._obj.drop_vars(["shi"]).assign_coords(shi=shimi) + shimi=SHindexBase.mi_fromtuples(self._obj.nm.values) + return self._obj.drop_vars([SHindexBase.name]).assign_coords(nm=shimi) - def toggle_shi(self): - """Toggle naming of shi, shi_ multindices and their levels""" + def toggle_nm(self): + """Toggle naming of nm, nm_ multindices and their levels""" renamedict={} - if "shi" in self._obj.dims: - renamedict["shi"]="shi_" + if SHindexBase.name in self._obj.dims: + renamedict[SHindexBase.name]=SHindexBase.name_t renamedict["n"]="n_" renamedict["m"]="m_" - renamedict["t"]="t_" - if "shi_" in self._obj.dims: - renamedict["shi_"]="shi" + if SHindexBase.name_t in self._obj.dims: + renamedict[SHindexBase.name_t]=SHindexBase.name renamedict["n_"]="n" renamedict["m_"]="m" - renamedict["t_"]="t" return self._obj.rename(renamedict) @staticmethod diff --git a/src/shxarray/core/xr_accessor.py b/src/shxarray/core/xr_accessor.py index 67def63..5c2e392 100644 --- a/src/shxarray/core/xr_accessor.py +++ b/src/shxarray/core/xr_accessor.py @@ -4,6 +4,7 @@ # import xarray as xr +from shxarray.core.sh_indexing import SHindexBase from shxarray.core.shxarbase import ShXrBase from shxarray.kernels.ddk import load_ddk from shxarray.kernels.gauss import Gaussian @@ -17,14 +18,14 @@ def __init__(self, xarray_obj): @staticmethod - def zeros(nmax,nmin=0,squeeze=True,name="cnm",auxcoords={},order='C'): + def zeros(nmax,nmin=0,name="cnm",auxcoords={},order='C'): """0-Initialize an spherical harmonic DataArray based on nmax and nmin""" - return ShXrBase._initWithScalar(nmax,nmin,0,squeeze,name,auxcoords,order=order) + return ShXrBase._initWithScalar(nmax,nmin,0,name,auxcoords,order=order) @staticmethod - def ones(nmax,nmin=0,squeeze=True,name="cnm",auxcoords={},order='C'): + def ones(nmax,nmin=0,name="cnm",auxcoords={},order='C'): """1-Initialize an spherical harmonic DataArray based on nmax and nmin""" - return ShXrBase._initWithScalar(nmax,nmin,1,squeeze,name,auxcoords,order=order) + return ShXrBase._initWithScalar(nmax,nmin,1,name,auxcoords,order=order) @staticmethod def wigner3j(j2,j3,m2,m3, engine="shlib"): @@ -44,7 +45,7 @@ def gaunt(n2,n3,m2,m3, engine="shlib"): eng=ShXrBase._eng(engine) return eng.gaunt(n2,n3,m2,m3) - def synthesis(self,lon=np.arange(-180.0,180.0,1.0), lat=np.arange(-90.0,90.0,1.0),grid=True,engine="shlib"): + def synthesis(self,lon=None, lat=None,grid=True,engine="shlib"): """ Apply spherical harmonic synthesis on a set of longitude, latitude points :param lon: Longitude in degrees East @@ -62,6 +63,11 @@ def synthesis(self,lon=np.arange(-180.0,180.0,1.0), lat=np.arange(-90.0,90.0,1.0 """ #dispatch to compute engine eng=self._eng(engine) + + if lon is None: + lon=np.arange(-180.0,181.0,1.0) + if lat is None: + lat=np.arange(-90.0,91.0,1.0) return eng.synthesis(self._obj,lon,lat,grid) def analysis(self,nmax=100,method='integrate',engine="shlib"): @@ -129,10 +135,10 @@ def degvar(self,mean=False): """ if mean: - dv=np.square(self._obj).sh.drop_shindex().set_xindex("n").groupby("n").mean() + dv=np.square(self._obj).sh.drop_nmindex().set_xindex("n").groupby("n").mean() else: - dv=np.square(self._obj).sh.drop_shindex().set_xindex("n").groupby("n").sum() + dv=np.square(self._obj).sh.drop_nmindex().set_xindex("n").groupby("n").sum() return dv @@ -150,10 +156,12 @@ class SHDsAccessor(ShXrBase): def __init__(self, xarray_obj): super().__init__(xarray_obj) - def synthesis(self,lon=np.arange(-180.0,180.0,1.0), lat=np.arange(-90.0,90.0,1.0),grid=True,engine="shlib"): - """Calls the spherical harmonic synthesis operation on all DataArrays which have a 'shi' index""" + def synthesis(self,lon=None, lat=None,grid=True,engine="shlib"): + """Calls the spherical harmonic synthesis operation on all DataArrays which have a 'nm' index""" + + #gather relevant das - das={ky:da for ky,da in self._obj.data_vars.items() if "shi" in da.coords} + das={ky:da for ky,da in self._obj.data_vars.items() if SHindexBase.name in da.coords} dsout=None for name,da in das.items(): daout=da.sh.synthesis(lon=lon, lat=lat,grid=grid,engine=engine) diff --git a/src/shxarray/io/binv_legacy.py b/src/shxarray/io/binv_legacy.py index 57f10c4..3f97b4c 100644 --- a/src/shxarray/io/binv_legacy.py +++ b/src/shxarray/io/binv_legacy.py @@ -46,20 +46,18 @@ def getBDcoords(ddict,trans): def get_shmi(charar): shregex=re.compile('^G[CS]N') - nmt=[] + nm=[] for el in charar: if shregex.search(el): - if el[1:2] == 'C': - t=0 - else: - t=1 n=int(el[4:7]) m=int(el[7:10]) + if el[1:2] == 'S': + m=-m else: raise KeyError("Error parsing SH coefficient") - nmt.append((n,m,t)) - shmi=SHindexBase.mi_fromtuples(nmt) - return shmi + nm.append((n,m)) + nmmi=SHindexBase.mi_fromtuples(nm) + return nmmi def readBINV(file_or_obj,trans=False,nmax=-1): """Reads in a legacy binary file written using the fortran RLFTlbx""" @@ -217,12 +215,13 @@ def readBINV(file_or_obj,trans=False,nmax=-1): else: raise NotImplemented(f"Cannot Unpack a matrix of {dictout['type']}") - - dsout=xr.Dataset(dict(mat=(["shi","shi_"],mat)),coords=dict(shi=(["shi"],mshi),shi_=(["shi_"],SHindexBase.mi_toggle(mshi))),attrs=dictout) + shname=SHindexBase.name + shname_t=shname+"_" + dsout=xr.Dataset(dict(mat=([shname,shname_t],mat)),coords=dict(nm=([shname],mshi),nm_=([shname_t],SHindexBase.mi_toggle(mshi))),attrs=dictout) #transform the data in dask # dsout=dsout.chunk() if nvec > 0: - dsout["vec"]=(["shi"],vec) + dsout["vec"]=([shname],vec) return dsout diff --git a/src/shxarray/io/gsmv6.py b/src/shxarray/io/gsmv6.py index 087b762..012d253 100644 --- a/src/shxarray/io/gsmv6.py +++ b/src/shxarray/io/gsmv6.py @@ -5,7 +5,7 @@ import gzip import xarray as xr -from shxarray.core.sh_indexing import SHindexBase,trig +from shxarray.core.sh_indexing import SHindexBase import re import sys from io import BytesIO @@ -60,7 +60,7 @@ def readGSMv6(fileobj,nmaxstop=sys.maxsize): time=None ncount=0 - nmt=[] + nm=[] #continue reading the data dataregex=re.compile(b'^GRCOF2') for ln in fileobj: @@ -78,28 +78,28 @@ def readGSMv6(fileobj,nmaxstop=sys.maxsize): cnm[ncount]=float(lnspl[3]) sigcnm[ncount]=float(lnspl[5]) - nmt.append((n,m,trig.c)) + nm.append((n,m)) ncount+=1 #possibly also add snm coefficients if m!=0: cnm[ncount]=float(lnspl[4]) sigcnm[ncount]=float(lnspl[6]) - nmt.append((n,m,trig.s)) + nm.append((n,-m)) ncount+=1 if needsClosing: fileobj.close() if time: - shp=["time","shi"] - coords={"shi":SHindexBase.mi_fromtuples(nmt),"time":time} + shp=["time",SHindexBase.name] + coords={SHindexBase.name:SHindexBase.mi_fromtuples(nm),"time":time} #also expand variables cnm=np.expand_dims(cnm[0:ncount], axis=0) sigcnm=np.expand_dims(sigcnm[0:ncount],axis=0) else: - shp=["shi"] - coords={"shi":SHindexBase.mi_fromtuples(nmt)} + shp=[SHindexBase.name] + coords={SHindexBase.name:SHindexBase.mi_fromtuples(nm)} cnm=cnm[0:ncount] sigcnm=sigcnm[0:ncount] diff --git a/src/shxarray/io/icgem.py b/src/shxarray/io/icgem.py index e141606..411db7f 100644 --- a/src/shxarray/io/icgem.py +++ b/src/shxarray/io/icgem.py @@ -20,7 +20,7 @@ import re import sys import numpy as np -from shxarray.core.sh_indexing import SHindexBase,trig +from shxarray.core.sh_indexing import SHindexBase from shxarray.core.logging import logger from datetime import datetime,timedelta from shxarray.core.cf import get_cfatts @@ -93,7 +93,7 @@ def readIcgem(fileobj,nmaxstop=sys.maxsize): cnm=np.zeros([nsh]) sigcnm=np.zeros([nsh]) ncount=0 - nmt=[] + nm=[] #continue reading the data dataregex=re.compile(b'^gfc') for ln in fileobj: @@ -111,27 +111,27 @@ def readIcgem(fileobj,nmaxstop=sys.maxsize): cnm[ncount]=float(lnspl[3]) sigcnm[ncount]=float(lnspl[5]) - nmt.append((n,m,trig.c)) + nm.append((n,m)) ncount+=1 #possibly also add snm coefficients if m!=0: cnm[ncount]=float(lnspl[4]) sigcnm[ncount]=float(lnspl[6]) - nmt.append((n,m,trig.s)) + nm.append((n,-m)) ncount+=1 if needsClosing: fileobj.close() if time: - shp=["time","shi"] - coords={"shi":SHindexBase.mi_fromtuples(nmt),"time":time} + shp=["time",SHindexBase.name] + coords={SHindexBase.name:SHindexBase.mi_fromtuples(nm),"time":time} #also expand variables cnm=np.expand_dims(cnm[0:ncount], axis=0) sigcnm=np.expand_dims(sigcnm[0:ncount],axis=0) else: - shp=["shi"] - coords={"shi":SHindexBase.mi_fromtuples(nmt)} + shp=[SHindexBase.name] + coords={SHindexBase.name:SHindexBase.mi_fromtuples(nm)} cnm=cnm[0:ncount] sigcnm=sigcnm[0:ncount] diff --git a/src/shxarray/io/shascii.py b/src/shxarray/io/shascii.py index 0ac8756..bf012c8 100644 --- a/src/shxarray/io/shascii.py +++ b/src/shxarray/io/shascii.py @@ -104,14 +104,14 @@ def readSHAscii(fileobj,nmaxstop=sys.maxsize): coefs=[float(x) for x in ln[2:nd]] # Add cosine entry - nmt=[(n,m,0)] + nm=[(n,m)] cnm=[coefs[0]] if nd == 6: sigcnm=[coefs[2]] ncount+=1 # add Sine entry if order is not zero if m > 0: - nmt.append((n,m,1)) + nm.append((n,-m)) cnm.append(coefs[1]) if nd == 6: sigcnm.append(coefs[3]) @@ -126,14 +126,14 @@ def readSHAscii(fileobj,nmaxstop=sys.maxsize): coefs=[float(x) for x in ln[2:nd]] # Add cosine entry - nmt.append((n,m,0)) + nm.append((n,m)) cnm.append(coefs[0]) if nd == 6: sigcnm.append(coefs[2]) ncount+=1 # add Sine entry if order is not zero if m > 0: - nmt.append((n,m,1)) + nm.append((n,-m)) cnm.append(coefs[1]) if nd == 6: sigcnm.append(coefs[3]) @@ -145,7 +145,7 @@ def readSHAscii(fileobj,nmaxstop=sys.maxsize): #create an xarray dataset if nd == 6: - ds=xr.Dataset(data_vars=dict(cnm=(["shi"],cnm),sigcnm=(["shi"],sigcnm)),coords={"shi":SHindexBase.mi_fromtuples(nmt)},attrs=attr) + ds=xr.Dataset(data_vars=dict(cnm=([SHindexBase.name],cnm),sigcnm=([SHindexBase.name],sigcnm)),coords={SHindexBase.name:SHindexBase.mi_fromtuples(nm)},attrs=attr) else: - ds=xr.Dataset(data_vars=dict(cnm=(["shi"],cnm)),coords={"shi":SHindexBase.mi_fromtuples(nmt)},attrs=attr) + ds=xr.Dataset(data_vars=dict(cnm=([SHindexBase.name],cnm)),coords={SHindexBase.name:SHindexBase.mi_fromtuples(nm)},attrs=attr) return ds diff --git a/src/shxarray/kernels/anisokernel.py b/src/shxarray/kernels/anisokernel.py index fb3269d..f7063ec 100644 --- a/src/shxarray/kernels/anisokernel.py +++ b/src/shxarray/kernels/anisokernel.py @@ -6,7 +6,7 @@ import xarray as xr from shxarray.core.logging import logger from shxarray.shlib import Ynm -# from dask.array.core import einsum_lookup +from shxarray.core.sh_indexing import SHindexBase import sparse @@ -32,17 +32,17 @@ def nmin(self): def __call__(self,dain:xr.DataArray): - if "shi" not in dain.indexes: + if SHindexBase.name not in dain.indexes: + raise RuntimeError("al harmonic index not found in input, cannot apply kernel operator to object") - # daout=xr.dot(dain,self._dskernel.mat,dims=["shi"]) - daout=xr.dot(self._dskernel.mat,dain,dims=["shi"]) - #rename shi and convert to dense array - daout=daout.sh.toggle_shi() + daout=xr.dot(self._dskernel.mat,dain,dims=[SHindexBase.name]) + #rename nm and convert to dense array + daout=daout.sh.toggle_nm() daout=xr.DataArray(daout.data.todense(),coords=daout.coords,name=self.name) if not self.truncate and self.nmin > 0: #also add the unfiltered lower degree coefficients back to the results - daout=xr.concat([dain.sh.truncate(self.nmin-1),daout],dim="shi") + daout=xr.concat([dain.sh.truncate(self.nmin-1),daout],dim=SHindexBase.name) return daout diff --git a/src/shxarray/kernels/isokernelbase.py b/src/shxarray/kernels/isokernelbase.py index 3c26b8c..43e681f 100644 --- a/src/shxarray/kernels/isokernelbase.py +++ b/src/shxarray/kernels/isokernelbase.py @@ -8,6 +8,7 @@ from scipy.sparse import diags from shxarray.shlib import Ynm from shxarray.core.cf import get_cfatts +from shxarray.core.sh_indexing import SHindexBase class IsoKernelBase: """ @@ -41,7 +42,7 @@ def expanddiag(self,shindex): else: coeff=self._dsiso.sel(n=shindex.n) - return xr.DataArray(coeff.data,coords=dict(shi=shindex)) + return xr.DataArray(coeff.data,coords=dict(nm=shindex)) def jacobian(self,shindex): @@ -50,10 +51,10 @@ def jacobian(self,shindex): def __call__(self,dain:xr.DataArray): #create the jacobian matrix based on the input maximum and minimum degrees - if "shi" not in dain.indexes: + if SHindexBase.name not in dain.indexes: raise RuntimeError("Spherical harmonic index not found in input, cannot apply kernel operator to object") #expand kernel to the same degrees as the input - daexpand=self.expanddiag(dain.shi) + daexpand=self.expanddiag(dain.nm) daout=dain*daexpand if self.transform is not None: name=self.transform[1] diff --git a/tests/test_basic_ops.py b/tests/test_basic_ops.py index 3d2a638..bd93cca 100644 --- a/tests/test_basic_ops.py +++ b/tests/test_basic_ops.py @@ -34,7 +34,7 @@ def test_truncate(sh_truncated): nmax2,nmin2,datrunc=sh_truncated assert datrunc.sh.nmax == nmax2, "nmax of truncated DataArray does not agree with expectation" assert datrunc.sh.nmin == nmin2, "nmin of truncated DataArray does not agree with expectation" - assert len(datrunc.shi) == SHindexBase.nsh(nmax2,nmin2,squeeze=True), "Size of truncated DataArray does not agree with expectation" + assert len(datrunc.nm) == SHindexBase.nsh(nmax2,nmin2,squeeze=True), "Size of truncated DataArray does not agree with expectation" def test_add_sub(sh_sample1,sh_truncated): diff --git a/tests/test_filters.py b/tests/test_filters.py index 28101a4..15544e7 100644 --- a/tests/test_filters.py +++ b/tests/test_filters.py @@ -87,7 +87,7 @@ def shgausstest(): def test_Gauss(shinput,shgausstest): shfilt=shinput.cnm.sh.filter("Gauss300") - dadiff=(shgausstest.cnm-shfilt.loc[shgausstest.shi])/shgausstest.cnm + dadiff=(shgausstest.cnm-shfilt.loc[shgausstest.nm])/shgausstest.cnm maxdiff=max(abs(dadiff.max()),abs(dadiff.min())) reltol=1e-7 assert(maxdiff < reltol) diff --git a/tests/test_synthesis.py b/tests/test_synthesis.py index f92c400..cd690ba 100644 --- a/tests/test_synthesis.py +++ b/tests/test_synthesis.py @@ -114,7 +114,7 @@ def test_synthesis_slice(generatedata,lon,lat): # select a subset from the input and validation bassl=slice(1,4) timesl=slice(1,3) - if dain.get_axis_num('shi') == 2: + if dain.get_axis_num('nm') == 2: dain=dain[bassl,timesl] else: dain=dain[:,timesl,bassl]