-
Notifications
You must be signed in to change notification settings - Fork 1
/
classifier_permutation_feature_importance.py
196 lines (168 loc) · 6.14 KB
/
classifier_permutation_feature_importance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import os
import argparse
import numpy as np
import pandas as pd
from tqdm import tqdm
from glob import glob
import tensorflow as tf
import matplotlib.pyplot as plt
import seaborn as sns
import kendall_w as kw
from timebase.data.reader import scramble_test_ds, get_datasets
from timebase.utils import utils, tensorboard, yaml
from timebase.models.classifiers.registry import get_model
features = ["ACC", "BVP", "EDA", "HR", "TEMP"]
def cross_entropy(y_true: tf.Tensor, y_pred: tf.Tensor):
return tf.reduce_mean(
tf.losses.sparse_categorical_crossentropy(
y_true=y_true, y_pred=y_pred, from_logits=False
)
)
def accuracy(y_true: tf.Tensor, y_pred: tf.Tensor):
return tf.reduce_mean(
tf.metrics.sparse_categorical_accuracy(y_true=y_true, y_pred=y_pred)
)
@tf.function
def test_step(x, y, model):
y_pred = model(x, training=False)
return {
"loss": cross_entropy(y_true=y, y_pred=y_pred),
"accuracy": accuracy(y_true=y, y_pred=y_pred),
}
def test(args, ds, model):
results = {}
for x, y in tqdm(ds, desc="Test", total=args.test_steps,
disable=args.verbose == 0):
result = test_step(x, y, model=model)
utils.update_dict(target=results, source=result)
for k, v in results.items():
results[k] = tf.reduce_mean(v).numpy()
print(
f'Test\t\tloss: {results["loss"]:.04f}\t'
f'accuracy: {results["accuracy"] * 100:.02f}%'
)
return results
def plot_feature_importance(args, df: pd.DataFrame,
features_importance: np.ndarray):
rankings = np.empty_like(features_importance.T).astype("int")
for i in range(features_importance.T.shape[1]):
order = features_importance.T[:, i].argsort()
ranks = order.argsort()
rankings[:, i] = ranks
# https://pypi.org/project/kendall-w/
W = kw.compute_w(rankings.tolist())
df.loc[:, "Value"] = round(df.loc[:, "Value"] * 100, 3)
fig, ax = plt.subplots(figsize=(15, len(df.Channel.unique()) * 1.5),
dpi=args.dpi)
ax = sns.barplot(
x="Channel",
y="Value",
hue="Experiment",
data=df,
order=df.Channel.unique().tolist(),
)
ax.set_xlabel("Sensor")
ax.set_ylabel("Permutation Importance (Accuracy)")
ax.set_title(f"Kendall W = {round(W, 3)}")
fig.savefig(os.path.join(args.output_dir, f"permutation_importance"
f".{args.format}"))
tensorboard.save_figure(
fig,
filename=os.path.join(
args.experiment_dir,
f"{args.algorithm}_permutation_importance.{args.format}",
),
close=False,
)
plt.close(fig)
summary = {
"Channel": df.Channel.unique().tolist(),
"Mean": np.round(np.mean(features_importance, axis=0) * 100, 3),
"SD": np.round(np.std(features_importance, axis=0) * 100, 3),
}
if args.verbose:
print(pd.DataFrame(summary))
yaml.save(
filename=os.path.join(
args.experiment_dir, f"{args.algorithm}_permutation_importance.yaml"
),
data=summary,
)
def main(args):
assert os.path.isdir(args.experiment_dir)
np.random.seed(1234)
tf.random.set_seed(1234)
experiments = [
x
for x in sorted(glob(os.path.join(args.experiment_dir, "*")))
if os.path.isdir(x)
]
if args.verbose:
print(f"{len(experiments)} found under {args.experiment_dir}")
features_importance = np.empty(
shape=(
len(experiments),
len(features),
)
)
for i, experiment in enumerate(experiments):
utils.load_args(args, experiment)
model = get_model(args)
checkpoint = tf.train.Checkpoint(model=model)
utils.load_checkpoint(
args,
checkpoint=checkpoint,
force=True,
epoch=list(args.val_record.keys())[0],
)
_, _, test_ds = get_datasets(args)
test_results = test(args, ds=test_ds, model=model)
baseline = test_results["accuracy"]
x_test, y_test = [], []
for x, y in test_ds:
x_test.append(x.numpy())
y_test.append(y.numpy())
x_test, y_test = np.concatenate(x_test), np.concatenate(y_test)
permutation_importance_under_task = []
for f in features:
channel_idx = [
idx
for idx, channel in enumerate(
[c.replace("$", "") for c in args.ds_info["channel_names"]]
)
if channel.startswith(f)
]
test_ds_permuted = scramble_test_ds(
args, x_test=x_test, y_test=y_test, to_permute=channel_idx
)
test_results_permutation = test(args,
ds=test_ds_permuted,
model=model)
permutation_importance = 1 - (
test_results_permutation["accuracy"] / baseline
)
permutation_importance_under_task.append(permutation_importance)
features_importance[i] = permutation_importance_under_task
print(len(permutation_importance_under_task))
print(f"{experiment}")
data = {
"Channel": features * len(experiments),
"Experiment": np.repeat(experiments, len(features)),
"Value": features_importance.flatten(),
}
df = pd.DataFrame(data)
plot_feature_importance(args, df, features_importance)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# configuration
parser.add_argument("--experiment_dir", type=str, required=True)
parser.add_argument("--algorithm", type=str, required=True)
parser.add_argument("--context", type=str, default="feature importance")
# matplotlib
parser.add_argument("--dpi", type=int, default=120)
parser.add_argument("--format", type=str, default="pdf",
choices=["pdf", "png"])
parser.add_argument("--save_plots", action="store_true")
# misc
parser.add_argument("--verbose", type=int, default=1, choices=[0, 1, 2])
main(parser.parse_args())