-
Notifications
You must be signed in to change notification settings - Fork 98
/
train.py
119 lines (105 loc) · 4.81 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import os
from torch.backends import cudnn
from utils.logger import setup_logger
from datasets import make_dataloader
from model import make_model
from solver import make_optimizer, WarmupMultiStepLR
from loss import make_loss
from processor import do_train
import random
import torch
import numpy as np
import os
import argparse
from timm.scheduler import create_scheduler
from config import cfg
from timm.data import Mixup
def set_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="ReID Baseline Training")
parser.add_argument(
"--config_file", default="", help="path to config file", type=str
)
parser.add_argument("opts", help="Modify config options using the command-line", default=None,
nargs=argparse.REMAINDER)
parser.add_argument('--sched', default='cosine', type=str, metavar='SCHEDULER',
help='LR scheduler (default: "cosine"')
# parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
# help='learning rate (default: 5e-4)')
parser.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct',
help='learning rate noise on/off epoch percentages')
parser.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT',
help='learning rate noise limit percent (default: 0.67)')
parser.add_argument('--lr-noise-std', type=float, default=1.0, metavar='STDDEV',
help='learning rate noise std-dev (default: 1.0)')
parser.add_argument('--warmup-lr', type=float, default=1e-6, metavar='LR',
help='warmup learning rate (default: 1e-6)')
parser.add_argument('--min-lr', type=float, default=1e-5, metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0 (1e-5)')
parser.add_argument('--warmup-epochs', type=int, default=5, metavar='N',
help='epochs to warmup LR, if scheduler supports')
parser.add_argument('--cooldown-epochs', type=int, default=10, metavar='N',
help='epochs to cooldown LR at min_lr, after cyclic schedule ends')
parser.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE',
help='LR decay rate (default: 0.1)')
parser.add_argument('--epochs', default=120, type=int)
parser.add_argument("--local_rank", default=0, type=int)
args = parser.parse_args()
if args.config_file != "":
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.TEST.CROP_TEST = False
cfg.freeze()
set_seed(cfg.SOLVER.SEED)
if cfg.MODEL.DIST_TRAIN:
torch.cuda.set_device(args.local_rank)
else:
pass
output_dir = cfg.OUTPUT_DIR
if output_dir and not os.path.exists(output_dir):
os.makedirs(output_dir)
logger = setup_logger("reid_baseline", output_dir, if_train=True)
logger.info("Saving model in the path :{}".format(cfg.OUTPUT_DIR))
if args.config_file != "":
logger.info("Loaded configuration file {}".format(args.config_file))
with open(args.config_file, 'r') as cf:
config_str = "\n" + cf.read()
logger.info("Running with config:\n{}".format(cfg))
if cfg.MODEL.DIST_TRAIN:
torch.distributed.init_process_group(backend='nccl', init_method='env://')
os.environ['CUDA_VISIBLE_DEVICES'] = cfg.MODEL.DEVICE_ID
train_loader, val_loader, num_query, num_classes = make_dataloader(cfg)
model = make_model(cfg, num_class=num_classes)
loss_func, center_criterion = make_loss(cfg, num_classes=num_classes)
optimizer, optimizer_center = make_optimizer(cfg, model, center_criterion)
args.sched = cfg.SOLVER.WARMUP_METHOD
args.epochs = cfg.SOLVER.MAX_EPOCHS
args.warmup_epochs = cfg.SOLVER.WARMUP_EPOCHS
if args.sched == 'cosine':
print('===========using cosine learning rate=======')
scheduler, _ = create_scheduler(args, optimizer)
else:
print('===========using normal learning rate=======')
scheduler = WarmupMultiStepLR(optimizer, cfg.SOLVER.STEPS, cfg.SOLVER.GAMMA,
cfg.SOLVER.WARMUP_FACTOR,
cfg.SOLVER.WARMUP_EPOCHS, cfg.SOLVER.WARMUP_METHOD)
do_train(
cfg,
model,
center_criterion,
train_loader,
val_loader,
optimizer,
optimizer_center,
scheduler, # modify for using self trained model
loss_func,
num_query, args.local_rank
)
print(cfg.OUTPUT_DIR)