diff --git a/README.md b/README.md index 5a94650..41057fb 100644 --- a/README.md +++ b/README.md @@ -93,9 +93,13 @@ For the explainable AI we have implemented LIME Usability and quality explanatio As for the code sample you can open this [notebook](AIX_LIME.ipynb) or [Kaggle notebook](https://www.kaggle.com/code/momo88/pm2-5-value-estimation-with-lime) -The proposed architecture of the model is depicted in Figure below. +The figure below illustrates the proposed architecture of the model, and you can download the pre-trained model weight [here](LIME_20240506.best.hdf5). + ![Img2](figures/Model.png) +The following samples show the explained output images from LIME. + +![Img3](figures/LIME_Sample.PNG) 6. If you use this dataset for any purpose, please cite it as the source of the data in any publications or presentations, @@ -103,18 +107,55 @@ resulting from the use of this dataset. **Citation Request: You can cite our dataset as follows** +**Paper 1 --> Explainable AI Implementation** + +APA: + +Utomo, S., John, A., Pratap, A., Jiang, Z. S., Karthikeyan, P., & Hsiung, P. A. (2023, February). AIX implementation in image-based PM2. 5 estimation: Toward an AI model for better understanding. In 2023 15th International Conference on Knowledge and Smart Technology (KST) (pp. 1-6). IEEE. DOI: https://doi.org/10.1109/KST57286.2023.10086917 + +Bibtex: + +@inproceedings{utomo2023aix, + title={AIX implementation in image-based PM2. 5 estimation: Toward an AI model for better understanding}, + author={Utomo, Sapdo and John, A and Pratap, Ayush and Jiang, Zhi-Sheng and Karthikeyan, P and Hsiung, Pao-Ann}, + booktitle={2023 15th International Conference on Knowledge and Smart Technology (KST)}, + pages={1--6}, + year={2023}, + organization={IEEE} +} + +**Paper 2 --> Efficient Model for Image-based Air Qulity Prediction** + +APA: + +Utomo, S., Rouniyar, A., Jiang, G. H., Chang, C. H., Tang, K. C., Hsu, H. C., & Hsiung, P. A. (2023, September). Eff-AQI: An Efficient CNN-Based Model for Air Pollution Estimation: A Study Case in India. In Proceedings of the 2023 ACM Conference on Information Technology for Social Good (pp. 165-172). DOI: https://doi.org/10.1145/3582515.3609531 + +Bibtex: + +@inproceedings{utomo2023eff, + title={Eff-AQI: An Efficient CNN-Based Model for Air Pollution Estimation: A Study Case in India}, + author={Utomo, Sapdo and Rouniyar, Adarsh and Jiang, Guo Hao and Chang, Chun Hao and Tang, Kai Chun and Hsu, Hsiu-Chun and Hsiung, Pao-Ann}, + booktitle={Proceedings of the 2023 ACM Conference on Information Technology for Social Good}, + pages={165--172}, + year={2023} +} + +**Paper 3 --> Secure and Robust Federated Learning for Smart City Applications** + APA: -Adarsh Rouniyar, Sapdo Utomo, John A, & Pao-Ann Hsiung. (2023). Air Pollution Image Dataset from India and Nepal [Data set]. Kaggle. https://doi.org/10.34740/KAGGLE/DS/3152196 +Utomo, S., Rouniyar, A., Hsu, H. C., & Hsiung, P. A. (2023). Federated Adversarial Training Strategies for Achieving Privacy and Security in Sustainable Smart City Applications. Future Internet, 15(11), 371. DOI: https://doi.org/10.3390/fi15110371 Bibtex: - @misc{adarsh rouniyar_sapdo utomo_john a_pao-ann hsiung_2023, - title={Air Pollution Image Dataset from India and Nepal}, - url={https://www.kaggle.com/ds/3152196}, - DOI={10.34740/KAGGLE/DS/3152196}, - publisher={Kaggle}, - author={Adarsh Rouniyar and Sapdo Utomo and John A and Pao-Ann Hsiung}, - year={2023} +@article{utomo2023federated, + title={Federated Adversarial Training Strategies for Achieving Privacy and Security in Sustainable Smart City Applications}, + author={Utomo, Sapdo and Rouniyar, Adarsh and Hsu, Hsiu-Chun and Hsiung, Pao-Ann}, + journal={Future Internet}, + volume={15}, + number={11}, + pages={371}, + year={2023}, + publisher={MDPI} }