Source code for Neural Conversational QA: Learning to Reason v.s. Exploiting Patterns (https://arxiv.org/abs/1909.03759)
conda create -n orca python=3.6
source activate orca
git clone https://github.com/IBM/UrcaNet.git
cd UrcaNet
pip install -r requirements.txt
python -m spacy download en_core_web_md
wget https://sharc-data.github.io/data/sharc1-official.zip
unzip sharc1-official.zip
Also download CoQA and QuAC data and put it in coqa
and quac
folder respectively.
allennlp train experiments/bidaf_baseline_ft.jsonnet -s ./temp/bidaf_baseline_ft --include-package orca
python evaluate.py ./temp/bidaf_baseline_ft/model.tar.gz bb_ft
allennlp train experiments/bidaf_copynet_ft.jsonnet -s ./temp/bidaf_copynet_ft --include-package orca
python evaluate.py ./temp/bidaf_copynet_ft/model.tar.gz bc_ft
Change task = 'full'
to task = 'qgen'
in evaluate.py
.
allennlp train experiments/bidaf_baseline.jsonnet -s ./temp/bidaf_baseline --include-package orca
python evaluate.py ./temp/bidaf_baseline/model.tar.gz bb
allennlp train experiments/copynet_baseline.jsonnet -s ./temp/copynet_baseline --include-package orca
python evaluate.py ./temp/copynet_baseline/model.tar.gz cb
allennlp train experiments/bidaf_copynet.jsonnet -s ./temp/bidaf_copynet --include-package orca
python evaluate.py ./temp/bidaf_copynet/model.tar.gz bc
allennlp train experiments/bidaf_copynet_pipeline.jsonnet -s ./temp/bidaf_copynet_pipeline --include-package orca
python evaluate.py ./temp/bidaf_copynet_pipeline/model.tar.gz bcp
Use create_new_dataset.py
to create the ShARC-Augmented
dataset. More details can be found in section 4.1 of the paper.
The rule-based heuristic baseline can be found in rule.ipynb
. More details can be found in section 4.3 of the paper.