-
Notifications
You must be signed in to change notification settings - Fork 5
/
yolo.py
253 lines (216 loc) · 9.62 KB
/
yolo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
# -*- coding: utf-8 -*-
"""
Class definition of YOLO_v3 style detection model on image and video
"""
import colorsys
import os
from timeit import default_timer as timer
import numpy as np
from keras import backend as K
from keras.models import load_model
from keras.layers import Input
from PIL import Image, ImageFont, ImageDraw
from yolo3.model import yolo_eval, yolo_body, tiny_yolo_body
from yolo3.utils import letterbox_image
import os
from keras.utils import multi_gpu_model
# 修改的参数
# classes_path = 'model_data/my_classes.txt'
# model_path = 'logs/000/trained_weights_final.h5'
# model_image_size = (640, 640)
# gpu_num = 2
max_boxes = 300
# score_threshold = 0.1
# iou_threshold = 0.45
class YOLO(object):
classes_path = 'model_data/my_classes.txt'
model_path = 'logs/000/trained_weights_final.h5'
model_image_size = (640, 640)
gpu_num = 6
# max_boxes = 300
score_threshold = 0.1
iou_threshold = 0.35
_defaults = {
"model_path": model_path,
"anchors_path": 'model_data/yolo_anchors.txt',
"classes_path": classes_path,
"score": score_threshold,
"iou": iou_threshold,
"model_image_size": model_image_size,
"gpu_num": gpu_num,
}
@classmethod
def get_defaults(cls, n):
if n in cls._defaults:
return cls._defaults[n]
else:
return "Unrecognized attribute name '" + n + "'"
def __init__(self, **kwargs):
self.__dict__.update(self._defaults) # set up default values
self.__dict__.update(kwargs) # and update with user overrides
self.class_names = self._get_class()
self.anchors = self._get_anchors()
self.sess = K.get_session()
self.boxes, self.scores, self.classes = self.generate()
def _get_class(self):
classes_path = os.path.expanduser(self.classes_path)
with open(classes_path) as f:
class_names = f.readlines()
class_names = [c.strip() for c in class_names]
return class_names
def _get_anchors(self):
anchors_path = os.path.expanduser(self.anchors_path)
with open(anchors_path) as f:
anchors = f.readline()
anchors = [float(x) for x in anchors.split(',')]
return np.array(anchors).reshape(-1, 2)
def generate(self):
model_path = os.path.expanduser(self.model_path)
assert model_path.endswith(
'.h5'), 'Keras model or weights must be a .h5 file.'
# Load model, or construct model and load weights.
num_anchors = len(self.anchors)
num_classes = len(self.class_names)
is_tiny_version = num_anchors == 6 # default setting
try:
self.yolo_model = load_model(model_path, compile=False)
except:
self.yolo_model = tiny_yolo_body(Input(shape=(None, None, 3)), num_anchors//2, num_classes) \
if is_tiny_version else yolo_body(Input(shape=(None, None, 3)), num_anchors//3, num_classes)
# make sure model, anchors and classes match
self.yolo_model.load_weights(self.model_path)
else:
assert self.yolo_model.layers[-1].output_shape[-1] == \
num_anchors/len(self.yolo_model.output) * (num_classes + 5), \
'Mismatch between model and given anchor and class sizes'
print('{} model, anchors, and classes loaded.'.format(model_path))
# Generate colors for drawing bounding boxes.
hsv_tuples = [(x / len(self.class_names), 1., 1.)
for x in range(len(self.class_names))]
self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
self.colors = list(
map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
self.colors))
np.random.seed(10101) # Fixed seed for consistent colors across runs.
# Shuffle colors to decorrelate adjacent classes.
np.random.shuffle(self.colors)
np.random.seed(None) # Reset seed to default.
# Generate output tensor targets for filtered bounding boxes.
self.input_image_shape = K.placeholder(shape=(2, ))
if self.gpu_num >= 2:
self.yolo_model = multi_gpu_model(
self.yolo_model, gpus=self.gpu_num)
boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors,
len(self.class_names), self.input_image_shape,
score_threshold=self.score, iou_threshold=self.iou, max_boxes=max_boxes)
return boxes, scores, classes
def nms(self, boxes, scores, thresh):
'''
# dets: 检测的 boxes 及对应的 scores;
# thresh: 设定的阈值
'''
# boxes 位置
x1 = boxes[:, 0]
y1 = boxes[:, 1]
x2 = boxes[:, 2]
y2 = boxes[:, 3]
# boxes scores
scores = scores
areas = (x2 - x1 + 1) * (y2 - y1 + 1) # 各 box 的面积
order = scores.argsort()[::-1] # boxes 的按照 score 排序
keep = [] # 记录保留下的 boxes
while order.size > 0:
i = order[0] # score 最大的 box 对应的 index
keep.append(i) # 将本轮 score 最大的 box 的 index 保留
# 计算剩余 boxes 与当前 box 的重叠程度 IoU
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
w = np.maximum(0.0, xx2 - xx1 + 1) # IoU
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
ovr = inter / (areas[i] + areas[order[1:]] - inter)
# 保留 IoU 小于设定阈值的 boxes
inds = np.where(ovr <= thresh)[0]
order = order[inds + 1]
return keep
def detect_image(self, image):
if self.model_image_size != (None, None):
assert self.model_image_size[0] % 32 == 0, 'Multiples of 32 required'
assert self.model_image_size[1] % 32 == 0, 'Multiples of 32 required'
boxed_image = letterbox_image(
image, tuple(reversed(self.model_image_size)))
else:
new_image_size = (image.width - (image.width % 32),
image.height - (image.height % 32))
boxed_image = letterbox_image(image, new_image_size)
image_data = np.array(boxed_image, dtype='float32')
# print(image_data.shape)
image_data /= 255.
image_data = np.expand_dims(image_data, 0) # Add batch dimension.
out_boxes, out_scores, out_classes = self.sess.run(
[self.boxes, self.scores, self.classes],
feed_dict={
self.yolo_model.input: image_data,
self.input_image_shape: [image.size[1], image.size[0]],
K.learning_phase(): 0
})
#############################################################################
"""
NMS 0.2
"""
keep_boxes_index = self.nms(out_boxes, out_scores, thresh=0.2)
len1 = len(out_scores)
len2 = len(keep_boxes_index)
out_boxes, out_scores, out_classes = out_boxes[keep_boxes_index], out_scores[
keep_boxes_index], out_classes[keep_boxes_index]
print('经过NMS后删除了{}个Box!'.format(len1-len2))
#############################################################################
# print('Found {} boxes for {}'.format(len(out_boxes), 'img'))
font = ImageFont.truetype(font='font/FiraMono-Medium.otf',
size=np.floor(3e-2 * image.size[1] + 0.5).astype('int32'))
thickness = (image.size[0] + image.size[1]) // 2000
label_record = []
score_record = []
top_record = []
left_record = []
bottom_record = []
right_record = []
jpg_record = []
for i, c in reversed(list(enumerate(out_classes))):
predicted_class = self.class_names[c]
box = out_boxes[i]
score = out_scores[i]
label = '{} {:.2f}'.format(predicted_class, score)
draw = ImageDraw.Draw(image)
label_size = draw.textsize(label, font)
top, left, bottom, right = box
top = max(0, np.floor(top + 0.5).astype('int32'))
left = max(0, np.floor(left + 0.5).astype('int32'))
bottom = min(image.size[1], np.floor(bottom + 0.5).astype('int32'))
right = min(image.size[0], np.floor(right + 0.5).astype('int32'))
# print(label, (left, top), (right, bottom))
label_record.append(predicted_class)
score_record.append(score)
top_record.append(top)
left_record.append(left)
bottom_record.append(bottom)
right_record.append(right)
if top - label_size[1] >= 0:
text_origin = np.array([left, top - label_size[1]])
else:
text_origin = np.array([left, top + 1])
# My kingdom for a good redistributable image drawing library.
for i in range(thickness):
draw.rectangle(
[left + i, top + i, right - i, bottom - i],
outline=self.colors[c])
# draw.rectangle(
# [tuple(text_origin), tuple(text_origin + label_size)],
# fill=self.colors[c])
# draw.text(text_origin, label, fill=(0, 0, 0), font=font)
del draw
return image, label_record, score_record, top_record, left_record, bottom_record, right_record
def close_session(self):
self.sess.close()