我们知道ArrayList更适合随机访问,而LinkedList更适合插入和删除。
-
对add(E e)方法的分析,可以得知LinkedList添加数据的效率高;
-
对remove(int index)方法的分析,可以了解到LinkedList删除数据的效率高;
-
对get(int index),set(int index, E element)方法的分析,可以看出LinkdedList查询的效率不高(需要定位,最差要遍历一半);
核心数据结构通过内部类体现,Node就是实际的结点,存放了结点元素和前后结点的引用。
在1.7之前LinkedList是通过headerEntry实现的一个首尾相连的循环链表的。
从1.7开始,LinkedList是一个Node实现的非循环链表。
private static class Node<E> {
E item;
Node<E> next;
Node<E> prev;
Node(Node<E> prev, E element, Node<E> next) {
this.item = element;
this.next = next;
this.prev = prev;
}
}
代码开始
package java.util;
import java.util.function.Consumer;
继承自AbstractSequentialList,一个LinkedList抽象的实现; 重点关注实现了Deque接口。
public class LinkedList<E>
extends AbstractSequentialList<E>
implements List<E>, Deque<E>, Cloneable, java.io.Serializable
{
//存储元素个数
transient int size = 0;
//存储头结点
transient Node<E> first;
//存储尾结点
transient Node<E> last;
//无参构造器
public LinkedList() {
}
//通过一个集合初始化LinkedList,元素顺序由这个集合的迭代器返回顺序决定
public LinkedList(Collection<? extends E> c) {
//调用无参构造器
this();
//添加元素
addAll(c);
}
主要的方法的基础是link和unlink方法组,Node<E> node(int index)定位方法(均不是public)
//在指定节点前插入节点,节点succ不能为空
void linkBefore(E e, Node<E> succ) {
//获取succ的前结点
final Node<E> pred = succ.prev;
final Node<E> newNode = new Node<>(pred, e, succ);
succ.prev = newNode;
if (pred == null)//如果前结点为空
first = newNode;
else
pred.next = newNode;
size++;
modCount++;
}
//把对应参数作为第一个节点,内部使用
private void linkFirst(E e) {
//获取头结点
final Node<E> f = first;
//定义新结点
final Node<E> newNode = new Node<>(null, e, f);
first = newNode;
if (f == null)//头结点为null
// 赋值尾结点(结果只有一个元素)
last = newNode;
else
//把原来的首结点的引用指向这个新加的结点
f.prev = newNode;
size++;
modCount++;
//LinkedList也采用了“快速失败”的机制,通过记录modCount参数来实现。在面对并发的修改时,
//迭代器很快就会完全失败,而不是冒着在将来某个不确定时间发生任意不确定行为的风险。
}
//把对应参数作为尾节点(和前一个方法类似)
void linkLast(E e) {
// 获取尾结点,l为final类型,不可更改
final Node<E> l = last;
final Node<E> newNode = new Node<>(l, e, null);
last = newNode;
if (l == null)
first = newNode;
else
l.next = newNode;
size++;
modCount++;
}
//删除指定节点并返回被删除的元素值
E unlink(Node<E> x) {
// assert x != null;
final E element = x.item;
final Node<E> next = x.next;
final Node<E> prev = x.prev;
if (prev == null) {
first = next;
} else {
prev.next = next;
x.prev = null;
}
if (next == null) {
last = prev;
} else {
next.prev = prev;
x.next = null;
}
x.item = null;
size--;
modCount++;
return element;
}
//删除首节点并返回删除前首节点的值,内部使用
private E unlinkFirst(Node<E> f) {
// assert f == first && f != null;
final E element = f.item;
final Node<E> next = f.next;
f.item = null;
f.next = null; // help GC
first = next;
if (next == null)
last = null;
else
next.prev = null;
size--;
modCount++;
return element;
}
//删除尾节点并返回删除前尾节点的值,内部使用
private E unlinkLast(Node<E> l) {
// assert l == last && l != null;
final E element = l.item;
final Node<E> prev = l.prev;
l.item = null;
l.prev = null; // help GC
last = prev;
if (prev == null)
first = null;
else
prev.next = null;
size--;
modCount++;
return element;
}
//获取第一个元素
public E getFirst() {
final Node<E> f = first;
if (f == null)
throw new NoSuchElementException();
return f.item;
}
//获取最后一个元素
public E getLast() {
final Node<E> l = last;
if (l == null)
throw new NoSuchElementException();
return l.item;
}
//删除第一个元素并返回删除的元素
public E removeFirst() {
final Node<E> f = first;
if (f == null)
throw new NoSuchElementException();
return unlinkFirst(f);
}
//删除最后一个元素并返回删除的值
public E removeLast() {
final Node<E> l = last;
if (l == null)
throw new NoSuchElementException();
return unlinkLast(l);
}
//添加元素作为第一个元素
public void addFirst(E e) {
linkFirst(e);
}
//添加元素作为最后一个元素
public void addLast(E e) {
linkLast(e);
}
//检查是否包含某个元素,返回bool
public boolean contains(Object o) {
return indexOf(o) != -1;
}
//返回列表长度
public int size() {
return size;
}
//添加一个元素,默认添加到末尾作为最后一个元素
public boolean add(E e) {
linkLast(e);
return true;
}
//删除指定元素,默认从first节点开始,删除第一次出现的那个元素(需要迭代)
public boolean remove(Object o) {
if (o == null) {
for (Node<E> x = first; x != null; x = x.next) {
if (x.item == null) {
unlink(x);
return true;
}
}
} else {
for (Node<E> x = first; x != null; x = x.next) {
if (o.equals(x.item)) {
unlink(x);
return true;
}
}
}
return false;
}
//添加指定集合的元素到列表,从最后开始添加
public boolean addAll(Collection<? extends E> c) {
//调用addAll(int index, Collection<? extends E> c)
return addAll(size, c);
}
//从指定位置往后追加,index和之后的元素向后顺延
public boolean addAll(int index, Collection<? extends E> c) {
checkPositionIndex(index);
//转化成数组
Object[] a = c.toArray();
int numNew = a.length;
if (numNew == 0)
return false;
Node<E> pred, succ;
if (index == size) {
succ = null;
pred = last;
} else {//如果不是从末尾开始添加,获取新加串的前后结点
succ = node(index);
pred = succ.prev;
}
//遍历数组并添加到列表中
for (Object o : a) {
@SuppressWarnings("unchecked") E e = (E) o;
Node<E> newNode = new Node<>(pred, e, null);
if (pred == null)
first = newNode;
else
pred.next = newNode;//如果存在前节点,前节点会向后指向新加的节点
pred = newNode;//新加的节点成为前一个节点
}
if (succ == null) {
last = pred;//如果是从最后开始添加的,则最后添加的节点成为尾节点
} else {
pred.next = succ;//如果不是从最后开始添加的,则最后添加的节点向后指向之前得到的后续第一个节点
succ.prev = pred;//后续的第一个节点也应改为向前指向最后一个添加的节点
}
size += numNew;
modCount++;
return true;
}
//清空表
public void clear() {
//方便gc回收垃圾
for (Node<E> x = first; x != null; ) {
Node<E> next = x.next;
x.item = null;
x.next = null;
x.prev = null;
x = next;
}
first = last = null;
size = 0;
modCount++;
}
//获取指定索引的节点的值
public E get(int index) {
checkElementIndex(index);
return node(index).item;
}
//修改指定索引的值并返回之前的值
public E set(int index, E element) {
checkElementIndex(index);
Node<E> x = node(index);
E oldVal = x.item;
//只是把item替换掉
x.item = element;
return oldVal;
}
//在指定位置后面添加元素
public void add(int index, E element) {
checkPositionIndex(index);
if (index == size)
linkLast(element);
else
linkBefore(element, node(index));
}
//删除指定位置的元素
public E remove(int index) {
checkElementIndex(index);
return unlink(node(index));
}
//检查索引是否超出范围(checkElementIndex调用),因为元素索引是0~size-1的,所以index必须满足0<=index<size
private boolean isElementIndex(int index) {
return index >= 0 && index < size;
}
//检查位置是否超出范围(checkPositionIndex调用),index必须在index~size之间(含),如果超出,返回false
private boolean isPositionIndex(int index) {
return index >= 0 && index <= size;
}
//异常详情
private String outOfBoundsMsg(int index) {
return "Index: "+index+", Size: "+size;
}
//检查元素索引是否超出范围(set,get,remove时检查),若已超出,就抛出异常
private void checkElementIndex(int index) {
if (!isElementIndex(index))
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
//检查位置是否超出范围(为添加和迭代检查使用),若已超出,就抛出异常
private void checkPositionIndex(int index) {
if (!isPositionIndex(index))
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
//获取指定位置的节点
//该方法返回双向链表中指定位置处的节点,而链表中是没有下标索引的,要指定位置出的元素,就要遍历该链表,从源码的实现中,我们看到这里有一个加速动作。
//源码中先将index与长度size的一半比较,如果index<size/2,就只从位置0往后遍历到位置index处,而如果index>size/2,就只从位置size往前遍历到位置index处。这样可以减少一部分不必要的遍历。
Node<E> node(int index) {
// assert isElementIndex(index);
if (index < (size >> 1)) {
Node<E> x = first;
for (int i = 0; i < index; i++)
x = x.next;
return x;
} else {
Node<E> x = last;
for (int i = size - 1; i > index; i--)
x = x.prev;
return x;
}
}
//获取第一个指定元素的索引位置并返回索引,不存在就返回-1
public int indexOf(Object o) {
int index = 0;
if (o == null) {
for (Node<E> x = first; x != null; x = x.next) {
if (x.item == null)
return index;
index++;
}
} else {
for (Node<E> x = first; x != null; x = x.next) {
if (o.equals(x.item))
return index;
index++;
}
}
return -1;
}
//获取最后一个指定元素索引的索引并返回索引,不存在就返回-1
public int lastIndexOf(Object o) {
int index = size;
if (o == null) {
for (Node<E> x = last; x != null; x = x.prev) {
index--;
if (x.item == null)
return index;
}
} else {
for (Node<E> x = last; x != null; x = x.prev) {
index--;
if (o.equals(x.item))
return index;
}
}
return -1;
}
Queue操作
//提供普通队列和双端队列的功能,FIFO
//出队(从前端),获得第一个元素,不存在会返回null,不会删除元素(节点)
public E peek() {
final Node<E> f = first;
return (f == null) ? null : f.item;
}
//出队(从前端),不删除元素,若为null会抛出异常而不是返回null
public E element() {
return getFirst();
}
//出队(从前端),如果不存在会返回null,存在的话会返回值并移除这个元素(节点)
public E poll() {
final Node<E> f = first;
return (f == null) ? null : unlinkFirst(f);
}
//出队(从前端),如果不存在会抛出异常而不是返回null,存在的话会返回值并移除这个元素(节点)
public E remove() {
return removeFirst();
}
//入队(从后端),始终返回true
public boolean offer(E e) {
return add(e);
}
Deque(双端队列)操作
//入队(从前端),始终返回true
public boolean offerFirst(E e) {
addFirst(e);
return true;
}
//入队(从后端),始终返回true
public boolean offerLast(E e) {
addLast(e);
return true;
}
//出队(从前端),获得第一个元素,不存在会返回null,不会删除元素(节点)
public E peekFirst() {
final Node<E> f = first;
return (f == null) ? null : f.item;
}
//出队(从后端),获得最后一个元素,不存在会返回null,不会删除元素(节点)
public E peekLast() {
final Node<E> l = last;
return (l == null) ? null : l.item;
}
//出队(从前端),获得第一个元素,不存在会返回null,会删除元素(节点)
public E pollFirst() {
final Node<E> f = first;
return (f == null) ? null : unlinkFirst(f);
}
//出队(从后端),获得最后一个元素,不存在会返回null,会删除元素(节点)
public E pollLast() {
final Node<E> l = last;
return (l == null) ? null : unlinkLast(l);
}
//入栈,从前面添加
public void push(E e) {
addFirst(e);
}
//出栈,返回栈顶元素,从前面移除(会删除)
public E pop() {
return removeFirst();
}
//删除列表中第一出现o的节点
public boolean removeFirstOccurrence(Object o) {
return remove(o);
}
//逆向搜索,删除第一次出现o的节点
public boolean removeLastOccurrence(Object o) {
if (o == null) {
for (Node<E> x = last; x != null; x = x.prev) {
if (x.item == null) {
unlink(x);
return true;
}
}
} else {
for (Node<E> x = last; x != null; x = x.prev) {
if (o.equals(x.item)) {
unlink(x);
return true;
}
}
}
return false;
}
通用迭代器实现 继承自AbstractSequentialList的方法,AbstractSequentialList抽象类中 public Iterator<E> iterator() { return listIterator(); } 通用迭代器与ArrayList不同,ArrayList自己实现了Iterator,说明linkedlist的迭代器天生支持反向迭代。
ListIterator迭代器实现与ArrayList类似 其中的ListItr继承Itr,实现了ListIterator接口,同时重写了hasPrevious(),nextIndex(), previousIndex(),previous(),set(E e),add(E e)等方法, 所以这也可以看出了Iterator和ListIterator的区别,就是ListIterator在Iterator的基础上增加了添加对象,修改对象, 逆向遍历等方法。
public ListIterator<E> listIterator(int index) {
checkPositionIndex(index);
return new ListItr(index);
}
private class ListItr implements ListIterator<E> {
private Node<E> lastReturned;
private Node<E> next;
private int nextIndex;
private int expectedModCount = modCount;
ListItr(int index) {
// assert isPositionIndex(index);
next = (index == size) ? null : node(index);
nextIndex = index;
}
public boolean hasNext() {
return nextIndex < size;
}
public E next() {
checkForComodification();
if (!hasNext())
throw new NoSuchElementException();
lastReturned = next;
next = next.next;
nextIndex++;
return lastReturned.item;
}
public boolean hasPrevious() {
return nextIndex > 0;
}
public E previous() {
checkForComodification();
if (!hasPrevious())
throw new NoSuchElementException();
lastReturned = next = (next == null) ? last : next.prev;
nextIndex--;
return lastReturned.item;
}
public int nextIndex() {
return nextIndex;
}
public int previousIndex() {
return nextIndex - 1;
}
public void remove() {
checkForComodification();
if (lastReturned == null)
throw new IllegalStateException();
Node<E> lastNext = lastReturned.next;
unlink(lastReturned);
if (next == lastReturned)
next = lastNext;
else
nextIndex--;
lastReturned = null;
expectedModCount++;
}
public void set(E e) {
if (lastReturned == null)
throw new IllegalStateException();
checkForComodification();
lastReturned.item = e;
}
public void add(E e) {
checkForComodification();
lastReturned = null;
if (next == null)
linkLast(e);
else
linkBefore(e, next);
nextIndex++;
expectedModCount++;
}
public void forEachRemaining(Consumer<? super E> action) {
Objects.requireNonNull(action);
while (modCount == expectedModCount && nextIndex < size) {
action.accept(next.item);
lastReturned = next;
next = next.next;
nextIndex++;
}
checkForComodification();
}
final void checkForComodification() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
}
}
//节点的数据结构内部类,包含前后节点的引用和当前节点
private static class Node<E> {
E item;
Node<E> next;
Node<E> prev;
Node(Node<E> prev, E element, Node<E> next) {
this.item = element;
this.next = next;
this.prev = prev;
}
}
//反向迭代器(实现Deque接口)
//Deque接口定义的方法,实现Iterator接口,用listIterator迭代器返回一个迭代在此双端队列逆向顺序的元素
public Iterator<E> descendingIterator() {
return new DescendingIterator();
}
//
private class DescendingIterator implements Iterator<E> {
private final ListItr itr = new ListItr(size());
public boolean hasNext() {
return itr.hasPrevious();
}
public E next() {
return itr.previous();
}
public void remove() {
itr.remove();
}
}
@SuppressWarnings("unchecked")
private LinkedList<E> superClone() {
try {
return (LinkedList<E>) super.clone();
} catch (CloneNotSupportedException e) {
throw new InternalError(e);
}
}
//与ArrayList一样都是调用super。clone()
//protected native Object clone() throws CloneNotSupportedException;
//被复制对象的所有变量都含有与原来的对象相同的值,而所有的对其他对象的引用仍然指向原来的对象。
public Object clone() {
LinkedList<E> clone = superClone();
// Put clone into "virgin" state
clone.first = clone.last = null;
clone.size = 0;
clone.modCount = 0;
// Initialize clone with our elements
for (Node<E> x = first; x != null; x = x.next)
clone.add(x.item);
return clone;
}
转换成数组
public Object[] toArray() {
Object[] result = new Object[size];
int i = 0;
for (Node<E> x = first; x != null; x = x.next)
result[i++] = x.item;
return result;
}
@SuppressWarnings("unchecked")
//如果没有参数,就默认生成一个Object数组,如果给了T类型,就将节点内容放入a数组,
//如果a的长度小于链表,就使用反射生成一个链表大小的数组,这个时候由于类型是T,所以无法直接实例化。
public <T> T[] toArray(T[] a) {
if (a.length < size)
a = (T[])java.lang.reflect.Array.newInstance(
a.getClass().getComponentType(), size);
int i = 0;
Object[] result = a;
for (Node<E> x = first; x != null; x = x.next)
result[i++] = x.item;
if (a.length > size)
a[size] = null;
return a;
}
如果声明该方法,它将会被ObjectOutputStream调用而不是默认的序列化进程。如果你是第一次看见它, 你会很惊奇尽管它们被外部类调用但事实上这是两个private的方法。并且它们既不存在于java.lang.Object,也没有在Serializable中声明。 那么ObjectOutputStream如何使用它们的呢?这个吗,ObjectOutputStream使用了反射来寻找是否声明了这两个方法。 因为ObjectOutputStream使用getPrivateMethod,所以这些方法不得不被声明为priate以至于供ObjectOutputStream来使用。
private static final long serialVersionUID = 876323262645176354L;
//定义了自己的序列化方法,通过反射调用
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException {
// Write out any hidden serialization magic
s.defaultWriteObject();
// Write out size
s.writeInt(size);
// Write out all elements in the proper order.
for (Node<E> x = first; x != null; x = x.next)
s.writeObject(x.item);
}
@SuppressWarnings("unchecked")
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
// Read in any hidden serialization magic
s.defaultReadObject();
// Read in size
int size = s.readInt();
// Read in all elements in the proper order.
for (int i = 0; i < size; i++)
linkLast((E)s.readObject());
}
//以下关于1.8函数式编程
@Override
public Spliterator<E> spliterator() {
return new LLSpliterator<E>(this, -1, 0);
}
static final class LLSpliterator<E> implements Spliterator<E> {
static final int BATCH_UNIT = 1 << 10; // batch array size increment
static final int MAX_BATCH = 1 << 25; // max batch array size;
final LinkedList<E> list; // null OK unless traversed
Node<E> current; // current node; null until initialized
int est; // size estimate; -1 until first needed
int expectedModCount; // initialized when est set
int batch; // batch size for splits
LLSpliterator(LinkedList<E> list, int est, int expectedModCount) {
this.list = list;
this.est = est;
this.expectedModCount = expectedModCount;
}
final int getEst() {
int s; // force initialization
final LinkedList<E> lst;
if ((s = est) < 0) {
if ((lst = list) == null)
s = est = 0;
else {
expectedModCount = lst.modCount;
current = lst.first;
s = est = lst.size;
}
}
return s;
}
public long estimateSize() { return (long) getEst(); }
public Spliterator<E> trySplit() {
Node<E> p;
int s = getEst();
if (s > 1 && (p = current) != null) {
int n = batch + BATCH_UNIT;
if (n > s)
n = s;
if (n > MAX_BATCH)
n = MAX_BATCH;
Object[] a = new Object[n];
int j = 0;
do { a[j++] = p.item; } while ((p = p.next) != null && j < n);
current = p;
batch = j;
est = s - j;
return Spliterators.spliterator(a, 0, j, Spliterator.ORDERED);
}
return null;
}
public void forEachRemaining(Consumer<? super E> action) {
Node<E> p; int n;
if (action == null) throw new NullPointerException();
if ((n = getEst()) > 0 && (p = current) != null) {
current = null;
est = 0;
do {
E e = p.item;
p = p.next;
action.accept(e);
} while (p != null && --n > 0);
}
if (list.modCount != expectedModCount)
throw new ConcurrentModificationException();
}
public boolean tryAdvance(Consumer<? super E> action) {
Node<E> p;
if (action == null) throw new NullPointerException();
if (getEst() > 0 && (p = current) != null) {
--est;
E e = p.item;
current = p.next;
action.accept(e);
if (list.modCount != expectedModCount)
throw new ConcurrentModificationException();
return true;
}
return false;
}
public int characteristics() {
return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
}
}
}
LinkedList与ArrayList的区别: LinkedList与ArrayList在性能上各有优缺点,都有各自适用的地方,总结如下:
ArrayList是实现了基于动态数组的数据结构,LinkedList基于链表的数据结构。
LinkedList不支持高效的随机元素访问。
ArrayList的空间浪费主要体现在在list列表的结尾预留一定的容量空间,
而LinkedList的空间花费则体现在它的每一个元素都需要消耗相当的空间(需要附加的空间来表明数据元素的逻辑关系),就存储密度来说,ArrayList是优于LinkedList的。 +
当操作是在一列数据的后面添加数据而不是在前面或中间,并且需要随机地访问其中的元素时,使用ArrayList会提供比较好的性能,
当你的操作是在一列数据的前面或中间添加或删除数据,并且按照顺序访问其中的元素时,就应该使用LinkedList了。