diff --git a/flepimop/gempyor_pkg/src/gempyor/calibrate.py b/flepimop/gempyor_pkg/src/gempyor/calibrate.py index 433f0fc1f..0ff7a8d9d 100644 --- a/flepimop/gempyor_pkg/src/gempyor/calibrate.py +++ b/flepimop/gempyor_pkg/src/gempyor/calibrate.py @@ -141,7 +141,7 @@ def calibrate( stoch_traj_flag=False, rng_seed=None, nslots=1, - inference_filename_prefix="", # usually for {global or chimeric}/{intermediate or final} + inference_filename_prefix="global/final/", # usually for {global or chimeric}/{intermediate or final} inference_filepath_suffix="", # usually for the slot_id out_run_id=None, # if out_run_id is different from in_run_id, fill this out_prefix=None, # if out_prefix is different from in_prefix, fill this @@ -172,9 +172,7 @@ def calibrate( # Normally one would put p0 = None to get the last State from the sampler, but that poses problems when the likelihood change # and then acceptances are not guaranted, see issue #316. This solves this issue. - p0 = backend.get_last_sample().coords - - + p0 = backend.get_last_sample().coords else: backend = emcee.backends.HDFBackend(filename) backend.reset(nwalkers, gempyor_inference.inferpar.get_dim()) @@ -242,9 +240,16 @@ def calibrate( df = df.set_index("date") results.append(df) + print(len(results)) + gempyor.postprocess_inference.plot_fit(modinf=gempyor_inference.modinf, loss=gempyor_inference.logloss, list_of_df=results, save_to=f"{run_id}_fit.pdf") + + gempyor.postprocess_inference.plot_fit(modinf=gempyor_inference.modinf, + loss=gempyor_inference.logloss, + plot_projections=True, + list_of_df=results, save_to=f"{run_id}_fit_w_proj.pdf") if __name__ == "__main__":