Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

关于利用Xception训练时数据集大小的疑问? #19

Open
MZMMSEC opened this issue Apr 23, 2021 · 2 comments
Open

关于利用Xception训练时数据集大小的疑问? #19

MZMMSEC opened this issue Apr 23, 2021 · 2 comments

Comments

@MZMMSEC
Copy link

MZMMSEC commented Apr 23, 2021

honggu,您好。我最近在利用Xception训练deefake,其中我遇到了一些问题:我的训练精度非常高,但是validation和test的acc却很低或者不变。起初我以为是我Dataloader部分的代码写错了,但是我将train dataset作为validation,却能够在每个epoch下acc能够提升。先声明一下,我采用的不是FF++的数据集和Kaggle上DFDC的full数据集(太大了),而是用的Kaggle上给的sample dataset(大概400个训练视频,400个测试视频),并且在提取人脸后也做了样本平衡的操作。所以,我想问一下经验丰富的您,是否是我采用的数据集太小而导致的问题,是否必须采用full dataset才能够在validation和test中看到一些效果?

@HongguLiu
Copy link
Owner

HongguLiu commented Apr 25, 2021 via email

@MZMMSEC
Copy link
Author

MZMMSEC commented Apr 25, 2021

thanks a lot for your response!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants