forked from biotite-dev/biotite
-
Notifications
You must be signed in to change notification settings - Fork 0
/
setup_ccd.py
474 lines (438 loc) · 15.6 KB
/
setup_ccd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
import gzip
import logging
from dataclasses import dataclass
from io import StringIO
from pathlib import Path
import numpy as np
import requests
from biotite.structure.io.pdbx import *
class ComponentError(Exception):
pass
@dataclass
class ColumnInfo:
"""
Defines how to re-econde a column.
Attributes
----------
dtype : dtype
The data type of the column.
fill_value : object
The value to fill masked values with.
encoding : list of Encoding
The encodings to apply to the data.
alternative : str, optional
The name of an alternative column to use, if the original column
contains masked values and no `fill_value` is given.
"""
dtype: ...
encoding: ...
fill_value: ... = None
alternative: ... = None
MAIN_COLUMNS = {
"id": ColumnInfo(
"U5",
[
StringArrayEncoding(
data_encoding=[
DeltaEncoding(src_type=TypeCode.INT32),
RunLengthEncoding(),
IntegerPackingEncoding(byte_count=2, is_unsigned=True),
ByteArrayEncoding(),
],
offset_encoding=[
DeltaEncoding(src_type=TypeCode.INT32),
IntegerPackingEncoding(byte_count=1, is_unsigned=True),
ByteArrayEncoding(),
],
)
],
),
"name": ColumnInfo(
str,
[
StringArrayEncoding(
# The unique strings in the column are sorted
# -> Indices do not follow distinct pattern
data_encoding=[ByteArrayEncoding(type=TypeCode.INT32)],
offset_encoding=[
DeltaEncoding(src_type=TypeCode.INT32),
IntegerPackingEncoding(byte_count=1, is_unsigned=True),
ByteArrayEncoding(),
],
)
],
),
"type": ColumnInfo(
str,
[
StringArrayEncoding(
# The unique strings in the column are sorted
# -> Indices do not follow distinct pattern
data_encoding=[ByteArrayEncoding(type=TypeCode.INT16)],
offset_encoding=[
DeltaEncoding(src_type=TypeCode.INT32),
IntegerPackingEncoding(byte_count=1, is_unsigned=True),
ByteArrayEncoding(),
],
)
],
),
"formula_weight": ColumnInfo(
"f8",
[
FixedPointEncoding(factor=1000, src_type=TypeCode.FLOAT64),
ByteArrayEncoding(),
],
fill_value=0,
),
"one_letter_code": ColumnInfo(
"U1",
[
StringArrayEncoding(
# The unique strings in the column are sorted
# -> Indices do not follow distinct pattern
data_encoding=[ByteArrayEncoding(type=TypeCode.INT16)],
offset_encoding=[
DeltaEncoding(src_type=TypeCode.INT32),
IntegerPackingEncoding(byte_count=1, is_unsigned=True),
ByteArrayEncoding(),
],
)
],
fill_value="",
),
}
ATOM_COLUMNS = {
"comp_id": ColumnInfo(
"U5",
[
StringArrayEncoding(
data_encoding=[
RunLengthEncoding(src_type=TypeCode.INT32),
IntegerPackingEncoding(byte_count=2, is_unsigned=True),
ByteArrayEncoding(),
],
offset_encoding=[
DeltaEncoding(src_type=TypeCode.INT32),
RunLengthEncoding(),
IntegerPackingEncoding(byte_count=1, is_unsigned=True),
ByteArrayEncoding(),
],
)
],
),
"atom_id": ColumnInfo(
"U6",
[
StringArrayEncoding(
# The unique strings in the column are sorted
# -> Indices do not follow distinct pattern
data_encoding=[ByteArrayEncoding(type=TypeCode.INT16)],
offset_encoding=[
DeltaEncoding(src_type=TypeCode.INT32),
RunLengthEncoding(),
IntegerPackingEncoding(byte_count=1, is_unsigned=True),
ByteArrayEncoding(),
],
)
],
),
"type_symbol": ColumnInfo(
"U2",
[
StringArrayEncoding(
# The unique strings in the column are sorted
# -> Indices do not follow distinct pattern
data_encoding=[ByteArrayEncoding(type=TypeCode.INT8)],
offset_encoding=[
DeltaEncoding(src_type=TypeCode.INT32),
RunLengthEncoding(),
IntegerPackingEncoding(byte_count=1, is_unsigned=True),
ByteArrayEncoding(),
],
)
],
),
"charge": ColumnInfo("i1", [ByteArrayEncoding(type=TypeCode.INT8)], fill_value=0),
"pdbx_model_Cartn_x_ideal": ColumnInfo(
"f4",
[
FixedPointEncoding(factor=100),
IntegerPackingEncoding(byte_count=2, is_unsigned=False),
ByteArrayEncoding(),
],
alternative="model_Cartn_x",
),
"pdbx_model_Cartn_y_ideal": ColumnInfo(
"f4",
[
FixedPointEncoding(factor=100),
IntegerPackingEncoding(byte_count=2, is_unsigned=False),
ByteArrayEncoding(),
],
alternative="model_Cartn_y",
),
"pdbx_model_Cartn_z_ideal": ColumnInfo(
"f4",
[
FixedPointEncoding(factor=100),
IntegerPackingEncoding(byte_count=2, is_unsigned=False),
ByteArrayEncoding(),
],
alternative="model_Cartn_z",
),
}
BOND_COLUMNS = {
"comp_id": ColumnInfo(
"U5",
[
StringArrayEncoding(
data_encoding=[
RunLengthEncoding(src_type=TypeCode.INT32),
IntegerPackingEncoding(byte_count=2, is_unsigned=True),
ByteArrayEncoding(),
],
offset_encoding=[
DeltaEncoding(src_type=TypeCode.INT32),
RunLengthEncoding(),
IntegerPackingEncoding(byte_count=1, is_unsigned=True),
ByteArrayEncoding(),
],
)
],
),
"atom_id_1": ColumnInfo(
"U6",
[
StringArrayEncoding(
# The unique strings in the column are sorted
# -> Indices do not follow distinct pattern
data_encoding=[ByteArrayEncoding(type=TypeCode.INT16)],
offset_encoding=[
DeltaEncoding(src_type=TypeCode.INT32),
RunLengthEncoding(),
IntegerPackingEncoding(byte_count=1, is_unsigned=True),
ByteArrayEncoding(),
],
)
],
),
"atom_id_2": ColumnInfo(
"U6",
[
StringArrayEncoding(
# The unique strings in the column are sorted
# -> Indices do not follow distinct pattern
data_encoding=[ByteArrayEncoding(type=TypeCode.INT16)],
offset_encoding=[
DeltaEncoding(src_type=TypeCode.INT32),
RunLengthEncoding(),
IntegerPackingEncoding(byte_count=1, is_unsigned=True),
ByteArrayEncoding(),
],
)
],
),
"value_order": ColumnInfo(
"U4",
[
StringArrayEncoding(
data_encoding=[
RunLengthEncoding(src_type=TypeCode.INT32),
IntegerPackingEncoding(byte_count=1, is_unsigned=True),
ByteArrayEncoding(),
],
offset_encoding=[ByteArrayEncoding(type=TypeCode.UINT8)],
)
],
),
"pdbx_aromatic_flag": ColumnInfo(
"U1",
[
StringArrayEncoding(
data_encoding=[
RunLengthEncoding(src_type=TypeCode.INT32),
IntegerPackingEncoding(byte_count=1, is_unsigned=True),
ByteArrayEncoding(),
],
offset_encoding=[ByteArrayEncoding(type=TypeCode.UINT8)],
)
],
),
}
CCD_URL = "https://files.wwpdb.org/pub/pdb/data/monomers/components.cif.gz"
def check_presence(pdbx_file, category_name, column_names):
"""
For each block in the file, check if each of the given column names
are present and unmasked.
Alternatively, all given column names may be masked/missing.
This is used to ensure that coordinates are consistent:
If one dimension would be missing and another one would not,
the fallback of only one dimension would be used.
In consequence, the molecule coordinates would be distorted.
Parameters
----------
pdbx_file : PDBxFile
The file to check.
category_name : str
The name of the category to check.
column_names : list of str
The names of the columns to check.
"""
for _, block in pdbx_file.items():
if category_name not in block:
continue
category = block[category_name]
is_present = column_names[0] in category
for name in column_names:
if (name in category) != is_present:
raise ComponentError("Only some column names are missing")
if not is_present:
return
is_unmasked = category[column_names[0]].mask is None
for name in column_names:
if (category[name].mask is None) != is_unmasked:
raise ComponentError("Only some column names are masked")
def concatenate_blocks_into_category(pdbx_file, category_name, column_infos):
"""
Concatenate the given category from all blocks into a single
category.
Parameters
----------
pdbx_file : PDBxFile
The PDBx file, whose blocks should be concatenated.
category_name : str
The name of the category to concatenate.
column_infos : dict (str -> ColumnInfo)
Defines which columns of the category to keep and how to re-encode
them, where keys are the column names.
Returns
-------
category : BinaryCIFCategory
The concatenated category.
"""
column_chunks = {col_name: [] for col_name in column_infos.keys()}
for comp_id, block in pdbx_file.items():
try:
if category_name not in block:
raise ComponentError(f"Block has no category '{category_name}'")
chunk = {}
category = block[category_name]
for col_name, info in column_infos.items():
col = category.get(col_name)
if col is None or (col.mask is not None and info.fill_value is None):
# Some/all values are missing and there is no default
# -> Try alternative
if info.alternative is not None:
col = category[info.alternative]
if col.mask is not None:
raise ComponentError(
f"Missing values in alternative "
f"'{info.alternative}'"
)
else:
raise ComponentError(f"Missing values in column '{col_name}'")
data_array = col.as_array(info.dtype, info.fill_value)
chunk[col_name] = data_array
except ComponentError as e:
logging.warning(f"Skipping '{comp_id}': {e}")
# Append all columns in the chunk after the try-except block
# to avoid appending incomplete chunks
else:
for col_name, data_array in chunk.items():
column_chunks[col_name].append(data_array)
return BinaryCIFCategory(
{
col_name: BinaryCIFData(
array=np.concatenate(col_data), encoding=column_infos[col_name].encoding
)
for col_name, col_data in column_chunks.items()
}
)
def extract_component_groups(type_dict, include, exclude, file_name):
"""
Extract component IDs that matches a given group from the given
dictionary.
Parameters
----------
type_dict : dict
A dictionary that maps component IDs to their type.
include, exclude : list of str
The keywords to be matched.
file_name : Path
The path the output file to write the extracted component IDs
to.
"""
# Find components that matches the given keywords
comp_ids_for_group = []
types_for_group = set()
for comp_id, comp_type in type_dict.items():
if any(keyword in comp_type.lower() for keyword in exclude):
# 'xxx-like' components are not considered
# as they are not real 'xxx'
continue
if any(keyword in comp_type.lower() for keyword in include):
comp_ids_for_group.append(comp_id)
types_for_group.add(comp_type.lower())
# Remove extracted components from dict
for comp_id in comp_ids_for_group:
del type_dict[comp_id]
# Write extracted components into output file
logging.info(
f"Using the following types for '{file_name.name}':\n"
+ ", ".join(types_for_group)
)
with open(file_name, "w") as file:
for comp_id in comp_ids_for_group:
file.write(comp_id + "\n")
def setup_ccd(target_diriectory):
logging.basicConfig(level=logging.INFO, format="%(levelname)s:%(message)s")
target_diriectory.mkdir(parents=True, exist_ok=True)
logging.info("Downloading and reading CCD...")
ccd_cif_text = gzip.decompress(requests.get(CCD_URL).content).decode()
ccd_file = CIFFile.read(StringIO(ccd_cif_text))
logging.info("Checking for consistent coordinates...")
check_presence(
ccd_file, "chem_comp_atom", ["model_Cartn_x", "model_Cartn_y", "model_Cartn_z"]
)
check_presence(
ccd_file,
"chem_comp_atom",
["model_Cartn_x_ideal", "model_Cartn_y_ideal", "model_Cartn_z_ideal"],
)
logging.info("Extracting component groups...")
type_dict = {
comp_id: block["chem_comp"]["type"].as_item()
for comp_id, block in ccd_file.items()
}
extract_component_groups(
type_dict,
["peptide", "amino"],
["peptide-like"],
target_diriectory / "amino_acids.txt",
)
extract_component_groups(
type_dict, ["rna", "dna"], [], target_diriectory / "nucleotides.txt"
)
extract_component_groups(
type_dict, ["saccharide"], [], target_diriectory / "carbohydrates.txt"
)
remaining_types = set(type_dict.values())
logging.info(
"The following types are not used in any group:\n" + ", ".join(remaining_types)
)
compressed_block = BinaryCIFBlock()
for category_name, column_infos in [
("chem_comp", MAIN_COLUMNS),
("chem_comp_atom", ATOM_COLUMNS),
("chem_comp_bond", BOND_COLUMNS),
]:
logging.info(f"Concatenate '{category_name}' category...")
compressed_block[category_name] = concatenate_blocks_into_category(
ccd_file, category_name, column_infos
)
logging.info("Write concatenated CCD into BinaryCIF...")
compressed_file = BinaryCIFFile()
compressed_file["components"] = compressed_block
compressed_file.write(target_diriectory / "components.bcif")
setup_ccd(Path(__file__).parent / "src" / "biotite" / "structure" / "info" / "ccd")