-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
310 lines (258 loc) · 14 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import os
import pickle
import numpy as np
import tensorflow as tf
from config import *
import time
from keras.preprocessing.sequence import pad_sequences
from tqdm import tqdm
from data_helpers import *
class Classifer(object):
def __init__(self, config, session):
self.inputText = tf.placeholder(tf.int32, [None, None], name='text')
self.label = tf.placeholder(tf.int64, [None,], name='label')
self.length = tf.placeholder(tf.int32, [None,], name='len')
self.dropout = tf.placeholder(tf.float32, name='keep_prob')
self.config = config
self.lr = tf.Variable(0.0, trainable=False)
self.embeddings = tf.get_variable("embeddings", shape=[config.vocab_size, config.hidden_size], initializer=tf.random_normal_initializer(mean=0.0, stddev=0.1, dtype=tf.float32), dtype=tf.float32, trainable=config.embedding_trainable)
self.input_layer()
self.group()
def input_layer(self):
# input layer
initial_hidden_states = tf.nn.embedding_lookup(self.embeddings, self.inputText) #[B, H, L]
initial_cell_states = tf.identity(initial_hidden_states)
self.initial_hidden_states= tf.nn.dropout(initial_hidden_states, self.dropout)
self.initial_cell_states = tf.nn.dropout(initial_cell_states, self.dropout)
def group(self):
if self.config.model == 'cnn':
initial_hidden_states=tf.reshape(self.initial_hidden_states, [-1, 700, config.hidden_size])
initial_hidden_states = tf.expand_dims(initial_hidden_states, -1)
pooled_outputs = []
for i, filter_size in enumerate([3]):
with tf.name_scope("conv-maxpool-%s" % filter_size):
# Convolution Layer
filter_shape = [filter_size, config.hidden_size, 1, config.hidden_size]
W = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1), name="W")
b = tf.Variable(tf.constant(0.1, shape=[config.hidden_size]), name="b")
W2 = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1), name="W2")
b2 = tf.Variable(tf.constant(0.1, shape=[config.hidden_size]), name="b2")
W3 = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1), name="W3")
b3 = tf.Variable(tf.constant(0.1, shape=[config.hidden_size]), name="b3")
W4 = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1), name="W4")
b4 = tf.Variable(tf.constant(0.1, shape=[config.hidden_size]), name="b4")
conv = tf.nn.conv2d(
initial_hidden_states,
W,
strides=[1, 1, 1, 1],
padding="VALID",
name="conv")
h = tf.nn.relu(tf.nn.bias_add(conv, b), name="relu")
print(h.get_shape())
h=tf.transpose(h, [0,1,3,2])
# Apply nonlinearity
conv2 = tf.nn.conv2d(
h,
W2,
strides=[1, 1, 1, 1],
padding="VALID",
name="conv2")
h2 = tf.nn.relu(tf.nn.bias_add(conv2, b2), name="relu2")
print(h2.get_shape())
h2=tf.transpose(h2, [0,1,3,2])
conv3 = tf.nn.conv2d(
h2,
W3,
strides=[1, 1, 1, 1],
padding="VALID",
name="conv3")
h3 = tf.nn.relu(tf.nn.bias_add(conv3, b3), name="relu3")
print(h3.get_shape())
# Max-pooling over the outputs
pooled = tf.nn.max_pool(
h3,
ksize=[1, 700 - 3*filter_size + 3, 1, 1],
strides=[1, 1, 1, 1],
padding='VALID',
name="pool")
pooled_outputs.append(pooled)
# Combine all the pooled features
num_filters_total = 1 * config.hidden_size
self.h_pool = tf.concat(pooled_outputs, axis=3)
representation = tf.reshape(self.h_pool, [-1, num_filters_total])
softmax_w = tf.Variable(tf.random_normal([2*config.hidden_size, config.num_label], mean=0.0, stddev=0.1, dtype=tf.float32), dtype=tf.float32, name="softmax_w")
softmax_b = tf.Variable(tf.random_normal([config.num_label], mean=0.0, stddev=0.1, dtype=tf.float32), dtype=tf.float32, name="softmax_b")
softmax_w2 = tf.Variable(tf.random_normal([config.hidden_size, 2*config.hidden_size], mean=0.0, stddev=0.1, dtype=tf.float32), dtype=tf.float32, name="softmax_w2")
softmax_b2 = tf.Variable(tf.random_normal([2*config.hidden_size], mean=0.0, stddev=0.1, dtype=tf.float32), dtype=tf.float32, name="softmax_b2")
representation=tf.nn.tanh(tf.matmul(representation, softmax_w2)+softmax_b2)
elif self.config.model == 'lstm':
initial_hidden_states=self.lstm_layer(self.initial_hidden_states, self.config, self.dropout, self.length)
softmax_w = tf.Variable(tf.random_normal([2*config.hidden_size, config.num_label], mean=0.0, stddev=0.1, dtype=tf.float32), dtype=tf.float32, name="softmax_w")
softmax_b = tf.Variable(tf.random_normal([config.num_label], mean=0.0, stddev=0.1, dtype=tf.float32), dtype=tf.float32, name="softmax_b")
representation=tf.reduce_sum(initial_hidden_states,axis=1)
config.hidden_size_sum=2*config.hidden_size
else:
print('Invalid model')
exit(1)
logits = tf.matmul(representation, softmax_w) + softmax_b
self.to_print=tf.nn.softmax(logits)
#operators for prediction
self.prediction=prediction=tf.argmax(logits,1)
correct_prediction = tf.equal(prediction, self.label)
self.accuracy = tf.reduce_sum(tf.cast(correct_prediction, tf.float32)) # 准确率
#cross entropy loss
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=self.label, logits=logits)
self.cost=cost=tf.reduce_mean(loss)+ config.l2_beta*tf.nn.l2_loss(self.embeddings) # 损失的均值+词向量的l2范数
#designate training variables
tvars=tf.trainable_variables() # tf.trainable_variables返回所有 当前计算图中 在获取变量时未标记 trainable=False 的变量集合
self.lr = tf.Variable(0.0, trainable=False) # lr不被训练
grads=tf.gradients(cost, tvars) # 求cost 关于tvars 对应变量的导数
grads, _ = tf.clip_by_global_norm(grads, config.max_grad_norm) # 为了处理gradient explosion或者gradients vanishing的问题
self.grads=grads
optimizer = tf.train.AdamOptimizer(config.learning_rate)
self.train_op = optimizer.apply_gradients(zip(grads, tvars)) # 返回(gradient, variable) 应用指定梯度的操作
def lstm_layer(self, x, config, keep_prob, length):
with tf.variable_scope('forward'):
fw_lstm = tf.contrib.rnn.BasicLSTMCell(config.hidden_size, forget_bias=0.0)
# fw_lstm = LSTMCell(config.hidden_size, Weight_fw, forget_bias=0.0)
fw_lstm = tf.contrib.rnn.DropoutWrapper(fw_lstm, output_keep_prob=keep_prob)
with tf.variable_scope('backward'):
bw_lstm = tf.contrib.rnn.BasicLSTMCell(config.hidden_size, forget_bias=0.0)
# bw_lstm = LSTMCell(config.hidden_size, Weight_bw, forget_bias=0.0)
bw_lstm = tf.contrib.rnn.DropoutWrapper(bw_lstm, output_keep_prob=keep_prob)
#bidirectional rnn
with tf.variable_scope('bilstm'):
lstm_output=tf.nn.bidirectional_dynamic_rnn(fw_lstm, bw_lstm, inputs=x, sequence_length=length, time_major=False, dtype=tf.float32)
lstm_output=tf.concat(lstm_output[0], 2)
return lstm_output
def assign_lr(self, session, lr_value):
session.run(tf.assign(self.lr, lr_value))
def get_minibatches_idx(n, config, shuffle):
idx_list = np.arange(n, dtype='int32')
if shuffle:
np.random.shuffle(idx_list)
minibatches = []
minibatch_start = 0
n_batch = n // config.batch_size
for i in range(n_batch):
minibatches += [idx_list[minibatch_start: minibatch_start+config.batch_size]]
minibatch_start += config.batch_size
if (minibatch_start != n):
n_batch += 1
minibatches += [idx_list[minibatch_start:]]
return minibatches, n_batch
def run_epoch(session, config, model, data, train_op, is_training):
n_samples = len(data[0])
print('Running {} samples:'.format(n_samples))
minibatches, n_batch = get_minibatches_idx(n_samples, config, shuffle=False)
if is_training == False:
config.keep_prob = 1
print('testing...')
correct = 0.
total = 0
total_cost = 0
prediction = []
for batch_id in tqdm(range(n_batch)):
inds = minibatches[batch_id]
x = data[0][inds]
if config.model == 'cnn':
x = pad_sequences(x, maxlen=700, dtype='int32', padding='post', truncating='post', value=0.)
else:
x = pad_sequences(x, maxlen=None, dtype='int32', padding='post', truncating='post', value=0.)
y = data[1][inds]
length = data[2][inds]
count, _, cost, to_print= \
session.run([model.accuracy, train_op, model.cost, model.to_print],\
{model.inputText: x, model.label: y, model.length:length, model.dropout:config.keep_prob}) # eval_op 梯度信息
# to_print = session.run(to_print)
correct += count
total += len(inds)
total_cost += cost
prediction += to_print.tolist()
accuracy = correct / total
return accuracy, prediction
def train_test_model(config, i, session, model, trainData, devData):
# compute lr_decay
lr_decay = config.lr_decay ** max(i - config.max_epoch, 0.0)
# training
print('\nEpoch: {} Learning rate: {:.4f}'.format(i+1, session.run(model.lr)))
start_time = time.time()
train_acc, _ = run_epoch(session, config, model, trainData, model.train_op, True)
print('train accuracy: {:.2f}%, time: {:.3f} seconds\n'.format(train_acc*100, time.time()-start_time))
# dev
dev_acc, _ = run_epoch(session, config, model, devData, tf.no_op(), False)
print('dev accuracy: {:.2f}% \n'.format(dev_acc*100))
return dev_acc
def start_epoches(config, session, classifier, trainData, devData, testData):
saver = tf.train.Saver()
acc_save = 0.
for i in range(config.max_max_epoch):
acc = train_test_model(config, i, session, classifier, trainData, devData)
if acc > acc_save and i > 1: #
# if acc > acc_save: #
_, prediction = run_epoch(session, config, classifier, testData, tf.no_op(), False)
print('test {} is ok!\n'.format(i+1))
save_path = open('./log/'+str(i+1)+'_pre09.txt', 'w')
if len(prediction) == len(tstId):
print('all right!')
else:
print('ids -- {} pre -- {}'.format(len(tstId), len(prediction)))
for idx in range(len(prediction)):
pre_test = str(tstId[idx]) + ', ' + str(prediction[idx][0]) +', '+ str(prediction[idx][1]) + '\n'
print(pre_test)
save_path.write(pre_test)
save_path.flush()
# save model parameters
acc_save = acc
saver.save(session, './log/'+config.model+'_09.ckpt')
def word_to_vec(embedMatrix, session, config, *args):
print('word2vec shape: {}'.format(embedMatrix.shape))
for model in args:
session.run(tf.assign(model.embeddings, embedMatrix))
if __name__ == "__main__":
# configs
config = Config()
# load embeddings
vectorPath = config.data_path + 'dataset_vectors'
file = open(vectorPath, 'rb')
embedMatrix = np.array(pickle.load(file))
config.vocab_size = embedMatrix.shape[0]
# load train dev dataset
dataPath = config.data_path + 'dataset'
trainData, devData = loadData(dataPath, config.vocab_size)
trainData = prepareData(trainData[0], trainData[1])
devData = prepareData(devData[0], devData[1])
# load dataset
testData = loadData(dataPath, config.vocab_size, is_train=False)
tstId = testData[2]
save_id_file = open('./log/id_list.txt', 'w')
for id in tstId:
save_id_file.write(id+'\n')
save_id_file.flush()
save_id_file.close()
print('id -- {}, label -- {}, text -- {}'.format(len(tstId), len(testData[1]), len(testData[0])))
testData = prepareData(testData[0], testData[1])
# GPU
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
gpu_options = tf.GPUOptions(allow_growth=True)
with tf.Graph().as_default(), tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) as session:
initializer = tf.random_normal_initializer(0, 0.05)
classifier = Classifer(config=config, session=session)
total = 0
# print trainable variables
for v in tf.trainable_variables():
print(v.name)
shape = v.get_shape()
try:
size = shape[0].value * shape[1].value
except:
size = shape[0].value
total += size
print(total)
# initialize
init = tf.global_variables_initializer()
session.run(init)
# train test model
word_to_vec(embedMatrix, session, config, classifier)
start_epoches(config, session, classifier, trainData, devData, testData)
# start_epoches(config, session, classifier, devData, devData, testData)