forked from leejaeyong7/PatchmatchNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval.py
353 lines (280 loc) · 15.9 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
import argparse
import os
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
from torch.utils.data import DataLoader
from torch.autograd import Variable
import torch.nn.functional as F
import numpy as np
import time
from datasets import find_dataset_def
from models import *
from utils import *
import sys
from datasets.data_io import read_pfm, save_pfm
import cv2
from plyfile import PlyData, PlyElement
from PIL import Image
cudnn.benchmark = True
parser = argparse.ArgumentParser(description='Predict depth, filter, and fuse')
parser.add_argument('--model', default='PatchmatchNet', help='select model')
parser.add_argument('--dataset', default='dtu_yao_eval', help='select dataset')
parser.add_argument('--testpath', help='testing data path')
parser.add_argument('--testlist', help='testing scan list')
parser.add_argument('--batch_size', type=int, default=1, help='testing batch size')
parser.add_argument('--n_views', type=int, default=5, help='num of view')
parser.add_argument('--loadckpt', default=None, help='load a specific checkpoint')
parser.add_argument('--outdir', default='./outputs', help='output dir')
parser.add_argument('--display', action='store_true', help='display depth images and masks')
parser.add_argument('--patchmatch_iteration', nargs='+', type=int, default=[1,2,2],
help='num of iteration of patchmatch on stages 1,2,3')
parser.add_argument('--patchmatch_num_sample', nargs='+', type=int, default=[8,8,16],
help='num of generated samples in local perturbation on stages 1,2,3')
parser.add_argument('--patchmatch_interval_scale', nargs='+', type=float, default=[0.005, 0.0125, 0.025],
help='normalized interval in inverse depth range to generate samples in local perturbation')
parser.add_argument('--patchmatch_range', nargs='+', type=int, default=[6,4,2],
help='fixed offset of sampling points for propogation of patchmatch on stages 1,2,3')
parser.add_argument('--propagate_neighbors', nargs='+', type=int, default=[0,8,16],
help='num of neighbors for adaptive propagation on stages 1,2,3')
parser.add_argument('--evaluate_neighbors', nargs='+', type=int, default=[9,9,9],
help='num of neighbors for adaptive matching cost aggregation of adaptive evaluation on stages 1,2,3')
parser.add_argument('--geo_pixel_thres', type=float, default=1, help='pixel threshold for geometric consistency filtering')
parser.add_argument('--geo_depth_thres', type=float, default=0.01, help='depth threshold for geometric consistency filtering')
parser.add_argument('--photo_thres', type=float, default=0.8, help='threshold for photometric consistency filtering')
# parse arguments and check
args = parser.parse_args()
print("argv:", sys.argv[1:])
print_args(args)
# read intrinsics and extrinsics
def read_camera_parameters(filename):
with open(filename) as f:
lines = f.readlines()
lines = [line.rstrip() for line in lines]
# extrinsics: line [1,5), 4x4 matrix
extrinsics = np.fromstring(' '.join(lines[1:5]), dtype=np.float32, sep=' ').reshape((4, 4))
# intrinsics: line [7-10), 3x3 matrix
intrinsics = np.fromstring(' '.join(lines[7:10]), dtype=np.float32, sep=' ').reshape((3, 3))
return intrinsics, extrinsics
# read an image
def read_img(filename, img_wh):
img = Image.open(filename)
# scale 0~255 to 0~1
np_img = np.array(img, dtype=np.float32) / 255.
np_img = cv2.resize(np_img, img_wh, interpolation=cv2.INTER_LINEAR)
return np_img
# save a binary mask
def save_mask(filename, mask):
assert mask.dtype == np.bool
mask = mask.astype(np.uint8) * 255
Image.fromarray(mask).save(filename)
def save_depth_img(filename, depth):
# assert mask.dtype == np.bool
depth = depth.astype(np.float32) * 255
Image.fromarray(depth).save(filename)
def read_pair_file(filename):
data = []
with open(filename) as f:
num_viewpoint = int(f.readline())
# 49 viewpoints
for view_idx in range(num_viewpoint):
ref_view = int(f.readline().rstrip())
src_views = [int(x) for x in f.readline().rstrip().split()[1::2]]
data.append((ref_view, src_views))
return data
# run MVS model to save depth maps
def save_depth():
# dataset, dataloader
MVSDataset = find_dataset_def(args.dataset)
test_dataset = MVSDataset(args.testpath, args.testlist, "test", args.n_views)
TestImgLoader = DataLoader(test_dataset, args.batch_size, shuffle=False, num_workers=4, drop_last=False)
# model
model = PatchmatchNet(patchmatch_interval_scale=args.patchmatch_interval_scale,
propagation_range = args.patchmatch_range, patchmatch_iteration=args.patchmatch_iteration,
patchmatch_num_sample = args.patchmatch_num_sample,
propagate_neighbors=args.propagate_neighbors, evaluate_neighbors=args.evaluate_neighbors)
model = nn.DataParallel(model)
model.cuda()
# load checkpoint file specified by args.loadckpt
print("loading model {}".format(args.loadckpt))
state_dict = torch.load(args.loadckpt)
model.load_state_dict(state_dict['model'])
model.eval()
with torch.no_grad():
for batch_idx, sample in enumerate(TestImgLoader):
start_time = time.time()
sample_cuda = tocuda(sample)
outputs = model(sample_cuda["imgs"], sample_cuda["proj_matrices"],
sample_cuda["depth_min"], sample_cuda["depth_max"])
outputs = tensor2numpy(outputs)
del sample_cuda
print('Iter {}/{}, time = {:.3f}'.format(batch_idx, len(TestImgLoader), time.time() - start_time))
filenames = sample["filename"]
# save depth maps and confidence maps
for filename, depth_est, photometric_confidence in zip(filenames, outputs["refined_depth"]['stage_0'],
outputs["photometric_confidence"]):
depth_filename = os.path.join(args.outdir, filename.format('depth_est', '.pfm'))
confidence_filename = os.path.join(args.outdir, filename.format('confidence', '.pfm'))
os.makedirs(depth_filename.rsplit('/', 1)[0], exist_ok=True)
os.makedirs(confidence_filename.rsplit('/', 1)[0], exist_ok=True)
# save depth maps
depth_est = np.squeeze(depth_est, 0)
save_pfm(depth_filename, depth_est)
# save confidence maps
save_pfm(confidence_filename, photometric_confidence)
# project the reference point cloud into the source view, then project back
def reproject_with_depth(depth_ref, intrinsics_ref, extrinsics_ref, depth_src, intrinsics_src, extrinsics_src):
width, height = depth_ref.shape[1], depth_ref.shape[0]
## step1. project reference pixels to the source view
# reference view x, y
x_ref, y_ref = np.meshgrid(np.arange(0, width), np.arange(0, height))
x_ref, y_ref = x_ref.reshape([-1]), y_ref.reshape([-1])
# reference 3D space
xyz_ref = np.matmul(np.linalg.inv(intrinsics_ref),
np.vstack((x_ref, y_ref, np.ones_like(x_ref))) * depth_ref.reshape([-1]))
# source 3D space
xyz_src = np.matmul(np.matmul(extrinsics_src, np.linalg.inv(extrinsics_ref)),
np.vstack((xyz_ref, np.ones_like(x_ref))))[:3]
# source view x, y
K_xyz_src = np.matmul(intrinsics_src, xyz_src)
xy_src = K_xyz_src[:2] / K_xyz_src[2:3]
## step2. reproject the source view points with source view depth estimation
# find the depth estimation of the source view
x_src = xy_src[0].reshape([height, width]).astype(np.float32)
y_src = xy_src[1].reshape([height, width]).astype(np.float32)
sampled_depth_src = cv2.remap(depth_src, x_src, y_src, interpolation=cv2.INTER_LINEAR)
# mask = sampled_depth_src > 0
# source 3D space
# NOTE that we should use sampled source-view depth_here to project back
xyz_src = np.matmul(np.linalg.inv(intrinsics_src),
np.vstack((xy_src, np.ones_like(x_ref))) * sampled_depth_src.reshape([-1]))
# reference 3D space
xyz_reprojected = np.matmul(np.matmul(extrinsics_ref, np.linalg.inv(extrinsics_src)),
np.vstack((xyz_src, np.ones_like(x_ref))))[:3]
# source view x, y, depth
depth_reprojected = xyz_reprojected[2].reshape([height, width]).astype(np.float32)
K_xyz_reprojected = np.matmul(intrinsics_ref, xyz_reprojected)
xy_reprojected = K_xyz_reprojected[:2] / K_xyz_reprojected[2:3]
x_reprojected = xy_reprojected[0].reshape([height, width]).astype(np.float32)
y_reprojected = xy_reprojected[1].reshape([height, width]).astype(np.float32)
return depth_reprojected, x_reprojected, y_reprojected, x_src, y_src
def check_geometric_consistency(depth_ref, intrinsics_ref, extrinsics_ref, depth_src, intrinsics_src, extrinsics_src,
geo_pixel_thres, geo_depth_thres):
width, height = depth_ref.shape[1], depth_ref.shape[0]
x_ref, y_ref = np.meshgrid(np.arange(0, width), np.arange(0, height))
depth_reprojected, x2d_reprojected, y2d_reprojected, x2d_src, y2d_src = reproject_with_depth(depth_ref, intrinsics_ref, extrinsics_ref,
depth_src, intrinsics_src, extrinsics_src)
# print(depth_ref.shape)
# print(depth_reprojected.shape)
# check |p_reproj-p_1| < 1
dist = np.sqrt((x2d_reprojected - x_ref) ** 2 + (y2d_reprojected - y_ref) ** 2)
# check |d_reproj-d_1| / d_1 < 0.01
# depth_ref = np.squeeze(depth_ref, 2)
depth_diff = np.abs(depth_reprojected - depth_ref)
relative_depth_diff = depth_diff / depth_ref
mask = np.logical_and(dist < geo_pixel_thres, relative_depth_diff < geo_depth_thres)
depth_reprojected[~mask] = 0
return mask, depth_reprojected, x2d_src, y2d_src
def filter_depth(scan_folder, out_folder, plyfilename, geo_pixel_thres, geo_depth_thres, photo_thres, img_wh):
# the pair file
pair_file = os.path.join(scan_folder, "pair.txt")
# for the final point cloud
vertexs = []
vertex_colors = []
pair_data = read_pair_file(pair_file)
nviews = len(pair_data)
original_w = 1600
original_h = 1200
# for each reference view and the corresponding source views
for ref_view, src_views in pair_data:
# load the camera parameters
ref_intrinsics, ref_extrinsics = read_camera_parameters(
os.path.join(scan_folder, 'cams_1/{:0>8}_cam.txt'.format(ref_view)))
ref_intrinsics[0] *= img_wh[0]/original_w
ref_intrinsics[1] *= img_wh[1]/original_h
# load the reference image
ref_img = read_img(os.path.join(scan_folder, 'images/{:0>8}.jpg'.format(ref_view)), img_wh)
# load the estimated depth of the reference view
ref_depth_est = read_pfm(os.path.join(out_folder, 'depth_est/{:0>8}.pfm'.format(ref_view)))[0]
ref_depth_est = np.squeeze(ref_depth_est, 2)
# load the photometric mask of the reference view
confidence = read_pfm(os.path.join(out_folder, 'confidence/{:0>8}.pfm'.format(ref_view)))[0]
photo_mask = confidence > photo_thres
photo_mask = np.squeeze(photo_mask, 2)
all_srcview_depth_ests = []
# compute the geometric mask
geo_mask_sum = 0
for src_view in src_views:
# camera parameters of the source view
src_intrinsics, src_extrinsics = read_camera_parameters(
os.path.join(scan_folder, 'cams_1/{:0>8}_cam.txt'.format(src_view)))
src_intrinsics[0] *= img_wh[0]/original_w
src_intrinsics[1] *= img_wh[1]/original_h
# the estimated depth of the source view
src_depth_est = read_pfm(os.path.join(out_folder, 'depth_est/{:0>8}.pfm'.format(src_view)))[0]
geo_mask, depth_reprojected, x2d_src, y2d_src = check_geometric_consistency(ref_depth_est, ref_intrinsics, ref_extrinsics,
src_depth_est,
src_intrinsics, src_extrinsics,
geo_pixel_thres, geo_depth_thres)
geo_mask_sum += geo_mask.astype(np.int32)
all_srcview_depth_ests.append(depth_reprojected)
depth_est_averaged = (sum(all_srcview_depth_ests) + ref_depth_est) / (geo_mask_sum + 1)
# at least 3 source views matched
# large threshold, high accuracy, low completeness
geo_mask = geo_mask_sum >= 3
final_mask = np.logical_and(photo_mask, geo_mask)
os.makedirs(os.path.join(out_folder, "mask"), exist_ok=True)
save_mask(os.path.join(out_folder, "mask/{:0>8}_photo.png".format(ref_view)), photo_mask)
save_mask(os.path.join(out_folder, "mask/{:0>8}_geo.png".format(ref_view)), geo_mask)
save_mask(os.path.join(out_folder, "mask/{:0>8}_final.png".format(ref_view)), final_mask)
os.makedirs(os.path.join(out_folder, "depth_img"), exist_ok=True)
print("processing {}, ref-view{:0>2}, geo_mask:{:3f} photo_mask:{:3f} final_mask: {:3f}".format(scan_folder, ref_view,
geo_mask.mean(), photo_mask.mean(), final_mask.mean()))
if args.display:
import cv2
cv2.imshow('ref_img', ref_img[:, :, ::-1])
cv2.imshow('ref_depth', ref_depth_est / 800)
cv2.imshow('ref_depth * photo_mask', ref_depth_est * photo_mask.astype(np.float32) / 800)
cv2.imshow('ref_depth * geo_mask', ref_depth_est * geo_mask.astype(np.float32) / 800)
cv2.imshow('ref_depth * mask', ref_depth_est * final_mask.astype(np.float32) / 800)
cv2.waitKey(1)
height, width = depth_est_averaged.shape[:2]
x, y = np.meshgrid(np.arange(0, width), np.arange(0, height))
valid_points = final_mask
# print("valid_points", valid_points.mean())
x, y, depth = x[valid_points], y[valid_points], depth_est_averaged[valid_points]
color = ref_img[valid_points]
xyz_ref = np.matmul( np.linalg.inv(ref_intrinsics),
np.vstack((x, y, np.ones_like(x))) * depth)
xyz_world = np.matmul(np.linalg.inv(ref_extrinsics),
np.vstack((xyz_ref, np.ones_like(x))))[:3]
vertexs.append(xyz_world.transpose((1, 0)))
vertex_colors.append((color * 255).astype(np.uint8))
vertexs = np.concatenate(vertexs, axis=0)
vertex_colors = np.concatenate(vertex_colors, axis=0)
vertexs = np.array([tuple(v) for v in vertexs], dtype=[('x', 'f4'), ('y', 'f4'), ('z', 'f4')])
vertex_colors = np.array([tuple(v) for v in vertex_colors], dtype=[('red', 'u1'), ('green', 'u1'), ('blue', 'u1')])
vertex_all = np.empty(len(vertexs), vertexs.dtype.descr + vertex_colors.dtype.descr)
for prop in vertexs.dtype.names:
vertex_all[prop] = vertexs[prop]
for prop in vertex_colors.dtype.names:
vertex_all[prop] = vertex_colors[prop]
el = PlyElement.describe(vertex_all, 'vertex')
PlyData([el]).write(plyfilename)
print("saving the final model to", plyfilename)
if __name__ == '__main__':
# step1. save all the depth maps and the masks in outputs directory
save_depth()
img_wh=(1600, 1200)
with open(args.testlist) as f:
scans = f.readlines()
scans = [line.rstrip() for line in scans]
for scan in scans:
scan_id = int(scan[4:])
scan_folder = os.path.join(args.testpath, scan)
out_folder = os.path.join(args.outdir, scan)
# step2. filter saved depth maps with geometric constraints
filter_depth(scan_folder, out_folder, os.path.join(args.outdir, 'patchmatchnet{:0>3}_l3.ply'.format(scan_id)),
args.geo_pixel_thres, args.geo_depth_thres, args.photo_thres, img_wh)