-
Notifications
You must be signed in to change notification settings - Fork 2
/
train.py
354 lines (302 loc) · 18.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
import argparse
import os
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
from torch.utils.data import DataLoader
from torch.autograd import Variable
import torch.nn.functional as F
import numpy as np
import time
from torch.utils.tensorboard import SummaryWriter
from datasets import find_dataset_def
from models import *
from utils import *
import gc
import sys
import datetime
cudnn.benchmark = True
# arg cuda id
os.environ['CUDA_VISIBLE_DEVICES'] = "0"
parser = argparse.ArgumentParser(description='AdaptMVSNet for high-resolution multi-view stereo')
parser.add_argument('--mode', default='train', help='train or val', choices=['train', 'val'])
parser.add_argument('--model', default='AdaptMVSNet', help='select model')
parser.add_argument('--dataset', default='dtu_yao', help='select dataset')
parser.add_argument('--trainpath', help='train datapath')
parser.add_argument('--valpath', help='validation datapath')
parser.add_argument('--trainlist', help='train list')
parser.add_argument('--vallist', help='validation list')
parser.add_argument('--epochs', type=int, default=16, help='number of epochs to train')
parser.add_argument('--lr', type=float, default=0.00001, help='learning rate')
parser.add_argument('--lrepochs', type=str, default="10,12,14:2", help='epoch ids to downscale lr and the downscale rate')
parser.add_argument('--wd', type=float, default=0.0, help='weight decay')
parser.add_argument('--batch_size', type=int, default=12, help='train batch size')
parser.add_argument('--loadckpt', default=None, help='load a specific checkpoint')
parser.add_argument('--logdir', default='./checkpoints/debug', help='the directory to save checkpoints/logs')
parser.add_argument('--resume', action='store_true', help='continue to train the model')
parser.add_argument('--summary_freq', type=int, default=20, help='print and summary frequency')
parser.add_argument('--save_freq', type=int, default=1, help='save checkpoint frequency')
parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed')
parser.add_argument('--patchmatch_iteration', nargs='+', type=int, default=[1,2,2],
help='num of iteration of patchmatch on stages 1,2,3')
parser.add_argument('--patchmatch_num_sample', nargs='+', type=int, default=[8,8,16],
help='num of generated samples in local perturbation on stages 1,2,3')
parser.add_argument('--patchmatch_interval_scale', nargs='+', type=float, default=[0.005, 0.0125, 0.025],
help='normalized interval in inverse depth range to generate samples in local perturbation')
parser.add_argument('--patchmatch_range', nargs='+', type=int, default=[6,4,2],
help='fixed offset of sampling points for propogation of patchmatch on stages 1,2,3')
parser.add_argument('--propagate_neighbors', nargs='+', type=int, default=[0,8,16],
help='num of neighbors for adaptive propagation on stages 1,2,3')
parser.add_argument('--evaluate_neighbors', nargs='+', type=int, default=[9,9,9],
help='num of neighbors for adaptive matching cost aggregation of adaptive evaluation on stages 1,2,3')
# parse arguments and check
args = parser.parse_args()
if args.resume: # store_true means set the variable as "True"
assert args.mode == "train"
assert args.loadckpt is None
if args.valpath is None:
args.valpath = args.trainpath
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
if args.mode == "train":
if not os.path.isdir(args.logdir):
os.mkdir(args.logdir)
current_time_str = str(datetime.datetime.now().strftime('%Y%m%d_%H%M%S'))
print("current time", current_time_str)
print("creating new summary file")
logger = SummaryWriter(args.logdir)
print("argv:", sys.argv[1:])
print_args(args)
# dataset, dataloader
MVSDataset = find_dataset_def(args.dataset)
if args.dataset == 'dtu_yao':
train_dataset = MVSDataset(args.trainpath, args.trainlist, "train", 5, robust_train=True)
test_dataset = MVSDataset(args.valpath, args.vallist, "val", 5, robust_train=False)
TrainImgLoader = DataLoader(train_dataset, args.batch_size, shuffle=True, num_workers=8, drop_last=True)
TestImgLoader = DataLoader(test_dataset, args.batch_size, shuffle=False, num_workers=4, drop_last=False)
# model, optimizer
model = AdaptMVSNet(patchmatch_interval_scale=args.patchmatch_interval_scale,
propagation_range = args.patchmatch_range, patchmatch_iteration=args.patchmatch_iteration,
patchmatch_num_sample = args.patchmatch_num_sample,
propagate_neighbors=args.propagate_neighbors, evaluate_neighbors=args.evaluate_neighbors)
# if args.mode in ["train", "val"]:
# model = nn.DataParallel(model)
# for m in model():
# if isinstance(m, torch.nn.Conv2d):
# torch.nn.init.orthogonal(m.weight)
# for m in model.modules():
# for n in m.modules():
# if isinstance(n, (torch.nn.Linear, torch.nn.Conv1d, torch.nn.Conv2d,torch.nn.Conv3d)):
# torch.nn.init.xavier_uniform_(m.weight)
model.cuda()
model_loss = model.adaptmvsnet_loss()
optimizer = optim.Adam(model.parameters(), lr=args.lr, betas=(0.9, 0.999), weight_decay=args.wd)
# load parameters
start_epoch = 0
if (args.mode == "train" and args.resume) or (args.mode == "test" and not args.loadckpt):
saved_models = [fn for fn in os.listdir(args.logdir) if fn.endswith(".ckpt")]
saved_models = sorted(saved_models, key=lambda x: int(x.split('_')[-1].split('.')[0]))
# use the latest checkpoint file
loadckpt = os.path.join(args.logdir, saved_models[-1])
print("resuming", loadckpt)
state_dict = torch.load(loadckpt)
model.load_state_dict(state_dict['model'])
optimizer.load_state_dict(state_dict['optimizer'])
start_epoch = state_dict['epoch'] + 1
elif args.loadckpt:
# load checkpoint file specified by args.loadckpt
print("loading model {}".format(args.loadckpt))
state_dict = torch.load(args.loadckpt)
model.load_state_dict(state_dict['model'])
print("start at epoch {}".format(start_epoch))
print('Number of model parameters: {}'.format(sum([p.data.nelement() for p in model.parameters()])))
compute_normals_0 = NormalGenerator(height=512,width=640)
compute_normals_1 = NormalGenerator(height=int(512/2),width=int(640/2))
compute_normals_2 = NormalGenerator(height=int(512/4),width=int(640/4))
compute_normals_3 = NormalGenerator(height=int(512/8),width=int(640/8))
# main function
def train():
milestones = [int(epoch_idx) for epoch_idx in args.lrepochs.split(':')[0].split(',')]
lr_gamma = 1 / float(args.lrepochs.split(':')[1])
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones, gamma=lr_gamma,
last_epoch=start_epoch - 1)
for epoch_idx in range(start_epoch, args.epochs):
print('Epoch {}:'.format(epoch_idx))
lr_scheduler.step()
global_step = len(TrainImgLoader) * epoch_idx
# training
for batch_idx, sample in enumerate(TrainImgLoader):
start_time = time.time()
global_step = len(TrainImgLoader) * epoch_idx + batch_idx
do_summary = global_step % args.summary_freq == 0
do_summary_image = global_step % (50*args.summary_freq) == 0
loss, scalar_outputs, image_outputs = train_sample(sample, detailed_summary=do_summary)
if do_summary:
save_scalars(logger, 'train', scalar_outputs, global_step)
if do_summary_image:
save_images(logger, 'train', image_outputs, global_step)
del scalar_outputs, image_outputs
print(
'Epoch {}/{}, Iter {}/{}, train loss = {:.3f}, time = {:.3f}'.format(epoch_idx, args.epochs, batch_idx,
len(TrainImgLoader), loss,
time.time() - start_time))
# checkpoint
if (epoch_idx + 1) % args.save_freq == 0:
torch.save({
'epoch': epoch_idx,
'model': model.state_dict(),
'optimizer': optimizer.state_dict()},
"{}/model_{:0>6}.ckpt".format(args.logdir, epoch_idx))
# testing
avg_test_scalars = DictAverageMeter()
for batch_idx, sample in enumerate(TestImgLoader):
start_time = time.time()
global_step = len(TrainImgLoader) * epoch_idx + batch_idx
do_summary = global_step % args.summary_freq == 0
# do_summary_test = global_step % (10*args.summary_freq) == 0
do_summary_image = global_step % (50*args.summary_freq) == 0
loss, scalar_outputs, image_outputs = test_sample(sample, detailed_summary=do_summary)
if do_summary:
save_scalars(logger, 'test', scalar_outputs, global_step)
if do_summary_image:
save_images(logger, 'test', image_outputs, global_step)
avg_test_scalars.update(scalar_outputs)
del scalar_outputs, image_outputs
print('Epoch {}/{}, Iter {}/{}, test loss = {:.3f}, time = {:3f}'.format(epoch_idx, args.epochs, batch_idx,
len(TestImgLoader), loss,
time.time() - start_time))
save_scalars(logger, 'fulltest', avg_test_scalars.mean(), global_step)
print("avg_test_scalars:", avg_test_scalars.mean())
# gc.collect()
def test():
avg_test_scalars = DictAverageMeter()
for batch_idx, sample in enumerate(TestImgLoader):
start_time = time.time()
loss, scalar_outputs, image_outputs = test_sample(sample, detailed_summary=True)
avg_test_scalars.update(scalar_outputs)
del scalar_outputs, image_outputs
print('Iter {}/{}, test loss = {:.3f}, time = {:3f}'.format(batch_idx, len(TestImgLoader), loss,
time.time() - start_time))
if batch_idx % 100 == 0:
print("Iter {}/{}, test results = {}".format(batch_idx, len(TestImgLoader), avg_test_scalars.mean()))
print("final", avg_test_scalars)
def train_sample(sample, detailed_summary=False):
model.train()
optimizer.zero_grad()
sample_cuda = tocuda(sample)
depth_gt = sample_cuda["depth"]
mask = sample_cuda["mask"]
invK = sample_cuda["invK_b44"]
outputs = model(sample_cuda["imgs"], sample_cuda["proj_matrices"],
sample_cuda["depth_min"], sample_cuda["depth_max"])
depth_est = outputs["refined_depth"]
depth_patchmatch = outputs["depth_patchmatch"]
# estimate normals for groundtruth
normals_gt = {
"stage_0": compute_normals_0(depth_gt["stage_0"], invK["stage_0"]),
"stage_1": compute_normals_1(depth_gt["stage_1"], invK["stage_1"]),
"stage_2": compute_normals_2(depth_gt["stage_2"], invK["stage_2"]),
"stage_3": compute_normals_3(depth_gt["stage_3"], invK["stage_3"]),
}
# estimate normals for depth
normals_pred = {
"stage_0": compute_normals_0(depth_est["stage_0"], invK["stage_0"]),
"stage_1": compute_normals_1(depth_patchmatch["stage_1"][0], invK["stage_1"]),
"stage_2": compute_normals_2(depth_patchmatch["stage_2"][0], invK["stage_2"]),
"stage_3": compute_normals_3(depth_patchmatch["stage_3"][0], invK["stage_3"]),
}
loss = model_loss(depth_patchmatch, depth_est, depth_gt,normals_gt,normals_pred,mask)
loss.backward()
optimizer.step()
scalar_outputs = {"loss": loss}
image_outputs = {"depth_refined_stage_0": depth_est['stage_0'] * mask['stage_0'],
"depth_gt_stage_0": depth_gt['stage_0'] * mask['stage_0'],
"depth_patchmatch_stage_1": depth_patchmatch['stage_1'][-1] * mask['stage_1'],
"depth_patchmatch_stage_2": depth_patchmatch['stage_2'][-1] * mask['stage_2'],
"depth_patchmatch_stage_3": depth_patchmatch['stage_3'][-1] * mask['stage_3'],
"ref_img": sample["imgs"]['stage_0'][:, 0],
}
if detailed_summary:
image_outputs["errormap_refined_stage_0"] = (depth_est['stage_0'] - depth_gt['stage_0']).abs() * mask['stage_0']
image_outputs["errormap_patchmatch_stage_1"] = (depth_patchmatch['stage_1'][-1] - depth_gt['stage_1']).abs() * mask['stage_1']
image_outputs["errormap_patchmatch_stage_2"] = (depth_patchmatch['stage_2'][-1] - depth_gt['stage_2']).abs() * mask['stage_2']
image_outputs["errormap_patchmatch_stage_3"] = (depth_patchmatch['stage_3'][-1] - depth_gt['stage_3']).abs() * mask['stage_3']
scalar_outputs["abs_depth_error_refined_stage_0"] = AbsDepthError_metrics(depth_est['stage_0'], depth_gt['stage_0'], mask['stage_0'] > 0.5)
scalar_outputs["abs_depth_error_patchmatch_stage_3"] = AbsDepthError_metrics(depth_patchmatch['stage_3'][-1],
depth_gt['stage_3'], mask['stage_3'] > 0.5)
scalar_outputs["abs_depth_error_patchmatch_stage_2"] = AbsDepthError_metrics(depth_patchmatch['stage_2'][-1],
depth_gt['stage_2'], mask['stage_2'] > 0.5)
scalar_outputs["abs_depth_error_patchmatch_stage_1"] = AbsDepthError_metrics(depth_patchmatch['stage_1'][-1],
depth_gt['stage_1'], mask['stage_1'] > 0.5)
# threshold = 1mm
scalar_outputs["thres1mm_error"] = Thres_metrics(depth_est['stage_0'], depth_gt['stage_0'], mask['stage_0'] > 0.5, 1)
# threshold = 2mm
scalar_outputs["thres2mm_error"] = Thres_metrics(depth_est['stage_0'], depth_gt['stage_0'], mask['stage_0'] > 0.5, 2)
# threshold = 4mm
scalar_outputs["thres4mm_error"] = Thres_metrics(depth_est['stage_0'], depth_gt['stage_0'], mask['stage_0'] > 0.5, 4)
# threshold = 8mm
scalar_outputs["thres8mm_error"] = Thres_metrics(depth_est['stage_0'], depth_gt['stage_0'], mask['stage_0'] > 0.5, 8)
return tensor2float(loss), tensor2float(scalar_outputs), image_outputs
@make_nograd_func
def test_sample(sample, detailed_summary=True):
model.eval()
sample_cuda = tocuda(sample)
depth_gt = sample_cuda["depth"]
mask = sample_cuda["mask"]
invK = sample_cuda["invK_b44"]
outputs = model(sample_cuda["imgs"], sample_cuda["proj_matrices"],
sample_cuda["depth_min"], sample_cuda["depth_max"])
depth_est = outputs["refined_depth"]
depth_patchmatch = outputs["depth_patchmatch"]
# estimate normals for groundtruth
normals_gt = {
"stage_0": compute_normals_0(depth_gt["stage_0"], invK["stage_0"]),
"stage_1": compute_normals_1(depth_gt["stage_1"], invK["stage_1"]),
"stage_2": compute_normals_2(depth_gt["stage_2"], invK["stage_2"]),
"stage_3": compute_normals_3(depth_gt["stage_3"], invK["stage_3"]),
}
# estimate normals for depth
normals_pred = {
"stage_0": compute_normals_0(depth_est["stage_0"], invK["stage_0"]),
"stage_1": compute_normals_1(depth_patchmatch["stage_1"][0], invK["stage_1"]),
"stage_2": compute_normals_2(depth_patchmatch["stage_2"][0], invK["stage_2"]),
"stage_3": compute_normals_3(depth_patchmatch["stage_3"][0], invK["stage_3"]),
}
loss = model_loss(depth_patchmatch, depth_est, depth_gt, normals_gt,normals_pred,mask)
scalar_outputs = {"loss": loss}
image_outputs = {"depth_refined_stage_0": depth_est['stage_0'] * mask['stage_0'],
"depth_gt_stage_0": depth_gt['stage_0'] * mask['stage_0'],
"depth_patchmatch_stage_1": depth_patchmatch['stage_1'][-1] * mask['stage_1'],
"depth_patchmatch_stage_2": depth_patchmatch['stage_2'][-1] * mask['stage_2'],
"depth_patchmatch_stage_3": depth_patchmatch['stage_3'][-1] * mask['stage_3'],
"ref_img": sample["imgs"]['stage_0'][:, 0],
}
if detailed_summary:
image_outputs["errormap_refined_stage_0"] = (depth_est['stage_0'] - depth_gt['stage_0']).abs() * mask['stage_0']
image_outputs["errormap_patchmatch_stage_1"] = (depth_patchmatch['stage_1'][-1] - depth_gt['stage_1']).abs() * mask['stage_1']
image_outputs["errormap_patchmatch_stage_2"] = (depth_patchmatch['stage_2'][-1] - depth_gt['stage_2']).abs() * mask['stage_2']
image_outputs["errormap_patchmatch_stage_3"] = (depth_patchmatch['stage_3'][-1] - depth_gt['stage_3']).abs() * mask['stage_3']
scalar_outputs["abs_depth_error_refined_stage_0"] = AbsDepthError_metrics(depth_est['stage_0'], depth_gt['stage_0'], mask['stage_0'] > 0.5)
scalar_outputs["abs_depth_error_patchmatch_stage_3"] = AbsDepthError_metrics(depth_patchmatch['stage_3'][-1],
depth_gt['stage_3'], mask['stage_3'] > 0.5)
scalar_outputs["abs_depth_error_patchmatch_stage_2"] = AbsDepthError_metrics(depth_patchmatch['stage_2'][-1],
depth_gt['stage_2'], mask['stage_2'] > 0.5)
scalar_outputs["abs_depth_error_patchmatch_stage_1"] = AbsDepthError_metrics(depth_patchmatch['stage_1'][-1],
depth_gt['stage_1'], mask['stage_1'] > 0.5)
# threshold = 1mm
scalar_outputs["thres1mm_error"] = Thres_metrics(depth_est['stage_0'], depth_gt['stage_0'], mask['stage_0'] > 0.5, 1)
# threshold = 2mm
scalar_outputs["thres2mm_error"] = Thres_metrics(depth_est['stage_0'], depth_gt['stage_0'], mask['stage_0'] > 0.5, 2)
# threshold = 4mm
scalar_outputs["thres4mm_error"] = Thres_metrics(depth_est['stage_0'], depth_gt['stage_0'], mask['stage_0'] > 0.5, 4)
# threshold = 8mm
scalar_outputs["thres8mm_error"] = Thres_metrics(depth_est['stage_0'], depth_gt['stage_0'], mask['stage_0'] > 0.5, 8)
return tensor2float(loss), tensor2float(scalar_outputs), image_outputs
if __name__ == '__main__':
if args.mode == "train":
with torch.autograd.set_detect_anomaly(True):
train()
elif args.mode == "val":
test()