Skip to content

Latest commit

 

History

History
85 lines (69 loc) · 2.57 KB

README.md

File metadata and controls

85 lines (69 loc) · 2.57 KB

Dify Backend API

Usage

  1. Start the docker-compose stack

    The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

    cd ../docker
    docker-compose -f docker-compose.middleware.yaml -p dify up -d
    cd ../api
  2. Copy .env.example to .env

  3. Generate a SECRET_KEY in the .env file.

    sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
  4. Create environment.

    • Anaconda
      If you use Anaconda, create a new environment and activate it
    conda create --name dify python=3.10
    conda activate dify
    • Poetry
      If you use Poetry, you don't need to manually create the environment. You can execute poetry shell to activate the environment.
  5. Install dependencies

    • Anaconda
    pip install -r requirements.txt
    • Poetry
    poetry install

    In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

    poetry shell                                               # activate current environment
    poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
    poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
    
  6. Run migrate

    Before the first launch, migrate the database to the latest version.

    flask db upgrade

    ⚠️ If you encounter problems with jieba, for example

    > flask db upgrade
    Error: While importing 'app', an ImportError was raised:
    

    Please run the following command instead.

    pip install -r requirements.txt --upgrade --force-reinstall
    
  7. Start backend:

    flask run --host 0.0.0.0 --port=5001 --debug
  8. Setup your application by visiting http://localhost:5001/console/api/setup or other apis...

  9. If you need to debug local async processing, please start the worker service by running celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail. The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment

    pip install -r requirements.txt -r requirements-dev.txt
  2. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml

    dev/pytest/pytest_all_tests.sh