-
Notifications
You must be signed in to change notification settings - Fork 1
/
skipdensenet3d.py
182 lines (149 loc) · 8.1 KB
/
skipdensenet3d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import torch
import torch.nn as nn
import os
import numpy as np
from collections import OrderedDict
class _DenseLayer(nn.Sequential):
def __init__(self, num_input_features, growth_rate, bn_size, drop_rate):
super(_DenseLayer, self).__init__()
self.add_module('norm1', nn.BatchNorm3d(num_input_features)),
self.add_module('relu1', nn.ReLU(inplace=True)),
self.add_module('conv1', nn.Conv3d(num_input_features, bn_size *
growth_rate, kernel_size=1, stride=1, bias=False)),
self.add_module('norm2', nn.BatchNorm3d(bn_size * growth_rate)),
self.add_module('relu2', nn.ReLU(inplace=True)),
self.add_module('conv2', nn.Conv3d(bn_size * growth_rate, growth_rate,
kernel_size=3, stride=1, padding=1, bias=False)),
self.drop_rate = drop_rate
if self.drop_rate > 0:
self.drop_layer = nn.Dropout(p=self.drop_rate)
def forward(self, x):
new_features = super(_DenseLayer, self).forward(x)
if self.drop_rate > 0:
new_features = self.drop_layer(new_features)
return torch.cat([x, new_features], 1)
class _DenseBlock(nn.Sequential):
def __init__(self, num_layers, num_input_features, bn_size, growth_rate, drop_rate):
super(_DenseBlock, self).__init__()
for i in range(num_layers):
layer = _DenseLayer(num_input_features + i * growth_rate, growth_rate, bn_size, drop_rate)
self.add_module('denselayer%d' % (i + 1), layer)
class _Transition(nn.Sequential):
def __init__(self, num_input_features, num_output_features):
super(_Transition, self).__init__()
self.add_module('norm', nn.BatchNorm3d(num_input_features))
self.add_module('relu', nn.ReLU(inplace=True))
self.add_module('conv', nn.Conv3d(num_input_features, num_output_features,
kernel_size=1, stride=1, bias=False))
self.add_module('pool_norm', nn.BatchNorm3d(num_output_features))
self.add_module('pool_relu', nn.ReLU(inplace=True))
self.add_module('pool', nn.Conv3d(num_output_features, num_output_features, kernel_size=2, stride=2))
# TODO test model
class SkipDenseNet3D(nn.Module):
"""Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
Based on the implementation of https://github.com/tbuikr/3D-SkipDenseSeg
Paper here : https://arxiv.org/pdf/1709.03199.pdf
Args:
growth_rate (int) - how many filters to add each layer (`k` in paper)
block_config (list of 4 ints) - how many layers in each pooling block
num_init_features (int) - the number of filters to learn in the first convolution layer
bn_size (int) - multiplicative factor for number of bottle neck layers
(i.e. bn_size * k features in the bottleneck layer)
drop_rate (float) - dropout rate after each dense layer
classes (int) - number of classification classes
"""
def __init__(self, in_channels=1, classes=3, growth_rate=16, block_config=(4, 4, 4, 4), num_init_features=32, drop_rate=0.1,
bn_size=4):
super(SkipDenseNet3D, self).__init__()
self.num_classes = classes
# First three convolutions
self.features = nn.Sequential(OrderedDict([
('conv0', nn.Conv3d(in_channels, num_init_features, kernel_size=3, stride=1, padding=1, bias=False)),
('norm0', nn.BatchNorm3d(num_init_features)),
('relu0', nn.ReLU(inplace=True)),
('conv1', nn.Conv3d(num_init_features, num_init_features, kernel_size=3, stride=1, padding=1, bias=False)),
('norm1', nn.BatchNorm3d(num_init_features)),
('relu1', nn.ReLU(inplace=True)),
('conv2', nn.Conv3d(num_init_features, num_init_features, kernel_size=3, stride=1, padding=1, bias=False)),
]))
self.features_bn = nn.Sequential(OrderedDict([
('norm2', nn.BatchNorm3d(num_init_features)),
('relu2', nn.ReLU(inplace=True)),
]))
self.conv_pool_first = nn.Conv3d(num_init_features, num_init_features, kernel_size=2, stride=2, padding=0,
bias=False)
# Each denseblock
num_features = num_init_features
self.dense_blocks = nn.ModuleList([])
self.transit_blocks = nn.ModuleList([])
self.upsampling_blocks = nn.ModuleList([])
for i, num_layers in enumerate(block_config):
block = _DenseBlock(num_layers=num_layers, num_input_features=num_features,
bn_size=bn_size, growth_rate=growth_rate, drop_rate=drop_rate)
self.dense_blocks.append(block)
num_features = num_features + num_layers * growth_rate
up_block = nn.ConvTranspose3d(num_features, classes, kernel_size=2 ** (i + 1) + 2,
stride=2 ** (i + 1),
padding=1, groups=1, bias=False)
self.upsampling_blocks.append(up_block)
if i != len(block_config) - 1:
trans = _Transition(num_input_features=num_features, num_output_features=num_features // 2)
self.transit_blocks.append(trans)
# self.features.add_module('transition%d' % (i + 1), trans)
num_features = num_features // 2
# Final batch norm
# self.features.add_module('norm5', nn.BatchNorm3d(num_features))
# Linear layer
# self.classifier = nn.Linear(num_features, num_classes)
# self.bn4 = nn.BatchNorm3d(num_features)
# ----------------------- classifier -----------------------
self.bn_class = nn.BatchNorm3d(classes * 4 + num_init_features)
self.conv_class = nn.Conv3d(classes * 4 + num_init_features, classes, kernel_size=1, padding=0)
self.relu_last = nn.ReLU()
# ----------------------------------------------------------
# Official init from torch repo.
for m in self.modules():
if isinstance(m, nn.Conv3d):
nn.init.kaiming_normal_(m.weight)
# nn.Conv3d.bias.data.fill_(-0.1)
elif isinstance(m, nn.BatchNorm3d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def forward(self, x):
first_three_features = self.features(x)
first_three_features_bn = self.features_bn(first_three_features)
out = self.conv_pool_first(first_three_features_bn)
out = self.dense_blocks[0](out)
up_block1 = self.upsampling_blocks[0](out)
out = self.transit_blocks[0](out)
out = self.dense_blocks[1](out)
up_block2 = self.upsampling_blocks[1](out)
out = self.transit_blocks[1](out)
out = self.dense_blocks[2](out)
up_block3 = self.upsampling_blocks[2](out)
out = self.transit_blocks[2](out)
out = self.dense_blocks[3](out)
up_block4 = self.upsampling_blocks[3](out)
out = torch.cat([up_block1, up_block2, up_block3, up_block4, first_three_features], 1)
# ----------------------- classifier -----------------------
out = self.conv_class(self.relu_last(self.bn_class(out)))
# ----------------------------------------------------------
return out
# 帮我测试这个模型
if __name__ == '__main__':
# 输入会经过 2、4、8、16倍下采样,因此输入必须是16的倍数
import torch
from torchsummary import summary
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = SkipDenseNet3D(in_channels=1, classes=3, growth_rate=16, block_config=(4, 4, 4, 4), num_init_features=32, drop_rate=0.1,
bn_size=4).to(device)
#生成伪3D数据测试模型
input_shape = (1, 1, 64, 64, 64) # (batch_size, channels, height, width, depth)
input_data = torch.randn(input_shape).to(device)
print(model(input_data))
print(input_data)
print(input_data.shape)
print(model.state_dict().keys())
summary(model, input_size=(1, 64, 64, 64), device=device.type)
# print(model)
# print(model.state_dict().keys())