-
Notifications
You must be signed in to change notification settings - Fork 2
/
Project - JXJ.Rmd
177 lines (150 loc) · 5.02 KB
/
Project - JXJ.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
---
title: "Project"
author: "JI XIAOJUN"
date: "4/21/2020"
output: html_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
### Install Packages
```{r}
packages = c('tidyverse','reshape','ggplot2','tidyr','gganimate','stringr','plotly','RColorBrewer','adegenet','NAM','snow','doSNOW','parallel','circular','d3heatmap','plotly','viridis','hrbrthemes','grid','gtable','leaflet')
for (p in packages){
if(!require(p,character.only = T)){
install.packages(p)
}
library(p, character.only = T)
}
install.packages('leaflet')
library(leaflet)
library(shiny)
```
### Read File
```{r}
# Prepare data
all <- read.csv('data/All.csv', header = TRUE)
names(all)[4]="Country"
names(all)[1]='Continent'
choice <- colnames(all)[1:4]
head(all)
print(choice)
```
### Shiny
```{r}
#### User Interface
ui <- bootstrapPage(
#shinythemes::themeSelector(),
tags$head("Human Development Report"),
navbarPage(theme = shinytheme("flatly"), collapsible = TRUE,
"Human Development Report", id="nav",
tabPanel("World mapper",
div(leafletOutput("mymap"),
p(),
actionButton("recalc", "New points")
)),
tabPanel("HDI"),
tabPanel("Gender Development Index"),
tabPanel("Poverty Index"),
tabPanel("Population"),
tabPanel("Health"),
tabPanel("Education"),
tabPanel("Data"),
tabPanel("About us")),
sidebarLayout(
sidebarPanel(width = 3,
selectInput('level','Choose a Level', choices = choice),
selectInput("country","Choose countries",choices = unique(HDI$Country), multiple = TRUE),
sliderInput("year",'choose year', min = 1990, max = 2018, value = c(1990,2018),step = 1),
actionButton("Search", "Search"),
actionButton("Help","About")
),
mainPanel(
fluidRow(column(plotly::plotlyOutput(outputId = "LEtrend"),width = 4, height = 3),
column(plotly::plotlyOutput(outputId = "MStrend"),width = 4),
column(plotly::plotlyOutput(outputId = "EStrend"),width = 4)),
fluidRow(column(plotly::plotlyOutput(outputId = "GNItrend"),width = 4),
column(plotly::plotlyOutput(outputId = "HDItrend"),width = 4))
)
)
)
#### Server
server<-function(input, output, session){
## filter data
extract_data <- reactive({
all %>%
filter(Country == input$country,
Year >= input$year[1],
Year <= input$year[2])
})
## HDI trend plot
reactive_HDI <- eventReactive(input$Search,{
extract_data()%>%
plot_ly(x = ~Year, y=~HDI, color = ~Country, hoverinfo = "text",
text = ~paste(input$country, HDI)) %>%
add_lines()%>%
layout(showlegend=TRUE)
})
output$HDItrend <- renderPlotly({reactive_HDI()})
## Life Expectancy trend plot
reactive_LifeExpectancy <- eventReactive(input$Search,{
extract_data()%>%
plot_ly(x = ~Year, y=~Life_Expectancy, color = ~Country, hoverinfo = "text",
text = ~paste(input$country, Life_Expectancy)) %>%
add_lines()%>%
layout(showlegend=TRUE)
})
output$LEtrend <- renderPlotly({reactive_LifeExpectancy()})
## Expected Schooling trend plot
reactive_ExpectedSchooling <- eventReactive(input$Search,{
extract_data()%>%
plot_ly(x = ~Year, y=~Expected_Years_of_Schooling, color = ~Country, hoverinfo = "text",
text = ~paste(input$country, Expected_Years_of_Schooling)) %>%
add_lines()%>%
layout(showlegend=TRUE)
})
output$EStrend <- renderPlotly({reactive_ExpectedSchooling()})
## Mean Schooling trend plot
reactive_MeanSchooling <- eventReactive(input$Search,{
extract_data()%>%
plot_ly(x = ~Year, y=~Mean_Years_of_Schooling, color = ~Country, hoverinfo = "text",
text = ~paste(input$country, Mean_Years_of_Schooling)) %>%
add_lines()%>%
layout(showlegend=TRUE)
})
output$MStrend <- renderPlotly({reactive_MeanSchooling()})
## GNI per capita trend plot
reactive_GNI <- eventReactive(input$Search,{
extract_data()%>%
plot_ly(x = ~Year, y=~GNI_per_capita, color = ~Country, hoverinfo = "text",
text = ~paste(input$country, GNI_per_capita)) %>%
add_lines()%>%
layout(showlegend=TRUE)
})
output$GNItrend <- renderPlotly({reactive_GNI()})
}
shinyApp(ui = ui, server = server)
```
```{r}
output$duration_table <- renderTable({
HDI %>%
filter(
Country == input$country,
Year >= input$year[1],
Year <= input$year[2]
) %>%
group_by(shape) %>%
summarize(
nb_sighted = n(),
avg_duration = mean(duration_sec),
median_duration = median(duration_sec),
min_duration = min(duration_sec),
max_duration = max(duration_sec)
)
})
```
```{r}
install.packages("shinyWidgets")
library(shinyWidgets)
shinyWidgetsGallery()
```