-
Notifications
You must be signed in to change notification settings - Fork 0
/
repooler.py
executable file
·605 lines (532 loc) · 30.1 KB
/
repooler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
#!/usr/bin/env python2.7
import re
import math
import unicodedata
import csv
import copy
import sys
import os
import yaml
import couchdb
import numpy
import click
from collections import defaultdict, Counter, OrderedDict
from time import time
from datetime import datetime
from genologics.config import BASEURI, USERNAME, PASSWORD
from genologics.lims import Lims
from genologics.entities import Process
def credentials():
try:
config_file = os.path.join(os.environ.get("HOME"), ".ngi_config", "statusdb.yaml")
if not os.path.exists(config_file):
config_file = os.path.join(os.environ.get("REPOOLER_CONFIG"))
with open(config_file) as f:
conf = yaml.load(f)
config = conf["statusdb"]
return config
except IOError:
raise IOError(("There was a problem loading the configuration file. "
"Please make sure that ~/.ngi_config/statusdb.yaml exists "
"or env vairable 'REPOOLER_CONFIG' is set with path to conf "
"file and set with read permissions"))
#Assumes ind. sample conc measurements have failed. As such it relies on changing relative volume on already normalized samples and structure
#Structure are retained as conc measurements failure means there's no way to know conc. delta between samples from seperate poolss
def connection():
config = credentials()
user = config.get("username")
pw = config.get("password")
print("Database server used: http://{}".format(config.get("url")))
print("LIMS server used: " + BASEURI)
couch = couchdb.Server('http://{}:{}@{}:{}'.format(user, pw, config.get("url"), config.get("port")))
try:
print "Connecting to statusDB..."
couch.version()
except:
sys.exit("Can't connect to couch server. Username & Password is incorrect, or network is inaccessible.")
print "Connected!"
return couch
def proj_struct(couch, project, target_clusters):
""""Fetches the structure of a project"""
db = couch['x_flowcells']
view = db.view('names/project_ids_list')
fc_track = defaultdict(set)
#Adds flowcells to ALL projects. Due to interactions its easier to just get FCs for ALL projects
for rec in view.rows:
fc = ''.join(rec.key)
fc = unicodedata.normalize('NFKD', fc).encode('ascii','ignore')
id = ''.join(rec.id)
id = unicodedata.normalize('NFKD', id).encode('ascii','ignore')
for projs in rec.value:
projs = ''.join(projs)
projs = unicodedata.normalize('NFKD', projs).encode('ascii','ignore')
if fc_track[projs] == set([]):
fc_track[projs] = dict()
fc_track[projs][fc] = id
#Adds lanes and samples to flowcells, includes samples from other projects if they share lane
if fc_track[project] == set([]):
raise Exception('Error: Project not logged in x_flowcells database!')
for fc, id in fc_track[project].items():
try:
entry = db[id]['illumina']
except KeyError:
print "Error: Illumina table for db entry" , id, "doesn't exist!"
entry = db[id]['illumina']['Demultiplex_Stats']['Barcode_lane_statistics']
for index in xrange(0, len(entry)):
lane = entry[index]['Lane']
sample = entry[index]['Sample']
if 'Clusters' in entry[index]:
clusters = entry[index]['Clusters']
else:
clusters = entry[index]['PF Clusters']
clusters = int(re.sub(r",", "", clusters))
if not isinstance(fc_track[project][fc], dict):
fc_track[project][fc] = dict()
if not lane in fc_track[project][fc]:
fc_track[project][fc][lane] = dict()
#Only counts samples for the given project, other samples are "auto-filled"
if project in sample or sample in "Undetermined":
fc_track[project][fc][lane][sample] = clusters
else:
fc_track[project][fc][lane][sample] = target_clusters
#Removes any lanes that don't have any part project samples
for fc, lanes in fc_track[project].items():
for lane,sample in lanes.items():
if not any(project in s for s in sample.keys()):
del fc_track[project][fc][lane]
return fc_track[project]
def parse_indata(struct, target_clusters):
"""Takes in data and finds unique lane structure, clusters per sample and lane division"""
clusters_rem = dict() #Total remaining clusters
lane_maps = dict() #All possible structs. Sample-aggregate is a string, values are average expression
sample_struct = dict() #All possible structs. Values are a list of samples per lane
copies = dict() #Keeps track of duplicates of each structure
for fc, lanes in struct.items():
for lane, samples in lanes.items():
#Concats the structure into a set of unique structures
mapp = sorted(samples, reverse=True)
map_names = str(mapp)
map_values = [value for (key, value) in sorted(samples.items(), reverse=True)]
if not map_names in lane_maps:
sample_struct[map_names] = mapp
lane_maps[map_names] = numpy.array(map_values)
copies[map_names] = 1
else:
lane_maps[map_names] = lane_maps[map_names] + numpy.array(map_values)
copies[map_names] = copies[map_names]+1
#Calculate remaining clusters for each sample
for sample, value in samples.items():
if not sample in clusters_rem:
clusters_rem[sample] = target_clusters
clusters_rem[sample] -= value
if clusters_rem[sample] < 0:
clusters_rem[sample] = 0
#Calculate average output of sample for each structure type
for names, values in lane_maps.items():
values = numpy.array(values)
#Explicit typecast
values = values.astype(float)
#Calculate average
lane_maps[names] = values/copies[names]
#Manually overwrites undetermined to exclude them
#lane_maps[names][0] = 0
return [lane_maps, clusters_rem, sample_struct]
def simple_unique_set(sample_struct, clusters_rem, target_clusters):
"""Creates a set where every sample uniquely appears once and only once
Prioritizes lanes with most unsequenced samples first"""
#Inline function to calculate number of unfinished samples per lane
def f(x):
count = 0
for sample in x:
if clusters_rem[sample] < target_clusters:
count = count + 1
#print count
return count
#Best = Most samples in need of sequencing = End of lists
top_lanes = OrderedDict(sorted(sample_struct.items(), key=lambda t: f(t[1])))
confirmed_best = dict()
while not top_lanes.keys() == []:
#pop the best candidate
prime = top_lanes.popitem()
#Check that including the prime doesn't induce duplicates
sample_ok = True
for p_sample in prime[1]:
for keys, values in confirmed_best.items():
if p_sample in values and p_sample != "Undetermined":
#print("DEBUG: {} is already present in final set, auto-discarding {}".format(p_sample, keys))
sample_ok = False
break
#Part 2
if sample_ok:
#Check that including prime doesn't block a remaining lane with uniques.
#Tally up blocked lanes & samples from them
blocked_lanes = list()
blocked_samples = list()
for p_sample in prime[1]:
for t_key, t_sample in top_lanes.items():
if p_sample in t_sample and p_sample != "Undetermined":
blocked_lanes.append(t_key)
blocked_samples.extend(top_lanes[t_key])
#Break if all instances of a sample end up in blocked lanes
#Must handle case where no blocked samples happen
sample_killed = False
for b_sample in set(blocked_samples):
sample_killed = True
for r_key, r_values in top_lanes.items():
if (b_sample in r_values or b_sample in prime[1]) and r_key not in blocked_lanes:
sample_killed = False
break
if not sample_killed:
confirmed_best[prime[0]] = prime[1]
#DEBUG: Remove blocked lanes from top_lanes
for b_lane in set(blocked_lanes):
#print ("DEBUG: {} was blocked by another sample's inclusion!".format(b_lane))
del top_lanes[b_lane]
validate_samples_unique(confirmed_best)
validate_all_samples_present(confirmed_best, sample_struct, clusters_rem)
return confirmed_best
def validate_samples_unique(lane_maps):
"""Crude way to check that no samples are in different TYPES of lanes"""
tempList = list()
#Put all values in a list
for k, v in lane_maps.items():
for index in xrange(1,len(v)):
if not v[index] == 'Undetermined':
tempList.append(v[index])
#Count instances of all items in the list
counter = Counter(tempList)
for values in counter.itervalues():
if values > 1:
raise Exception('Error: Sample present in multiple structures. Unhandled exception!')
def validate_all_samples_present(subset_struct, sample_struct, clusters_rem):
"""Takes sample_struct and a subset of sample_struct, and checks that all present in sample_struct with remaining clusters
also exist in subset_struct"""
#Form a list of all samples in sample_struct
tempList = list()
for key, samplelist in sample_struct.items():
for element in samplelist:
if not element in tempList and clusters_rem[element] > 0:
tempList.append(element)
#Verify that all samples exist in subset_struct
for element in tempList:
found = False
for key, samplelist in subset_struct.items():
if element in samplelist:
found = True
break
if not found:
raise Exception('Error: Sample missing after subset was generated! {} is one of these'.format(element))
def sample_distributor(sample_struct, clusters_rem, clusters_per_lane):
"""Gives the percentage volume each sample should have in a lane, BEFORE accounting
for concentration offsets"""
desired_ratios = dict()
# Key: string of samples. values: Percentage, sample order as sample_struct.values()
ideal_lanes = dict()
needed_lanes = dict()
for s_key, s_val in sample_struct.items():
#Calculate lane total (sum)
lane_total = 0
corrected_total = 0
for entry in sample_struct[s_key]:
if clusters_rem[entry] > 0:
lane_total += clusters_rem[entry]
if entry != "Undetermined":
corrected_total += clusters_rem[entry]
#Ignores Undetermined in clusters remaining. Idealy this would be ignored everywher
#but the calculations are complex.
ideal_lanes[s_key] = corrected_total/float(clusters_per_lane)
needed_lanes[s_key] = math.ceil(ideal_lanes[s_key])
#Populate output sample rates
desired_ratios[s_key] = []
for entry in sample_struct[s_key]:
if lane_total == 0:
desired_ratios[s_key].append(0)
elif clusters_rem[entry] > 0:
desired_ratios[s_key].append(clusters_rem[entry]/float(lane_total))
else:
desired_ratios[s_key].append(0/float(lane_total))
#desired ratios = desired clusters per lane (for given sample) / clusters per lane
return [desired_ratios, needed_lanes, ideal_lanes]
def integrate_conc_diff(lane_maps, desired_ratios):
"""Since some samples are strong and some weaksauce
10% in desired_ratios does not mean 10% of lane volume
Ignores undetermined clusters in calculation
Sample conc assumably cant be altered; aka only volume is modified"""
volume_ratios = dict()
conc_factor = dict()
#FROM HERE NEEDS HEAVY REVISION
for key in desired_ratios:
#Assumes no samples had unequal volume in structure
#TODO: Use LIMS integration to avoid this assumption
actual_output = lane_maps[key]/sum(lane_maps[key])
expect_output = []
expect_output.append(0.0) #Expect 0 undetermined
for index in xrange(1, len(lane_maps[key])):
expect_output.append(1/float(len(lane_maps[key]) -1))#-1 Removes undetermined
#TODO: One could include undetermined here
#Overriding errstate since expected is 0 for undetermined
with numpy.errstate(divide='ignore'):
conc_factor[key] = actual_output/expect_output
#Division verified. One with high Actual/Expressed should naturally be less of in repool.
volume_ratios[key] = desired_ratios[key] / conc_factor[key]
#Merge down to 100%. Makes sense, since samples differ in volume.
if not sum(volume_ratios[key]) == 0:
volume_ratios[key] = volume_ratios[key]/sum(volume_ratios[key])
else:
# If lane struct 'is done', force array to contain a list of zeros
volume_ratios[key] = numpy.zeros(len(volume_ratios[key]))
return volume_ratios, conc_factor
def realize_numbers(lane_maps, best_sample_struct, volume_ratios, conc_factor, clusters_rem, total_lanes, pool_excess, lane_volume, min_pipette):
"""Actual numbers need to be offset to:
Work with a pipette minimum and pipette threshold in relation to pool size (5 ul) + excess.
Lanesum is then downsized to sub 100% with as equal coverage as possible.
If impossible entire process is rerun with an extra lane for that struct.
"""
extra_lanes=dict()
rounded_ratios = dict()
final_pool_sizes = dict()
#Remaining clusters for structure
rem_list = dict()
for key, values in best_sample_struct.items():
t_list = []
for name in best_sample_struct[key]:
t_list.append(clusters_rem[name])
rem_list[key] = numpy.array(t_list)
#For each structure
for key, values in volume_ratios.items():
calculations_done = False
while not calculations_done:
poolsize = lane_volume*total_lanes[key] + pool_excess
minTres = round(min_pipette/poolsize, 6)
minAdd = round(0.1/poolsize, 6)
#Rounds all values up
uprounded = []
for sample in values:
#Handles problems with Undetermined
if sample == 0:
uprounded.append(0.0)
elif sample <= minTres:
uprounded.append(minTres)
else:
sample = sample-(sample%minAdd)
uprounded.append(sample)
uprounded = numpy.array(uprounded)
#Sets 'Undetermined's factor to 0, helps out later.
conc_factor[key][0] = 0
calculations_done = True
while sum(uprounded) > 1.0:
#Overexpression per sample (expressed - remaining). Expressed = ratio * clusters_per_lane * lanes
#Uprounded*conc_factor[key] SHOULD even out itself; since it only offsets ratios. Sum still 1
oe_list = (uprounded*conc_factor[key])*sum(lane_maps[key])*total_lanes[key] - rem_list[key]
#Order indexes in oe_list by value (descending)
max_index = oe_list.argsort()[::-1]
stuck = True
for most_oe in max_index:
#Remove one minAdd IF greater than minTres+minAdd AND (ratio-minAdd)*factor > remaining_clusters
if uprounded[most_oe] >= minAdd + minTres and (uprounded[most_oe] - minAdd)*conc_factor[key][most_oe]*sum(lane_maps[key])*total_lanes[key] > rem_list[key][most_oe]:
uprounded[most_oe] = uprounded[most_oe] - minAdd
stuck = False
break
#Add extra lane, restart the loop for the whole structure (new pool size)
if stuck:
total_lanes[key] = total_lanes[key] + 1
if not key in extra_lanes:
extra_lanes[key] = 0
extra_lanes[key] = extra_lanes[key] + 1
calculations_done = False
break
final_pool_sizes[key] = poolsize*float(sum(uprounded))
##TODO: Sum of output rounded_ratios is less than 100% before normalizing; weird but likely correct.
if sum(uprounded) == 0:
rounded_ratios[key] = uprounded
else:
rounded_ratios[key] = uprounded/float(sum(uprounded))
return [rounded_ratios, final_pool_sizes, extra_lanes]
def generate_output(project_id, dest_plate_list, best_sample_struct,total_lanes, req_lanes, lane_maps, rounded_ratios,
target_clusters, clusters_per_lane, extra_lanes, lane_volume, pool_excess, final_pool_sizes, volume_ratios, desired_ratios):
""""Gathers the container id and well name for all samples in project"""
timestamp = datetime.fromtimestamp(time()).strftime('%Y-%m-%d_%H:%M')
#Cred to Denis for providing a base epp
location = dict()
lims = Lims(BASEURI, USERNAME, PASSWORD)
allProjects = lims.get_projects()
for proj in allProjects:
if proj.id == project_id:
projName = proj.name
break
#Sets up source id
#All normalization processes for project
norms=['Library Normalization (MiSeq) 4.0', 'Library Normalization (Illumina SBS) 4.0','Library Normalization (HiSeq X) 1.0']
pros=lims.get_processes(type=norms, projectname=projName)
#For all processes
for p in pros:
#For all artifacts in process
for o in p.all_outputs():
#If artifact is analyte type and has project name in sample
if o.type=="Analyte" and project_id in o.name:
location[o.name.split()[0]] = list()
location[o.name.split()[0]].append(o.location[0].id)
location[o.name.split()[0]].append(o.location[1])
#Continue coding from here
generate_summary(projName, best_sample_struct, timestamp, project_id, dest_plate_list, total_lanes, req_lanes,
lane_maps, rounded_ratios, target_clusters, clusters_per_lane, extra_lanes, volume_ratios, desired_ratios, lane_volume, pool_excess)
generate_csv(projName, timestamp, location, dest_plate_list, total_lanes, best_sample_struct, rounded_ratios, lane_volume, pool_excess, final_pool_sizes)
generate_dumpfile(projName, timestamp, location, dest_plate_list, total_lanes, best_sample_struct, rounded_ratios, lane_volume, pool_excess, final_pool_sizes)
def generate_summary(projName, best_sample_struct, timestamp, project_id, dest_plate_list, total_lanes, req_lanes, lane_maps, rounded_ratios,
target_clusters, clusters_per_lane, extra_lanes, volume_ratios, desired_ratios, lane_volume, pool_excess):
"""Print stats including duplicates"""
sumName = '{}_summary_{}.txt'.format(projName, timestamp)
with open(sumName, "w") as summary:
if sum(req_lanes.values()) != 0:
OPT = sum(total_lanes.values())/sum(req_lanes.values())
else:
raise Exception('Ideally zero more lanes are required. Unable to calcuate OPT!')
if OPT > 1.5:
print("\nWarning, OPT exceeds 1.5x! Generated solution is so poor a better one can likely be done by hand!")
nonzero_pool_types = 0
for key, value in total_lanes.items():
if value > 0:
nonzero_pool_types = nonzero_pool_types +1
output = 'Target clusters per sample: {}, Expected clusters per lane: {}\n'.format(str(target_clusters), str(clusters_per_lane))
output = output + 'Lane volume: {} microliter(s), Pool excess: {} microliter(s)\n'.format(lane_volume, pool_excess)
output = output + 'Project ID: {}, Destination plate name list: {}\n'.format(project_id, str(dest_plate_list))
output = (output + 'Ideal lanes (same schema): {}, Total lanes: {}, Expression over theoretical ideal (OPT): {}x\n'
.format(str(round(sum(req_lanes.values()),3)), str(sum(total_lanes.values())), str(round(OPT,3))))
output = output + 'Lanes added due to pipette limitations: {} (this can be mitigated with bigger pools).\n'.format(sum(extra_lanes.values()))
output = output + 'Unique pools: {}, Average pool duplication (ignores empty): {}\n'.format(str(len(total_lanes.keys())),
str(round(sum(total_lanes.values())/float(nonzero_pool_types),3)))
summary.write( output )
bin = 0
for key, value in best_sample_struct.items():
if total_lanes[key] > 0:
bin += 1
if key in extra_lanes:
output = '\nLane {:>2} to {:>2}+{}: {:>12} {:>12} {:>14} {:>7}\n'.format(str(bin), str(bin+int(total_lanes[key])-1),str(extra_lanes[key]),
'Corrected Pipette', 'Minimum % (partial lanes)', 'Corrected Volume','Naive ratio')
bin += int(total_lanes[key]-1+extra_lanes[key])
else:
output = '\nLane {:>2} to {:>2}: {:>19} {:>12} {:>14} {:>7}\n'.format(str(bin), str(bin+int(total_lanes[key])-1),
'Corrected Pipette','Minimum % (partial lanes)','Corrected Volume','Naive ratio')
bin += int(total_lanes[key]-1)
summary.write( output )
for sample in xrange(1, len(value)):
if sample != "Undetermined":
if key in extra_lanes:
lane_ratio = req_lanes[key]/(total_lanes[key]+extra_lanes[key])
else:
lane_ratio = req_lanes[key]/(total_lanes[key])
output = '{:11}{:>22}%{:>25}%{:>16}%{:>11}%\n'.format(str(best_sample_struct[key][sample]), str(round(rounded_ratios[key][sample]*100,2)),
str(round(volume_ratios[key][sample]*100*lane_ratio,2)),
str(round(volume_ratios[key][sample]*100,2)),str(round(desired_ratios[key][sample]*100,2)))
summary.write( output )
def generate_csv(projName, timestamp, location, dest_plate_list, total_lanes, best_sample_struct, rounded_ratios, lane_volume, pool_excess, final_pool_sizes):
"""Creates the output csv file"""
name = '{}_repool_{}.csv'.format(projName, timestamp)
wells = ['Empty','A','B','C','D','E','F','G','H']
#Index 0 is number, index 1 is Letter
wellIndex = [1, 1]
destNo = 0
pool_max = 200
with open(name, 'w') as csvfile:
writer = csv.writer(csvfile)
for key, value in best_sample_struct.items():
#If a structure is unused, don't include it in the csv
if not final_pool_sizes[key] == 0:
try:
dest_plate_list[destNo]
except IndexError:
dest_plate_list.append ('dp_{}'.format(str(destNo+1)))
#print "Critical error; not enough destination plates provided"
if pool_max < final_pool_sizes[key]:
raise Exception("Error: A pool has been requested that can't be fit into a single well!")
for instance in xrange(1, len(value)):
#<source plate ID>,<source well>,<volume>,<destination plate ID>,<destination well>
sample = best_sample_struct[key][instance]
position = '{}:{}'.format(wells[wellIndex[1]], str(wellIndex[0]))
try:
out_pool = round(rounded_ratios[key][instance]*final_pool_sizes[key],2)
output = location[sample][0],location[sample][1],str(out_pool),str(dest_plate_list[destNo]),position
except KeyError:
print "Error: Samples incorrectly parsed into database, thus causing sample name conflicts!"
if not rounded_ratios[key][instance] == 0:
writer.writerow(output)
#Increment wellsindex
if not rounded_ratios[key][instance] == 0:
if not wellIndex[1] >= 8:
wellIndex[1] += 1
else:
wellIndex[1] = 1
if not wellIndex[0] >= 12:
wellIndex[0] += 1
else:
wellIndex[0] = 1
destNo += 1
def generate_dumpfile(projName, timestamp, location, dest_plate_list, total_lanes, best_sample_struct, rounded_ratios, lane_volume, pool_excess, final_pool_sizes):
"""Dumps output to a crappy csvfile. Because I'm awesome like that"""
name = '{}_dumpfile_{}.csv'.format(projName, timestamp)
wells = ['Empty','A','B','C','D','E','F','G','H']
#Index 0 is number, index 1 is Letter
wellIndex = [1, 1]
destNo = 0
pool_max = 200
with open(name, 'w') as csvfile:
writer = csv.writer(csvfile)
headers = "<samplename>","<source plate ID>","<source well>","<volume>","<destination plate ID>","<destination well>"
writer.writerow(headers)
for key, value in best_sample_struct.items():
#If a structure is unused, don't include it in the csv
if not final_pool_sizes[key] == 0:
try:
dest_plate_list[destNo]
except IndexError:
dest_plate_list.append ('dp_{}'.format(str(destNo+1)))
#print "Critical error; not enough destination plates provided"
if pool_max < final_pool_sizes[key]:
raise Exception("Error: A pool has been requested that can't be fit into a single well!")
for instance in xrange(1, len(value)):
#samplename,<source plate ID>,<source well>,<volume>,<destination plate ID>,<destination well>
sample = best_sample_struct[key][instance]
position = '{}:{}'.format(wells[wellIndex[1]], str(wellIndex[0]))
try:
out_pool = round(rounded_ratios[key][instance]*final_pool_sizes[key],2)
output = sample,location[sample][0],location[sample][1],str(out_pool),str(dest_plate_list[destNo]),position
except KeyError:
print "Error: Samples incorrectly parsed into database, thus causing sample name conflicts!"
if not rounded_ratios[key][instance] == 0:
writer.writerow(output)
#Increment wellsindex
if not rounded_ratios[key][instance] == 0:
if not wellIndex[1] >= 8:
wellIndex[1] += 1
else:
wellIndex[1] = 1
if not wellIndex[0] >= 12:
wellIndex[0] += 1
else:
wellIndex[0] = 1
destNo += 1
@click.command()
@click.option('--project_id', required=True,help='ID of project to repool. \nExamples: P2652, P1312 etc.')
@click.option('--dest_plate_list', default=['dp_1'],
help='List of destination plates for the robot\'s csv file. Include too many rather than too few; excess will be unused. Default: [dp_1]')
@click.option('--target_clusters', default=320*1000000, help='Threshold of clusters per sample. \nDefault:320*1000000')
@click.option('--clusters_per_lane', default=380*1000000, help='Expected clusters generated by a single lane/well. \nDefault:380*1000000')
@click.option('--lane_volume', default=5, help='Lane volume. \nDefault:5 (uL)')
@click.option('--pool_excess', default=2, help='Excess pool volume when creating a pool. \nDefault:2 (uL)')
@click.option('--min_pipette', default=1, help='Minimum pipette volume. \nDefault:1 (uL)')
def main(target_clusters, clusters_per_lane, project_id, dest_plate_list, lane_volume, pool_excess, min_pipette):
"""Application that calculates samples under threshold for a project, then calculate the optimal composition for reaching the threshold
without altering concentrations nor the structure of the pools. Outputs both a summary as well as a functional csv file."""
print("\nWARNING: Output from repooler is experimental. Remember to review all numbers before re-sequencing.\n")
couch = connection()
structure = proj_struct(couch, project_id, target_clusters)
[lane_maps, clusters_rem, sample_struct] = parse_indata(structure, target_clusters)
best_sample_struct = simple_unique_set(sample_struct, clusters_rem, target_clusters)
[desired_ratios, total_lanes, req_lanes] = sample_distributor(best_sample_struct, clusters_rem, clusters_per_lane)
[volume_ratios, conc_factor] = integrate_conc_diff(lane_maps, desired_ratios)
[rounded_ratios, final_pool_sizes, extra_lanes] = realize_numbers(lane_maps, best_sample_struct, volume_ratios, conc_factor,
clusters_rem, total_lanes, pool_excess, lane_volume, min_pipette)
generate_output(project_id, dest_plate_list, best_sample_struct, total_lanes, req_lanes, lane_maps, rounded_ratios,
target_clusters, clusters_per_lane, extra_lanes,lane_volume,pool_excess, final_pool_sizes, volume_ratios, desired_ratios)
if __name__ == '__main__':
main()