Skip to content

FlowEternal/pointlanenet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Pointlanenet model training / inference / deploy in onnxruntime

Introduction

This is my previous work on pointlane detection using pointlanenet
This repo includes bothing model training and model inference in python and c++

How to Run

training

编辑model\models\cfgs\lane_exp.yml
(1)resnet34 backbone
(2)yolo csp backbone
(3)NAS backbone
其中_cls结尾的为同时训练车道线检测和车道线类别
而_reg结尾的只训练车道线检测
有预训练模型的先加载预训练模型
可以通过变换类别来获取不同的模型

## start training
python run.py

inference

python inference.py
// 这里设置deploy = false
// DEPLOY = False
// BATCH_SIZE = 1
// MODEL_PATH = "tasks/test.pth" // 这是上一步训练获得的模型
// MODEL_CONFIG = "models/archs/lane_reg_nas.json" // 这是上一把训练模型的模型配置文件

deploy

## export onnx and simplify
python inference.py
// 这里设置deploy = True
// DEPLOY = True
// BATCH_SIZE = 1
// MODEL_PATH = "tasks/test.pth" // 这是上一步训练获得的模型
// MODEL_CONFIG = "models/archs/lane_reg_nas.json" // 这是上一把训练模型的模型配置文件
python -m onnxsim .\lane_reg.onnx .\lane_reg_simplify.onnx
最后得到最终的简化模型
 
##  visual studio 2017 deploy SDK
打开pointlane\deploy\build\PROJECT_NAME.sln
将简化后的模型放到pointlane\deploy\model下面
然后按Ctrl + F5运行程序

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published