forked from threedle/text2mesh
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mesh.py
94 lines (74 loc) · 3.47 KB
/
mesh.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import kaolin as kal
import torch
import utils
from utils import device
import copy
import numpy as np
import PIL
class Mesh():
def __init__(self,obj_path,color=torch.tensor([0.0,0.0,1.0])):
if ".obj" in obj_path:
mesh = kal.io.obj.import_mesh(obj_path, with_normals=True)
elif ".off" in obj_path:
mesh = kal.io.off.import_mesh(obj_path)
else:
raise ValueError(f"{obj_path} extension not implemented in mesh reader.")
self.vertices = mesh.vertices.to(device)
self.faces = mesh.faces.to(device)
self.vertex_normals = None
self.face_normals = None
self.texture_map = None
self.face_uvs = None
if ".obj" in obj_path:
# if mesh.uvs.numel() > 0:
# uvs = mesh.uvs.unsqueeze(0).to(device)
# face_uvs_idx = mesh.face_uvs_idx.to(device)
# self.face_uvs = kal.ops.mesh.index_vertices_by_faces(uvs, face_uvs_idx).detach()
if mesh.vertex_normals is not None:
self.vertex_normals = mesh.vertex_normals.to(device).float()
# Normalize
self.vertex_normals = torch.nn.functional.normalize(self.vertex_normals)
if mesh.face_normals is not None:
self.face_normals = mesh.face_normals.to(device).float()
# Normalize
self.face_normals = torch.nn.functional.normalize(self.face_normals)
self.set_mesh_color(color)
def standardize_mesh(self,inplace=False):
mesh = self if inplace else copy.deepcopy(self)
return utils.standardize_mesh(mesh)
def normalize_mesh(self,inplace=False):
mesh = self if inplace else copy.deepcopy(self)
return utils.normalize_mesh(mesh)
def update_vertex(self,verts,inplace=False):
mesh = self if inplace else copy.deepcopy(self)
mesh.vertices = verts
return mesh
def set_mesh_color(self,color):
self.texture_map = utils.get_texture_map_from_color(self,color)
self.face_attributes = utils.get_face_attributes_from_color(self,color)
def set_image_texture(self,texture_map,inplace=True):
mesh = self if inplace else copy.deepcopy(self)
if isinstance(texture_map,str):
texture_map = PIL.Image.open(texture_map)
texture_map = np.array(texture_map,dtype=np.float) / 255.0
texture_map = torch.tensor(texture_map,dtype=torch.float).to(device).permute(2,0,1).unsqueeze(0)
mesh.texture_map = texture_map
return mesh
def divide(self,inplace=True):
mesh = self if inplace else copy.deepcopy(self)
new_vertices, new_faces, new_face_uvs = utils.add_vertices(mesh)
mesh.vertices = new_vertices
mesh.faces = new_faces
mesh.face_uvs = new_face_uvs
return mesh
def export(self, file, color=None):
with open(file, "w+") as f:
for vi, v in enumerate(self.vertices):
if color is None:
f.write("v %f %f %f\n" % (v[0], v[1], v[2]))
else:
f.write("v %f %f %f %f %f %f\n" % (v[0], v[1], v[2], color[vi][0], color[vi][1], color[vi][2]))
if self.vertex_normals is not None:
f.write("vn %f %f %f\n" % (self.vertex_normals[vi, 0], self.vertex_normals[vi, 1], self.vertex_normals[vi, 2]))
for face in self.faces:
f.write("f %d %d %d\n" % (face[0] + 1, face[1] + 1, face[2] + 1))