forked from KlausT/ccminer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pentablake.cu
533 lines (442 loc) · 13.8 KB
/
pentablake.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
/**
* Penta Blake-512 Cuda Kernel (Tested on SM 5.0)
*
* Tanguy Pruvot - Aug. 2014
*/
#include "miner.h"
extern "C" {
#include "sph/sph_blake.h"
}
#ifdef __cplusplus
#include <cstdint>
#else
#include <stdint.h>
#endif
#include <memory.h>
/* threads per block */
#define TPB 192
/* hash by cpu with blake 256 */
void pentablakehash(void *output, const void *input)
{
unsigned char hash[128];
#define hashB hash + 64
sph_blake512_context ctx;
sph_blake512_init(&ctx);
sph_blake512(&ctx, input, 80);
sph_blake512_close(&ctx, hash);
sph_blake512(&ctx, hash, 64);
sph_blake512_close(&ctx, hashB);
sph_blake512(&ctx, hashB, 64);
sph_blake512_close(&ctx, hash);
sph_blake512(&ctx, hash, 64);
sph_blake512_close(&ctx, hashB);
sph_blake512(&ctx, hashB, 64);
sph_blake512_close(&ctx, hash);
memcpy(output, hash, 32);
}
#include "cuda_helper.h"
__constant__
static uint32_t __align__(32) c_Target[8];
__constant__
static uint64_t __align__(32) c_data[32];
static uint32_t *d_resNounce[MAX_GPUS];
static uint32_t *h_resNounce[MAX_GPUS];
static uint32_t extra_results[MAX_GPUS][2] = { UINT32_MAX };
/* prefer uint32_t to prevent size conversions = speed +5/10 % */
__constant__
static uint32_t __align__(32) c_sigma[16][16];
const uint32_t host_sigma[16][16] = {
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
{14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
{11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 },
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 },
{12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 },
{13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 },
{ 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 },
{10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13 , 0 },
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
{14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
{11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 },
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 }
};
__device__ __constant__
static const uint64_t __align__(32) c_IV512[8] = {
0x6a09e667f3bcc908ULL,
0xbb67ae8584caa73bULL,
0x3c6ef372fe94f82bULL,
0xa54ff53a5f1d36f1ULL,
0x510e527fade682d1ULL,
0x9b05688c2b3e6c1fULL,
0x1f83d9abfb41bd6bULL,
0x5be0cd19137e2179ULL
};
__device__ __constant__
const uint64_t c_u512[16] =
{
0x243f6a8885a308d3ULL, 0x13198a2e03707344ULL,
0xa4093822299f31d0ULL, 0x082efa98ec4e6c89ULL,
0x452821e638d01377ULL, 0xbe5466cf34e90c6cULL,
0xc0ac29b7c97c50ddULL, 0x3f84d5b5b5470917ULL,
0x9216d5d98979fb1bULL, 0xd1310ba698dfb5acULL,
0x2ffd72dbd01adfb7ULL, 0xb8e1afed6a267e96ULL,
0xba7c9045f12c7f99ULL, 0x24a19947b3916cf7ULL,
0x0801f2e2858efc16ULL, 0x636920d871574e69ULL
};
#define G(a,b,c,d,x) { \
uint32_t idx1 = c_sigma[i][x]; \
uint32_t idx2 = c_sigma[i][x + 1]; \
v[a] += (m[idx1] ^ c_u512[idx2]) + v[b]; \
v[d] = SWAPDWORDS(v[d] ^ v[a]); \
v[c] += v[d]; \
v[b] = ROTR64(v[b] ^ v[c], 25); \
v[a] += (m[idx2] ^ c_u512[idx1]) + v[b]; \
v[d] = ROTR64(v[d] ^ v[a], 16); \
v[c] += v[d]; \
v[b] = ROTR64(v[b] ^ v[c], 11); \
}
// Hash-Padding
__device__ __constant__
static const uint64_t d_constHashPadding[8] = {
0x0000000000000080ull,
0,
0,
0,
0,
0x0100000000000000ull,
0,
0x0002000000000000ull
};
#if 0
__device__ __constant__
static const uint64_t __align__(32) c_Padding[16] = {
0, 0, 0, 0,
0x80000000ULL, 0, 0, 0,
0, 0, 0, 0,
0, 1, 0, 640,
};
__device__ static
void pentablake_compress(uint64_t *h, const uint64_t *block, const uint32_t T0)
{
uint64_t v[16], m[16];
m[0] = block[0];
m[1] = block[1];
m[2] = block[2];
m[3] = block[3];
for (uint32_t i = 4; i < 16; i++) {
m[i] = (T0 == 0x200) ? block[i] : c_Padding[i];
}
//#pragma unroll 8
for(uint32_t i = 0; i < 8; i++)
v[i] = h[i];
v[ 8] = c_u512[0];
v[ 9] = c_u512[1];
v[10] = c_u512[2];
v[11] = c_u512[3];
v[12] = xor1(c_u512[4], T0);
v[13] = xor1(c_u512[5], T0);
v[14] = c_u512[6];
v[15] = c_u512[7];
for (uint32_t i = 0; i < 16; i++) {
/* column step */
G(0, 4, 0x8, 0xC, 0x0);
G(1, 5, 0x9, 0xD, 0x2);
G(2, 6, 0xA, 0xE, 0x4);
G(3, 7, 0xB, 0xF, 0x6);
/* diagonal step */
G(0, 5, 0xA, 0xF, 0x8);
G(1, 6, 0xB, 0xC, 0xA);
G(2, 7, 0x8, 0xD, 0xC);
G(3, 4, 0x9, 0xE, 0xE);
}
//#pragma unroll 16
for (uint32_t i = 0; i < 16; i++) {
uint32_t j = i & 7;
h[j] ^= v[i];
}
}
__global__
void pentablake_gpu_hash_80(uint32_t threads, uint32_t startNounce, uint32_t *resNounce)
{
const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
const uint32_t nounce = startNounce + thread;
uint64_t h[8];
#pragma unroll
for(int i=0; i<8; i++) {
h[i] = c_IV512[i];
}
uint64_t ending[4];
ending[0] = c_data[16];
ending[1] = c_data[17];
ending[2] = c_data[18];
ending[3] = nounce; /* our tested value */
pentablake_compress(h, ending, 640);
// -----------------------------------
for (int r = 0; r < 4; r++) {
uint64_t data[8];
for (int i = 0; i < 7; i++) {
data[i] = h[i];
}
pentablake_compress(h, data, 512); /* todo: use h,h when ok*/
}
}
}
#endif
__device__ static
void pentablake_compress(uint64_t *h, const uint64_t *block, const uint64_t T0)
{
uint64_t v[16], m[16], i;
#pragma unroll 16
for(i = 0; i < 16; i++) {
m[i] = cuda_swab64(block[i]);
}
#pragma unroll 8
for (i = 0; i < 8; i++)
v[i] = h[i];
v[ 8] = c_u512[0];
v[ 9] = c_u512[1];
v[10] = c_u512[2];
v[11] = c_u512[3];
v[12] = c_u512[4] ^ T0;
v[13] = c_u512[5] ^ T0;
v[14] = c_u512[6];
v[15] = c_u512[7];
//#pragma unroll 16
for( i = 0; i < 16; i++)
{
/* column step */
G(0, 4, 0x8, 0xC, 0x0);
G(1, 5, 0x9, 0xD, 0x2);
G(2, 6, 0xA, 0xE, 0x4);
G(3, 7, 0xB, 0xF, 0x6);
/* diagonal step */
G(0, 5, 0xA, 0xF, 0x8);
G(1, 6, 0xB, 0xC, 0xA);
G(2, 7, 0x8, 0xD, 0xC);
G(3, 4, 0x9, 0xE, 0xE);
}
//#pragma unroll 16
for (i = 0; i < 16; i++) {
uint32_t idx = i & 7;
h[idx] ^= v[i];
}
}
__global__
void pentablake_gpu_hash_80(uint32_t threads, const uint32_t startNounce, void *outputHash)
{
const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
uint64_t h[8];
uint64_t buf[16];
const uint32_t nounce = startNounce + thread;
//#pragma unroll 8
for(int i=0; i<8; i++)
h[i] = c_IV512[i];
//#pragma unroll 16
for (int i=0; i < 16; i++)
buf[i] = c_data[i];
// The test Nonce
((uint32_t*)buf)[19] = cuda_swab32(nounce);
pentablake_compress(h, buf, 640ULL);
uint64_t *outHash = (uint64_t *)outputHash + 8 * thread;
for (uint32_t i=0; i < 8; i++) {
outHash[i] = cuda_swab64( h[i] );
}
}
}
__host__
void pentablake_cpu_hash_80(int thr_id, uint32_t threads, const uint32_t startNounce, uint32_t *d_outputHash)
{
dim3 grid((threads + TPB-1)/TPB);
dim3 block(TPB);
pentablake_gpu_hash_80 <<<grid, block, 0, gpustream[thr_id]>>> (threads, startNounce, d_outputHash);
}
__global__
void pentablake_gpu_hash_64(uint32_t threads, uint32_t startNounce, uint64_t *g_hash)
{
const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
uint64_t *inpHash = &g_hash[thread<<3]; // hashPosition * 8
uint64_t buf[16]; // 128 Bytes
uint64_t h[8]; // State
#pragma unroll 8
for (int i=0; i<8; i++)
h[i] = c_IV512[i];
// Message for first round
#pragma unroll 8
for (int i=0; i < 8; ++i)
buf[i] = inpHash[i];
#pragma unroll 8
for (int i=0; i < 8; i++)
buf[i+8] = d_constHashPadding[i];
// Ending round
pentablake_compress(h, buf, 512);
uint64_t *outHash = &g_hash[thread<<3];
for (int i=0; i < 8; i++) {
outHash[i] = cuda_swab64(h[i]);
}
}
}
__host__
void pentablake_cpu_hash_64(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_outputHash)
{
dim3 grid((threads + TPB - 1) / TPB);
dim3 block(TPB);
pentablake_gpu_hash_64 <<<grid, block, 0, gpustream[thr_id]>>> (threads, startNounce, (uint64_t*)d_outputHash);
}
#if 0
__host__
uint32_t pentablake_cpu_hash_80(int thr_id, uint32_t threads, uint32_t startNounce)
{
uint32_t result = UINT32_MAX;
dim3 grid((threads + TPB-1)/TPB);
dim3 block(TPB);
/* Check error on Ctrl+C or kill to prevent segfaults on exit */
if (cudaMemset(d_resNounce[thr_id], 0xff, 2*sizeof(uint32_t)) != cudaSuccess)
return result;
pentablake_gpu_hash_80<<<grid, block, 0, gpustream[thr_id]>>>(threads, startNounce, d_resNounce[thr_id]);
cudaDeviceSynchronize();
if (cudaSuccess == cudaMemcpyAsync(h_resNounce[thr_id], d_resNounce[thr_id], 2*sizeof(uint32_t), cudaMemcpyDeviceToHost)) {
result = h_resNounce[thr_id][0];
extra_results[thr_id][0] = h_resNounce[thr_id][1];
}
return result;
}
#endif
__global__
void pentablake_gpu_check_hash(uint32_t threads, uint32_t startNounce, uint32_t *g_hash, uint32_t *resNounce)
{
const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
const uint32_t nounce = startNounce + thread;
const uint32_t *const inpHash = &g_hash[thread<<4];
if (cuda_hashisbelowtarget(inpHash, c_Target))
{
uint32_t tmp = atomicExch(resNounce, nounce);
if (tmp != 0xffffffffu)
resNounce[1] = tmp;
}
}
}
__host__ static
uint32_t pentablake_check_hash(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_inputHash)
{
uint32_t result = UINT32_MAX;
dim3 grid((threads + TPB - 1) / TPB);
dim3 block(TPB);
/* Check error on Ctrl+C or kill to prevent segfaults on exit */
if (cudaMemsetAsync(d_resNounce[thr_id], 0xff, 2 * sizeof(uint32_t), gpustream[thr_id]) != cudaSuccess)
return result;
pentablake_gpu_check_hash <<<grid, block, 0, gpustream[thr_id]>>> (threads, startNounce, d_inputHash, d_resNounce[thr_id]);
CUDA_SAFE_CALL(cudaMemcpyAsync(h_resNounce[thr_id], d_resNounce[thr_id], 2 * sizeof(uint32_t), cudaMemcpyDeviceToHost, gpustream[thr_id]));
cudaStreamSynchronize(gpustream[thr_id]);
result = h_resNounce[thr_id][0];
extra_results[thr_id][0] = h_resNounce[thr_id][1];
return result;
}
__host__
void pentablake_cpu_setBlock_80(int thr_id, uint32_t *pdata, const uint32_t *ptarget)
{
uint8_t data[128];
memcpy((void*) data, (void*) pdata, 80);
memset(data+80, 0, 48);
// to swab...
data[80] = 0x80;
data[111] = 1;
data[126] = 0x02;
data[127] = 0x80;
CUDA_SAFE_CALL(cudaMemcpyToSymbolAsync(c_data, data, sizeof(data), 0, cudaMemcpyHostToDevice, gpustream[thr_id]));
CUDA_SAFE_CALL(cudaMemcpyToSymbolAsync(c_sigma, host_sigma, sizeof(host_sigma), 0, cudaMemcpyHostToDevice, gpustream[thr_id]));
CUDA_SAFE_CALL(cudaMemcpyToSymbolAsync(c_Target, ptarget, 32, 0, cudaMemcpyHostToDevice, gpustream[thr_id]));
}
static volatile bool init[MAX_GPUS] = { false };
extern int scanhash_pentablake(int thr_id, uint32_t *pdata, uint32_t *ptarget,
uint32_t max_nonce, uint32_t *hashes_done)
{
static THREAD uint32_t *d_hash = nullptr;
const uint32_t first_nonce = pdata[19];
uint32_t endiandata[20];
int rc = 0;
uint32_t throughputmax = device_intensity(device_map[thr_id], __func__, 128U * 2560); // 18.5
uint32_t throughput = min(throughputmax, (max_nonce - first_nonce)) & 0xfffffc00;
if (opt_benchmark)
ptarget[7] = 0x000F;
if (!init[thr_id])
{
CUDA_SAFE_CALL(cudaSetDevice(device_map[thr_id]));
CUDA_SAFE_CALL(cudaDeviceReset());
CUDA_SAFE_CALL(cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync));
CUDA_SAFE_CALL(cudaDeviceSetCacheConfig(cudaFuncCachePreferL1));
CUDA_SAFE_CALL(cudaStreamCreate(&gpustream[thr_id]));
#if defined WIN32 && !defined _WIN64
// 2GB limit for cudaMalloc
if(throughputmax > 0x7fffffffULL / 64)
{
applog(LOG_ERR, "intensity too high");
mining_has_stopped[thr_id] = true;
cudaStreamDestroy(gpustream[thr_id]);
proper_exit(2);
}
#endif
CUDA_SAFE_CALL(cudaMalloc(&d_hash, 64 * throughputmax));
CUDA_SAFE_CALL(cudaMallocHost(&h_resNounce[thr_id], 2*sizeof(uint32_t)));
CUDA_SAFE_CALL(cudaMalloc(&d_resNounce[thr_id], 2*sizeof(uint32_t)));
mining_has_stopped[thr_id] = false;
init[thr_id] = true;
}
for (int k=0; k < 20; k++)
be32enc(&endiandata[k], pdata[k]);
pentablake_cpu_setBlock_80(thr_id, endiandata, ptarget);
do {
// GPU HASH
pentablake_cpu_hash_80(thr_id, throughput, pdata[19], d_hash);
pentablake_cpu_hash_64(thr_id, throughput, pdata[19], d_hash);
pentablake_cpu_hash_64(thr_id, throughput, pdata[19], d_hash);
pentablake_cpu_hash_64(thr_id, throughput, pdata[19], d_hash);
pentablake_cpu_hash_64(thr_id, throughput, pdata[19], d_hash);
CUDA_SAFE_CALL(cudaGetLastError());
uint32_t foundNonce = pentablake_check_hash(thr_id, throughput, pdata[19], d_hash);
if(stop_mining) {mining_has_stopped[thr_id] = true; cudaStreamDestroy(gpustream[thr_id]); pthread_exit(nullptr);}
if(foundNonce != UINT32_MAX)
{
const uint32_t Htarg = ptarget[7];
uint32_t vhashcpu[8] = { 0 };
if(opt_verify)
{
be32enc(&endiandata[19], foundNonce);
pentablakehash(vhashcpu, endiandata);
}
if (vhashcpu[7] <= Htarg && fulltest(vhashcpu, ptarget))
{
rc = 1;
*hashes_done = pdata[19] - first_nonce + throughput;
if (extra_results[thr_id][0] != UINT32_MAX) {
// Rare but possible if the throughput is big
applog(LOG_NOTICE, "GPU found more than one result yippee!");
pdata[21] = extra_results[thr_id][0];
extra_results[thr_id][0] = UINT32_MAX;
rc++;
}
pdata[19] = foundNonce;
return rc;
}
else if (vhashcpu[7] > Htarg) {
applog(LOG_WARNING, "GPU #%d: result for nounce %08x is not in range: %x > %x", device_map[thr_id], foundNonce, vhashcpu[7], Htarg);
}
else {
applog(LOG_WARNING, "GPU #%d: result for nounce %08x does not validate on CPU!", device_map[thr_id], foundNonce);
}
}
pdata[19] += throughput; CUDA_SAFE_CALL(cudaGetLastError());
} while (!work_restart[thr_id].restart && ((uint64_t)max_nonce > ((uint64_t)(pdata[19]) + (uint64_t)throughput)));
*hashes_done = pdata[19] - first_nonce ;
return rc;
}