-
Notifications
You must be signed in to change notification settings - Fork 0
/
ROM_Kriging_train_mixed.m
62 lines (39 loc) · 1.1 KB
/
ROM_Kriging_train_mixed.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
function ROM_Kriging = ROM_Kriging_train_mixed(X,threshold,hyperpar)
% Training reduced order model with Kriging with mixed kernel
[U, S, V] = svd(X, 'econ');
Sigma = diag(S);
for i = 1 :length(Sigma)
energy(i) = sum(Sigma(1:i))./sum(Sigma);
if energy(i) > threshold
r = i;
break;
end
end
U_r = U(:, 1:r); % truncate to rank-r
S_r = S(1:r, 1:r);
V_r = V(:, 1:r);
X_r = U_r'*X; % Input
% plot(1:m,X_r(3,:))
n = r; m = size(X_r,2);
u_input= X_r(:,1:m-1)'; u_output = X_r(:,2:m)';
N = length(u_input);
hyperpar.theta = [0.1 0.5];
hyperpar.lb = 10^-7.*ones(1,2);
hyperpar.ub = [20 1];
ub_input = max(abs(u_input));
u_input = u_input./repmat(ub_input,N,1);
u_output = u_output./repmat(ub_input,N,1);
x = u_input;
%% hyper-parameter
for k = 1:n
y = u_output(:,k);
inputpar.x = x;
inputpar.y = y;
t1 = clock;
ROM_Kriging{k} = Kriging_fit_mixed(inputpar,hyperpar); % training Kriging model
t2 = clock;
ROM_Kriging{k}.Yr = u_output; % multiple output
end
ROM_Kriging{1}.basis = U_r;
ROM_Kriging{1}.ub_input = ub_input;
end