-
Notifications
You must be signed in to change notification settings - Fork 0
/
GPR_ROM_prediction.m
65 lines (46 loc) · 1.85 KB
/
GPR_ROM_prediction.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
function [Mu_full,Var_full,X_full] = GPR_ROM_prediction(x_test,Snapshots,Mu_t,Var_t,U_r,x_train)
%% Prediction of FOM for an untried parameter
%{
Created by: Kai Cheng ([email protected])
Based on: "ADAPTIVE DATA-DRIVEN PROBABILISTIC REDUCED-ORDER
MODELS FOR PARAMETERIZED DYNAMICAL SYSTEMS", submitted to SIAM journal on Scientific Computing
---------------------------------------------------------------------------
Input:
* Snapshots : Function for collecting snapshots
* x_test : Testing parameter set
* Mu_t : Mean of time sequence for training parameter set
* Var_t : Variance of time sequence for training parameter set
* U_r : Global basis
* x_train: Training parameter set
---------------------------------------------------------------------------
Output:
* Mu_full : Prediction mean of the full order solution
* Var_full : Prediction variance of the full order solution
* X_full : True full order solution
%}
%% Prediction of FOM for an untried parameter
model = Interpolation_model(x_train,Mu_t,Var_t);
N1 = size(x_test,1); [r, N_t] = size(Mu_t{1}); N = size(Mu_t,2);
ub_input = model{1}.ub_input;
lb_input = model{1}.lb_input;
x_pre = (x_test - repmat(lb_input,N1,1))./(repmat(ub_input,N1,1)-repmat(lb_input,N1,1));
for i = 1: N1
tic
X_full{i} = Snapshots(x_test(i,:));
toc
for k = 1:r
std_y = model{k}.std_y;
[weight Con_var] = Kriging_weight(x_pre(i,:),model{k});
Mu_pred(k,:) = model{k}.mu_y;
Var_pred(k,:) = Con_var.*std_y.^2;
for j = 1:N
Mu_pred(k,:) = Mu_pred(k,:) + weight(j)*(Mu_t{j}(k,:)- model{k}.mu_y);
Var_pred(k,:) = Var_pred(k,:) + weight(j)^2*Var_t{j}(k,:);
end
end
Mu_full{i} = U_r*Mu_pred;
for j = 1:N_t
Var_full{i}(:,j) = diag(U_r*diag(Var_pred(:,j))*U_r');
end
end
end