forked from mikelzc1990/nsganetv2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
validation.py
113 lines (89 loc) · 4.1 KB
/
validation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import time
import json
import torch
import logging
import argparse
from collections import OrderedDict
from timm.utils import accuracy, AverageMeter, setup_default_logging
from codebase.run_manager import get_run_config
from codebase.networks.nsganetv2 import NSGANetV2
def validate(model, loader, criterion, log_freq=50):
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
model.eval()
end = time.time()
with torch.no_grad():
for i, (input, target) in enumerate(loader):
target = target.cuda()
input = input.cuda()
# compute output
output = model(input)
loss = criterion(output, target)
# measure accuracy and record loss
acc1, acc5 = accuracy(output.data, target, topk=(1, 5))
losses.update(loss.item(), input.size(0))
top1.update(acc1.item(), input.size(0))
top5.update(acc5.item(), input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % log_freq == 0:
logging.info(
'Test: [{0:>4d}/{1}] '
'Time: {batch_time.val:.3f}s ({batch_time.avg:.3f}s, {rate_avg:>7.2f}/s) '
'Loss: {loss.val:>7.4f} ({loss.avg:>6.4f}) '
'Acc@1: {top1.val:>7.3f} ({top1.avg:>7.3f}) '
'Acc@5: {top5.val:>7.3f} ({top5.avg:>7.3f})'.format(
i, len(loader), batch_time=batch_time,
rate_avg=input.size(0) / batch_time.avg,
loss=losses, top1=top1, top5=top5))
results = OrderedDict(
top1=round(top1.avg, 4), top1_err=round(100 - top1.avg, 4),
top5=round(top5.avg, 4), top5_err=round(100 - top5.avg, 4))
logging.info(' * Acc@1 {:.1f} ({:.3f}) Acc@5 {:.1f} ({:.3f})'.format(
results['top1'], results['top1_err'], results['top5'], results['top5_err']))
def main(args):
setup_default_logging()
logging.info('Running validation on {}'.format(args.dataset))
net_config = json.load(open(args.model))
if 'img_size' in net_config:
img_size = net_config['img_size']
else:
img_size = args.img_size
run_config = get_run_config(
dataset=args.dataset, data_path=args.data, image_size=img_size, n_epochs=0,
train_batch_size=args.batch_size, test_batch_size=args.batch_size,
n_worker=args.workers, valid_size=None)
model = NSGANetV2.build_from_config(net_config)
try:
model.load_state_dict(torch.load(args.pretrained, map_location='cpu'))
except:
model.load_state_dict(torch.load(args.pretrained, map_location='cpu')['state_dict'])
param_count = sum([m.numel() for m in model.parameters()])
logging.info('Model created, param count: %d' % param_count)
model = model.cuda()
criterion = torch.nn.CrossEntropyLoss().cuda()
validate(model, run_config.test_loader, criterion)
return
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# data related settings
parser.add_argument('--data', type=str, default='/mnt/datastore/ILSVRC2012',
help='location of the data corpus')
parser.add_argument('--dataset', type=str, default='imagenet',
help='name of the dataset (imagenet, cifar10, cifar100, ...)')
parser.add_argument('-j', '--workers', type=int, default=6,
help='number of workers for data loading')
parser.add_argument('-b', '--batch-size', type=int, default=256,
help='test batch size for inference')
parser.add_argument('--img-size', type=int, default=224,
help='input resolution (192 -> 256)')
# model related settings
parser.add_argument('--model', '-m', metavar='MODEL', default='', type=str,
help='model configuration file')
parser.add_argument('--pretrained', type=str, default='',
help='path to pretrained weights')
cfgs = parser.parse_args()
main(cfgs)