-
Notifications
You must be signed in to change notification settings - Fork 1
/
logger.py
466 lines (395 loc) · 13.4 KB
/
logger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
import os
import sys
import shutil
import os.path as osp
import json
import time
import datetime
import tempfile
from collections import defaultdict
LOG_OUTPUT_FORMATS = ['stdout', 'log', 'csv']
# Also valid: json, tensorboard
DEBUG = 10
INFO = 20
WARN = 30
ERROR = 40
DISABLED = 50
class KVWriter(object):
def writekvs(self, kvs):
raise NotImplementedError
class SeqWriter(object):
def writeseq(self, seq):
raise NotImplementedError
class HumanOutputFormat(KVWriter, SeqWriter):
def __init__(self, filename_or_file):
if isinstance(filename_or_file, str):
self.file = open(filename_or_file, 'wt')
self.own_file = True
else:
assert hasattr(filename_or_file, 'read'), 'expected file or str, got %s'%filename_or_file
self.file = filename_or_file
self.own_file = False
def writekvs(self, kvs):
# Create strings for printing
key2str = {}
for (key, val) in sorted(kvs.items()):
if isinstance(val, float):
valstr = '%-8.3g' % (val,)
else:
valstr = str(val)
key2str[self._truncate(key)] = self._truncate(valstr)
# Find max widths
if len(key2str) == 0:
print('WARNING: tried to write empty key-value dict')
return
else:
keywidth = max(map(len, key2str.keys()))
valwidth = max(map(len, key2str.values()))
# Write out the data
dashes = '-' * (keywidth + valwidth + 7)
lines = [dashes]
for (key, val) in sorted(key2str.items()):
lines.append('| %s%s | %s%s |' % (
key,
' ' * (keywidth - len(key)),
val,
' ' * (valwidth - len(val)),
))
lines.append(dashes)
self.file.write('\n'.join(lines) + '\n')
# Flush the output to the file
self.file.flush()
def _truncate(self, s):
return s[:20] + '...' if len(s) > 23 else s
def writeseq(self, seq):
for arg in seq:
self.file.write(arg)
self.file.write('\n')
self.file.flush()
def close(self):
if self.own_file:
self.file.close()
class JSONOutputFormat(KVWriter):
def __init__(self, filename):
self.file = open(filename, 'wt')
def writekvs(self, kvs):
for k, v in sorted(kvs.items()):
if hasattr(v, 'dtype'):
v = v.tolist()
kvs[k] = float(v)
self.file.write(json.dumps(kvs) + '\n')
self.file.flush()
def close(self):
self.file.close()
class CSVOutputFormat(KVWriter):
def __init__(self, filename):
self.file = open(filename, 'w+t')
self.keys = []
self.sep = ','
def writekvs(self, kvs):
# Add our current row to the history
extra_keys = kvs.keys() - self.keys
if extra_keys:
self.keys.extend(extra_keys)
self.file.seek(0)
lines = self.file.readlines()
self.file.seek(0)
for (i, k) in enumerate(self.keys):
if i > 0:
self.file.write(',')
self.file.write(k)
self.file.write('\n')
for line in lines[1:]:
self.file.write(line[:-1])
self.file.write(self.sep * len(extra_keys))
self.file.write('\n')
for (i, k) in enumerate(self.keys):
if i > 0:
self.file.write(',')
v = kvs.get(k)
if v is not None:
self.file.write(str(v))
self.file.write('\n')
self.file.flush()
def close(self):
self.file.close()
class TensorBoardOutputFormat(KVWriter):
"""
Dumps key/value pairs into TensorBoard's numeric format.
"""
def __init__(self, dir):
os.makedirs(dir, exist_ok=True)
self.dir = dir
self.step = 1
prefix = 'events'
path = osp.join(osp.abspath(dir), prefix)
import tensorflow as tf
from tensorflow.python import pywrap_tensorflow
from tensorflow.core.util import event_pb2
from tensorflow.python.util import compat
self.tf = tf
self.event_pb2 = event_pb2
self.pywrap_tensorflow = pywrap_tensorflow
self.writer = pywrap_tensorflow.EventsWriter(compat.as_bytes(path))
def writekvs(self, kvs):
def summary_val(k, v):
kwargs = {'tag': k, 'simple_value': float(v)}
return self.tf.Summary.Value(**kwargs)
summary = self.tf.Summary(value=[summary_val(k, v) for k, v in kvs.items()])
event = self.event_pb2.Event(wall_time=time.time(), summary=summary)
event.step = self.step # is there any reason why you'd want to specify the step?
self.writer.WriteEvent(event)
self.writer.Flush()
self.step += 1
def close(self):
if self.writer:
self.writer.Close()
self.writer = None
def make_output_format(format, ev_dir, log_suffix=''):
os.makedirs(ev_dir, exist_ok=True)
if format == 'stdout':
return HumanOutputFormat(sys.stdout)
elif format == 'log':
return HumanOutputFormat(osp.join(ev_dir, 'log%s.txt' % log_suffix))
elif format == 'json':
return JSONOutputFormat(osp.join(ev_dir, 'progress%s.json' % log_suffix))
elif format == 'csv':
return CSVOutputFormat(osp.join(ev_dir, 'progress%s.csv' % log_suffix))
elif format == 'tensorboard':
return TensorBoardOutputFormat(osp.join(ev_dir, 'tb%s' % log_suffix))
else:
raise ValueError('Unknown format specified: %s' % (format,))
# ================================================================
# API
# ================================================================
def logkv(key, val):
"""
Log a value of some diagnostic
Call this once for each diagnostic quantity, each iteration
If called many times, last value will be used.
"""
Logger.CURRENT.logkv(key, val)
def logkv_mean(key, val):
"""
The same as logkv(), but if called many times, values averaged.
"""
Logger.CURRENT.logkv_mean(key, val)
def logkvs(d):
"""
Log a dictionary of key-value pairs
"""
for (k, v) in d.items():
logkv(k, v)
def dumpkvs():
"""
Write all of the diagnostics from the current iteration
level: int. (see logger.py docs) If the global logger level is higher than
the level argument here, don't print to stdout.
"""
Logger.CURRENT.dumpkvs()
def getkvs():
return Logger.CURRENT.name2val
def log(*args, level=INFO):
"""
Write the sequence of args, with no separators, to the console and output files (if you've configured an output file).
"""
Logger.CURRENT.log(*args, level=level)
def debug(*args):
log(*args, level=DEBUG)
def info(*args):
log(*args, level=INFO)
def warn(*args):
log(*args, level=WARN)
def error(*args):
log(*args, level=ERROR)
def set_level(level):
"""
Set logging threshold on current logger.
"""
Logger.CURRENT.set_level(level)
def get_dir():
"""
Get directory that log files are being written to.
will be None if there is no output directory (i.e., if you didn't call start)
"""
return Logger.CURRENT.get_dir()
record_tabular = logkv
dump_tabular = dumpkvs
class ProfileKV:
"""
Usage:
with logger.ProfileKV("interesting_scope"):
code
"""
def __init__(self, n):
self.n = "wait_" + n
def __enter__(self):
self.t1 = time.time()
def __exit__(self ,type, value, traceback):
Logger.CURRENT.name2val[self.n] += time.time() - self.t1
def profile(n):
"""
Usage:
@profile("my_func")
def my_func(): code
"""
def decorator_with_name(func):
def func_wrapper(*args, **kwargs):
with ProfileKV(n):
return func(*args, **kwargs)
return func_wrapper
return decorator_with_name
# ================================================================
# Backend
# ================================================================
class Logger(object):
DEFAULT = None # A logger with no output files. (See right below class definition)
# So that you can still log to the terminal without setting up any output files
CURRENT = None # Current logger being used by the free functions above
def __init__(self, dir, output_formats):
self.name2val = defaultdict(float) # values this iteration
self.name2cnt = defaultdict(int)
self.level = INFO
self.dir = dir
self.output_formats = output_formats
# Logging API, forwarded
# ----------------------------------------
def logkv(self, key, val):
self.name2val[key] = val
def logkv_mean(self, key, val):
if val is None:
self.name2val[key] = None
return
oldval, cnt = self.name2val[key], self.name2cnt[key]
self.name2val[key] = oldval*cnt/(cnt+1) + val/(cnt+1)
self.name2cnt[key] = cnt + 1
def dumpkvs(self):
if self.level == DISABLED: return
for fmt in self.output_formats:
if isinstance(fmt, KVWriter):
fmt.writekvs(self.name2val)
self.name2val.clear()
self.name2cnt.clear()
def log(self, *args, level=INFO):
if self.level <= level:
self._do_log(args)
# Configuration
# ----------------------------------------
def set_level(self, level):
self.level = level
def get_dir(self):
return self.dir
def close(self):
for fmt in self.output_formats:
fmt.close()
# Misc
# ----------------------------------------
def _do_log(self, args):
for fmt in self.output_formats:
if isinstance(fmt, SeqWriter):
fmt.writeseq(map(str, args))
Logger.DEFAULT = Logger.CURRENT = Logger(dir=None, output_formats=[HumanOutputFormat(sys.stdout)])
def configure(dir=None, format_strs=None):
if dir is None:
dir = os.getenv('OPENAI_LOGDIR')
if dir is None:
dir = osp.join(tempfile.gettempdir(),
datetime.datetime.now().strftime("openai-%Y-%m-%d-%H-%M-%S-%f"))
assert isinstance(dir, str)
os.makedirs(dir, exist_ok=True)
if format_strs is None:
strs = os.getenv('OPENAI_LOG_FORMAT')
format_strs = strs.split(',') if strs else LOG_OUTPUT_FORMATS
output_formats = [make_output_format(f, dir) for f in format_strs]
Logger.CURRENT = Logger(dir=dir, output_formats=output_formats)
log('Logging to %s'%dir)
def reset():
if Logger.CURRENT is not Logger.DEFAULT:
Logger.CURRENT.close()
Logger.CURRENT = Logger.DEFAULT
log('Reset logger')
class scoped_configure(object):
def __init__(self, dir=None, format_strs=None):
self.dir = dir
self.format_strs = format_strs
self.prevlogger = None
def __enter__(self):
self.prevlogger = Logger.CURRENT
configure(dir=self.dir, format_strs=self.format_strs)
def __exit__(self, *args):
Logger.CURRENT.close()
Logger.CURRENT = self.prevlogger
# ================================================================
def _demo():
info("hi")
debug("shouldn't appear")
set_level(DEBUG)
debug("should appear")
dir = "/tmp/testlogging"
if os.path.exists(dir):
shutil.rmtree(dir)
configure(dir=dir)
logkv("a", 3)
logkv("b", 2.5)
dumpkvs()
logkv("b", -2.5)
logkv("a", 5.5)
dumpkvs()
info("^^^ should see a = 5.5")
logkv_mean("b", -22.5)
logkv_mean("b", -44.4)
logkv("a", 5.5)
dumpkvs()
info("^^^ should see b = 33.3")
logkv("b", -2.5)
dumpkvs()
logkv("a", "longasslongasslongasslongasslongasslongassvalue")
dumpkvs()
# ================================================================
# Readers
# ================================================================
def read_json(fname):
import pandas
ds = []
with open(fname, 'rt') as fh:
for line in fh:
ds.append(json.loads(line))
return pandas.DataFrame(ds)
def read_csv(fname):
import pandas
return pandas.read_csv(fname, index_col=None, comment='#')
def read_tb(path):
"""
path : a tensorboard file OR a directory, where we will find all TB files
of the form events.*
"""
import pandas
import numpy as np
from glob import glob
from collections import defaultdict
import tensorflow as tf
if osp.isdir(path):
fnames = glob(osp.join(path, "events.*"))
elif osp.basename(path).startswith("events."):
fnames = [path]
else:
raise NotImplementedError("Expected tensorboard file or directory containing them. Got %s"%path)
tag2pairs = defaultdict(list)
maxstep = 0
for fname in fnames:
for summary in tf.train.summary_iterator(fname):
if summary.step > 0:
for v in summary.summary.value:
pair = (summary.step, v.simple_value)
tag2pairs[v.tag].append(pair)
maxstep = max(summary.step, maxstep)
data = np.empty((maxstep, len(tag2pairs)))
data[:] = np.nan
tags = sorted(tag2pairs.keys())
for (colidx,tag) in enumerate(tags):
pairs = tag2pairs[tag]
for (step, value) in pairs:
data[step-1, colidx] = value
return pandas.DataFrame(data, columns=tags)
if __name__ == "__main__":
_demo()