-
Notifications
You must be signed in to change notification settings - Fork 1
/
visualize.py
101 lines (86 loc) · 3.3 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import argparse
import torch
import gym
import numpy
import utils
# from custom_env.register import register
from gym.envs.registration import register
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Parse arguments
global frames
parser = argparse.ArgumentParser()
parser.add_argument("--env", default='FourRoom', required=True,
help="name of the env (default: 'FourRoom')")
parser.add_argument("--algo", required=True,
help="algorithm to use: a2c/ppo")
parser.add_argument("--seed", type=int, default=0,
help="random seed (default: 0)")
parser.add_argument("--shift", type=int, default=0,
help="number of times the environment is reset at the beginning (default: 0)")
parser.add_argument("--argmax", action="store_true", default=False,
help="select the action with highest probability (default: False)")
parser.add_argument("--pause", type=float, default=0.1,
help="pause duration between two consequent actions of the agent (default: 0.1)")
parser.add_argument("--gif", type=str, default=None,
help="store output as gif with the given filename(e.g. './storage')")
parser.add_argument("--episodes", type=int, default=5,
help="number of episodes to visualize")
parser.add_argument("--memory", action="store_true", default=False,
help="add a LSTM to the model")
parser.add_argument("--recurrence", type=int, default=1,
help="Set this value only if --memory is set to True.")
args = parser.parse_args()
# Set seed for all randomness sources
utils.seed(args.seed)
# Set device
print(f"Device: {device}\n")
register(
id='FourRooms-Dynamic-Obstacles-21x21-v0',
entry_point='custom_env.env:FourRoomsDynamicObstaclesEnv21x21',
reward_threshold=0.95
)
register(
id='ThreeRooms-Dynamic-Obstacles-21x21-v0',
entry_point='custom_env.env.env:ThreeRoomsDynamicObstaclesEnv21x21',
reward_threshold=0.95
)
# Load environment
if args.env == 'FourRoom':
env = gym.make('FourRooms-Dynamic-Obstacles-21x21-v0')
env.seed(args.seed)
else:
env = gym.make('ThreeRooms-Dynamic-Obstacles-21x21-v0')
env.seed(args.seed)
for _ in range(args.shift):
env.reset()
print("Environment loaded\n")
# Load agent
default_storage_name = f"{args.algo}_{args.recurrence}"
model_dir = './storage/ThreeRoom/{}'.format(default_storage_name)
agent = utils.Agent(env.observation_space, env.action_space, model_dir,
argmax=args.argmax, use_memory=args.memory)
print("Agent loaded\n")
# Run the agent
if args.gif:
from array2gif import write_gif
frames = []
# Create a window to view the environment
env.render('human')
for episode in range(args.episodes):
obs = env.reset()
while True:
env.render('human')
if args.gif:
frames.append(numpy.moveaxis(env.render("rgb_array"), 2, 0))
action = agent.get_action(obs)
obs, reward, done, _ = env.step(action)
agent.analyze_feedback(reward, done)
if done or env.window.closed:
env.reset()
break
if env.window.closed:
break
if args.gif:
print("Saving gif... ", end="")
write_gif(numpy.array(frames), args.gif + ".gif", fps=1 / args.pause)
print("Done.")