-
Notifications
You must be signed in to change notification settings - Fork 29
/
train.py
494 lines (431 loc) · 21.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
import os
import json
import argparse
import itertools
import math
import torch
from torch import nn, optim
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import torch.multiprocessing as mp
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.cuda.amp import autocast, GradScaler
import tqdm
from pqmf import PQMF
import commons
import utils
from data_utils import (
TextAudioLoader,
TextAudioCollate,
DistributedBucketSampler
)
from models import (
SynthesizerTrn,
MultiPeriodDiscriminator,
DurationDiscriminator,
DurationDiscriminator2,
AVAILABLE_FLOW_TYPES,
AVAILABLE_DURATION_DISCRIMINATOR_TYPES
)
from losses import (
generator_loss,
discriminator_loss,
feature_loss,
kl_loss,
subband_stft_loss
)
from mel_processing import mel_spectrogram_torch, spec_to_mel_torch
from text.symbols import symbols
torch.autograd.set_detect_anomaly(True)
torch.backends.cudnn.benchmark = True
global_step = 0
# - base vits2 : Aug 29, 2023
def main():
"""Assume Single Node Multi GPUs Training Only"""
assert torch.cuda.is_available(), "CPU training is not allowed."
n_gpus = torch.cuda.device_count()
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '6060'
hps = utils.get_hparams()
mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hps,))
def run(rank, n_gpus, hps):
net_dur_disc = None
global global_step
if rank == 0:
logger = utils.get_logger(hps.model_dir)
logger.info(hps)
utils.check_git_hash(hps.model_dir)
writer = SummaryWriter(log_dir=hps.model_dir)
writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))
if os.name == 'nt':
dist.init_process_group(backend='gloo', init_method='env://', world_size=n_gpus, rank=rank)
else:
dist.init_process_group(backend='nccl', init_method='env://', world_size=n_gpus, rank=rank)
torch.manual_seed(hps.train.seed)
torch.cuda.set_device(rank)
if "use_mel_posterior_encoder" in hps.model.keys() and hps.model.use_mel_posterior_encoder == True: # P.incoder for vits2
print("Using mel posterior encoder for VITS2")
posterior_channels = 80 # vits2
hps.data.use_mel_posterior_encoder = True
else:
print("Using lin posterior encoder for VITS1")
posterior_channels = hps.data.filter_length // 2 + 1
hps.data.use_mel_posterior_encoder = False
train_dataset = TextAudioLoader(hps.data.training_files, hps.data)
train_sampler = DistributedBucketSampler(
train_dataset,
hps.train.batch_size,
[32, 300, 400, 500, 600, 700, 800, 900, 1000],
num_replicas=n_gpus,
rank=rank,
shuffle=True)
collate_fn = TextAudioCollate()
train_loader = DataLoader(train_dataset, num_workers=8, shuffle=False, pin_memory=True,
collate_fn=collate_fn, batch_sampler=train_sampler)
if rank == 0:
eval_dataset = TextAudioLoader(hps.data.validation_files, hps.data)
eval_loader = DataLoader(eval_dataset, num_workers=1, shuffle=False,
batch_size=hps.train.batch_size, pin_memory=True,
drop_last=False, collate_fn=collate_fn)
# some of these flags are not being used in the code and directly set in hps json file.
# they are kept here for reference and prototyping.
if "use_transformer_flows" in hps.model.keys() and hps.model.use_transformer_flows == True:
use_transformer_flows = True
transformer_flow_type = hps.model.transformer_flow_type
print(f"Using transformer flows {transformer_flow_type} for VITS2")
assert transformer_flow_type in AVAILABLE_FLOW_TYPES, f"transformer_flow_type must be one of {AVAILABLE_FLOW_TYPES}"
else:
print("Using normal flows for VITS1")
use_transformer_flows = False
if "use_spk_conditioned_encoder" in hps.model.keys() and hps.model.use_spk_conditioned_encoder == True:
if hps.data.n_speakers == 0:
print("Warning: use_spk_conditioned_encoder is True but n_speakers is 0")
print("Setting use_spk_conditioned_encoder to False as model is a single speaker model")
use_spk_conditioned_encoder = False
else:
print("Using normal encoder for VITS1 (cuz it's single speaker after all)")
use_spk_conditioned_encoder = False
if "use_noise_scaled_mas" in hps.model.keys() and hps.model.use_noise_scaled_mas == True:
print("Using noise scaled MAS for VITS2")
use_noise_scaled_mas = True
mas_noise_scale_initial = 0.01
noise_scale_delta = 2e-6
else:
print("Using normal MAS for VITS1")
use_noise_scaled_mas = False
mas_noise_scale_initial = 0.0
noise_scale_delta = 0.0
if "use_duration_discriminator" in hps.model.keys() and hps.model.use_duration_discriminator == True:
# print("Using duration discriminator for VITS2")
use_duration_discriminator = True
#- for duration_discriminator2
# duration_discriminator_type = getattr(hps.model, "duration_discriminator_type", "dur_disc_1")
duration_discriminator_type = hps.model.duration_discriminator_type
print(f"Using duration discriminator {duration_discriminator_type} for VITS2")
assert duration_discriminator_type in AVAILABLE_DURATION_DISCRIMINATOR_TYPES.keys(), f"duration_discriminator_type must be one of {list(AVAILABLE_DURATION_DISCRIMINATOR_TYPES.keys())}"
#DurationDiscriminator = AVAILABLE_DURATION_DISCRIMINATOR_TYPES[duration_discriminator_type]
if duration_discriminator_type == "dur_disc_1":
net_dur_disc = DurationDiscriminator(
hps.model.hidden_channels,
hps.model.hidden_channels,
3,
0.1,
gin_channels=hps.model.gin_channels if hps.data.n_speakers != 0 else 0,
).cuda(rank)
elif duration_discriminator_type == "dur_disc_2":
net_dur_disc = DurationDiscriminator2(
hps.model.hidden_channels,
hps.model.hidden_channels,
3,
0.1,
gin_channels=hps.model.gin_channels if hps.data.n_speakers != 0 else 0,
).cuda(rank)
'''
net_dur_disc = DurationDiscriminator(
hps.model.hidden_channels,
hps.model.hidden_channels,
3,
0.1,
gin_channels=hps.model.gin_channels if hps.data.n_speakers != 0 else 0,
).cuda(rank)
'''
else:
print("NOT using any duration discriminator like VITS1")
net_dur_disc = None
use_duration_discriminator = False
net_g = SynthesizerTrn(
len(symbols),
posterior_channels,
hps.train.segment_size // hps.data.hop_length,
mas_noise_scale_initial=mas_noise_scale_initial,
noise_scale_delta=noise_scale_delta,
**hps.model).cuda(rank)
net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank)
optim_g = torch.optim.AdamW(
net_g.parameters(),
hps.train.learning_rate,
betas=hps.train.betas,
eps=hps.train.eps)
optim_d = torch.optim.AdamW(
net_d.parameters(),
hps.train.learning_rate,
betas=hps.train.betas,
eps=hps.train.eps)
if net_dur_disc is not None:
optim_dur_disc = torch.optim.AdamW(
net_dur_disc.parameters(),
hps.train.learning_rate,
betas=hps.train.betas,
eps=hps.train.eps)
else:
optim_dur_disc = None
net_g = DDP(net_g, device_ids=[rank], find_unused_parameters=True)
net_d = DDP(net_d, device_ids=[rank], find_unused_parameters=True)
if net_dur_disc is not None: # 2의 경우
net_dur_disc = DDP(net_dur_disc, device_ids=[rank], find_unused_parameters=True)
try:
_, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g,
optim_g)
_, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d,
optim_d)
if net_dur_disc is not None: # 2의 경우
_, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "DUR_*.pth"),
net_dur_disc, optim_dur_disc)
global_step = (epoch_str - 1) * len(train_loader)
except:
epoch_str = 1
global_step = 0
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2)
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2)
if net_dur_disc is not None: # 2의 경우
scheduler_dur_disc = torch.optim.lr_scheduler.ExponentialLR(optim_dur_disc, gamma=hps.train.lr_decay,
last_epoch=epoch_str - 2)
else:
scheduler_dur_disc = None
scaler = GradScaler(enabled=hps.train.fp16_run)
for epoch in range(epoch_str, hps.train.epochs + 1):
if rank == 0:
train_and_evaluate(rank, epoch, hps, [net_g, net_d, net_dur_disc], [optim_g, optim_d, optim_dur_disc],
[scheduler_g, scheduler_d, scheduler_dur_disc], scaler, [train_loader, eval_loader],
logger, [writer, writer_eval])
else:
train_and_evaluate(rank, epoch, hps, [net_g, net_d, net_dur_disc], [optim_g, optim_d, optim_dur_disc],
[scheduler_g, scheduler_d, scheduler_dur_disc], scaler, [train_loader, None], None, None)
scheduler_g.step()
scheduler_d.step()
if net_dur_disc is not None:
scheduler_dur_disc.step()
def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers):
net_g, net_d, net_dur_disc = nets
optim_g, optim_d, optim_dur_disc = optims
scheduler_g, scheduler_d, scheduler_dur_disc = schedulers
train_loader, eval_loader = loaders
if writers is not None:
writer, writer_eval = writers
train_loader.batch_sampler.set_epoch(epoch)
global global_step
net_g.train()
net_d.train()
if net_dur_disc is not None: # vits2
net_dur_disc.train()
if rank == 0:
loader = tqdm.tqdm(train_loader, desc='Loading training data')
else:
loader = train_loader
for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths) in enumerate(loader):
if net_g.module.use_noise_scaled_mas:
current_mas_noise_scale = net_g.module.mas_noise_scale_initial - net_g.module.noise_scale_delta * global_step
net_g.module.current_mas_noise_scale = max(current_mas_noise_scale, 0.0)
x, x_lengths = x.cuda(rank, non_blocking=True), x_lengths.cuda(rank, non_blocking=True)
spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(rank, non_blocking=True)
y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda(rank, non_blocking=True)
with autocast(enabled=hps.train.fp16_run):
y_hat, y_hat_mb, l_length, attn, ids_slice, x_mask, z_mask, (z, z_p, m_p, logs_p, m_q, logs_q), (
hidden_x, logw, logw_) = net_g(x, x_lengths, spec, spec_lengths)
if hps.model.use_mel_posterior_encoder or hps.data.use_mel_posterior_encoder:
mel = spec
else:
mel = spec_to_mel_torch(
#spec,
spec.float(), # - for 16bit stability
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.mel_fmin,
hps.data.mel_fmax)
y_mel = commons.slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length)
y_hat_mel = mel_spectrogram_torch(
y_hat.squeeze(1),
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.hop_length,
hps.data.win_length,
hps.data.mel_fmin,
hps.data.mel_fmax
)
y = commons.slice_segments(y, ids_slice * hps.data.hop_length, hps.train.segment_size) # slice
# Discriminator
y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
with autocast(enabled=False):
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g)
loss_disc_all = loss_disc
# Duration Discriminator
if net_dur_disc is not None:
y_dur_hat_r, y_dur_hat_g = net_dur_disc(hidden_x.detach(), x_mask.detach(), logw_.detach(),
logw.detach()) # logw is predicted duration, logw_ is real duration
with autocast(enabled=False):
# TODO: I think need to mean using the mask, but for now, just mean all
loss_dur_disc, losses_dur_disc_r, losses_dur_disc_g = discriminator_loss(y_dur_hat_r, y_dur_hat_g)
loss_dur_disc_all = loss_dur_disc
optim_dur_disc.zero_grad()
scaler.scale(loss_dur_disc_all).backward()
scaler.unscale_(optim_dur_disc)
grad_norm_dur_disc = commons.clip_grad_value_(net_dur_disc.parameters(), None)
scaler.step(optim_dur_disc)
optim_d.zero_grad()
scaler.scale(loss_disc_all).backward()
scaler.unscale_(optim_d)
grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
scaler.step(optim_d)
with autocast(enabled=hps.train.fp16_run):
# Generator
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
if net_dur_disc is not None:
y_dur_hat_r, y_dur_hat_g = net_dur_disc(hidden_x, x_mask, logw_, logw)
with autocast(enabled=False):
loss_dur = torch.sum(l_length.float())
loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
loss_fm = feature_loss(fmap_r, fmap_g)
loss_gen, losses_gen = generator_loss(y_d_hat_g)
if hps.model.mb_istft_vits == True:
pqmf = PQMF(y.device)
y_mb = pqmf.analysis(y)
loss_subband = subband_stft_loss(hps, y_mb, y_hat_mb)
else:
loss_subband = torch.tensor(0.0)
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_dur + loss_kl + loss_subband
if net_dur_disc is not None:
loss_dur_gen, losses_dur_gen = generator_loss(y_dur_hat_g)
loss_gen_all += loss_dur_gen
optim_g.zero_grad()
scaler.scale(loss_gen_all).backward()
scaler.unscale_(optim_g)
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
scaler.step(optim_g)
scaler.update()
if rank == 0:
if global_step % hps.train.log_interval == 0:
lr = optim_g.param_groups[0]['lr']
losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_dur, loss_kl, loss_subband]
logger.info('Train Epoch: {} [{:.0f}%]'.format(
epoch,
100. * batch_idx / len(train_loader)))
logger.info([x.item() for x in losses] + [global_step, lr])
scalar_dict = {"loss/g/total": loss_gen_all, "loss/d/total": loss_disc_all, "learning_rate": lr,
"grad_norm_d": grad_norm_d, "grad_norm_g": grad_norm_g}
if net_dur_disc is not None: # 2인 경우
scalar_dict.update(
{"loss/dur_disc/total": loss_dur_disc_all, "grad_norm_dur_disc": grad_norm_dur_disc})
scalar_dict.update(
{"loss/g/fm": loss_fm, "loss/g/mel": loss_mel, "loss/g/dur": loss_dur, "loss/g/kl": loss_kl,
"loss/g/subband": loss_subband})
scalar_dict.update({"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)})
scalar_dict.update({"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)})
scalar_dict.update({"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)})
# if net_dur_disc is not None: # - 보류?
# scalar_dict.update({"loss/dur_disc_r" : f"{losses_dur_disc_r}"})
# scalar_dict.update({"loss/dur_disc_g" : f"{losses_dur_disc_g}"})
# scalar_dict.update({"loss/dur_gen" : f"{loss_dur_gen}"})
image_dict = {
"slice/mel_org": utils.plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()),
"slice/mel_gen": utils.plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()),
"all/mel": utils.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()),
"all/attn": utils.plot_alignment_to_numpy(attn[0, 0].data.cpu().numpy())
}
utils.summarize(
writer=writer,
global_step=global_step,
images=image_dict,
scalars=scalar_dict)
if global_step % hps.train.eval_interval == 0:
evaluate(hps, net_g, eval_loader, writer_eval)
utils.save_checkpoint(net_g, optim_g, hps.train.learning_rate, epoch,
os.path.join(hps.model_dir, "G_{}.pth".format(global_step)))
utils.save_checkpoint(net_d, optim_d, hps.train.learning_rate, epoch,
os.path.join(hps.model_dir, "D_{}.pth".format(global_step)))
if net_dur_disc is not None:
utils.save_checkpoint(net_dur_disc, optim_dur_disc, hps.train.learning_rate, epoch,
os.path.join(hps.model_dir, "DUR_{}.pth".format(global_step)))
prev_g = os.path.join(hps.model_dir, "G_{}.pth".format(global_step - 3 * hps.train.eval_interval))
if os.path.exists(prev_g):
os.remove(prev_g)
prev_d = os.path.join(hps.model_dir, "D_{}.pth".format(global_step - 3 * hps.train.eval_interval))
if os.path.exists(prev_d):
os.remove(prev_d)
prev_dur = os.path.join(hps.model_dir, "DUR_{}.pth".format(global_step - 3 * hps.train.eval_interval))
if os.path.exists(prev_dur):
os.remove(prev_dur)
global_step += 1
if rank == 0:
logger.info('====> Epoch: {}'.format(epoch))
def evaluate(hps, generator, eval_loader, writer_eval):
generator.eval()
with torch.no_grad():
for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths) in enumerate(eval_loader):
x, x_lengths = x.cuda(0), x_lengths.cuda(0)
spec, spec_lengths = spec.cuda(0), spec_lengths.cuda(0)
y, y_lengths = y.cuda(0), y_lengths.cuda(0)
# remove else
x = x[:1]
x_lengths = x_lengths[:1]
spec = spec[:1]
spec_lengths = spec_lengths[:1]
y = y[:1]
y_lengths = y_lengths[:1]
break
y_hat, y_hat_mb, attn, mask, *_ = generator.module.infer(x, x_lengths, max_len=1000)
y_hat_lengths = mask.sum([1, 2]).long() * hps.data.hop_length
if hps.model.use_mel_posterior_encoder or hps.data.use_mel_posterior_encoder: # 2의 경우
mel = spec
else:
mel = spec_to_mel_torch(
spec,
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.mel_fmin,
hps.data.mel_fmax)
y_hat_mel = mel_spectrogram_torch(
y_hat.squeeze(1).float(),
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.hop_length,
hps.data.win_length,
hps.data.mel_fmin,
hps.data.mel_fmax
)
image_dict = {
"gen/mel": utils.plot_spectrogram_to_numpy(y_hat_mel[0].cpu().numpy())
}
audio_dict = {
"gen/audio": y_hat[0, :, :y_hat_lengths[0]]
}
if global_step == 0:
image_dict.update({"gt/mel": utils.plot_spectrogram_to_numpy(mel[0].cpu().numpy())})
audio_dict.update({"gt/audio": y[0, :, :y_lengths[0]]})
utils.summarize(
writer=writer_eval,
global_step=global_step,
images=image_dict,
audios=audio_dict,
audio_sampling_rate=hps.data.sampling_rate
)
generator.train()
if __name__ == "__main__":
os.environ["TORCH_DISTRIBUTED_DEBUG"] = "DETAIL"
main()