-
Notifications
You must be signed in to change notification settings - Fork 438
/
kernels.c
376 lines (339 loc) · 15.3 KB
/
kernels.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
/********************************************************
* Kernels to be optimized for the CS:APP Performance Lab
********************************************************/
#include <stdio.h>
#include <stdlib.h>
#include "defs.h"
/*
* Please fill in the following team struct
*/
team_t team = {
"Exely", /* Team name */
"Exely", /* First member full name */
"[email protected]", /* First member email address */
"", /* Second member full name (leave blank if none) */
"" /* Second member email addr (leave blank if none) */
};
/***************
* ROTATE KERNEL
***************/
/******************************************************
* Your different versions of the rotate kernel go here
******************************************************/
/*
* naive_rotate - The naive baseline version of rotate
*/
char naive_rotate_descr[] = "naive_rotate: Naive baseline implementation";
void naive_rotate(int dim, pixel *src, pixel *dst)
{
int i, j;
for (i = 0; i < dim; i++)
for (j = 0; j < dim; j++)
dst[RIDX(dim - 1 - j, i, dim)] = src[RIDX(i, j, dim)];
}
/*
* rotate - Your current working version of rotate
* IMPORTANT: This is the version you will be graded on
*/
char rotate_descr[] = "rotate: Current working version";
void rotate(int dim, pixel *src, pixel *dst)
{
int i, j, a, b;
int sdim = dim - 1;
for (i = 0; i < dim; i += 8)
{
for (j = 0; j < dim; j += 8)
{
for (a = i; a < i + 8; a++)
{
for (b = j; b < j + 8; b++)
{
dst[RIDX(sdim - b, a, dim)] = src[RIDX(a, b, dim)];
}
}
}
}
}
/*********************************************************************
* register_rotate_functions - Register all of your different versions
* of the rotate kernel with the driver by calling the
* add_rotate_function() for each test function. When you run the
* driver program, it will test and report the performance of each
* registered test function.
*********************************************************************/
void register_rotate_functions()
{
add_rotate_function(&naive_rotate, naive_rotate_descr);
add_rotate_function(&rotate, rotate_descr);
/* ... Register additional test functions here */
}
/***************
* SMOOTH KERNEL
**************/
/***************************************************************
* Various typedefs and helper functions for the smooth function
* You may modify these any way you like.
**************************************************************/
/* A struct used to compute averaged pixel value */
typedef struct
{
int red;
int green;
int blue;
int num;
} pixel_sum;
/* Compute min and max of two integers, respectively */
static int min(int a, int b) { return (a < b ? a : b); }
static int max(int a, int b) { return (a > b ? a : b); }
/*
* initialize_pixel_sum - Initializes all fields of sum to 0
*/
static void initialize_pixel_sum(pixel_sum *sum)
{
sum->red = sum->green = sum->blue = 0;
sum->num = 0;
return;
}
/*
* accumulate_sum - Accumulates field values of p in corresponding
* fields of sum
*/
static void accumulate_sum(pixel_sum *sum, pixel p)
{
sum->red += (int)p.red;
sum->green += (int)p.green;
sum->blue += (int)p.blue;
sum->num++;
return;
}
/*
* assign_sum_to_pixel - Computes averaged pixel value in current_pixel
*/
static void assign_sum_to_pixel(pixel *current_pixel, pixel_sum sum)
{
current_pixel->red = (unsigned short)(sum.red / sum.num);
current_pixel->green = (unsigned short)(sum.green / sum.num);
current_pixel->blue = (unsigned short)(sum.blue / sum.num);
return;
}
/*
* avg - Returns averaged pixel value at (i,j)
*/
static pixel avg(int dim, int i, int j, pixel *src)
{
int ii, jj;
pixel_sum sum;
pixel current_pixel;
initialize_pixel_sum(&sum);
for (ii = max(i - 1, 0); ii <= min(i + 1, dim - 1); ii++)
for (jj = max(j - 1, 0); jj <= min(j + 1, dim - 1); jj++)
accumulate_sum(&sum, src[RIDX(ii, jj, dim)]);
assign_sum_to_pixel(¤t_pixel, sum);
return current_pixel;
}
/******************************************************
* Your different versions of the smooth kernel go here
******************************************************/
/*
* naive_smooth - The naive baseline version of smooth
*/
char naive_smooth_descr[] = "naive_smooth: Naive baseline implementation";
void naive_smooth(int dim, pixel *src, pixel *dst)
{
int i, j;
for (i = 0; i < dim; i++)
for (j = 0; j < dim; j++)
dst[RIDX(i, j, dim)] = avg(dim, i, j, src);
}
/*
* smooth - Your current working version of smooth.
* IMPORTANT: This is the version you will be graded on
*/
char smooth_descr[] = "smooth: Current working version";
void smooth(int dim, pixel *src, pixel *dst)
{
int i, j;
pixel current_pixel;
pixel *pcurrent_pixel = ¤t_pixel;
i = 0;
j = 0;
pcurrent_pixel->red =
(unsigned short)(((int)(src[RIDX(0, 0, dim)].red + src[RIDX(0, 1, dim)].red +
src[RIDX(1, 0, dim)].red + src[RIDX(1, 1, dim)].red)) /
4);
pcurrent_pixel->green =
(unsigned short)(((int)(src[RIDX(0, 0, dim)].green + src[RIDX(0, 1, dim)].green +
src[RIDX(1, 0, dim)].green + src[RIDX(1, 1, dim)].green)) /
4);
pcurrent_pixel->blue =
(unsigned short)(((int)(src[RIDX(0, 0, dim)].blue + src[RIDX(0, 1, dim)].blue +
src[RIDX(1, 0, dim)].blue + src[RIDX(1, 1, dim)].blue)) /
4);
dst[RIDX(0, 0, dim)] = current_pixel;
i = 0;
j = dim - 1;
pcurrent_pixel->red =
(unsigned short)(((int)(src[RIDX(i, j, dim)].red + src[RIDX(i + 1, j, dim)].red +
src[RIDX(i, j - 1, dim)].red + src[RIDX(i + 1, j - 1, dim)].red)) /
4);
pcurrent_pixel->green =
(unsigned short)(((int)(src[RIDX(i, j, dim)].green + src[RIDX(i + 1, j, dim)].green +
src[RIDX(i, j - 1, dim)].green + src[RIDX(i + 1, j - 1, dim)].green)) /
4);
pcurrent_pixel->blue =
(unsigned short)(((int)(src[RIDX(i, j, dim)].blue + src[RIDX(i + 1, j, dim)].blue +
src[RIDX(i, j - 1, dim)].blue + src[RIDX(i + 1, j - 1, dim)].blue)) /
4);
dst[RIDX(i, j, dim)] = current_pixel;
i = dim - 1;
j = 0;
pcurrent_pixel->red =
(unsigned short)(((int)(src[RIDX(i, j, dim)].red + src[RIDX(i - 1, j, dim)].red +
src[RIDX(i, j + 1, dim)].red + src[RIDX(i - 1, j + 1, dim)].red)) /
4);
pcurrent_pixel->green =
(unsigned short)(((int)(src[RIDX(i, j, dim)].green + src[RIDX(i - 1, j, dim)].green +
src[RIDX(i, j + 1, dim)].green + src[RIDX(i - 1, j + 1, dim)].green)) /
4);
pcurrent_pixel->blue =
(unsigned short)(((int)(src[RIDX(i, j, dim)].blue + src[RIDX(i - 1, j, dim)].blue +
src[RIDX(i, j + 1, dim)].blue + src[RIDX(i - 1, j + 1, dim)].blue)) /
4);
dst[RIDX(i, j, dim)] = current_pixel;
i = dim - 1;
j = dim - 1;
pcurrent_pixel->red =
(unsigned short)(((int)(src[RIDX(i, j, dim)].red + src[RIDX(i - 1, j, dim)].red +
src[RIDX(i, j - 1, dim)].red + src[RIDX(i - 1, j - 1, dim)].red)) /
4);
pcurrent_pixel->green =
(unsigned short)(((int)(src[RIDX(i, j, dim)].green + src[RIDX(i - 1, j, dim)].green +
src[RIDX(i, j - 1, dim)].green + src[RIDX(i - 1, j - 1, dim)].green)) /
4);
pcurrent_pixel->blue =
(unsigned short)(((int)(src[RIDX(i, j, dim)].blue + src[RIDX(i - 1, j, dim)].blue +
src[RIDX(i, j - 1, dim)].blue + src[RIDX(i - 1, j - 1, dim)].blue)) /
4);
dst[RIDX(i, j, dim)] = current_pixel;
j = 0;
for (i = 1; i < dim - 1; i++)
{
pcurrent_pixel->red =
(unsigned short)(((int)(src[RIDX(i - 1, j, dim)].red + src[RIDX(i - 1, j + 1, dim)].red +
src[RIDX(i, j, dim)].red + src[RIDX(i, j + 1, dim)].red +
src[RIDX(i + 1, j, dim)].red + src[RIDX(i + 1, j + 1, dim)].red)) /
6);
pcurrent_pixel->green =
(unsigned short)(((int)(src[RIDX(i - 1, j, dim)].green + src[RIDX(i - 1, j + 1, dim)].green +
src[RIDX(i, j, dim)].green + src[RIDX(i, j + 1, dim)].green +
src[RIDX(i + 1, j, dim)].green + src[RIDX(i + 1, j + 1, dim)].green)) /
6);
pcurrent_pixel->blue =
(unsigned short)(((int)(src[RIDX(i - 1, j, dim)].blue + src[RIDX(i - 1, j + 1, dim)].blue +
src[RIDX(i, j, dim)].blue + src[RIDX(i, j + 1, dim)].blue +
src[RIDX(i + 1, j, dim)].blue + src[RIDX(i + 1, j + 1, dim)].blue)) /
6);
dst[RIDX(i, j, dim)] = current_pixel;
}
i = dim - 1;
for (j = 1; j < dim - 1; j++)
{
pcurrent_pixel->red =
(unsigned short)(((int)(src[RIDX(i, j, dim)].red + src[RIDX(i - 1, j, dim)].red +
src[RIDX(i, j - 1, dim)].red + src[RIDX(i - 1, j - 1, dim)].red +
src[RIDX(i, j + 1, dim)].red + src[RIDX(i - 1, j + 1, dim)].red)) /
6);
pcurrent_pixel->green =
(unsigned short)(((int)(src[RIDX(i, j, dim)].green + src[RIDX(i - 1, j, dim)].green +
src[RIDX(i, j - 1, dim)].green + src[RIDX(i - 1, j - 1, dim)].green +
src[RIDX(i, j + 1, dim)].green + src[RIDX(i - 1, j + 1, dim)].green)) /
6);
pcurrent_pixel->blue =
(unsigned short)(((int)(src[RIDX(i, j, dim)].blue + src[RIDX(i - 1, j, dim)].blue +
src[RIDX(i, j - 1, dim)].blue + src[RIDX(i - 1, j - 1, dim)].blue +
src[RIDX(i, j + 1, dim)].blue + src[RIDX(i - 1, j + 1, dim)].blue)) /
6);
dst[RIDX(i, j, dim)] = current_pixel;
}
j = dim - 1;
for (i = 1; i < dim - 1; i++)
{
pcurrent_pixel->red =
(unsigned short)(((int)(src[RIDX(i - 1, j, dim)].red + src[RIDX(i - 1, j - 1, dim)].red +
src[RIDX(i, j, dim)].red + src[RIDX(i, j - 1, dim)].red +
src[RIDX(i + 1, j, dim)].red + src[RIDX(i + 1, j - 1, dim)].red)) /
6);
pcurrent_pixel->green =
(unsigned short)(((int)(src[RIDX(i - 1, j, dim)].green + src[RIDX(i - 1, j - 1, dim)].green +
src[RIDX(i, j, dim)].green + src[RIDX(i, j - 1, dim)].green +
src[RIDX(i + 1, j, dim)].green + src[RIDX(i + 1, j - 1, dim)].green)) /
6);
pcurrent_pixel->blue =
(unsigned short)(((int)(src[RIDX(i - 1, j, dim)].blue + src[RIDX(i - 1, j - 1, dim)].blue +
src[RIDX(i, j, dim)].blue + src[RIDX(i, j - 1, dim)].blue +
src[RIDX(i + 1, j, dim)].blue + src[RIDX(i + 1, j - 1, dim)].blue)) /
6);
dst[RIDX(i, j, dim)] = current_pixel;
}
i = 0;
for (j = 1; j < dim - 1; j++)
{
pcurrent_pixel->red =
(unsigned short)(((int)(src[RIDX(i, j, dim)].red + src[RIDX(i + 1, j, dim)].red +
src[RIDX(i, j - 1, dim)].red + src[RIDX(i + 1, j - 1, dim)].red +
src[RIDX(i, j + 1, dim)].red + src[RIDX(i + 1, j + 1, dim)].red)) /
6);
pcurrent_pixel->green =
(unsigned short)(((int)(src[RIDX(i, j, dim)].green + src[RIDX(i + 1, j, dim)].green +
src[RIDX(i, j - 1, dim)].green + src[RIDX(i + 1, j - 1, dim)].green +
src[RIDX(i, j + 1, dim)].green + src[RIDX(i + 1, j + 1, dim)].green)) /
6);
pcurrent_pixel->blue =
(unsigned short)(((int)(src[RIDX(i, j, dim)].blue + src[RIDX(i + 1, j, dim)].blue +
src[RIDX(i, j - 1, dim)].blue + src[RIDX(i + 1, j - 1, dim)].blue +
src[RIDX(i, j + 1, dim)].blue + src[RIDX(i + 1, j + 1, dim)].blue)) /
6);
dst[RIDX(i, j, dim)] = current_pixel;
}
for (i = 1; i < dim - 1; i++)
{
for (j = 1; j < dim - 1; j++)
{
pcurrent_pixel->red =
(unsigned short)(((int)(src[RIDX(i + 1, j, dim)].red + src[RIDX(i + 1, j - 1, dim)].red +
src[RIDX(i, j, dim)].red + src[RIDX(i - 1, j, dim)].red +
src[RIDX(i, j - 1, dim)].red + src[RIDX(i - 1, j - 1, dim)].red +
src[RIDX(i, j + 1, dim)].red + src[RIDX(i - 1, j + 1, dim)].red +
src[RIDX(i + 1, j + 1, dim)].red)) /
9);
pcurrent_pixel->green =
(unsigned short)(((int)(src[RIDX(i + 1, j, dim)].green + src[RIDX(i + 1, j - 1, dim)].green +
src[RIDX(i, j, dim)].green + src[RIDX(i - 1, j, dim)].green +
src[RIDX(i, j - 1, dim)].green + src[RIDX(i - 1, j - 1, dim)].green +
src[RIDX(i, j + 1, dim)].green + src[RIDX(i - 1, j + 1, dim)].green +
src[RIDX(i + 1, j + 1, dim)].green)) /
9);
pcurrent_pixel->blue =
(unsigned short)(((int)(src[RIDX(i + 1, j, dim)].blue + src[RIDX(i + 1, j - 1, dim)].blue +
src[RIDX(i, j, dim)].blue + src[RIDX(i - 1, j, dim)].blue +
src[RIDX(i, j - 1, dim)].blue + src[RIDX(i - 1, j - 1, dim)].blue +
src[RIDX(i, j + 1, dim)].blue + src[RIDX(i - 1, j + 1, dim)].blue +
src[RIDX(i + 1, j + 1, dim)].blue)) /
9);
dst[RIDX(i, j, dim)] = current_pixel;
}
}
}
/*********************************************************************
* register_smooth_functions - Register all of your different versions
* of the smooth kernel with the driver by calling the
* add_smooth_function() for each test function. When you run the
* driver program, it will test and report the performance of each
* registered test function.
*********************************************************************/
void register_smooth_functions()
{
add_smooth_function(&smooth, smooth_descr);
add_smooth_function(&naive_smooth, naive_smooth_descr);
/* ... Register additional test functions here */
}