forked from glennhickey/teHmm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
basehmm.py
883 lines (709 loc) · 31.7 KB
/
basehmm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
#!/usr/bin/env python
#Copyright (C) 2014 by Glenn Hickey
#
#Released under the MIT license, see LICENSE.txt
"""
Moving the multinomial hmm from Scikit-Learn into this package so I can speed up the dynamic programming. Also take the opportunity to cut off the dependenciy to scikit which was a bit of an overkill since the basic hmm we use is only a fe w lines of code. Bordering on a total rewrite here, which is probably for the best since the hmm seems on it's way out of scikit anyway.
-- Glenn Hickey, 2014
Derived from scikit-learn/sklearn/hmm.py
See below:
Copyright (c) 2007-2014 the scikit-learn developers.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
a. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
b. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
c. Neither the name of the Scikit-learn Developers nor the names of
its contributors may be used to endorse or promote products
derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.
"""# Hidden Markov Models
#
# Author: Ron Weiss <[email protected]>
# and Shiqiao Du <[email protected]>
# API changes: Jaques Grobler <[email protected]>
"""
The :mod:`sklearn.hmm` module implements hidden Markov models.
**Warning:** :mod:`sklearn.hmm` is orphaned, undocumented and has known
numerical stability issues. This module will be removed in version 0.17.
"""
import string
import numpy as np
import numbers
import copy
from . import _basehmm
from .common import logger
ZEROLOGPROB = -1e200
EPS = np.finfo(float).eps
NEGINF = -np.inf
decoder_algorithms = ("viterbi", "map")
def logsumexp(arr, axis=0):
"""Computes the sum of arr assuming arr is in the log domain.
Returns log(sum(exp(arr))) while minimizing the possibility of
over/underflow.
Examples
--------
>>> import numpy as np
>>> from sklearn.utils.extmath import logsumexp
>>> a = np.arange(10)
>>> np.log(np.sum(np.exp(a)))
9.4586297444267107
>>> logsumexp(a)
9.4586297444267107
"""
arr = np.rollaxis(arr, axis)
# Use the max to normalize, as with the log this is what accumulates
# the less errors
vmax = arr.max(axis=0)
out = np.log(np.sum(np.exp(arr - vmax), axis=0))
out += vmax
return out
def check_random_state(seed):
"""Turn seed into a np.random.RandomState instance
If seed is None, return the RandomState singleton used by np.random.
If seed is an int, return a new RandomState instance seeded with seed.
If seed is already a RandomState instance, return it.
Otherwise raise ValueError.
"""
if seed is None or seed is np.random:
return np.random.mtrand._rand
if isinstance(seed, (numbers.Integral, np.integer)):
return np.random.RandomState(seed)
if isinstance(seed, np.random.RandomState):
return seed
raise ValueError('%r cannot be used to seed a numpy.random.RandomState'
' instance' % seed)
def normalize(A, axis=None):
""" Normalize the input array so that it sums to 1.
WARNING: The HMM module and its functions will be removed in 0.17
as it no longer falls within the project's scope and API.
Parameters
----------
A: array, shape (n_samples, n_features)
Non-normalized input data
axis: int
dimension along which normalization is performed
Returns
-------
normalized_A: array, shape (n_samples, n_features)
A with values normalized (summing to 1) along the prescribed axis
WARNING: Modifies inplace the array
"""
A += EPS
Asum = A.sum(axis)
if axis and A.ndim > 1:
# Make sure we don't divide by zero.
Asum[Asum == 0] = 1
shape = list(A.shape)
shape[axis] = 1
Asum.shape = shape
return A / Asum
class BaseHMM(object):
"""Hidden Markov Model base class.
Representation of a hidden Markov model probability distribution.
This class allows for easy evaluation of, sampling from, and
maximum-likelihood estimation of the parameters of a HMM.
See the instance documentation for details specific to a
particular object.
.. warning::
The HMM module and its functions will be removed in 0.17
as it no longer falls within the project's scope and API.
Attributes
----------
n_components : int
Number of states in the model.
transmat : array, shape (`n_components`, `n_components`)
Matrix of transition probabilities between states.
startprob : array, shape ('n_components`,)
Initial state occupation distribution.
transmat_prior : array, shape (`n_components`, `n_components`)
Matrix of prior transition probabilities between states.
startprob_prior : array, shape ('n_components`,)
Initial state occupation prior distribution.
algorithm : string, one of the decoder_algorithms
decoder algorithm
random_state: RandomState or an int seed (0 by default)
A random number generator instance
n_iter : int, optional
Number of iterations to perform.
thresh : float, optional
Convergence threshold.
params : string, optional
Controls which parameters are updated in the training
process. Can contain any combination of 's' for startprob,
't' for transmat, and other characters for subclass-specific
emmission parameters. Defaults to all parameters.
init_params : string, optional
Controls which parameters are initialized prior to
training. Can contain any combination of 's' for
startprob, 't' for transmat, and other characters for
subclass-specific emmission parameters. Defaults to all
parameters.
See Also
--------
GMM : Gaussian mixture model
"""
# This class implements the public interface to all HMMs that
# derive from it, including all of the machinery for the
# forward-backward and Viterbi algorithms. Subclasses need only
# implement _generate_sample_from_state(), _compute_log_likelihood(),
# _init(), _initialize_sufficient_statistics(),
# _accumulate_sufficient_statistics(), and _do_mstep(), all of
# which depend on the specific emission distribution.
#
# Subclasses will probably also want to implement properties for
# the emission distribution parameters to expose them publicly.
def __init__(self, n_components=1, startprob=None, transmat=None,
startprob_prior=None, transmat_prior=None,
algorithm="viterbi", random_state=None,
n_iter=10, thresh=1e-2, params=string.ascii_letters,
init_params=string.ascii_letters):
self.n_components = n_components
self.n_iter = n_iter
self.thresh = thresh
self.params = params
self.init_params = init_params
self.startprob_ = startprob
self.startprob_prior = startprob_prior
self.transmat_ = transmat
self.transmat_prior = transmat_prior
self._algorithm = algorithm
self.random_state = random_state
def eval(self, X):
return self.score_samples(X)
def score_samples(self, obs):
"""Compute the log probability under the model and compute posteriors.
Parameters
----------
obs : array_like, shape (n, n_features)
Sequence of n_features-dimensional data points. Each row
corresponds to a single point in the sequence.
Returns
-------
logprob : float
Log likelihood of the sequence ``obs``.
posteriors : array_like, shape (n, n_components)
Posterior probabilities of each state for each
observation
See Also
--------
score : Compute the log probability under the model
decode : Find most likely state sequence corresponding to a `obs`
"""
obs = np.asarray(obs)
framelogprob = self._compute_log_likelihood(obs)
logprob, fwdlattice = self._do_forward_pass(framelogprob)
bwdlattice = self._do_backward_pass(framelogprob)
gamma = fwdlattice + bwdlattice
# gamma is guaranteed to be correctly normalized by logprob at
# all frames, unless we do approximate inference using pruning.
# So, we will normalize each frame explicitly in case we
# pruned too aggressively.
posteriors = np.exp(gamma.T - logsumexp(gamma, axis=1)).T
posteriors += np.finfo(np.float32).eps
posteriors /= np.sum(posteriors, axis=1).reshape((-1, 1))
return logprob, posteriors
def score(self, obs):
"""Compute the log probability under the model.
Parameters
----------
obs : array_like, shape (n, n_features)
Sequence of n_features-dimensional data points. Each row
corresponds to a single data point.
Returns
-------
logprob : float
Log likelihood of the ``obs``.
See Also
--------
score_samples : Compute the log probability under the model and
posteriors
decode : Find most likely state sequence corresponding to a `obs`
"""
obs = np.asarray(obs)
framelogprob = self._compute_log_likelihood(obs)
logprob, _ = self._do_forward_pass(framelogprob)
return logprob
def _decode_viterbi(self, obs):
"""Find most likely state sequence corresponding to ``obs``.
Uses the Viterbi algorithm.
Parameters
----------
obs : array_like, shape (n, n_features)
Sequence of n_features-dimensional data points. Each row
corresponds to a single point in the sequence.
Returns
-------
viterbi_logprob : float
Log probability of the maximum likelihood path through the HMM.
state_sequence : array_like, shape (n,)
Index of the most likely states for each observation.
See Also
--------
score_samples : Compute the log probability under the model and
posteriors.
score : Compute the log probability under the model
"""
framelogprob = self._compute_log_likelihood(np.asarray(obs))
viterbi_logprob, state_sequence = self._do_viterbi_pass(framelogprob,
obs = obs)
return viterbi_logprob, state_sequence
def _decode_map(self, obs):
"""Find most likely state sequence corresponding to `obs`.
Uses the maximum a posteriori estimation.
Parameters
----------
obs : array_like, shape (n, n_features)
Sequence of n_features-dimensional data points. Each row
corresponds to a single point in the sequence.
Returns
-------
map_logprob : float
Log probability of the maximum likelihood path through the HMM
state_sequence : array_like, shape (n,)
Index of the most likely states for each observation
See Also
--------
score_samples : Compute the log probability under the model and
posteriors.
score : Compute the log probability under the model.
"""
_, posteriors = self.score_samples(obs)
state_sequence = np.argmax(posteriors, axis=1)
map_logprob = np.max(posteriors, axis=1).sum()
return map_logprob, state_sequence
def decode(self, obs, algorithm="viterbi"):
"""Find most likely state sequence corresponding to ``obs``.
Uses the selected algorithm for decoding.
Parameters
----------
obs : array_like, shape (n, n_features)
Sequence of n_features-dimensional data points. Each row
corresponds to a single point in the sequence.
algorithm : string, one of the `decoder_algorithms`
decoder algorithm to be used
Returns
-------
logprob : float
Log probability of the maximum likelihood path through the HMM
state_sequence : array_like, shape (n,)
Index of the most likely states for each observation
See Also
--------
score_samples : Compute the log probability under the model and
posteriors.
score : Compute the log probability under the model.
"""
if self._algorithm in decoder_algorithms:
algorithm = self._algorithm
elif algorithm in decoder_algorithms:
algorithm = algorithm
decoder = {"viterbi": self._decode_viterbi,
"map": self._decode_map}
logprob, state_sequence = decoder[algorithm](obs)
return logprob, state_sequence
def predict(self, obs, algorithm="viterbi"):
"""Find most likely state sequence corresponding to `obs`.
Parameters
----------
obs : array_like, shape (n, n_features)
Sequence of n_features-dimensional data points. Each row
corresponds to a single point in the sequence.
Returns
-------
state_sequence : array_like, shape (n,)
Index of the most likely states for each observation
"""
_, state_sequence = self.decode(obs, algorithm)
return state_sequence
def predict_proba(self, obs):
"""Compute the posterior probability for each state in the model
Parameters
----------
obs : array_like, shape (n, n_features)
Sequence of n_features-dimensional data points. Each row
corresponds to a single point in the sequence.
Returns
-------
T : array-like, shape (n, n_components)
Returns the probability of the sample for each state in the model.
"""
_, posteriors = self.score_samples(obs)
return posteriors
def sample(self, n=1, random_state=None):
"""Generate random samples from the model.
Parameters
----------
n : int
Number of samples to generate.
random_state: RandomState or an int seed (0 by default)
A random number generator instance. If None is given, the
object's random_state is used
Returns
-------
(obs, hidden_states)
obs : array_like, length `n` List of samples
hidden_states : array_like, length `n` List of hidden states
"""
if random_state is None:
random_state = self.random_state
random_state = check_random_state(random_state)
startprob_pdf = self.startprob_
startprob_cdf = np.cumsum(startprob_pdf)
transmat_pdf = self.transmat_
transmat_cdf = np.cumsum(transmat_pdf, 1)
# Initial state.
rand = random_state.rand()
currstate = (startprob_cdf > rand).argmax()
hidden_states = [currstate]
obs = [self._generate_sample_from_state(
currstate, random_state=random_state)]
for _ in range(n - 1):
rand = random_state.rand()
currstate = (transmat_cdf[currstate] > rand).argmax()
hidden_states.append(currstate)
obs.append(self._generate_sample_from_state(
currstate, random_state=random_state))
return np.array(obs), np.array(hidden_states, dtype=int)
def fit(self, obs):
"""Estimate model parameters.
An initialization step is performed before entering the EM
algorithm. If you want to avoid this step, pass proper
``init_params`` keyword argument to estimator's constructor.
Parameters
----------
obs : list
List of array-like observation sequences, each of which
has shape (n_i, n_features), where n_i is the length of
the i_th observation.
Notes
-----
In general, `logprob` should be non-decreasing unless
aggressive pruning is used. Decreasing `logprob` is generally
a sign of overfitting (e.g. a covariance parameter getting too
small). You can fix this by getting more training data,
or strengthening the appropriate subclass-specific regularization
parameter.
"""
if self.algorithm not in decoder_algorithms:
self._algorithm = "viterbi"
self._init(obs, self.init_params)
logprob = []
for i in range(copy.deepcopy(self.n_iter)):
# Expectation step
stats = self._initialize_sufficient_statistics()
curr_logprob = 0
for seq in obs:
framelogprob = self._compute_log_likelihood(seq)
lpr, fwdlattice = self._do_forward_pass(framelogprob, obs = seq)
bwdlattice = self._do_backward_pass(framelogprob, obs = seq)
logger.debug("Computing posteriors from forward/backward"
" tables. (last unoptimized part that needs"
" redoing for both time and memory)")
gamma = fwdlattice + bwdlattice
posteriors = np.exp(gamma.T - logsumexp(gamma, axis=1)).T
logger.debug("Done posteriors")
curr_logprob += lpr
self._accumulate_sufficient_statistics(
stats, seq, framelogprob, posteriors, fwdlattice,
bwdlattice, self.params)
logprob.append(curr_logprob)
logMsgString = "BW Iteration %d: LogProb %f" % (i, curr_logprob)
if i > 0:
logMsgString += " (delta %f)" % (logprob[-1] - logprob[-2])
logger.info(logMsgString)
# Check for convergence.
if i > 0 and abs(logprob[-1] - logprob[-2]) < self.thresh:
logger.debug("Coverged. Logprobhistory: %s" % str(logprob))
break
if i == self.n_iter - 1:
logger.debug("Finished without converging."
" Logprobhistory: %s" % str(logprob))
break
# Maximization step
self._do_mstep(stats, self.params)
return self
def _get_algorithm(self):
"decoder algorithm"
return self._algorithm
def _set_algorithm(self, algorithm):
if algorithm not in decoder_algorithms:
raise ValueError("algorithm must be one of the decoder_algorithms")
self._algorithm = algorithm
algorithm = property(_get_algorithm, _set_algorithm)
def _get_startprob(self):
"""Mixing startprob for each state."""
return np.exp(self._log_startprob)
def _set_startprob(self, startprob):
if startprob is None:
startprob = np.tile(1.0 / self.n_components, self.n_components)
else:
startprob = np.asarray(startprob, dtype=np.float)
# check if there exists a component whose value is exactly zero
# if so, add a small number and re-normalize
if not np.alltrue(startprob):
normalize(startprob)
if len(startprob) != self.n_components:
raise ValueError('startprob must have length n_components')
if not np.allclose(np.sum(startprob), 1.0):
raise ValueError('startprob must sum to 1.0')
self._log_startprob = np.log(np.asarray(startprob).copy())
startprob_ = property(_get_startprob, _set_startprob)
def _get_transmat(self):
"""Matrix of transition probabilities."""
return np.exp(self._log_transmat)
def _set_transmat(self, transmat):
if transmat is None:
transmat = np.tile(1.0 / self.n_components,
(self.n_components, self.n_components))
# check if there exists a component whose value is exactly zero
# if so, add a small number and re-normalize
if not np.alltrue(transmat):
normalize(transmat, axis=1)
if (np.asarray(transmat).shape
!= (self.n_components, self.n_components)):
raise ValueError('transmat must have shape '
'(n_components, n_components)')
if not np.all(np.allclose(np.sum(transmat, axis=1), 1.0)):
raise ValueError('Rows of transmat must sum to 1.0')
self._log_transmat = np.log(np.asarray(transmat).copy())
underflow_idx = np.isnan(self._log_transmat)
self._log_transmat[underflow_idx] = NEGINF
transmat_ = property(_get_transmat, _set_transmat)
def _do_viterbi_pass(self, framelogprob, obs = None):
n_observations, n_components = framelogprob.shape
state_sequence, logprob = _basehmm._viterbi(
n_observations, n_components, self._log_startprob,
self._log_transmat, framelogprob)
return logprob, state_sequence
def _do_forward_pass(self, framelogprob, obs = None):
n_observations, n_components = framelogprob.shape
fwdlattice = np.zeros((n_observations, n_components))
_basehmm._forward(n_observations, n_components, self._log_startprob,
self._log_transmat, framelogprob, fwdlattice)
fwdlattice[fwdlattice <= ZEROLOGPROB] = NEGINF
return logsumexp(fwdlattice[-1]), fwdlattice
def _do_backward_pass(self, framelogprob, obs = None):
n_observations, n_components = framelogprob.shape
bwdlattice = np.zeros((n_observations, n_components))
_basehmm._backward(n_observations, n_components, self._log_startprob,
self._log_transmat, framelogprob, bwdlattice)
bwdlattice[bwdlattice <= ZEROLOGPROB] = NEGINF
return bwdlattice
def _compute_log_likelihood(self, obs):
pass
def _generate_sample_from_state(self, state, random_state=None):
pass
def _init(self, obs, params):
if 's' in params:
self.startprob_.fill(1.0 / self.n_components)
if 't' in params:
self.transmat_.fill(1.0 / self.n_components)
# Methods used by self.fit()
def _initialize_sufficient_statistics(self):
stats = {'nobs': 0,
'start': np.zeros(self.n_components),
'trans': np.zeros((self.n_components, self.n_components))}
return stats
def _accumulate_sufficient_statistics(self, stats, seq, framelogprob,
posteriors, fwdlattice, bwdlattice,
params):
stats['nobs'] += 1
if 's' in params:
stats['start'] += posteriors[0]
if 't' in params:
n_observations, n_components = framelogprob.shape
# when the sample is of length 1, it contains no transitions
# so there is no reason to update our trans. matrix estimate
if n_observations > 1:
lneta = np.zeros((n_observations - 1, n_components, n_components))
lnP = logsumexp(fwdlattice[-1])
_basehmm._compute_lneta(n_observations, n_components, fwdlattice,
self._log_transmat, bwdlattice, framelogprob,
lnP, lneta)
stats["trans"] += np.exp(logsumexp(lneta, 0))
def _do_mstep(self, stats, params):
# Based on Huang, Acero, Hon, "Spoken Language Processing",
# p. 443 - 445
if self.startprob_prior is None:
self.startprob_prior = 1.0
if self.transmat_prior is None:
self.transmat_prior = 1.0
if 's' in params:
self.startprob_ = normalize(
np.maximum(self.startprob_prior - 1.0 + stats['start'], 1e-20))
if 't' in params:
transmat_ = normalize(
np.maximum(self.transmat_prior - 1.0 + stats['trans'], 1e-20),
axis=1)
self.transmat_ = transmat_
class MultinomialHMM(BaseHMM):
"""Hidden Markov Model with multinomial (discrete) emissions
.. warning::
The HMM module and its functions will be removed in 0.17
as it no longer falls within the project's scope and API.
Attributes
----------
n_components : int
Number of states in the model.
n_symbols : int
Number of possible symbols emitted by the model (in the observations).
transmat : array, shape (`n_components`, `n_components`)
Matrix of transition probabilities between states.
startprob : array, shape ('n_components`,)
Initial state occupation distribution.
emissionprob : array, shape ('n_components`, 'n_symbols`)
Probability of emitting a given symbol when in each state.
random_state: RandomState or an int seed (0 by default)
A random number generator instance
n_iter : int, optional
Number of iterations to perform.
thresh : float, optional
Convergence threshold.
params : string, optional
Controls which parameters are updated in the training
process. Can contain any combination of 's' for startprob,
't' for transmat, 'e' for emmissionprob.
Defaults to all parameters.
init_params : string, optional
Controls which parameters are initialized prior to
training. Can contain any combination of 's' for
startprob, 't' for transmat, 'e' for emmissionprob.
Defaults to all parameters.
Examples
--------
>>> from sklearn.hmm import MultinomialHMM
>>> MultinomialHMM(n_components=2)
... #doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
MultinomialHMM(algorithm='viterbi',...
See Also
--------
GaussianHMM : HMM with Gaussian emissions
"""
def __init__(self, n_components=1, startprob=None, transmat=None,
startprob_prior=None, transmat_prior=None,
algorithm="viterbi", random_state=None,
n_iter=10, thresh=1e-2, params=string.ascii_letters,
init_params=string.ascii_letters):
"""Create a hidden Markov model with multinomial emissions.
Parameters
----------
n_components : int
Number of states.
"""
BaseHMM.__init__(self, n_components, startprob, transmat,
startprob_prior=startprob_prior,
transmat_prior=transmat_prior,
algorithm=algorithm,
random_state=random_state,
n_iter=n_iter,
thresh=thresh,
params=params,
init_params=init_params)
def _get_emissionprob(self):
"""Emission probability distribution for each state."""
return np.exp(self._log_emissionprob)
def _set_emissionprob(self, emissionprob):
emissionprob = np.asarray(emissionprob)
if hasattr(self, 'n_symbols') and \
emissionprob.shape != (self.n_components, self.n_symbols):
raise ValueError('emissionprob must have shape '
'(n_components, n_symbols)')
# check if there exists a component whose value is exactly zero
# if so, add a small number and re-normalize
if not np.alltrue(emissionprob):
normalize(emissionprob)
self._log_emissionprob = np.log(emissionprob)
underflow_idx = np.isnan(self._log_emissionprob)
self._log_emissionprob[underflow_idx] = NEGINF
self.n_symbols = self._log_emissionprob.shape[1]
emissionprob_ = property(_get_emissionprob, _set_emissionprob)
def _compute_log_likelihood(self, obs):
return self._log_emissionprob[:, obs].T
def _generate_sample_from_state(self, state, random_state=None):
cdf = np.cumsum(self.emissionprob_[state, :])
random_state = check_random_state(random_state)
rand = random_state.rand()
symbol = (cdf > rand).argmax()
return symbol
def _init(self, obs, params='ste'):
super(MultinomialHMM, self)._init(obs, params=params)
self.random_state = check_random_state(self.random_state)
if 'e' in params:
if not hasattr(self, 'n_symbols'):
symbols = set()
for o in obs:
symbols = symbols.union(set(o))
self.n_symbols = len(symbols)
emissionprob = normalize(self.random_state.rand(self.n_components,
self.n_symbols), 1)
self.emissionprob_ = emissionprob
def _initialize_sufficient_statistics(self):
stats = super(MultinomialHMM, self)._initialize_sufficient_statistics()
stats['obs'] = np.zeros((self.n_components, self.n_symbols))
return stats
def _accumulate_sufficient_statistics(self, stats, obs, framelogprob,
posteriors, fwdlattice, bwdlattice,
params):
super(MultinomialHMM, self)._accumulate_sufficient_statistics(
stats, obs, framelogprob, posteriors, fwdlattice, bwdlattice,
params)
if 'e' in params:
for t, symbol in enumerate(obs):
stats['obs'][:, symbol] += posteriors[t]
def _do_mstep(self, stats, params):
super(MultinomialHMM, self)._do_mstep(stats, params)
if 'e' in params:
self.emissionprob_ = (stats['obs']
/ stats['obs'].sum(1)[:, np.newaxis])
def _check_input_symbols(self, obs):
"""check if input can be used for Multinomial.fit input must be both
positive integer array and every element must be continuous.
e.g. x = [0, 0, 2, 1, 3, 1, 1] is OK and y = [0, 0, 3, 5, 10] not
"""
symbols = np.asarray(obs).flatten()
if symbols.dtype.kind != 'i':
# input symbols must be integer
return False
if len(symbols) == 1:
# input too short
return False
if np.any(symbols < 0):
# input contains negative intiger
return False
symbols.sort()
if np.any(np.diff(symbols) > 1):
# input is discontinous
return False
return True
def fit(self, obs, **kwargs):
"""Estimate model parameters.
An initialization step is performed before entering the EM
algorithm. If you want to avoid this step, pass proper
``init_params`` keyword argument to estimator's constructor.
Parameters
----------
obs : list
List of array-like observation sequences, each of which
has shape (n_i, n_features), where n_i is the length of
the i_th observation.
"""
err_msg = ("Input must be both positive integer array and "
"every element must be continuous, but %s was given.")
if not self._check_input_symbols(obs):
raise ValueError(err_msg % obs)
return BaseHMM.fit(self, obs, **kwargs)