-
Notifications
You must be signed in to change notification settings - Fork 4
/
faceAssistant.py
371 lines (281 loc) · 13.5 KB
/
faceAssistant.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
#--------------------------
#Date: 19/12/2019
#Place: Turin, PIC4SeR
#Author: Fra, Vitto
#Project: faceAssistant
#---------------------------
import os, time, datetime
import pickle, json
import numpy as np
import cv2
from textwrap import dedent
from faceNet.MyMQTT import MyMQTT
from faceNet.MyCam import MyCam
from faceNet.Timer import Timer
from faceNet.profileNet import profileNet
from faceNet.faceNet import faceNet
class FaceNet():
def __init__(self,conf_file="conf.json"):
self.read_configuration(conf_file)
print(self.logo)
self.get_seen() # get seen dictionary from file
self.MQTT_initialize()
try:
self.database = pickle.loads(open(self.data_file, "rb").read()) # read the storage database
print("[INFO] Embeddings file imported.\n")
except:
raise FileNotFoundError("[Error] Encodings file not found. Generate it with 'imagesAcquisition.py'.")
if self.classifier: #knn model
try:
self.knn_model = pickle.loads(open(self.classifier_model_path, "rb").read()) # read the storage database
print("[INFO] Knn classifier model imported.\n")
except:
raise FileNotFoundError("[Error] Knn classifier model not found. Generate it with 'imagesAcquisition.py'.")
self.cam = MyCam(self.cameras_file,self.default_camera)
print("[INFO] Creating Tensorflow models...\n")
self.profileNet = profileNet(self.profile_model)
self.model = faceNet(self.bb_model,self.emb_model)
self.counter = 0
def run(self):
self.del_old_thrd = Timer('deleteOld',"00.00",self.delete_old) # thread that deletes the old seen every day at midnight
self.del_old_thrd.start()
cv2.namedWindow('Camera', cv2.WND_PROP_FULLSCREEN)
cv2.setWindowProperty('Camera', cv2.WND_PROP_FULLSCREEN, cv2.WINDOW_FULLSCREEN)
self.ready = True
self.frame = np.zeros((480,640,3),dtype='int8') #default frame
while True:
if self.ready:
img = self.get_frame()
boxes,names = self.detect(img)
if boxes.size:
self.update_seen(names)
img = self.draw_boxes(boxes,names)
if not self.show(img,1):
break
else:
time.sleep(0.5)
self.cam.release()
quit()
def read_configuration(self,conf_file):
conf = json.loads(open(conf_file,'r').read())
self.ROOT_DIR = os.path.abspath('')
self.logo = open(conf["logo_file"]).read()
self.data_file = conf["database_file"]
self.seen_file = conf["seen_file"]
self.cameras_file = conf["cameras_file"]
self.default_camera = conf["default_camera_index"]
self.bb_model = conf["bb_model"]
self.emb_model = conf["emb_model"]
self.profile_model = conf["profile_model"]
self.classifier = conf["classifier"]
if self.classifier:
self.classifier_model_path = conf["classifier_model"]
self.frame_width = conf["frame_max_width"]
self.blur = conf["blur"]
self.unknown_color = conf["unknown_color"]
self.show_fps = conf["show_fps"]
if self.show_fps:
self.previous_prediction_time = time.time()
self.line_width = conf["box_line_width"]
self.font_dim = conf["font_dim"]
self.MQTT_ID = conf["MQTT_ID"]
self.MQTT_broker = conf["MQTT_broker"]
self.MQTT_user = conf["MQTT_user"]
self.MQTT_pwd = conf["MQTT_pwd"]
self.MQTT_topic = conf["MQTT_topic"]
def MQTT_initialize(self):
self.MQTTclient = MyMQTT(self.MQTT_ID , self.MQTT_broker, self.MQTT_user, self.MQTT_pwd, self.dispatch)
self.MQTTclient.start()
#wait for connnection
while not self.MQTTclient.is_connected:
time.sleep(0.1)
#subscribe
for topic in self.MQTT_topic:
self.MQTTclient.subscribe(topic)
while sum(self.MQTTclient.is_subscribed) < len(self.MQTT_topic):
time.sleep(0.1)
def get_seen(self):
try:
self.seen = json.loads(open(self.seen_file, "r").read())
except:
print("[INFO] New seen.json file.\n")
self.reset_seen()
def reset_seen(self):
self.seen = {"list":{}} # generate empty seen dataframe
self.update_seen() # generate empty seen file
def delete_old(self):
#max 7 days
maxdate = datetime.date.today() - datetime.timedelta(days=7)
seen = self.seen.copy()
for t in seen["list"]:
if datetime.strptime(t, "%Y %m %d") <= maxdate:
del self.seen["list"][t]
def dispatch(self,message):
"""
Dispatch function for MQTT messages.
:param message: MQTT message with JSON payload
"""
topic = message.topic
message = json.loads(message.payload.decode())
print("[INFO] Received message on topic " + topic)
if "camera" in topic:
self.change_camera(message)
def change_camera(self,message):
"""
Change the camera.
:param message: dictionary with 'camera' key -> camera ID to be selected, 't' key -> timestamp of the message
"""
self.ready = False
n = int(message.get('camera'))
t = message.get('time')
print("\n[INFO] " + time.ctime(t) + " Selected camera number " + str(n) + ".\n")
self.cam.change(n)
self.ready = True
def get_frame(self):
"""
Get the the image from the camera object. If the freame read fails it uses the previous frame. If it fails more than 10 times it tries to reattach the camera. It sets the self.frame attribute with the read image and returns the frame used for face localization and detection.
:return: The frame.
"""
frame = self.cam.read()
if not frame[0]:
if self.counter >= 10:
self.cam.reattach()
self.counter = -1
frame = self.frame
print('\n[INFO] Using previous frame.')
self.counter += 1
else:
self.counter = 0
frame = frame[1]
if self.cam.flip: #usually we want to flip webcams horizontally
frame = cv2.flip(frame, 1)
self.frame = frame #frame that will be dispalyed
if frame.shape[1]>self.frame_width:
self.r = frame.shape[1] / self.frame_width
frame = cv2.resize(frame, (self.frame_width,int(frame.shape[0]/self.r)), interpolation=cv2.INTER_AREA)
else:
self.r = 1
return frame #frame used as tensorflow input
def detect(self,frame=None):
"""
Execute the detection and recognition algorithms with an image.
:param frame: The image.
:return: A tuple with the detected bounding boxes and the associated names.
"""
if frame is None:
return (None,None)
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# detect the (x, y)-coordinates of the bounding boxes
# corresponding to each face in the input frame, then compute
# the facial embeddings for each face
boxes,landmarks = self.model.get_face_locations(frame,self.cam.minsize,self.cam.factor,self.cam.thr)
encodings = self.face_encodings(frame, boxes)
names = []
if self.classifier and not np.sum([1 for enc in encodings if enc is None]): # KNN model only if we have front faces
# Check threshold to choose between known and unknown
# only the front has to be considered
indexes = np.array([i for i in range(len(encodings)) if np.any(encodings[i])])
closest_distances = self.knn_model.kneighbors(np.array(encodings)[indexes], n_neighbors=1)[0]
are_matches = [closest_distances[int(np.where(indexes==i)[0])][0] <= self.cam.distance_thr if i in indexes
else None for i in range(len(encodings))]
# Predict classes and remove classifications that aren't within the threshold
names = [name if rec else "Unknown" for name,rec in zip(self.knn_model.predict(encodings), are_matches)]
return (boxes,names)
# euclidean distances
for encoding in encodings:
# attempt to match each face in the input image to our known
# encodings
name = 'Unknown' #default name
if encoding is None:
names.append(name)
continue
matches = {}
#loop over the storage embeddings
for db_name in self.database:
person = self.database[db_name]
person_match = self.model.compare_faces(person["encodings"], encoding,self.cam.distance_thr) #default is 0.6
matches[db_name] = sum(person_match)
#get name of maximum match
if matches[max(matches,key=matches.get)]:
name = max(matches,key=matches.get)
# update the list of names
names.append(' '.join([i.capitalize() for i in name.split('_')])) # write the name in a good way
return (boxes,names)
def face_encodings(self,face_image, known_face_locations=None):
"""
Given an image, return the 256-dimension face encoding for each face in the image. Function redefined from face_recognition to add side/front classification and use large model for facial landmarks.
:param face_image: The image that contains one or more faces.
:param known_face_locations: The bounding boxes of each face if you already know them.
:return: A list of 256-dimensional face encodings (one for each face in the image).
"""
if not known_face_locations.size:
return np.array([])
#if side faces: no landmarks and no encodings
faces = self.model.get_faces(self.frame,known_face_locations*self.r)
norm_faces = self.profileNet.normalize(faces.copy())
are_front = self.profileNet.predict(norm_faces,self.cam.profile_thr)
return np.array([self.model.get_embeddings(faces[i:i+1])[0] if are_front[i] else None
for i in range(len(known_face_locations))])
def update_seen(self,names=[]):
date = datetime.date.today().strftime("%Y %m %d")
if date not in self.seen["list"]:
self.seen["list"][date] = []
for name in names:
seen_names_list = [d['name'] for d in self.seen["list"][date]]
if name not in seen_names_list:
new_seen = {"name":name,"time":time.time()}
self.seen["list"][date].append(new_seen)
else:
index = seen_names_list.index(name)
self.seen["list"][date][index]["time"] = time.time()
# update seen file
self.seen["updated"] = time.time()
save_file = open(self.seen_file, "w+")
json.dump(self.seen,save_file)
save_file.close()
def draw_boxes(self,boxes=[],names=[]):
if self.frame is None:
return None
frame = self.frame.copy()
if self.show_fps: # write fps
fps = 1./(time.time() - self.previous_prediction_time)
self.previous_prediction_time = time.time()
text = "FPS: {:.2f}".format(fps)
cv2.putText(frame, text, (5,20), cv2.FONT_HERSHEY_SIMPLEX, self.font_dim, self.unknown_color, 2) #top left corner
# draw the faces boxes with names
for ((left, top, right, bottom, conf), name) in zip(boxes, names):
left = np.maximum(left,0)
top = np.maximum(top,0)
right = np.minimum(right,frame.shape[1])
bottom = np.minimum(bottom,frame.shape[0])
top = int(top*self.r); right = int(right*self.r); bottom = int(bottom*self.r); left = int(left*self.r)
if not name == 'Unknown':
color = self.database['_'.join(name.lower().split())]["color"]
else:
color = self.unknown_color
if self.blur: #blur unknown faces
name = '' #no name
face_image = frame[top:bottom, left:right]
face_image = cv2.GaussianBlur(face_image, (99, 99), 30)
frame[top:bottom, left:right] = face_image
cv2.rectangle(frame, (left, top), (right, bottom), color, self.line_width)
y = top - 15 if top - 15 > 15 else top + 20
cv2.putText(frame, name, (left + 5, y), cv2.FONT_HERSHEY_SIMPLEX, self.font_dim, color, 2)
return frame
def show(self,frame,delay=0):
"""
Visualized the modified frame.
:param frame: The frame to be modified.
:return: 0 if we want to stop the execution, 1 else
"""
cv2.imshow("Camera", frame)
k = cv2.waitKey(delay) & 0xFF
if k == 27:
cv2.destroyAllWindows()
return 0 # if the `esc` key was pressed, break from the loop
elif k == ord('c'):
self.cam.switch()
return 1
if __name__ == "__main__":
model = FaceNet()
model.run()