-
Notifications
You must be signed in to change notification settings - Fork 3
/
eval_robbie.py
73 lines (61 loc) · 3.42 KB
/
eval_robbie.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
from sklearn.metrics import confusion_matrix
import numpy as np
import tensorflow as tf
import os, argparse
import cv2
#ROBBIE
from data_robbie import process_image_file
#ROBBIE
from sklearn.metrics import accuracy_score
mapping = {'normal': 0, 'pneumonia': 1, 'COVID-19': 2}
def eval(sess, graph, testfile, testfolder, input_tensor, output_tensor, input_size):
image_tensor = graph.get_tensor_by_name(input_tensor)
pred_tensor = graph.get_tensor_by_name(output_tensor)
y_test = []
pred = []
for i in range(len(testfile)):
line = testfile[i].split()
x = process_image_file(os.path.join(testfolder, line[1]), 0.08, input_size)
x = x.astype('float32') / 255.0
y_test.append(mapping[line[2]])
pred.append(np.array(sess.run(pred_tensor, feed_dict={image_tensor: np.expand_dims(x, axis=0)})).argmax(axis=1))
y_test = np.array(y_test)
pred = np.array(pred)
#ROBBIE
acc = accuracy_score(y_pred=pred, y_true = y_test)
matrix = confusion_matrix(y_test, pred)
matrix = matrix.astype('float')
#cm_norm = matrix / matrix.sum(axis=1)[:, np.newaxis]
print(matrix)
#class_acc = np.array(cm_norm.diagonal())
class_acc = [matrix[i,i]/np.sum(matrix[i,:]) if np.sum(matrix[i,:]) else 0 for i in range(len(matrix))]
print('Sens Normal: {0:.3f}, Pneumonia: {1:.3f}, COVID-19: {2:.3f}'.format(class_acc[0],
class_acc[1],
class_acc[2]))
ppvs = [matrix[i,i]/np.sum(matrix[:,i]) if np.sum(matrix[:,i]) else 0 for i in range(len(matrix))]
print('PPV Normal: {0:.3f}, Pneumonia {1:.3f}, COVID-19: {2:.3f}'.format(ppvs[0],
ppvs[1],
ppvs[2]))
#ROBBIE
print('over all accuracy score: {0:.3f}'.format(acc))
#ROBBIE
return (acc,class_acc,ppvs)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='COVID-Net Evaluation')
parser.add_argument('--weightspath', default='models/COVIDNet-CXR4-A', type=str, help='Path to output folder')
parser.add_argument('--metaname', default='model.meta', type=str, help='Name of ckpt meta file')
parser.add_argument('--ckptname', default='model-18540', type=str, help='Name of model ckpts')
parser.add_argument('--testfile', default='test_COVIDx5.txt', type=str, help='Name of testfile')
parser.add_argument('--testfolder', default='data/test', type=str, help='Folder where test data is located')
parser.add_argument('--in_tensorname', default='input_1:0', type=str, help='Name of input tensor to graph')
parser.add_argument('--out_tensorname', default='norm_dense_1/Softmax:0', type=str, help='Name of output tensor from graph')
parser.add_argument('--input_size', default=480, type=int, help='Size of input (ex: if 480x480, --input_size 480)')
args = parser.parse_args()
sess = tf.Session()
tf.get_default_graph()
saver = tf.train.import_meta_graph(os.path.join(args.weightspath, args.metaname))
saver.restore(sess, os.path.join(args.weightspath, args.ckptname))
graph = tf.get_default_graph()
file = open(args.testfile, 'r')
testfile = file.readlines()
eval(sess, graph, testfile, args.testfolder, args.in_tensorname, args.out_tensorname, args.input_size)