forked from mio-nyan/sd-scripts
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sdxl_train_network.py
185 lines (156 loc) · 8.24 KB
/
sdxl_train_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import argparse
import torch
try:
import intel_extension_for_pytorch as ipex
if torch.xpu.is_available():
from library.ipex import ipex_init
ipex_init()
except Exception:
pass
from library import sdxl_model_util, sdxl_train_util, train_util
import train_network
class SdxlNetworkTrainer(train_network.NetworkTrainer):
def __init__(self):
super().__init__()
self.vae_scale_factor = sdxl_model_util.VAE_SCALE_FACTOR
self.is_sdxl = True
def assert_extra_args(self, args, train_dataset_group):
super().assert_extra_args(args, train_dataset_group)
sdxl_train_util.verify_sdxl_training_args(args)
if args.cache_text_encoder_outputs:
assert (
train_dataset_group.is_text_encoder_output_cacheable()
), "when caching Text Encoder output, either caption_dropout_rate, shuffle_caption, token_warmup_step or caption_tag_dropout_rate cannot be used / Text Encoderの出力をキャッシュするときはcaption_dropout_rate, shuffle_caption, token_warmup_step, caption_tag_dropout_rateは使えません"
assert (
args.network_train_unet_only or not args.cache_text_encoder_outputs
), "network for Text Encoder cannot be trained with caching Text Encoder outputs / Text Encoderの出力をキャッシュしながらText Encoderのネットワークを学習することはできません"
train_dataset_group.verify_bucket_reso_steps(32)
def load_target_model(self, args, weight_dtype, accelerator):
(
load_stable_diffusion_format,
text_encoder1,
text_encoder2,
vae,
unet,
logit_scale,
ckpt_info,
) = sdxl_train_util.load_target_model(args, accelerator, sdxl_model_util.MODEL_VERSION_SDXL_BASE_V1_0, weight_dtype)
self.load_stable_diffusion_format = load_stable_diffusion_format
self.logit_scale = logit_scale
self.ckpt_info = ckpt_info
return sdxl_model_util.MODEL_VERSION_SDXL_BASE_V1_0, [text_encoder1, text_encoder2], vae, unet
def load_tokenizer(self, args):
tokenizer = sdxl_train_util.load_tokenizers(args)
return tokenizer
def is_text_encoder_outputs_cached(self, args):
return args.cache_text_encoder_outputs
def cache_text_encoder_outputs_if_needed(
self, args, accelerator, unet, vae, tokenizers, text_encoders, dataset: train_util.DatasetGroup, weight_dtype
):
if args.cache_text_encoder_outputs:
if not args.lowram:
# メモリ消費を減らす
print("move vae and unet to cpu to save memory")
org_vae_device = vae.device
org_unet_device = unet.device
vae.to("cpu")
unet.to("cpu")
if torch.cuda.is_available():
torch.cuda.empty_cache()
# When TE is not be trained, it will not be prepared so we need to use explicit autocast
with accelerator.autocast():
dataset.cache_text_encoder_outputs(
tokenizers,
text_encoders,
accelerator.device,
weight_dtype,
args.cache_text_encoder_outputs_to_disk,
accelerator.is_main_process,
)
text_encoders[0].to("cpu", dtype=torch.float32) # Text Encoder doesn't work with fp16 on CPU
text_encoders[1].to("cpu", dtype=torch.float32)
if torch.cuda.is_available():
torch.cuda.empty_cache()
if not args.lowram:
print("move vae and unet back to original device")
vae.to(org_vae_device)
unet.to(org_unet_device)
else:
# Text Encoderから毎回出力を取得するので、GPUに乗せておく
text_encoders[0].to(accelerator.device)
text_encoders[1].to(accelerator.device)
def get_text_cond(self, args, accelerator, batch, tokenizers, text_encoders, weight_dtype):
if "text_encoder_outputs1_list" not in batch or batch["text_encoder_outputs1_list"] is None:
input_ids1 = batch["input_ids"]
input_ids2 = batch["input_ids2"]
with torch.enable_grad():
# Get the text embedding for conditioning
# TODO support weighted captions
# if args.weighted_captions:
# encoder_hidden_states = get_weighted_text_embeddings(
# tokenizer,
# text_encoder,
# batch["captions"],
# accelerator.device,
# args.max_token_length // 75 if args.max_token_length else 1,
# clip_skip=args.clip_skip,
# )
# else:
input_ids1 = input_ids1.to(accelerator.device)
input_ids2 = input_ids2.to(accelerator.device)
encoder_hidden_states1, encoder_hidden_states2, pool2 = train_util.get_hidden_states_sdxl(
args.max_token_length,
input_ids1,
input_ids2,
tokenizers[0],
tokenizers[1],
text_encoders[0],
text_encoders[1],
None if not args.full_fp16 else weight_dtype,
)
else:
encoder_hidden_states1 = batch["text_encoder_outputs1_list"].to(accelerator.device).to(weight_dtype)
encoder_hidden_states2 = batch["text_encoder_outputs2_list"].to(accelerator.device).to(weight_dtype)
pool2 = batch["text_encoder_pool2_list"].to(accelerator.device).to(weight_dtype)
# # verify that the text encoder outputs are correct
# ehs1, ehs2, p2 = train_util.get_hidden_states_sdxl(
# args.max_token_length,
# batch["input_ids"].to(text_encoders[0].device),
# batch["input_ids2"].to(text_encoders[0].device),
# tokenizers[0],
# tokenizers[1],
# text_encoders[0],
# text_encoders[1],
# None if not args.full_fp16 else weight_dtype,
# )
# b_size = encoder_hidden_states1.shape[0]
# assert ((encoder_hidden_states1.to("cpu") - ehs1.to(dtype=weight_dtype)).abs().max() > 1e-2).sum() <= b_size * 2
# assert ((encoder_hidden_states2.to("cpu") - ehs2.to(dtype=weight_dtype)).abs().max() > 1e-2).sum() <= b_size * 2
# assert ((pool2.to("cpu") - p2.to(dtype=weight_dtype)).abs().max() > 1e-2).sum() <= b_size * 2
# print("text encoder outputs verified")
return encoder_hidden_states1, encoder_hidden_states2, pool2
def call_unet(self, args, accelerator, unet, noisy_latents, timesteps, text_conds, batch, weight_dtype):
noisy_latents = noisy_latents.to(weight_dtype) # TODO check why noisy_latents is not weight_dtype
# get size embeddings
orig_size = batch["original_sizes_hw"]
crop_size = batch["crop_top_lefts"]
target_size = batch["target_sizes_hw"]
embs = sdxl_train_util.get_size_embeddings(orig_size, crop_size, target_size, accelerator.device).to(weight_dtype)
# concat embeddings
encoder_hidden_states1, encoder_hidden_states2, pool2 = text_conds
vector_embedding = torch.cat([pool2, embs], dim=1).to(weight_dtype)
text_embedding = torch.cat([encoder_hidden_states1, encoder_hidden_states2], dim=2).to(weight_dtype)
noise_pred = unet(noisy_latents, timesteps, text_embedding, vector_embedding)
return noise_pred
def sample_images(self, accelerator, args, epoch, global_step, device, vae, tokenizer, text_encoder, unet):
sdxl_train_util.sample_images(accelerator, args, epoch, global_step, device, vae, tokenizer, text_encoder, unet)
def setup_parser() -> argparse.ArgumentParser:
parser = train_network.setup_parser()
sdxl_train_util.add_sdxl_training_arguments(parser)
return parser
if __name__ == "__main__":
parser = setup_parser()
args = parser.parse_args()
args = train_util.read_config_from_file(args, parser)
trainer = SdxlNetworkTrainer()
trainer.train(args)