You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
in train_data(mini_batch, targets, word_attn_model, sent_attn_model, word_optimizer, sent_optimizer, criterion)
12 else:
13 s = torch.cat((s,_s),0)
---> 14 y_pred, state_sent, _ = sent_attn_model(s, state_sent)
15 loss = criterion(y_pred, targets)
16 loss.backward()
C:\ProgramData\Anaconda3\lib\site-packages\torch\nn\modules\module.py in call(self, *input, **kwargs)
222 for hook in self._forward_pre_hooks.values():
223 hook(self, input)
--> 224 result = self.forward(*input, **kwargs)
225 for hook in self._forward_hooks.values():
226 hook_result = hook(self, input, result)
C:\ProgramData\Anaconda3\lib\site-packages\torch\nn\modules\module.py in call(self, *input, **kwargs)
222 for hook in self._forward_pre_hooks.values():
223 hook(self, input)
--> 224 result = self.forward(*input, **kwargs)
225 for hook in self._forward_hooks.values():
226 hook_result = hook(self, input, result)
C:\ProgramData\Anaconda3\lib\site-packages\torch\autograd_functions\tensor.py in forward(ctx, i, num_chunks, dim)
540 def forward(ctx, i, num_chunks, dim=0):
541 ctx.dim = dim
--> 542 result = i.chunk(num_chunks, dim)
543 ctx.mark_shared_storage(*((i, chunk) for chunk in result))
544 return result
I am sorry but I will no longer be maintaining this project, especially when it comes to Python 3 support. Please have a look at the other implementation of the same attention model. https://github.com/EdGENetworks/anuvada
RuntimeError Traceback (most recent call last)
in ()
----> 1 loss_full= train_early_stopping(64, X_train, y_train, X_test, y_test, word_attn, sent_attn, word_optmizer, sent_optimizer, criterion, 5000, 1000, 50)
in train_early_stopping(mini_batch_size, X_train, y_train, X_test, y_test, word_attn_model, sent_attn_model, word_attn_optimiser, sent_attn_optimiser, loss_criterion, num_epoch, print_val_loss_every, print_loss_every)
13 try:
14 tokens, labels = next(g)
---> 15 loss = train_data(tokens, labels, word_attn_model, sent_attn_model, word_attn_optimiser, sent_attn_optimiser, loss_criterion)
16 acc = test_accuracy_mini_batch(tokens, labels, word_attn_model, sent_attn_model)
17 accuracy_full.append(acc)
in train_data(mini_batch, targets, word_attn_model, sent_attn_model, word_optimizer, sent_optimizer, criterion)
12 else:
13 s = torch.cat((s,_s),0)
---> 14 y_pred, state_sent, _ = sent_attn_model(s, state_sent)
15 loss = criterion(y_pred, targets)
16 loss.backward()
C:\ProgramData\Anaconda3\lib\site-packages\torch\nn\modules\module.py in call(self, *input, **kwargs)
222 for hook in self._forward_pre_hooks.values():
223 hook(self, input)
--> 224 result = self.forward(*input, **kwargs)
225 for hook in self._forward_hooks.values():
226 hook_result = hook(self, input, result)
in forward(self, word_attention_vectors, state_sent)
36 print(state_sent.size())
37
---> 38 output_sent, state_sent = self.sent_gru(word_attention_vectors, state_sent)
39 sent_squish = batch_matmul_bias(output_sent, self.weight_W_sent,self.bias_sent, nonlinearity='tanh')
40 sent_attn = batch_matmul(sent_squish, self.weight_proj_sent)
C:\ProgramData\Anaconda3\lib\site-packages\torch\nn\modules\module.py in call(self, *input, **kwargs)
222 for hook in self._forward_pre_hooks.values():
223 hook(self, input)
--> 224 result = self.forward(*input, **kwargs)
225 for hook in self._forward_hooks.values():
226 hook_result = hook(self, input, result)
C:\ProgramData\Anaconda3\lib\site-packages\torch\nn\modules\rnn.py in forward(self, input, hx)
160 flat_weight=flat_weight
161 )
--> 162 output, hidden = func(input, self.all_weights, hx)
163 if is_packed:
164 output = PackedSequence(output, batch_sizes)
C:\ProgramData\Anaconda3\lib\site-packages\torch\nn_functions\rnn.py in forward(input, *fargs, **fkwargs)
349 else:
350 func = AutogradRNN(*args, **kwargs)
--> 351 return func(input, *fargs, **fkwargs)
352
353 return forward
C:\ProgramData\Anaconda3\lib\site-packages\torch\nn_functions\rnn.py in forward(input, weight, hidden)
242 input = input.transpose(0, 1)
243
--> 244 nexth, output = func(input, hidden, weight)
245
246 if batch_first and batch_sizes is None:
C:\ProgramData\Anaconda3\lib\site-packages\torch\nn_functions\rnn.py in forward(input, hidden, weight)
82 l = i * num_directions + j
83
---> 84 hy, output = inner(input, hidden[l], weight[l])
85 next_hidden.append(hy)
86 all_output.append(output)
C:\ProgramData\Anaconda3\lib\site-packages\torch\nn_functions\rnn.py in forward(input, hidden, weight)
111 steps = range(input.size(0) - 1, -1, -1) if reverse else range(input.size(0))
112 for i in steps:
--> 113 hidden = inner(input[i], hidden, *weight)
114 # hack to handle LSTM
115 output.append(hidden[0] if isinstance(hidden, tuple) else hidden)
C:\ProgramData\Anaconda3\lib\site-packages\torch\nn_functions\rnn.py in GRUCell(input, hidden, w_ih, w_hh, b_ih, b_hh)
54 gi = F.linear(input, w_ih, b_ih)
55 gh = F.linear(hidden, w_hh, b_hh)
---> 56 i_r, i_i, i_n = gi.chunk(3, 1)
57 h_r, h_i, h_n = gh.chunk(3, 1)
58
C:\ProgramData\Anaconda3\lib\site-packages\torch\autograd\variable.py in chunk(self, num_chunks, dim)
745
746 def chunk(self, num_chunks, dim=0):
--> 747 return Chunk.apply(self, num_chunks, dim)
748
749 def squeeze(self, dim=None):
C:\ProgramData\Anaconda3\lib\site-packages\torch\autograd_functions\tensor.py in forward(ctx, i, num_chunks, dim)
540 def forward(ctx, i, num_chunks, dim=0):
541 ctx.dim = dim
--> 542 result = i.chunk(num_chunks, dim)
543 ctx.mark_shared_storage(*((i, chunk) for chunk in result))
544 return result
C:\ProgramData\Anaconda3\lib\site-packages\torch\tensor.py in chunk(self, n_chunks, dim)
172 See :func:
torch.chunk
.173 """
--> 174 return torch.chunk(self, n_chunks, dim)
175
176 def matmul(self, other):
C:\ProgramData\Anaconda3\lib\site-packages\torch\functional.py in chunk(tensor, chunks, dim)
42 if dim < 0:
43 dim += tensor.dim()
---> 44 split_size = (tensor.size(dim) + chunks - 1) // chunks
45 return split(tensor, split_size, dim)
46
RuntimeError: invalid argument 2: dimension 1 out of range of 1D tensor at d:\projects\pytorch\torch\lib\th\generic/THTensor.c:24
Got this runtime Error when I try to run it on Python3. Could anyone help me with this?
Thanks a lot!
The text was updated successfully, but these errors were encountered: