This repository has been archived by the owner on Feb 5, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 16
/
flair_generate_html_from_xml.py
73 lines (64 loc) · 3.05 KB
/
flair_generate_html_from_xml.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import os
from typing import List
import spacy
from flair.data import Sentence, build_spacy_tokenizer
from flair.models import SequenceTagger
from flair.visual.ner_html import render_ner_html
from misc.command_line import train_parse_args
from ner.model_factory import colors, get_tokenizer
from spacy.language import Language
from tqdm import tqdm
from xml_extractions.extract_node_values import Paragraph, get_paragraph_from_file
def main(data_folder: str, model_folder: str, top_n: int) -> None:
print(f"keep only top {top_n} examples per file")
nlp: Language = spacy.blank(name="fr")
nlp.tokenizer = get_tokenizer(nlp)
tokenizer = build_spacy_tokenizer(nlp)
filenames = [filename for filename in os.listdir(data_folder) if filename.endswith(".xml")]
sentences: List[Sentence] = list()
with tqdm(total=len(filenames), unit=" XML", desc="Parsing XML") as progress_bar:
for filename in filenames:
paragraphs: List[Paragraph] = get_paragraph_from_file(
path=os.path.join(data_folder, filename), keep_paragraph_without_annotation=True
)
if len(paragraphs) > top_n:
for paragraph in paragraphs[:top_n]:
if len(paragraph.text) > 0:
s = Sentence(text=paragraph.text, tokenizer=tokenizer)
sentences.append(s)
progress_bar.update()
if len(sentences) == 0:
raise Exception("No example loaded, causes: no cases in provided path or sample size is to high")
tagger: SequenceTagger = SequenceTagger.load(os.path.join(model_folder, "best-model.pt"))
_ = tagger.predict(sentences=sentences, mini_batch_size=32, verbose=True)
print("prepare html")
page_html = render_ner_html(sentences, colors=colors)
print("write html")
with open("sentence.html", "w") as writer:
writer.write(page_html)
if __name__ == "__main__":
args = train_parse_args(train=False)
assert args.dev_size >= 1
main(data_folder=args.input_dir, model_folder=args.model_dir, top_n=args.dev_size)
# data_folder = "../case_annotation/data/tc/spacy_manual_annotations"
# model_folder = "resources/flair_ner/tc/"
# top_n = 2000
# data_folder = "resources/training_data"
# model_folder = "resources/flair_ner/ca/"
# top_n = 50