diff --git a/candle/data_utils.py b/candle/data_utils.py index 4a443fa..3f8da48 100644 --- a/candle/data_utils.py +++ b/candle/data_utils.py @@ -1,8 +1,9 @@ from __future__ import absolute_import +from typing import List + import numpy as np import pandas as pd -from typing import List # Adding conditional import for compatibility between # sklearn versions @@ -832,7 +833,7 @@ def load_Xy_data_noheader( classes: int, usecols: List = None, scaling: str = None, - dtype=DEFAULT_DATATYPE + dtype=DEFAULT_DATATYPE, ): """ Load training and testing data from the files specified, with the first diff --git a/candle/helper_utils.py b/candle/helper_utils.py index 3b199d8..2f92b07 100644 --- a/candle/helper_utils.py +++ b/candle/helper_utils.py @@ -11,7 +11,9 @@ from .file_utils import get_file -def fetch_file(link: str, subdir: str, unpack: bool = False, md5_hash: str = None) -> str: +def fetch_file( + link: str, subdir: str, unpack: bool = False, md5_hash: str = None +) -> str: """ Convert URL to file path and download the file if it is not already present in spedified cache. diff --git a/candle/uq_utils.py b/candle/uq_utils.py index 5372b13..10ec121 100644 --- a/candle/uq_utils.py +++ b/candle/uq_utils.py @@ -48,7 +48,7 @@ def generate_index_distribution( :param Dict params: Contains the keywords that control the behavior of the function \ (uq_train_fr, uq_valid_fr, uq_test_fr for fraction specification, \ uq_train_vec, uq_valid_vec, uq_test_vec for block list specification, and \ - uq_train_bks, uq_valid_bks, uq_test_bks for block number specification) + uq_train_bks, uq_valid_bks, uq_test_bks for block number specification) :return: Tuple of numpy arrays diff --git a/candle/viz_utils.py b/candle/viz_utils.py index baa9b36..7b5e890 100644 --- a/candle/viz_utils.py +++ b/candle/viz_utils.py @@ -168,7 +168,7 @@ def plot_2d_density_sigma_vs_error(sigma, yerror, method=None, figprefix=None): def plot_histogram_error_per_sigma(sigma, yerror, method=None, figprefix=None): """ - Functionality to plot a 1D histogram of the distribution of computed errors + Functionality to plot a 1D histogram of the distribution of computed errors (i.e. values of observed - predicted) observed for specific values of standard deviations computed. The range of standard deviations computed is split in xbins values and the diff --git a/setup.py b/setup.py index db7c02f..cfd7ff7 100644 --- a/setup.py +++ b/setup.py @@ -24,6 +24,7 @@ "scipy", "patsy", "statsmodels", + "protobuf==3.20.0", ], setup_requires=["pytest-runner", "flake8"], tests_requires=["pytest"],