- also called: 'CCA'
- https://en.wikipedia.org/wiki/Canonical_correlation
- implemented in: 'Python sklearn.cross_decomposition.CCA', 'SPSS', 'R cancor'
- domain: 'Multivariate statistics'
- also called: 'LDA', 'Normal discriminant analysis', 'NDA, 'Discriminant function analysis'
- https://en.wikipedia.org/wiki/Linear_discriminant_analysis
- related to: 'Principal component analysis'
- also called: 'MCD'
- paper: 'Least Median of Squares Regression (1984)'
- improvement: 'Fast Minimum Covariance Determinant'
- also called: 'FAST-MCD'
- paper: 'A Fast Algorithm for the Minimum Covariance Determinant Estimator (1998)'
- implemented in: 'sklearn.covariance.MinCovDet'
- input: 'Normal distributed data'
- robust to outliers
- solves: 'Covariance matrix estimation'
- https://en.wikipedia.org/wiki/Sample_mean_and_covariance
- sensitive to outliers
- solves: 'Covariance matrix estimation'
- https://en.wikipedia.org/wiki/Estimation_of_covariance_matrices#Maximum-likelihood_estimation_for_the_multivariate_normal_distribution
- implemented in: 'sklearn.covariance.EmpiricalCovariance'
- solves: 'Covariance matrix estimation'
- https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods
- applications: 'Numerical analysis', 'Ordinary differential equation'
- implemented in: 'scipy.integrate.RK45, scipy.integrate.RK23'
- https://en.wikipedia.org/wiki/Newton%E2%80%93Cotes_formulas
- applications: 'Numerical integration'
- implemented in: 'scipy.integrate.newton_cotes'